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Summary 

The project addressed a number of fundamental aspects electromagnetic fields and their 

applications in inverse scattering problems. The program advanced the understanding of 

generation, propagation, manipulation and detection of random electromagnetic beams. 

The research effort comprised theoretical, numerical modeling, and experimental 

developments.  

In order to simulate the results of scattering from a random medium to a degree of 

accuracy that will reflect the statistical nature of the studied phenomenon, the coupled 

dipoles approximation (CDA) is a method of choice. CDA does not suffer from the 

important disadvantage of FDTD and FEM, namely the need to discretise space outside 

the medium and the need to implement suitable boundary conditions to prevent non-

physical reflections from the boundaries of the computational domain. We have 

developed a CDA algorithm capable of dealing with different realizations of a random 

medium and statistical analysis of the light scattered as a result of light matter interaction. 

 

In most cases of interest for remote sensing, the result of interaction between coherent 

waves and random media is scale dependent. We investigated the coherent scattering 

from random media both numerically and experimentally. We have developed a 

formalism to describe the vectorial properties of random media and, based on the scale 

dependent responses, we have suggested unique sensing approaches. Our findings are 

relevant for both material identification and the design of novel materials because we 

have identified a new electromagnetic interaction, which represents the scale at which the 

polarimetric response of a medium is most sensitive to the excitation field 

 

We have demonstrated a new way of analyzing the fluctuations of scattered waves and 

have shown that individual members of an ensemble of interactions provides means to 

extract information beyond that available in the ensemble average. This should be of 

particular interest for remote sensing procedures that rely on multiple exposures or 

extended time-scales in order to establish robust averages. 



 

We have also demonstrated that, in spite of usually being considered a nuisance, media 

causing intricate scattering can act as efficient linear optical devices. We have shown 

that, upon calibration, random media can be used as polarimeters with remarkable 

properties.  

 

When coherent beams interact with random media, a number of polarization dependent 

phenomena occur. For instance, due to spin-orbit interaction, the optical wave encounter 

with a gradient of refractive index leads to transport of spin similar to the electronic spin 

Hall effect. We have demonstrated that for a wave in a pure state of polarization, the 

spin-orbit interaction results in a spiraling power flow that is determined by the extent of 

interaction. This constitutes the first demonstration that spin transport can be manipulated 

and enhanced in confined geometries. The results open the possibility for new 

functionalities for sensing devices and unique communication channels.  

It has been known for quite some time that electromagnetic fields can induce 

conservative forces resulting from field gradients as well as nonconservative forces 

appearing due to radiation pressure and gradients of phase. We have uncovered a novel 

interplay between conservative and nonconservative forces, which constitutes a new 

mechanism to induce torques on spherically symmetric, optically isotropic, and lossless 

objects. The phenomenon can be exploited to generate torques that are fully controlled by 

the polarization of the excitation field. Because the torques acting on components of a 

material system are entirely nonconservative, the phenomenon represents a new means to 

extract energy form a radiation field besides the traditional dissipation mechanisms.  

Certain results of this program have been included in a number of publications: two Phys 

Rev Lett, two Phys Rev E, and three Opt. Exp. The program has also supported a number 

of twenty three presentations and invited presentations at national and international 

scientific meetings.  



1.  Coupled dipole approximation for random media 
The coupled dipoles approximation (CDA) is a numerical technique that discretizes a 

continuum volume in a finite array of polarizable point dipoles [1].  These dipoles react 

to the local field and, by the use of dyadic Green's function, the complete interactions 

between dipoles, including both the near- and far-field components, are accounted for. 

The polarizability of each individual dipole relates to the local dielectric properties of the 

medium.  In modeling a near field experiment, the initial excitation is produced by an 

emitting dipole placed in the near field of the medium which simulates the tip of the 

fiber.  

According to coupled dipole approximation the field at each of the dipoles can be 

written as the summation of both the incident field and the contributions occurring from 

the interaction with all the other dipoles on the lattice 
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To model inhomogeneous media using CDA, dipoles with polarizabilities given 

by the Lorenz-Lorenz formula corresponding to the specific components were randomly 

distributed in a proportion according to the sample's composition.  The far field coherent 

superposition of the dipolar contributions is recorded for specific configurations of the 

scattering medium and an ensemble of realizations is produced.  A large number of 

realizations of a sample are generated and the relevant statistical information of phase, 

amplitude, and intensity distributions are determined. 

 



1.2  Random Materials and CDA 

 

In the specific case of modeling a random composite material, dipoles with the 

different polarizabilities are randomly distributed across the lattice in a proportion 

determined by the medium's composition. In our procedure, this random distribution of 

polarizabilites constitutes one realization of the randomly inhomogeneous medium. An 

ensemble of such realizations is obtained by creating a large number of independent 

realizations.  Figure  shows an example of spheres randomly distributed throughout the 

cubic lattice. 

 
Figure 1 One realization of spheres imbedded in a host material.  A sphere on a cubic 

lattice in this situation is modeled by 7 dipoles and is randomly distributed throughout the 

lattice according to the volume fraction. 

 

The number of iterations needed to approach the solution depends on both the 

refractive index contrast between the different constituents, and on the initial guess at the 

solution.   For each realization of the sample, the far-field coherent superposition of the 

dipolar contributions is recorded. After a large number of these realizations, an intensity 

distribution is created and statisticaly relevant information such as the optical contrast can 

be analyzed. 

 
 

 

Figure 2. Distribution of states of polarization for field scattered from 

simulated cube of random medium. Blue points show experimental 

constraints, red dots show real Stokes. 



1.3  Extension of CDA to infinite media 

One of disadvantages of coupled dipole approximation is the rapid increase of 

memory requirements with increase of the number of dipoles. One of the possible ways 

to avoid this problem is to introduce periodic conditions for modeling geometry. For 

example, to study the scattering properties of infinite slab of inhomogeneous material 

using CDA, the modeling cube can be replicated in 2 dimensions, (x-y plane) with some 

periodicity specified by the initial cubes with a side dimensions d. The assumption of this 

extension is that this periodicity will not modify the essential properties of the scattered 

light. 

We would like to consider the situation where we have a plane wave with some 

arbitrary angle of incidence on the slab of inhomogeneous material: 
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According to the periodicity condition for such an excitation, we following relation 

should be satisfied for the field inside the slab:  
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Here x̂  and ŷ  are unit vectors in the x- and y-directions, ||k


 is the component of 

wavevector parallel to the surface of the slab. The initial equation for coupled dipole 

approximation (1) now can be rewritten as follows: 
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The first summation in the right hand side of this expression is performed over all dipoles 

in the modeling cube. The second summation is performed over each monolayer 

corresponding to the repetition of each plane. Unfortunately, the lattice sums over n and 

m in real space does not converge. However, these lattice sums may be calculated after 

applying two-dimensional Fourier transformation. After proper transformations we have 

the following expressions for the lattice sums: 
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In this case the sum in real space does not converge, and the sum in Fourier space 

diverges, as such, it is necessary to use another strategy.  In this case, the sum can be 

written as a combination of the sum in real space and reciprocal space.  The convergence 

is made faster by adding and subtracting and offset sum as a function of some arbitrary z 

value of h from the real space sum 
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Sum in inverse space is the same as the first case however now the z separation is offset 

from zero to be some value h: 
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And the sum in real space is the usual dipole interaction Green function, evaluated at z=h 

and z=0 
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 in formula (9) denotes the outer product, 
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where, p and q are integers. 

These new expressions should allow the possibility to model a semi-infinite slab 

without the influence on the boundary effects.  However, the new expressions are no 

longer symmetric with respect to the separation vector.  As CDA involves solving a large 

dense system of equations, it often necessary to use numerical techniques that may 

drastically improve the efficiency of obtaining this solution.  The most common 

technique is the use of a Fourier Transform technique and an iterative approach to the 

solution known as the conjugate gradient algorithm.  This technique draws on the 

symmetries available, and as such, our new Greens function should be symmetric.  

The system can become symmetric by multiplying both sides by 

 kie  and 

solving a new system of equations 

     




 








    ki
N

Vr nm

jj

ymdxndki

kj

ki

jo

ki

j erEeymdxndrrAerEerE
dj ,

ˆˆ
)(ˆˆ,)()( ||

    (12)

 

One feature that has not been discussed thus far is the influence of the periodicity on the 

scattered fields.  In general, the scattering of a plane wave from a periodic structure 

results in diffracted orders that depend on the wavelength and the periodicity length. 

Figure 3 shows directions of diffracted orders for different periodicity parameters for 

incident field at 45. 



  
 

 

Figure 3. Directions of diffractive orders for periodicity parameter 

equal to 6.1d  (left), 2.3d  (right). 

 

It is possible to show that in the case of homogenous material, only the 0
th

  order 

diffraction  occurs, corresponding to the reflected wave. In the case of inhomogeneous 

material, these diffracted orders do not disappear. But the presence of additional 

diffractive orders is not the artifact of method. Let us suppose that the periodicity 

approaches infinity. Than direction of diffractive orders occupy the whole space. Thus, 

this additional scattered light that appears in simulations could serve as some sort of 

measure of diffuse light. 

  Initial testing of the method was done in situation where the material is 

homogenous.  For this situation, there exist analytical solutions for the field inside the 

slab as well as the corresponding reflection coefficients. In Figure 4 we present the 

comparison between the field distribution inside the slab calculated analytically 

according to Fresnel formulas and the results obtained using our CDA extension. The 

calculations demonstrate an excellent correspondence between the two approaches. 
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Figure 4. Electric field magnitude inside plane-parallel slab (64 dipoles 

in depth, total 0.8). Blue curve shows analytical results, red dots show 

the result obtained with CDA extension to infinite media. 

 



 

The new method was further developed to deal with modeling large scale random media.  

We have demonstrated that this method can adequately describe optical properties such 

as specular and diffuse reflection amplitudes. The accuracy of our approach was tested on 

slabs with thicknesses less than the wavelength of light. We found an excellent agreement 

with analytical results for slabs of homogeneous media and for media containing small 

size inclusions. When the size of inhomogeneities increases, our numerical approach can 

describe phenomena for which no analytical models are available. 

 

 
 

Fig. 5  Infinite slab of an inhomogeneous material modeled using CDA. The 

boundary effects are eliminated by replicating a random volume in 2D.   

 

Further expansion could also address the problem of semi-infinite inhomogeneous 

media. However, in this case a direct extension of our approach is not possible, because 

the electromagnetic field in z-direction is not exactly periodic. The presence of the 

surface breaks the symmetry and makes the field in the surface region different from the 

field in the bulk. The generalization procedure should take this into account. 

    Another particular direction of interest is modeling roughness effects by introducing 

irregularities into the upper surface of the modeling cube. In the case of coupled-dipole 

method, media with irregular surface structure represent a particular case of 

inhomogeneities where some surface dipoles have zero polarizability. Thus, the 

formalism described above for inhomogeneous media is valid also for media with rough 

surfaces. 

 

 



2. Scale-dependent description of inhomogeneous media  
A second effort was directed at finding means to describe the effective polarizability of 

random media. When describing material properties, the probed scale determines the 

outcome.  The observed material response at certain scales can depend on the local 

structure.  In general, one can define microscopic, mesoscopic, and macroscopic regimes, 

but their absolute length scales will depend on the specific material characteristics. 

The microscopic scale refers to the smallest volume over which the material is 

homogeneous; probing this scale reveals the “intrinsic” properties of the medium.  The 

optical characteristics at the largest, macroscopic scale involve significant averaging over 

volumes usually much larger than characteristic scales of inhomogeneity in medium.  

Mesoscopic scales on the other hand, are small enough that fluctuations around the 

average become important and may contain additional information about structural 

characteristics of inhomogeneity. In this regime, the classical laws of interaction do not 

apply anymore.  

A material is optically homogeneous when its optical responses are equivalent 

from micro- up to macroscopic scales. In the case of so-called inhomogeneous media, a 

microscopic description provides the intrinsic dielectric properties of constituents; while 

a description at macroscopic scales results in an effective averaging of the dielectric 

properties. All known effective medium theories are based on this averaging principle
1
.   

 

Figure 6.  (a) A material system with varying optical properties over some 

characteristic mesoscopic length scale.  (b) Conceptual model of random 

inhomogeneous media as that of a series of anisotropic Rayleigh scatterers. 

 

Because materials description at mesoscopic scales involves their specific 

polarimetric properties, one has to go beyond conventional effective medium approaches. 

For instance, one can consider the mesoscopic interaction volume as being a single 

anisotropic Rayleigh scatterer, defined by its scattering strength, degree of anisotropy, 

and orientation (Fig. 6). Of course, the properties of inhomogeneous media are scale 

dependent and, in general, the parameters of these “anisotropic scatterers” will also 

depend on the mesoscopic volume considered. That means that this local anisotropy is 

not an intrinsic property of medium; rather, it is determined by the characteristic scale 

over which the measurement is performed. The notion of scale-dependent properties is a 
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 For large scale randomly inhomogeneous media, a multiscale description of the light propagation can be 

envisioned where the Maxwell‟s equations, the transport equation, and the diffusion equation can be 

applied to describe the microscopic, mesoscopic, and macroscopic scale, respectively.  
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powerful concept, as it provides novel means to characterize inhomogeneous media
2
.  

This characteristic length scale of interaction may be determined, for example, by the 

particles dimension if we deal with small inhomogeneous objects or by the excitation 

volume, as in the case of near-field optical microscopy.  

 

2.1  Local anisotropy of inhomogeneous media    

Due to their shape asymmetries, small and intrinsically homogeneous particles can 

acquire tensorial properties (form birefringence). Inhomogeneous objects on the other 

hand can have optically anisotropic properties even if their components do not have 

shape asymmetry. Such structurally induced anisotropy has been observed, for instance, 

in small spheres with eccentric inclusions. In general, collective scattering from 

otherwise isotropic scattering centers can manifest noticeable anisotropy in the effective 

polarizability.   

Let us examine in detail the mesoscopic problem of an optically inhomogeneous 

sphere with dimensions smaller than the wavelength. The random inhomogeneties inside 

the sphere effectively produce an anisotropic polarizability; one method that can be 

applied in order to measure this anisotropic polarizability is that of stochastic scattering 

polarimetry (SSP).  SSP will reveal the effective anisotropic polarizability of an 

inhomogeneous sphere if the magnitudes of the polarizability elements remain constant 

and polarimetric observations are performed for random orientations and different 

packings.  

It is obvious that for some particular inhomogeneous sphere, the composite 

particulates may be distributed resulting in an isotropic scattering, while for others of 

similar properties it can be very anisotropic. To account for situations where the 

magnitude and orientation of the polarizability varies, a method can be outlined that fully 

measures the symmetric polarizability tensor of some object.  Currently, in optics, one 

can only measure intensities; therefore a complete determination of the polarizability 

tensor would require three independent excitation fields and two separate polarimetric 

detectors.  Once the complete symmetric polarizability tensor is retrieved, the diagonal 

form of the polarizability and the corresponding angles of rotation are found using an 

eigenvalue decomposition.  

Using the above described method, the diagonal elements of polarizability tensor 

and the angles specifying its orientation can be determined for each realization of the 

random distribution of inclusions. The situation can be modeled using the coupled dipole 

approximation (CDA) described in the previous report, where dipoles with different 

polarizabilities  are randomly placed within the volume of the sphere. A statistically 

relevant number of random realizations of the sample should be performed. During every 

reconstruction procedure diagonal components of polarizability tensor were ordered in 

such a way that cba  . The probability distributions of polarizability components and 

orientation angles are shown in Figure 7. One can see that the distribution of angles is 

                                                 
2
 This concept has been used to describe different statistical regimes in near-field scattering from random 

media.   



uniform. This behavior is specified by the symmetry of the problem: all the orientations 

of effective anisotropic polarizability of mesoscopic sphere should be equally probable. 

Figure 7 also shows that inhomogeneous objects indeed possess anisotropic properties at 

mesoscopic scales.  

 

Refractive indexRefractive indexRefractive indexRefractive index
 

Figure 7.  Probability density functions of ordered diagonal elements of 

polarizability tensor as obtained through the use of a sequential three 

independent excitations and two polarimetric detection schemes.  

 

Let us now examine how the elements of the polarizability tensor can be measured. Of 

course, a complete polarimetric measurement involving three different excitations 

followed by detection in three different states of polarization can provide all the 

necessary information. However, in most scattering situations it is difficult (or not 

desired) to excite with three different polarizations. The question is, can some 

information can still be retrieved? In fact, if some assumptions about the material can be 

made, then the anisotropic polariability distributions can be found by using one single 

polarized excitation, and a single polarimetrically measured intensity.  

Due to the random nature of inhomogeneous media, there is no preferential 

structuring of the anisotropic polarizability tensor. That means that the main axes of 

polarizability tensor are oriented uniformly in space. From symmetry considerations it 

should also follow that the values of each of the three diagonal elements describing an 

anisotropic polarizability are random variables having the same probability distributions 

)()()( xfxfxf cba  .  If the mesoscopic region is excited by a wave linearly polarized 

along x, then the scattered field‟s magnitude along the same direction is: 
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where the functions 1 , 2 and 3  describe the orientation of the anisotropic 

polarizability and are functions of the random rotations , , and  . It is possible to 

show that the random variables 1 , 2 and 3  have the same probability distribution 

functions that can be described by function 
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However, these variables are not independent, and their joint distribution may be found to 

be 
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Solving Eq.  (13) for unknown PDFs )(xfa , )(xfb , )(xfc by  using measured 

PDF of x-polarized electric field and then using the order statistics allows recovering  the 

PDFs of diagonal polarizability components. The distributions of the ordered diagonal 

tensor elements   )(xf kx  ( 3,2,1k ), can be inferred from the original probability 

distribution function )(xf  and the cumulative distribution function )(xF  
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For example, applying such ordered statistics constraint to a Gaussian distribution with 

mean  and standard deviation  leads to three other “Gaussian like” distributions with 

means  and )2/(3   .  This ordering allows us to recover the three distributions of 

the diagonal elements of the polarizability, reducing the demand on the measurement: 

single excitation polarization and single co-polarized measurement. 

Our CDA simulations show that PDFs of a, b, and c for random media in many 

cases may be described by Gaussian distribution.  Therefore, one can write:  
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Resulting co-polarized intensity distributions are also in many cases Gaussian.  Using the 

assumptions about Gaussian form of PDFs, we can solve numerically Eq. (13) and find a 

relation between the moments of the scattered intensity distribution )|(| 2

xEp and the 

moments of the Gaussian distribution of polarizability elements:  
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These expressions are found from the assumptions that refractive index of components of 

inhomogeneous media is bounded (usually between 1 and 3). It follows that the possible 

variations of both mean of intensity and standard deviation are also limited. Thus, the 

functions ),(),,( afIfI
xx

    can be decomposed into series with 

respect to variables a , a . It seems that a decomposition up to the second order produce 

very good results as illustrated in Figs 8 and 9 where two media are considered that have 



the same effective properties (same effective refractive index) but different local 

morphologies as can be seen. The set of different PDF‟s for polarizibility elements are 

different as observed in Figure 9 indicating that a polarimetric measurement can actually 

discriminate between these two media.  

 

 

 

 

 

Figure 8. Example of two random media having the same effective refractive 

index as estimated from the Brugememan‟s effective medium theory. 

 

 

 
 

 

Figure 9.  Probability density functions of ordered diagonal elements of polarizability 

tensors for samples A and B in Fig. 8  as obtained through the use a single 

polarimetric excitation. 
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2.2  Scale dependent local anisotropic polarizability 

 
To quantitatively characterize the local anisotropic polarizability (LAP), we 

introduce an anisotropy factor defined as the contrast calculated for diagonal components 

of polarizability tensor   
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 
, (19) 

where Tr  denotes the trace of tensor  . Note that, in the past, other definitions have 

been used for such anisotropy factor.  In Ref. [Error! Bookmark not defined.] for 

instance, an anisotropy factor S  was defined as the variance of depolarization factors 
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1 ),(ˆˆ)(ˆ rrr .  Here ),(ˆ
0 rr G  is the regular part of the quasistatic 

free-space dyadic Green‟s function for electric field, Î  is the unity tensor. In this 

designation, the local anisotropy factor cannot depend on the excitation volume and, 

moreover, its locality can be violated in 3D random composites without structural self-

similarity, i.e. in nonfractal composites that are of interest here.. The definition of   in 

Eq. (19) is most appropriate for our discussion, which focuses on describing the form 

anisotropy and not necessarily on the absolute magnitude of a specific dipole moment.  

Using the definition in Eq. (19), the anisotropy factor   was calculated for every 

realization of the localized inhomogeneous volume. Of course, an averaged   can then 

be calculated from the recovered ensemble of values of this parameter. The average 

anisotropy factors calculated for the two materials illustrated in Fig. 8 are  3102.9   and 
3102.13  , respectively. The 30% difference clearly demonstrates that LAP is a parameter 

that can be used to quantify differences between macroscopically similar media.  

 

In the preceding discussion, LAP was examined over one single length scale. This 

situation corresponds to fixed volume of light-matter interaction imposed by the 

measurement procedure. In case of the two different media presented in Figure 8, the 

differences will, of course, diminish as this volume of interaction increases; the two 

different optical responses will converge toward the same macroscopic value 

corresponding to an isotropic polarizability tensor. The rate of this convergence however 

may be different depending on the specific structural morphology.  

We will turn now our attention to LAP‟s dependence on the volume of interaction. 

We have repeated the previous analysis for spheres of different radii R and the results are 

presented in Figure 10 where we compare the anisotropy factor  for the case of two 

different sizes of spherical inclusions randomly distributed within probing volume of 

different sizes. The main observation is that   always attains a maximum that defines a 

new length scale characterizing the electromagnetic interaction. This maximum 

anisotropy length (MAL) represents the length scale over which the response of 

inhomogeneous medium is most sensitive to the polarization (vector) properties of the 

excitation field. In other words, it is at this scale that, in average, the depolarization of 



light during scattering occurs more effectively. Along with scattering mean free path and 

transport mean free path that describe the way the energy is transferred, MAL represents 

another interaction-specific length scale that characterizes the propagation of polarized 

fields through random media. 

At length scales smaller than MAL, the local polarizability becomes isotropic with 

  tending to zero as the probing volume decreases. At larger scales, the macroscopic 

behavior is gradually approached leading again to an effectively isotropic scattering 

volume with 0 .  
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Figure 10.  Effective anisotropy factor Δ as a function of excitation volume R normalized by inclusion 

diameter d for spherical inclusions with a refractive index of 1.5 randomly distributed in vacuum.  The 

continuous lines correspond to inclusions with diameter 32  while the dashed lines correspond to 

inclusions of diameter 64 . Curves 1 to 4 correspond to volume fractions of inclusions of 0.3, 0.2, 0.1, 

and 0.025, respectively.
 

 

 

As can be seen in Figure 10, the values of the anisotropy factor appear to be 

independent of the size of inhomogeneties. This happens, because, in our example, the 

interaction inside the inhomogeneous volume considered is mostly within the 

electrostatic regime. Therefore, the behavior of   does not depend on the wavelength and 

is fully scalable with inclusions‟ dimensions. Also noticeable in Figure 10 is the faster 

decay of    for higher volume fractions of inclusions inside the sphere of interaction. 

This can also be easily explained by realizing that, for a given excitation volume, the 

larger number of inclusions corresponding to a higher volume fraction represents in fact a 

more isotropic medium. 

In the particular case when the spherical inclusions can be considered as packed 

hard spheres, we found that MAL has a simple interpretation. As illustrated in 11, in this 

case MAL defines the volume containing, in average, three inclusions. Note that three 

inclusions represent the minimum number of particles necessary to form a fully 

anisotropic scatterer. Thus, the statistical averaging for scatterers containing more than 

three inclusions results in a gradual decrease of the anisotropy factor.  
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Figure 11.  Maximum anisotropy length ()
 
normalized by the diameter of inclusions d versus the volume 

fraction of inclusions f.  Open circles and crosses represent MAL values corresponding to inhomogeneous 

media with inclusions of diameters of 64 , 32  respectively. The solid line corresponds to the volume 

containing on average 3 inclusions. 

 

Of course, the other factors determining the optical response of a composite medium are 

the intrinsic properties of the components.  It is expected that, in general, higher 

anisotropy factors will characterize materials with increasing dielectric contrasts. This is 

evident in  

 

Figure 12  were we plot the value of the maximum anisotropy max  as a function 

of dielectric contrast of inclusions The calculations also demonstrate that the values of 

max  simply scale with the magnitudes of dielectric functions of components indicating 

that the max behavior is determined only by the material‟s structure and not by its 

composition. 
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Figure 12.  Maximum of anisotropy factor max  as a function of volume fraction f of 

inclusions with 50nm in diameter and having different refractive index contrasts. 

 

 

To conclude, we have demonstrated that at mesoscopic scales, the optical 

response of random media consisting of optically isotropic components may be 

interpreted in terms of local anisotropic polarizabilities (LAP). At mesoscopic scales, 

different materials can be characterized by their specific anisotropic polarizabilities even 

though they may have similar effective dielectric permittivities when described in terms 

of an effective medium approach.  

We have also shown that material properties at mesoscopic scales depend on the 

volume of interaction, in this respect, LAP is an attribute of the electromagnetic field-

matter interaction. However, a characteristic length scale, maximum anisotropy length 

(MAL), exists at which the degree of local anisotropy   reaches its maximum.  At this 

scale the inhomogeneous materials are most sensitive to the polarization of incident light. 

Thus, electromagnetic wave interaction on this scale length results in the maximal 

depolarization. Along with other characteristics length scales such as the scattering mean 

free path, the value of MAL reflects essential intrinsic properties of random media. 

There are, of course, different means for characterizing the local optical properties 

of inhomogeneous media. For instance, the scalar contrast of scattered intensities 

measures the relative variations of the scattering cross-section within the interaction 

volume. When this volume increases, the scattered intensity variations decay 

monotonically to zero with a rate depending on the medium‟s properties. In this case 

however, only asymptotic scales can be determined which may affect the specificity.  

MAL on the other hand is not only derived from a tensorial feature of the material but it 

is also a local property. Its value is a basic characteristic of material‟s morphology.  

Our findings are relevant to the design of novel materials because this new 

electromagnetic interaction scale represents the material scale at which the polarimetric 

response of a medium is most sensitive to the excitation field. 



3. Field transfer matrix of scattering media  

 

Multiple scattering is typically considered to degrade the information in a beam 

propagating through a random medium.  For temporally coherent radiation propagating 

through an optically thick medium, the light scattered out of the medium will produce an 

interference pattern with alternating bright and dark regions known as speckles.  A 

speckle pattern having a negative exponential intensity distribution is called fully 

developed and obeys Gaussian field statistics.  Since the field distribution is a Gaussian 

random variable, it was thought to contain neither information about the underlying 

scattering medium nor information about the beam incident on the medium. 

We investigated a new approach to recovering information from a speckle pattern 

that does not rely on ensemble averaging or assumptions about the underlying field 

statistics.  We have actually measured the components of the field transfer matrix across 

a particular output plane.  In a proof of concept demonstration, we show successful 

recovery of the polarization state of an unknown beam from the speckle pattern it 

produces.  Our technique is a deterministic procedure performed simultaneously in many 

different spatial locations.  Because the technique does not rely on any assumptions about 

the statistics of the field distribution and because it is carried out by point operations 

rather than image correlations, it can be used in regimes ranging from no scattering to 

high-order multiple scattering. 

 

Consider a linear, multiply scattering medium illuminated by polarized light.  The 

field will undergo many series of scattering events before emerging from the medium.  In 

a particular series, the field after the first scattering event at r1 that illuminates the second 

scatterer at position r2 may be expressed as 

 incscat ))E(rr,(rα)E(r 1122 1,               (20) 

where α  is a complex tensor that expresses the magnitude and phase of the coupling 

between incident and scattered field components.  It also includes transferring the 

scattered field to the point r2.  Now, replacing Einc with Escat,1 and )r,(rα 12  with )r,(rα 23 , 

we obtain the field at position r3 on the third scatterer.  This process can be continued 

until the field reaches the detector at position r to obtain the contribution of a particular 

scattering path to the field at the detector:   
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In this particular decomposition the scattering matrix that relates the input and output 

field contains information about the propagation from ri to ri+1 as well as information 

about the scattering event at ri.  Since we are interested in the transfer of the field through 

the medium, not in the particular details of how the transfer occurs, the mixing of 

scattering and propagation information is not important. 

Furthermore, there are many scattering paths connecting the illuminated points on the 

front surface of a multiply scattering medium to each detection point after the medium as 

shown in Fig. 13.  If the scattering path lengths are shorter than the coherence length of 

the illuminating radiation, the scattering process will not depolarize the output light; it 



will only change the radiation‟s state of polarization.  The resulting field at any detection 

point due to a particular input point is simply the coherent summation of the outputs of 

each of the different paths starting at the illuminated point on the front surface and ending 

at the detection point. Also shown in Fig. 13 are three random walks on the Poincare 

sphere that begin in the same polarization state (chosen here to be circular). However, 

since they interact with different configurations of the scattering medium, they arrive at 

the detector in different states of polarization, denoted by the large dots of the appropriate 

color.  The total field at the detector is the coherent sum of the different paths and is in 

the state of polarization marked by a white dot labeled “detected” on the Poincare sphere.  

Thus, the resulting field, neglecting time dependence, at a point r due to all illuminated 

input points can be written as 

 incn incn eff incefftotal e(r)α))E(rr(r,α)E(r)r(r,αE(r) nnnn
ˆ~~                (22) 

The normalized input field, incê , can be factored out of the sum so long as its 

polarization is spatially constant, and we can express the resulting output field in terms of 

a single transfer matrix, (r)α~ , which subsumes the intensity profile of the illumination.  

For a given experimental geometry and illumination source, (r)α~  is only a function of 

detector location; however, if the spatial intensity profile of the illumination is modified, 

(r)α~  will change as well because the intensity profile acts as a weighting function for the 

contribution of each scattering path.  The tilded quantities represent the only measurable 

parameters of the scattering material because it is not practically possible to separate the 

contributions of individual paths from the detected intensity. It is also important to note 

that the illuminated points can have an arbitrary spatial extent and spatial intensity profile 

on the random scattering medium as long as the scattering paths remain coherent with 

one another.   
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Fig. 13. Random walks through a static random medium and their resulting 

change in polarization state. 
 

The problem of determining the elements of the transfer matrix to a given point in the 

detection plane does not depend on the precise nature of the process that produced the 

output field and thus applies to all scattering regimes.  In general, α
~

 has nine elements 

with eighteen unknowns: nine coupling magnitudes and nine phases.  Because the 

scattering is not isotropic, α~ depends on the direction of propagation of the incident light, 

and it is difficult to measure the full transfer matrix for an arbitrary geometry.  However, 



if the scattering medium is surrounded by an isotropic medium, the electric field of the 

illumination is confined to a plane and can be decomposed into two orthogonal 

polarization states with a phase between them. If the scattered fields are allowed to 

propagate away from the scattering medium before detection, they can also be 

decomposed into two orthogonal polarization states and a phase term.  In this situation, 

the transfer matrix has only four elements consisting of eight unknowns, which can be 

determined by illuminating the scattering medium with appropriately polarized light.  

Moreover, we can choose one of the elements of the transfer matrix to be real since we 

cannot measure absolute phase at a point and only compare the intensities between 

points.  Additional simplifications can be introduced by realizing that it is not necessary 

to characterize all seven of the remaining unknowns simultaneously.  If a polarizer 

oriented along the x-axis is placed between the scattering medium and the detector, 

21
~ = 22

~ =0, and there are only three unknowns that need to be characterized.  The 

detected intensity at point r is then given by 
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11 rrrrrr   yxyx EEEEI ,              (23) 

where is the phase between the x and y components of the incident field, and Ex and Ey 

are their respective magnitudes. In Eq. (23), 
~

is the phase introduced by the coupling of 

Ey into a scattered x polarized field, and 11
~ and 12

~  are the magnitudes of the coupling of 

the incident x and y polarized fields, respectively, into scattered fields polarized along x.  

The polarization of the scattered field and the elements of α~  measured are determined by 

the orientation of the final polarizer. 

 

3.1  Calibration procedure    

The procedure for recovering an unknown incident state of polarization comprises three 

main steps:   

 measuring the transfer matrix for many points in the detection plane,  

 selecting unique field combinations or transfer matrices, and  

 solving Eq. (10) for the incident field components using the transfer matrices.   

First, the needed components of the transfer matrix corresponding to each detector point 

are determined via a calibration with known fields. To determine the magnitudes of the 

elements of the transfer matrix and eliminate the sign ambiguity in the argument of the 

cosine in Eq. (10), we use four calibration states.  The relative spatial intensity profiles of 

the unknown source and the calibration source should be the same since the intensity 

profile of the illumination weights the contribution of each scattering path to the detected 

intensity.  

A fully polarized field is characterized by three different parameters, and, as with the 

transfer matrix elements, at least three independent combinations of the incident field are 

needed to completely determine its polarization state.  For a static system, each point in 

the detection plane sees a particular transformation of the input field resulting from the 

combination of the scattering paths that end at that point.  Thus, determining the 

parameters of a fully polarized field requires that the intensity be measured at three or 



more points with independent transfer matrices.  As a result, the detection system must 

resolve at least three speckles. 

As an example, the use of a particular combination of detectors is illustrated in Fig. 

14.  The axes of this representation of transfer matrices are defined in a manner 

analogous to the Poincare sphere with the elements of the transfer matrices at a particular 

point taking the place of the input field components that they couple 
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The points shown in blue have a transfer matrix of 0~
11   and 0~

12  , while the points 

shown in green have a transfer matrix of 0~
11   and 0~

12  .  Because the output points 

represented by the blue and green areas couple only one of the two input field 

components, they measure the x and y components of the unknown field.  The points 

shown in red on the other hand have 1211
~~    and contain the information about the phase 

of the unknown field because both of the input field components are coupled into the 

measured intensity. 
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Fig. 14.  Example of groups of transfer matrices that can be used to recover an 

unknown incident field.  
 

Since there is no reason to select any particular group of independent detection points, 

it is possible to form many different groups and then perform a statistical analysis on the 

recovered fields rather than relying on the result of a single combination.  Note that a 

medium with transfer matrices covering only a small portion of the sphere may not be 

used to fully analyze any unknown field from its speckle pattern simply because the 

medium does not produce a sufficient number of independent combinations of the field. 

Finally, for the selected groups of transfer matrices as illustrated in Fig. 2, the 

unknown field parameters, Ex, Ey, and  , are determined by solving the following system 

of equations for each group of detectors 
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where all of the transfer matrix elements are known from the calibration process and 

where ri denotes the location of the point in the detection plane rather than the location of 

a scatterer.  

 

3.2  Proof of concept demonstration    

In order to demonstrate that our procedure is valid across all scattering regimes, we 

measured transfer matrices for the extreme cases of deterministic, single scatterers and a 

heavy multiple scatterer.  For the single scatterers, the measured transfer matrices can be 

qualitatively compared to the expected values using the spherical representation from Fig. 

14.  On the other hand, since the multiply scattering medium produces many diverse 

mixings of the incident field, it is difficult to assess the capability of our procedure by 

direct examination of the measured transfer matrices.  In this case, we will use the 

transfer matrices to recover the states of polarization of plane waves in order to show our 

procedure works even in a regime of heavy multiple scattering. 

In our experiment, a laser beam with a controlled state of polarization was incident on 

the scattering medium and the speckle pattern resulting from its transmission through the 

medium was recorded by a CCD camera.  A polarizer with a fixed orientation was placed 

in front of the detector to simplify the analysis as explained before.  The speckles 

produced by the multiply scattering medium were approximately five pixels across on the 

CCD and each measurement sampled a few thousand speckles.   

Figure 15 illustrates the measured transfer matrices for a polarizer, a quarter-wave 

plate, and a multiply scattering medium.  The multiply scattering medium is a composite 

dielectric material with a thickness of 100μm and characterized by a transport mean free 

path of 10μm.  Figures (a) and (b) show measurements from a polarizer oriented at 

approximately ±45° and a quarter-wave plate rotated in 15° increments from 0° to 90°.  

From linear optics theory, we expect a polarizer oriented at 45° and 135
o
 to have equal 

coupling strengths through the final polarizer for both incident x and y field components.  

Also, when the polarizer is oriented at 45°, the transmitted field components will be in 

phase, and when it is oriented at 135°, the transmitted field components should have a π 

phase difference between them.  In (a) we see comparable coupling of the orthogonal 

field components, although there is a slight misalignment of the polarizer, and rotating 

the polarizer from 45
o
 to 135

o
 introduces a π phase shift between the elements of the 

transfer matrix as expected.  In (b), the green line denotes the path that the transfer matrix 

of a quarter-wave plate should follow on the sphere as the wave plate is rotated through 

90
o
, and the labeled groups of points are the measured transfer matrices for a quarter-

wave plate in the indicated orientations.  In both cases the measured transfer matrix 

elements show behavior consistent with what was expected and demonstrate the ability of 

our process to analyze deterministic single scatterers. 
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Fig. 15.  Effective transfer matrices measured for (a) A polarizer oriented at 

roughly 45° and 135
o
.  (b) A quarter-wave plate rotated by 90° in 15° increments.  

(c) A multiply scattering solid sample.   

 

In Fig. 15(c) we present a subset of the measured transfer matrices for the multiply 

scattering sample.  For a truly random medium, we would expect the measured transfer 

matrices to uniformly cover the sphere of possible matrices; however, because of 

numerical instabilities involving calculations with small numbers, the points in a ring 

around Δ axis of the sphere are rejected by our processing algorithm.  Near the axis, 

either 1211
~~    or 1211

~~   , and the smaller of the two can be approximated as 0 so that 

transfer matrices very close to the Δ axis are moved onto the axis.  Also, there seems to 

be some clustering of the points near  =-1.  Even though the transfer matrices are not 

uniformly distributed on the sphere, our measurements show that the sample produces a 

sufficiently large number of substantially different mixings of the incident field. This is 

the only requirement for recovering the state of polarization of the incident field. 

Since the medium exemplified in Fig. 15(c) is in a regime of multiple scattering, it is 

difficult to assess the accuracy of the transfer matrix measurement by viewing of the 

matrices using this spherical representation. However, one can still examine their 

accuracy by using the determined matrices to infer the polarization states of different 

beams illuminating the medium.  Fig.  16 shows typical experimental results for a +45 

degree linear polarization and an elliptical input state, represented by the blue dots. The 

white dots denote the polarization states recovered by different pixel groups, and the red 

dots represent the geometric centers of the white data points. 
 



 

Fig. 16. Poincare sphere representations of the polarization states recovered by 

individual pixel groups (white dots), the geometric centers of the clouds of white 

points projected onto the surfaces of the spheres (red dots), and the expected 

polarization states (blue dots). 

 

The experimental data shown above subtend a solid angle of approximately 0.158 

steradians.  The spread in the states recovered by the different detector combinations can 

be mitigated to a large extent by averaging the results of many combinations.  The 

averaging can be done well because transfer matrices are measured for a large number of 

detectors.    In order to quantify the error in the recovered polarization state, we can 

compare the normalized Stokes vector of the recovered field to that of the incident field.  

In (a) we input a Stokes vector of (0, 1, 0) and measured (0.018, 0.9997, 0.014), and in 

(b) we input (0, 0.643, 0.766) and measured (0.067, 0.638, 0.764).  As can be seen, the 

recovered Stokes vector components do not deviate by more than 1% from their expected 

value. 

We have also simulated our experiment to study the effects of the detector selection 

criteria and detector noise on the measured field transfer matrices.  We choose 11
~  and 12

~  

randomly distributed uniformly between 0 and 1 and 12

~
  to be randomly distributed 

uniformly between 0 and 2π.  The magnitudes of the coupling matrices were then scaled 

so that the resulting calculated intensity distribution was similar to the actual data for unit 

strength electric field inputs.  Gaussian white noise with a signal to noise ratio of 34 was 

then added to the intensity image to simulate the detector noise in a real measurement. 

Speckle images were generated for both the calibration and test states and processed 

using the same code as the experimental data.  Our simulations indicate that the most 

significant source of error in the data collection and processing is the noise in the detector 

itself.  For simulated data with no noise, the solid angle covered by the measurement data 

on the Poincare sphere (white dots in Fig. 4) is approximately 0.013 steradians.  When 

noise comparable to the noise of the detector used in the experiment is added to the 

simulated data before processing, the spread of the recovered states increases to 0.048 

steradians. The remaining error is likely due to mechanical instabilities in the experiment. 

 

In summary, we have demonstrated that the field transfer matrices of a system can be 

practically measured for specific geometries.  In doing so, no assumptions about the 

statistics of the random field and no specific description of the scattering process are 
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needed. We have demonstrated that a random medium can be used as a massively parallel 

polarimeter having a remarkable precision. This kind of polarimeter should be useful for 

applications (i) requiring “instantaneous” (one shot) or very high speed measurements, 

(ii) involving high energy pulses so long as nonlinear effects are minimal (this can be 

further investigated), (iii) requiring transfer of information encoded in the polarization 

state of light (i.e. keying with a large number of available symbols per time slot).  

Unique characteristics of such scattering based device are (i) wide acceptance angle and 

usable waveband, (ii) the optical train does not need to be aligned with incident light, and 

(iii) the massively parallel measurement allows different approaches for optimizing the 

analysis. 

 

 



4. Characterizing the fluctuations of scattered waves 
The interaction of coherent electromagnetic beams with most common materials leads to 

a variety of specific fluctuations. As a result, the electromagnetic beams acquire usually a 

certain degree of randomness. The statistics of random complex fields give rise to a 

number of measurable distributions, including intensity, phase difference, ellipticity, and 

states of polarization. The most familiar occurrence of random complex fields is the 

family of speckle phenomena resulting from the coherent illumination of diffusive 

random media and scattering from rough surfaces. 

A light scattering experiment in a random medium provides a wealth of information 

about the properties of the material under investigation.  Unfortunately, the information is 

often too complex to process in a practical matter.  For this reason, an ensemble average 

over several material realizations is made in order to determine the mean statistical 

properties of the sample. For example, coherent light that is injected into a random 

medium produces a speckle pattern that is indicative of the medium‟s specific structural 

properties.  In order to learn anything about the global material properties, numerous 

speckle patterns resulting from different realizations of the material must be averaged.  

This averaging inherently discards “excess” information specific to particular 

realizations. 

A random medium is typically characterized by an ensemble of realizations of disorder. 

When waves interact with a random medium, each member of this ensemble, i.e. each 

particular realization of disorder, has its own pattern of fluctuations in the scattered wave. 

The interaction is a non-self-averaging process, and the complicated features of the 

scattered waves are all rooted in the structural properties of the specific realization of 

randomness. In principle, the inverse problem can be solved if (i) the phase coherence is 

maintained over the entire interaction, (ii) the process is not dissipative, and (iii) the 

disorder does not vary in time. In practice, however, due to finite sizes and experimental 

noise, one always infringes at least on the second requirement. Furthermore, the 

information available is often too complex to process in a practical manner; therefore, an 

average over an ensemble of disorder realizations is usually taken to determine mean 

statistical properties. For instance, numerous speckle patterns resulting from different 

interactions must be averaged to learn about the global properties. Unfortunately, this 

averaging inherently discards information specific to particular realizations as well as the 

variations from one realization to the next. 

As such, the following question arises: can one learn anything about the stochastic 

process by examining a set of its individual realizations? In principle, having access to a 

number of samples of the random process should allow us to study the rate of 

convergence toward the ensemble average characteristics. Using the example of 

stochastic interaction between coherent waves and random media, we will demonstrate 

that the significant sample to sample fluctuations can be used to extract information not 

available in the ensemble average. Because the convergence of the statistical properties 

of moments is a general problem for numerous physical phenomena that are described as 

random processes, concepts similar to the one discussed here may be exploited in other 

situations. 



Let us consider the wave interaction with a random medium characterized by a number 

density VN  of scattering centers and by the scattering cross-section   describing the 

properties of a single scattering event. For each realization of disorder  , the interaction 

will be defined by a specific distribution  sp  of available wave path-lengths s  through 

the medium. When an ensemble average is taken over many such realizations, the wave 

interaction will be described by a probability distribution function 

    ),(== Dsfspsp   that has a universal behavior depending only on the normalized 

diffusion coefficient )1/(= VND . Note that all the experimentally observable properties 

of the stochastic interaction can be described in terms of the probability distribution  sp  

whose exact functional form ),( Dsf  may also depend on the particular geometry of an 

experiment. Clearly, there could be many dissimilar media with different VN  and   that 

nevertheless display the same characteristics upon ensemble averaging. In practice, this 

ensemble can be acquired in different ways for dynamic or stationary systems, but the 

final result is the same: the number density and the scattering cross-section are being 

coupled through the diffusion coefficient, and only their product is accessible. 

For a specific realization of the material disorder, however, the distribution of available 

path-lengths  sp  will deviate from the one corresponding to the ensemble average:  

      .,1,=   sDsfsp                                                              (26) 

Because this deviation    ,s  is specific to a particular realization of disorder, it 

depends on variables not present in the ensemble average. Specifically, this can be 

expressed through a configuration function   describing the particular morphology of 

the given realization  . The function   describes the locations of scattering centers 

available in the realization and, therefore, depends only on the number density and not on 

the scattering cross-section. This is the reason why by examining the statistical properties 

of  ,,   s  one could infer information not available in the ensemble average. 

Two observations about the general behavior of    ,s  are worth making. First, as the 

length s  of the wave's path increases, more and more different trajectories of the same 

length are possible through the medium, and  sp  approaches the value corresponding 

to the weight of trajectories of length s  in the ensemble average. In other words, in terms 

of the variable ,s  the function    ,s  represents a nonstationary random process. 

Second, because upon ensemble averaging a scattering center will exist at any position, 

this random function is of zero mean,   0=,   s  (the mean is of little practical 

interest). However, because of the implicit dependence on VN , it is expected that higher 

order statistics of    ,s  can be used to reveal characteristics of the wave-matter 

interaction not included in the value of .D  



 
 

Fig 17.  Sketch of path-length distributions for two media with identical mean 

properties (same D ). The two media consist of scatterers of different cross-

sections   and different number densities VN  and are examined over the same 

range of path-lengths s . The medium with smaller number density provides 

fewer possible paths of given length s  resulting in larger fluctuations of  sp .    

 

This concept is illustrated schematically in Fig. 17 where the path-length distributions 

corresponding to two different media are sketched over similar ranges of s . The two 

media consist of scattering centers having different cross-sections but also different 

number densities such that, upon ensemble average, they are described by the same 

diffusion coefficient. Clearly, when compared to all potential trajectories, there are fewer 

available paths of given length s  through the medium with less scattering centers. 

Consequently, the path-length distribution  sp  deviates more significantly from the 

ensemble average    spsp = . A measure of the nonstationary fluctuations in  sp  

should discriminate between the two media, as we will show in the following. 

  Evidently, the random function  sp  displays not only fluctuations in s  but also  

differences from one material realization   to another. There are many ways in which 

the two-dimensional statistical characteristics of  sp  can be quantified. Of course, a 

simple averaging over   will provide a path-length distribution   ),(= Dsfsp  which 

corresponds to the ensemble average. For a single realization   on the other hand, higher 

order moments of the fluctuations in  sp  can be evaluated. Even though  sp  is 

nonstationary in s , one can still calculate simple estimators such as, for instance, the 

variance      
2

2 ,,= dssdssV     of the fluctuations along .s  This simple 

estimate however is inadequate because    ,s  is a zero-mean random function and, 

consequently, a unique and meaningful normalization is difficult to define. 

As the deviation    ,s  from the ensemble average can be regarded as a form of 

disorder, we can choose to examine its variance in terms of the Shannon information 

entropy:  
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In Eq. (27), we define this finite scale entropy to account for realistic situations of any 

measurement that extends over a finite range ],[ 21 ss . Furthermore, the finite scale 

entropy can be normalized to its maximum allowable value for the entire range 

12= ssS   as  

     .
1

log/,=, 2121 









S
ssHssh   (28) 

Of course, the normalized entropy  21, ssh  will still vary from realization to realization 

and one can further build its average ),( 21 ssh  over the number of realizations available. 

Being constructed in terms of the specific fluctuations of each realization  , this average 

is a comprehensive measure of the overall fluctuations in    ,s . It depends directly 

on VN  through its influence on the configuration function  . 

We conducted an experiment to demonstrate that structural information not present in the 

ensemble average can be determined by analyzing the fluctuations in realizations of 

 .sp  The distribution of photon path-lengths through different multiply-scattering 

media was measured interferometrically using the procedure of optical path-length 

spectroscopy (OPS)
3
. In OPS, the short coherence length of radiation allows selecting a 

specific length s  of the optical paths in a manner similar to time-of-flight experiments. 

The OPS measurements are based on fiber optic arrangements that permit different 

modalities for injecting light into and collecting light from a scattering medium. The 

configuration can be monostatic, where the same fiber acts as both the source and 

detector, or bistatic when the injection and detection points are separated by an adjustable 

distance   allowing for an experimental control over the volume of interaction. In the 

frame of diffusion theory for lossless media, the path-length distribution  ,sp  

corresponding to the ensemble average can be evaluated to be  

   ,exp, 2
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 sD

sD
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where ez  is the so-called extrapolation length. 

We examined two different highly diffusive media that have approximately identical 

average properties. These random dielectrics are essentially non-absorbing polymer 

structures and have average pore sizes of 0.45  m and 1.2  m. Upon ensemble 

                                                 
3
 G. Popescu, A. Dogariu, Scattering of low coherence radiation and applications, EUROPEAN 

PHYSICAL JOURNAL 32 (2): 73-93 (2005) 

 

http://www.edpsciences.org/articles/epjap/abs/2005/11/ap05072/ap05072.html


averaging, both are characterized by the same value of the transport mean-free path of 

 10 m. 
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Figure 19   The averaged backscattered intensities for medium A (blue solid 

line) and medium B (red dashed line). The insets show typical micrographs of 

the materials examined.   

 

Path-length distributions averaged over ten different realizations of these random media 

are shown in Fig. 19 together with their corresponding scanning electron micrographs. 

Even though their structural morphologies are obviously different, the similar behavior of 

)(sp  is a clear indication that, in average, the two media are being described by the same 

diffusion coefficient. On the other hand, the fluctuations from the average are rather 

dissimilar as can be seen Fig. 20  where we plot the typical mean square of the 

fluctuations ),(2

  s  corresponding to the two media. In general, the medium A exhibits 

smaller deviations from the average which can be interpreted as a larger number of 

scattering trajectories available for each s . Note also that the fluctuations in ),(2

  s  

decrease for larger values of s  because these random processes are nonstationary as 

discussed above. 
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Figure 20   Typical mean square fluctuations    ,2 s  of path-length 

distributions for media A and B shown in Fig.2.   
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Figure 21   Typical measurment of pathlength distribution in a bistatic 

geometry. By increasing the source-detector separation   one effectively 

enlarges the volume of interaction with the random medium.  
 

Let us now examine in more detail the situation where the scale of available path-lengths 

is varied. In practice, this amounts to controlling the size of the interaction volume which 

can be implemented in the bistatic OPS measurements illustrated schematically in Figure 

21. By increasing the source-detector separation   the interaction volume is enlarged 

while a minimum value is enforced for a wave's paths. According to our notation, this 



amounts to setting the lower path-length limit at =1s  and the upper one at .=2 Ss   

Here S  denotes the value of the total span of path-lengths available in the measurement; 

S  is constant in our experiments. Subsequent normalization and averaging over different 

realizations was performed following the procedure outlined in Eq. (27).  

In Fig. 22 we present the values of the normalized scale dependent entropy  h  

averaged over ten realizations of disorder for both media examined.  As can be seen for 

both media, when the interaction volume increases, the entropy increases as expected 

because in all realizations  , ),(   s  is a nonstationary process, and its fluctuations 

decrease at larger .s  The absolute values and the rate of increase for  h  however are 

medium specific. 

Two main observations are in place. First, we notice the higher values of the 

entropy for medium A. This is the result of a higher number density VN  of scattering 

centers which determines a larger number of possible optical paths having a given length 

.s  Therefore, there are smaller fluctuations in ),(2

  s  as discussed before and, 

consequently, the entropy tends toward its value corresponding to an infinite number of 

possible trajectories of length s . 
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 Figure 22 Average normalized entropy  h  for medium A (blue circles) 

and medium B (red boxes) for increasing volumes of interaction in a bistatic 

configuration as depicted in the inset.   

 

The second observation relates to the different rates of entropy increase as suggested by 

the dashed lines in Fig. 22. This behavior can be understood by realizing that a certain 

path-length s  can be reached through a different number m  of scattering events. For 

independent scattering, the joint distribution ),( msp  of such a process is Poissonian and 



the cumulative probability of scattering orders up to M  that contribute to paths of length 

s  is described, in average, by a universal cumulative distribution  function ),( Msp . This 

cumulative distribution increases fast for low values of M  and tends to saturate for 

higher scattering orders. In one realization where the interaction volume is finite, the 

maximum scattering order M  contributing to a certain s  is essentially determined by the 

number of available scattering centers. Thus, processes involving different number 

densities VN  will in fact experience different regions of the cumulative distribution 

function. For the sparser medium B, a change in M  results in a faster increase of the 

corresponding values of ),( Msp  and, consequently, a faster decrease in the possible 

fluctuations. Because the entropy is a measure of magnitude of these fluctuations, it 

follows that the medium B should be characterized by a faster rate of entropy increase as 

can be seen in Fig. 22. As a result, in spite of being described in average by the same 

diffusion coefficient D , the two media can be discriminated based on the value of VN . 

This information was not available in the ensemble average. 

Let us now discuss the significance of these results. We have practically demonstrated a 

new way of analyzing the fluctuations of scattered waves resulting from the interaction 

between coherent fields and disordered media. In general, the complexity of such 

deterministic interference can be reduced only through ensemble averaging at the 

expense of available information. We have demonstrated that analyzing individual 

members of the ensemble of interactions provides means to extract information 

beyond that available in the ensemble average. This should be of particular interest for 

remote sensing procudures that rely on multiple exposures or extended time-scales in 

order to establish robust averages. In contrast to the use of statistics of steady-state 

interactions, the study of fluctuations in pulse propagation or interaction with finite 

regions of a medium open up additional posibilities.  In particular, the variations from 

one realization of the interaction to another can provide means for target identifications 

or for fast detection of structural changes. 

The deviation of an individual path-length distribution from the ensemble average is a 

nonstationary random process which also varies from one realization to another. There 

are different ways to analyze such a random function. Here we have shown that specific 

properties of the random medium's morphology can be evidentiated by using the scale 

dependent entropy associated with the variance of path-length fluctuations. This is of 

particular interest in practice where the volume of interaction can be easily controlled 

from macroscopic to microscopic scales. 

 

 



5.  Polarization in randomly scattered fields  

Random electromagnetic fields (REF) exist in all forms and one common origin is a 

result of the interaction of coherent fields with randomly inhomogeneous media.  This 

coherent light-matter interaction is a complex interference process leading to fields with 

strong fluctuations in intensity. Besides their intensity fluctuations, REF are characterized 

by specific coherence and polarization properties.  

A simple way to describe the intensity speckles is to consider the superposition of waves 

originating from discrete centers as a result of scattering. Different scattering regimes 

may vary from “single scattering” specific to most surface scattering to different degrees 

of multiple scattering characteristic to the interaction with three-dimensionally disordered 

media. When one single polarization component is analyzed, i.e. when the speckle field is 

measured through a polarizer, the intensity contrast often reaches unity. This is the case 

of the so-called fully developed speckle pattern, a manifestation of interference between a 

large number of wavelets with uniformly distributed random phases. This is a rather 

universal behavior present in scattering from a variety of media ranging from metallic 

rough surfaces to diffusive materials.  

However, the distribution of polarization states in REF is much richer and non-universal 

properties are to be expected. Most importantly, it is anticipated that the polarization 

properties of REF corresponding to different scatting regimes will depend greatly on the 

strength of the scattering process. For instance, it is likely that when the wave interaction 

is dominated by single scattering processes, a fully developed speckle pattern will occur 

but the REF polarization will strongly resemble the incident state of polarization.  On the 

other hand, when the interaction is subject to strong multiple scattering, the scattered 

field remains locally fully polarized but its state of polarization will vary from point to 

point.  

 

5.1 Scattered fields and their intensity characteristics 

A simple experiment was designed to image the REF at the surface of scattering media in 

a backscattering geometry.  The samples were illuminated with a large, linearly polarized 

beam from a laser with a wavelength of 488nm and the surface was imaged onto a CCD. 

At the surface of the medium, the speckles are of the order of the wavelength and, in 

order to fully resolve them, they were magnified about ninety times to about 80m in 

size.  We used a number of sample media with varying degrees of rough surfaces and 

volume scattering.  Figure 23 illustrates several experimentally obtained REF 

corresponding to a rough metallic surface (A) and three diffuse volume scattering media 

characterized by different transport mean free paths: a thin kaolin based diffuse coating 

(B), a cellulose membrane (C), and a polyvinylidene fluoride membrane (D). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23.  Intensity patterns scattered from four different media: a rough metallic surface 

(A), a thin kaolin based diffuse coating (B), a cellulose membrane (C), and a 

polyvinylidene fluoride membrane (D). The insets show the corresponding log(p(I/<I>)) 

vs I/<I>  distributions.  

 

In spite of their different origins, the random fields illustrated in Figure 23 are all 

developed speckle patterns as demonstrated by the probability density functions of 

normalized intensities shown in the corresponding insets; the p(I/<I>) distributions all 

manifest negative exponential decays.  In addition, from the intensity distributions one 

can evaluate the second order intensity correlations <I(r)I(r+)>, i.e. the average speckle 

size. In all cases shown, the average speckle size is approximately the wavelength of 

light. As such, one can conclude that both 1
st
 and 2

nd
 order intensity correlations are quite 

similar in all cases in spite of the fact that the REFs are generated by scattering on quite 

different random media. This means that the intensity statistics is insufficient to 

discriminate between REFs that are generated via different regimes of scattering. 

In contrast, it is known that the polarization is more robust and resistant to random 

fluctuations.  For instance, in single scattering from rough surfaces, the state of 

polarization is maintained.  As the contribution of multiple scattering increases, the wave 

depolarizes, usually over length scales greater than the transport mean free path. 

Therefore, it is expected that the correlation between polarization states at the surface 

should be indicative of the scattering level within the random medium. 
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5.2 Scale dependent degree of polarization 
Let us now examine the vectorial nature of the scattered fields and inspect their 

polarization properties. A rotating quarter-wave plate was inserted in the imaging path of 

the experimental setup and a subsequent Fourier analysis provided the full Stokes vector 

in each pixel. The spatially resolved polarimetric description of the REF can 

subsequently be analyzed in different ways. A common measure of polarization is the 

degree of polarization (DoP) 
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As can be seen, the DoP is actually a 4
th

-order field correlator describing the properties of 

the electric field at point r. Practically, one has access to an ensemble of different 

polarization states collected over a certain area and a scale dependent effective DoP can 

be estimated as 
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The scale dependent DoP in Eq. (32) approaches zero when the ensemble of polarization 

states are randomly distributed over the Poincare sphere as illustrated in 

Fig. 14. Of course, a strong multiple scattering interaction leads to an overall depolarized 

scattered field when the DoP is evaluated over a large scale.  We emphasize that this 

depolarization only occurs in the global sense, as the resulting scattered light forms 

individually fully polarized speckles. The depolarization measurement can be viewed as a 

“center of mass” estimation, where the polarization of the average state lies within the 

sphere as seen in  Fig 4b. 
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Fig. 14.  a) Distribution of polarization states on the Poincare sphere. b) Both the 

average state of polarization and the degree of polarization are ensemble properties of 

the distribution of polarization states. 

 

Results of calculations of scale-dependent DoP are presented in Fig. 25. As we increase 

the size of the area over which the estimation is performed, the DoP value eventually 

reaches saturation. The error bars in Fig 25 were calculated using one hundred starting 

points for each size of analysis area. Their values reflect the fact that even if each speckle 

is fully polarized, )(rPA  varies significantly when only examining a small number of 

speckles.  

As evident from Fig. 25, there are two factors associated with the DoP scale dependence: 

the saturation level and the associated decay length.  It is quite clear that the saturation 

levels can be quite different. For the samples illustrated here, the DoP saturation values 

are 0.97, 0.49, 0.32, and 0.32 +/- 0.02 for samples A, B, C, and D, respectively. Different 

saturation levels indicate different levels of global depolarization due to scattering: the 

higher the level of multiple scattering the lower the value of the corresponding degree of 

global polarization of the scattered field. However, the two membrane samples (C and D) 

show very similar DoP saturation values yet they have completely different material 

structures. In this case the DoP value is insufficient to discriminate between different 

levels of multiple scattering. 

 
 

Fig. 25.  The DoP calculated over an increasing integration area averaged over 100 integration 

centers.  The error bars indicate the DoP standard deviation calculated for each integration 

area.  Note that the y-scale in A is 0.95-1.0 while it is 0-1.0 for panels B, C, and D. 

 

The DoP decay length represents the spatial scale at which saturation is reached.  

Although the media examined here have different saturations, they all have similar decay 
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lengths measuring about 15 intensity speckles.  It appears that this decay length is an 

associated ensemble quantity that ignores any underlying material discrepancies. 

To conclude, the DoP is a basic yet incomplete way to describe the polarization 

properties of REF.  As mentioned before, the DoP is evaluated based on 4
th

-order field 

correlations representative for the properties of a field at one spatial location. It is also an 

ensemble quantity, averaged over many spatial locations, and therefore it loses any 

information about spatial distribution of polarization states, i.e. the shape of the 

distribution of states on the Poincare sphere. For instance, there are many different REF 

that can be characterized by the same value of the global DoP. In the following we will 

examine a more refined, two-point descriptor of the polarization properties of a random 

field.  

5.3  Two point polarization correlations 

Another possibility to evaluate higher-order field correlations in REF is to quantify the 

variability between the members of the ensemble of measurement points and a chosen 

reference.  The measure for this is the complex degree of mutual polarization (CDMP)
4
.  

The magnitude of the CDMP measures the polarization similarity between two points, ri 

and a reference r0, and under the assumption of a fully correlated and locally fully 

polarized field, it is defined as 
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As such, CDMP measures the distance between two points (states of polarization) on the 

Poincare sphere; orthogonal states, opposite to each other on the Poincare sphere, have an 

associated CDMP value of zero.  The CDMP reflects the shape of the distribution of 

states on the Poincare sphere in contrast to the DoP, which is a measure of the location of 

the center of mass of the distribution. CDMP quantifies the spatial distribution of states 

by comparing the Stokes vectors in each point to a common reference. Recently, similar 

estimations of REF properties permitted to detect local non-stationarities such as the 

presence of a weak localization phenomenon.    

It is important to note that CDMP is not an ensemble quantity and it can be 

calculated while maintaining spatial information.  In Fig 26 we show the spatial 

distribution of the REFs in Fig. 23 but this time encoded in the CDMP values calculated 

with respect to the constant state of polarization of the incident field.   

                                                 
4
 J. Ellis and A. Dogariu, "Complex degree of mutual polarization," Opt. Lett. 29, 536-538 (2004). 



 

Fig. 26.  CDMP maps of the REF in Fig. 1 calculated with respect to incident state of 

polarization.   Insets show binary images of corresponding maps thresholded at 

CDMP=0.5. 

 

As can be seen, the CDMP maps provide information about the similarity of polarization 

states in the REF.  The rough metallic surface, sample (A), exhibits strong single 

scattering and as a result most of the scattered field is in the same state of polarization as 

the incident one; the CDMP is almost uniformly unity as a result of the strong spatial 

correlation of the polarization. As the level of multiple scattering increases, the spatial 

correlation of the CDMP maps reduces as seen for samples B, C, and D.   

To assess quantitatively the differences between the CDMP maps, one can examine the 

probability density functions (PDF) corresponding to the distributions of CDMP values 

across the image. As can be seen in Fig. 27, different distributions are found for the 

CDMP maps shown in Fig 26. Clearly, the PDFs evolve from being peaked around unity 

in the case of single scattering (rough surface A) to a more uniform distribution 

corresponding to the higher order multiple scattering processes in volume scattering 

media. An interesting observation can be made in regard to samples C and D. Even 

though the REF scattered by these media have almost the same global degree of 

polarization, the PDFs of their corresponding CDMP maps are noticeably different. This 

can be interpreted as different coverage on the Poincare sphere corresponding to similar 

centers of mass. Being a local 4
th

-order field correlation, CDMP preserves the spatial 

information and distinguishes between different underlying field distributions that have 

similar average properties.  
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Fig. 27  Probability density functions for the CDMP distribution maps shown in Fig. 26. 

 

We note that for a fully diffusive process of wave interaction all polarization states are 

equally probable and a uniform PDF is to be expected. The slight increase of the 

probability density towards higher CDMP values means that the diffusive scattering 

behavior has not been reached. In the present case this is a consequence of the 

backscattering geometry where the low-order scattering events are always dominant.  

Let us now turn our attention to the spatial characterization of the CDMP maps in Fig. 26. 

As can be seen, these maps reveal areas of more uniform polarization.  One can interpret 

theses areas of spatial variation of the CDMP values as determining some sort of 

polarization or CDMP “speckles”.  This spatial correlation over the CDMP maps is more 

obvious in the binary images included as insets in Fig. 26. The binary distributions were 

obtained by thresholding all the points having a CDMP value greater than 0.5.  The field 

in A is clearly dominated by single scattering, where the incident state of polarization is 

largely maintained. In the binary images corresponding to the other samples, the different 

extent of clearly defined areas with similar polarization is evident, which can be 

understood as different levels of spatial correlations between the CDMP values. This is 

akin to defining an average size of the CDMP “speckle”.   

When considering the distributions in the binary map shown in Fig. 26B, we found that 

the average size of correlated areas is about 5.3 times larger than the average size of an 

intensity speckle.  The size of the correlation areas clearly decreases for samples C and D 

where it is 3.3 and 3.0 intensity speckles, respectively. Of course, the number of clusters 

and their size depend upon the threshold level. As the threshold decreases, the total 

number of points that lay above this level increases and the size of these correlated areas 

increases as shown in Fig. 28. However, the areas increase at different rates as clearly 

seen in Fig. 28, indicating different structures in the CDMP maps and, moreover, a 

distinctive dependence on the level of scattering in each sample. We should reiterate that 
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both the distribution of CDMP values in Fig. 27 and the extent of the two-dimensional 

CDMP correlations in Fig. 6 are obtained from one single realization of the random fields 

shown in Fig. 23. Thus, this analysis constitutes the point and the point-pair 

characterization of the polarization properties of the scattered electromagnetic field in a 

manner similar to the intensity distribution p(I) and the average intensity-intensity 

correlation <I(r)I(r+R)> in a scalar speckle pattern.  
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Fig. 28    Size of CDMP speckle in units of intensity speckles as a function of CDMP 

threshold level.  Different decay rates are evident for the four samples examined.  

 

Finally, we would like to briefly comment on the information contained in these REF 

properties. It is known that a number of polarization memory effects are present at 

different levels of scattering. There is an intimate dependence between the medium‟s 

structure and the polarimetric properties of the scattered field and, therefore, one can 

anticipate that the distribution of polarization states and their spatial correlation in a REF 

should reflect some of the morphological properties of the scattering media. Let us 

consider again the two samples that, in average, depolarize the light at essentially the 

same level, 32.0DoP , yet their structural morphology is quite different. From Figs. 

27 and 28, one can clearly see that both the PDF of the corresponding CDMP maps and 

the sizes of the CDMP speckles are different for these samples. This is because the 

structural differences lead to different scattering strengths in these two media. To asses 

these differences we performed typical ensemble average measurements of enhanced 

back scattering (EBS). These measurements yielded different values of the transport 

mean free path: 8 and 7 m for media C and D, respectively, as estimated from the full 

width at half maximum of the enhancement peaks.   

 

Being a measure of polarization similarity at different spatial locations, the size of the 

CDMP speckle reflects the extent of the interaction volume necessary for the wave to 

depolarize, or, in other words, to lose memory of its initial polarization state. In a specific 



geometry, the magnitude of this characteristics length scale depends on the number of 

transport mean free paths. Therefore, scattering media characterized by small values of l* 

are also expected to generate, at their surface, scattered fields with smaller value of the 

CDMP speckles. This is exactly what our experiments show; the lowest value of the 

CDMP speckle corresponds to the strongest scattering in sample D. Remarkably, one 

single realization of the scattering process is sufficient to provide information similar to 

that acquired through an ensemble average measurement.  

In conclusion, we have found that the spatial variability of the vectorial properties can be 

markedly different even when the random fields have similar global properties. The point 

and point-pair correlations of the complex degree of mutual polarization provide means 

to identify the origins of scattered fields. We demonstrated that the extent of these spatial 

correlations is determined by the magnitude of the transport mean free path 

characterizing the scattering process. Spatially resolved measurements of the polarization 

properties in one realization of the scattered field allow recovering information otherwise 

available only through ensemble averages. 



6. Unique polarization effects in scattering  

One of the important features of active systems is that one can selectively probe different 

object characteristics by controlling the incident illumination. A possibility of interest is 

to structure the illuminating beams in terms of its polarization, intensity, coherence, or 

phase. It is expected that the structure of the illuminating field can greatly influence the 

information probed. For example, by illuminating a diffusive media with phase vortices 

of differing charge, different path-lengths are selectively probed in the enhancement 

peak
5
. 

In order to take advantage of such unique features one has to understand the details of 

propagation and scattering of polarized radiation. In particular, there is a growing interest 

in using the specific properties of circularly polarized light (robustness in propagation, 

possibility of digital processing and others). Here we report on novel characteristics of 

scattering of circularly polarized light. These novel effects can be speculated for the 

design of new types of radiation sensors and for interpreting specific scattering 

signatures. In addition, this research may also lead to new possibilities for optical 

manipulation of matter.  

In elastic scattering from a non absorbing spherical particle, two parameters of the 

electromagnetic field are conserved: the energy and the angular momentum component 

along the propagation direction. Linear momentum as a whole is also conserved, of 

course, but some of it is transferred to the particle leading to radiation pressure. The 

conservation of energy (which is a scalar quantity) leads to a normalization condition for 

the integrated energy flux density, which is further used in defining the scattering cross 

section. Similarly, the conservation of angular momentum should be related to the 

angular momentum flux density. The continuity conditions for the angular momentum 

density can be described by three equations (one for each component of the vector) or 

one equation for a tensor. 

We are interested in calculating the angular moment flux density of the 

electromagnetic field which results from scattering of a circularly polarized wave from a 

non-absorbing spherical particle. It was demonstrated that scattering of circularly 

polarized wave does not exert torque on the particle and that transfer of angular 

momentum from the field to the particles is mediated only by absorption. Therefore, the 

angular momentum of the field is preserved and it should be interesting to know how the 

flux density of the angular momentum is distributed between the spin or polarization term 

which will be henceforth designated by s  and the orbital angular momentum (OAM), 

which will be denoted by l . The total angular momentum flux density, j,  is given by the 

sum of these two terms.  

 

 

 

                                                 
5
 Field correlations under vortex illumination have been found to act as a type of path-length filter. 

Furthermore, modification of the illuminating structure allows for a deterministic change in the measured 

field correlations, allowing for a novel and simplified means of measuring structural properties of the 

medium, cf. C. Schwartz and A. Dogariu, “Coherent backscattering of singular beams,”  Opt. Commun 258 

(2006)  



6.1  Scattering effects on spin angular momentum 

Let us consider an incident plane wave which is monochromatic (angular frequency  ), 

left circularly polarized, has an amplitude 0E and propagates in the direction ẑ  (the 'hat' 

denotes a unit vector). This is the simplest example of a paraxial wave which has the 

general form 

 

    zyxikzzyx ,, )(exp=,, FE  (34) 

 

(where  zyx ,,F  is a slowly varying spatial envelope). For such a wave one can employ 

expressions for angular momentum flux density of a paraxial wave and write the z  

component of the angular momentum flux density can be written as 
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The first term relates to the transverse distribution of the field and is the OAM term. The 

second term reflects the angular momentum carried by circular polarization is zero for 

linear polarization and. For a class of paraxial beams for which the transverse field 

distribution can be written as 
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In Eq. (37)   is the wave helicity: +1 for left circular polarization, -1 for right circular 

polarization and 0 for any linear polarization. These beams are called vortex beams and 

they exhibit an axial singularity since the phase is indeterminate on the beam axis. Due to 

destructive interference, this phase singularity leads to an intensity null. The integer 

factor m  is called the topological charge of the singularity and it is an invariant of the 

propagation. This follows from the fact that m  relates directly to the orbital angular 

momentum and, under the paraxial approximation, each term of the angular momentum is 

conserved independently. 

The flux density of the angular momentum of the incident plane wave which is carried by 

the spin term is equal to /0I  where /2= 2

000 cEI   ( 0  being the permittivity of vacuum 

and c  the velocity of light). This corresponds to a quantum description in which each 

photon in the incident field carries a spin angular momentum of ÿ . The rate at which 



the angular momentum is removed from the incident field can be derived from the the 

scattered power and is given by zIsc
ˆ/0   . This is the source term for the angular 

momentum of the scattered field and it should be recovered by integrating over all 

directions the angular momentum flux density of the scattered field. 

From general scattering theory it is known that the scattered electric field in the far zone 

can be written as 
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where the matrix S  is the scattering matrix in the circular polarization basis, the L  and 

R  subscripts designate the left and right circular polarizations. In Eq  (38), k  is the wave 

number and r  is the distance from the center of the scattering particle which is both the 

origin of the coordinates frame and the reference point for the angular momentum 

calculations. The scattering matrix in the circular base can be related to the more usual 

amplitude scattering matrix given in terms of the parallel and perpendicular electric field 

components with respect to the scattering plane. For a spherical particle, this scattering 

matrix is diagonal with elements     12  , SS  and the relation is 
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The scattered field can now be written as 
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and expanding further the left and right circular unit vectors in terms of the locally 

transverse unit vectors 
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one finally obtains 
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where the notation  

        2/=  LRLL SSS   and         2/=  LRLL SSiS   has been used. 

 

Having found E,  we can now proceed to calculate the angular momentum flux density 

through a radially oriented infinitesimal area in the radiation zone. When the wave is 

approximated locally as a plane wave the spin term can be found to be  
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This result is physically reasonable: the spin is simply the difference of intensities of the 

two radially outgoing orthogonal circular polarization components divided by the angular 

frequency of radiation. The common phase term  iexp  does not play a roll in this 

calculation. 

Due to axial symmetry, all the components of s  average to zero when an integration over 

the angles is performed except for the z  component which is  
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For a Rayleigh scatterer, one can immediately find that the expression in Eq. (44) reduces 

to 
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In order to calculate the total scattered flux, the spin flux density must be integrated over 

a sphere of radius r  to obtain 
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The bar superscript in Eq. (46) indicates integration over a sphere of arbitrary radius, in 

the far field. Notably, one can see that only half of the angular momentum flux removed 



from the incident wave is contained in the spin term. Of course, this conclusion is similar 

to the results obtained for the case of a field radiated by a rotating dipole. A similar 

treatment can be developed for a the more complex case of a Mie scatterer. 

 

6.2  Scattering effects on orbital angular momentum 

Let us now turn our attention to the more complex issue of the OAM term which is 
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In order to evaluate this expression we employ the spherical coordinates form of the 

gradient operator and recall that the unit vectors have to be differentiated as well; for 

example  
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phase term,  ,exp i  is important in this case and should be considered in the 

differentiation. Accounting only for the terms that contribute to the z  component, we 

obtain after some algebra that 
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This result, together with the one expressed in Eq. (46) indicate that  zs  and  zl  sum 

up to an expression which is proportional to the scattered intensity. For each ,  the total 

angular momentum flux density is simply the intensity divided by the angular frequency 

of the radiation. Integrating over a spherical surface in the far field leads indeed to a 

manifestation of the conservation of angular momentum flux: 
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Moreover, we note again that at each  , the ratio     Ijz /  is constant. In the quantum 

description one may say that a photon scattered in any direction carries the same angular 

momentum as an incident photon, but, in different directions it is distributed differently 

between the spin and OAM terms. It is now evident that in the forward and backward 

directions the angular momentum is carried only by the polarization. In other words the 

helicity is fully preserved in the forward direction and it is fully reversed in the backward 

direction. For some angles, which for a Rayleigh scatterer is only 90  , on the other hand, 

the scattered light is linearly polarized and therefore does not carry any spin angular 

momentum. At these angles the angular momentum is carried only by OAM  term. 



 

 
Figure 29.  Three-dimensional angular distributions of the normalized spin term 

(angular momentum content of the spin term divided by the intensity) for 

several size parameters. The relative index of refraction was 1.09 . Left 

circularly polarized light is incident along the z  axis (the direction is indicated 

by the red arrow). The color bars represents the spin and a complementary 

illustration can be obtained for the OAM  

 

Figure 29 illustrates the three dimensional distribution of the spin term (relative to the 

scattered intensity) plotted as a function of scattering direction for several values of the 

size parameter  /2= ax , where a  is the radius of the particle and   is the wavelength. 

The orbital angular momentum distribution is the complementary one (as it will be given 

by one minus the spin). It is interesting to note that for small size parameters the changes 

in the normalized distribution are small. For large particles on the other hand, in which 

Mie resonances are dominant, one can observe that there are directions in which the spin 

term is negative- meaning that the normalized orbital  term is larger then 1. The 

transition to such behavior happens for particles with a size parameter of about   (i.e. a 

particle diameter which is approximately equal to the wavelength).   

 

In order to illustrate the distinction between spin and orbital angular momenta one may 

use the following "gedanken" experiment. Let us consider a small dielectric sphere which 

is slightly absorbing, and is placed in the far field of a Rayleigh scatterer. In the exact 

forward direction the particle will rotate about itself due to the absorption of circularly 

polarized light. At of 90   with respect to the direction of incidence, on the other hand, the 

test particle will "orbit" the scattering particle due to the phase gradient in the scattered 

field. We would like to emphasize that this effect is not due to absorption and that, of 

course, the test particle will experience a radial force due to radiation pressure. 

 



 
Figure 30. Qualitative illustration of the Poynting vector direction for 

radiation scattered by a Rayleigh scatterer illuminated by a circularly 

polarized light which is perpendicular to the plane of the figure as indicated. 

The spiraling of the Poynting vector results in an apparent angular shift of the 

light at the far field.  

 

Finally, we note that the orbital angular momentum of scattered light can also be 

interpreted as the result of a slight direction dependant shift of the apparent origin of the 

scattered waves, a shift which introduces an "impact parameter" of the order of ./2  

The origin of this shift can be identified in the classical electromagnetic theory where it is 

known that the Poynting vector of radiation from a rotating dipole (equivalent to a 

Rayleigh scatterer illuminated by a circularly polarized light) spirals in the near field. As 

a result the far field radiation seems to be emerging not from the center of the dipole but 

from a shifted position as illustrated qualitatively in Figure 30.  The angle   is 

approximated by r/2  and the angular momentum at the point r  can then be calculated 

to be 1.=kr  This means of course that the orbital angular momentum carries all the 

angular momentum. In our gedanken experiment, the slight tilt of the k-vector induces a 

rotating motion of the test particle placed at r . This is the mechanism which couples 

angular momentum from the electromagnetic field to the medium. 

 

 

6.3  Spin transport through dielectric interfaces – spin Hall effects of 

light 

We conducted an experiment to demonstrate one important consequence of this spin-orbit 

interaction. As we have seen, in addition to energy and linear momentum, a light wave 

carries angular momentum distributed between orbital  *0
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E E terms. The orbital angular momentum (OAM) term is determined by the 

macroscopic energy flow with respect to an arbitrary reference point and does not depend 

on the wave‟s polarization. The spin angular momentum (SAM) on the other hand, 

relates to the phase between orthogonal field components and is completely determined 

by the state of polarization. Because the total angular momentum is conserved along 

propagation, when a wave encounters a refractive index inhomogeneity (including 

interfaces between otherwise homogeneous media), a momentum transfer appears 

between the orbital and spin terms.  This angular momentum exchange, or, in other 

words, the spin-orbit interaction (SOI), explains a number of polarization effects.  But 

perhaps most attractive is that this description of electromagnetic wave propagation 



provides an analogy with electron transport and related transport phenomena such as the 

spin Hall effect in semiconductors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. (a) A beam of light incident on a planar refractive index gradient, (b) 

beam shifts observed in far-field corresponding to incidence in pure states of 

polarization (right circular, left circular), and (c) the observable result 

corresponding to an incident beam in a mixed state. (d) A plane wave incident on 

a planar refractive index gradient, (e) the far-field shifts corresponding to 

incidence in pure states of polarization, and (f) the result of an incident plane wave 

in a mixed state of polarization. (g) A plane wave scattering from a sphere, (h) the 

transversal shifts in the perceived sphere center as observed in far-field for pure 

incident states, and (i) the result of scattering for incident wave in a mixed state. 

 

There is a host of Hall-like effects in electronic systems, all dealing with transport 

phenomena resulting in some displacement current. Recently, it was suggested and 

demonstrated that an equivalent spin Hall effect of light (SHEL) exists and can be 

measured for a beam impinging on a dielectric interface (Fig. 31a). In SHEL, the electron 

spin is replaced by the wave‟s polarization, and the role of an applied electric field 

generating the electronic current is taken by the refractive index gradient.  The effect is 

observed as a displacement of the beams carrying spin, i.e. a transversal shift in the 

perceived location of the interaction volume. For different incident spins, the shift is in 
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opposite directions, which is analogous to the induced electron spin flux perpendicular to 

the initial electronic current.  When the incident beam is in a pure state (circularly 

polarized), a shift in the beam‟s center of mass may be observed as illustrated in Fig. 31b.  

Exciting with a mixed state, results in a separation of spin, where the region of overlap is 

still in a mixed state of polarization as suggested in Fig 31c. 

We will now examine the case where a homogeneous plane wave is incident on the 

planar dielectric interface as depicted in Fig. 31d. Due to the infinite extent of the 

interaction, the transverse shift cannot be observed (Fig. 31e), as the refracted field is still 

an infinite plane wave and no reference point can be identified. When the incident field is 

not in a pure state, for example, linearly polarized, in spite of the transversal spin fluxes, 

there is no net photon current and therefore there will be no observable effect (Fig. 31f).   

Let us now inspect cases of higher dimensionality. If the refractive index gradient is 

spherical and the excitation is a plane wave as illustrated in Fig. 8g, the conservation of 

angular momentum results in transversal spin flows tangent to the spherical surface.  In 

this case, performing sequential excitations with pure states and using a detection scheme 

sensitive to the local direction of energy flow, the transversal shifts can be observed as 

we will show later.  The presence of this shift breaks the symmetry of the field 

distribution relative to any plane that contains the propagation vector and the center of the 

sphere. In other words, the result of the interaction between circularly polarized light and 

a sphere depends on the incident spin: the sphere distinguishes between left and right.  

For excitation with a mixed state, the transversal shift that occurs cannot be directly 

observed because, again, there is no net transverse photon flux as in the case of plane 

wave impinging on a plane interface.  It should be noted that the similar considerations 

may be applied in a cylindrical geometry. These circumstances are similar to the Corbino 

disk geometry in electronic systems, where counter-propagating spin currents are 

generated but no net electron fluxes can be detected.   

This spherical geometry warrants a closer examination. It is now rather well understood 

that when circularly polarized light scatters from a dipole, the far-field Poynting vector S 

makes an angle with the line of direct sight (radial vector ρ). This determines a shift in 

the perceived position of the dipole. The shift is perpendicular to the plane of scattering, 

and has opposite signs for excitations with different spins as seen in Fig 32. Its value  

                                                                   2sin211/sin2/ dipole                  (50) 

depends on the polar angles of scattering θ and reaches a maximum in the plane where a 

full transformation from SAM to OAM occurs: the plane perpendicular to the direction of 

propagation of the incident wave ( 2  ).  Note that this shift does not depend on the 

optical properties of the scatterer. For a sphere of finite size, in the far field, the shift in 

perceived location is  


 SS /lim 


 ,  where 
S  and 

S  are the components of S 

perpendicular and parallel to ρ.   

In general the transformation of SAM to OAM is not complete. However, for certain sets 

of parameters (sphere radius, refractive index) there are one or several angles   where 

transformation is total and the scattered light is linearly polarized. The value of  

corresponding to these angles attains local maxima and can reach tens of wavelengths in 



magnitude. This modification in the perceived location of the sphere as shown in Fig. 32 

is the manifestation of the spin Hall effect in scattering from a finite object.  

Right Left

 

Figure 32. Poynting vector field lines for radiation scattered by a Rayleigh 

scatterer illuminated by left and right circularly polarized light. The spiraling 

of the Poynting vector results in the far-field angular shift suggested in 

Figure 30.  

 

There is one feature in the scattering of circularly polarized light from a sphere that has 

no analog in previous descriptions of spin transport effects: Poynting vector circulation 

around the sphere in near and intermediate zones.  Due to SAM to OAM transformation 

in the case of a Rayleigh scatterer, the Poynting vector propagates along conical and 

spiral trajectories (Fig. 33).  For larger spheres, the more complicated process of 

scattering results in a complex, sometimes winding trajectory of S.  
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Figure 33. Poynting vector field lines projected on the plane perpendicular to 

the direction of excitation and containing the center of the scattering sphere.  

Different size spheres, smaller than the wavelength λ and larger than λ as 

indicated,  exhibit a spiraling of the flow of energy in the intermediate 

region.  Most interesting is the winding of Poynting vector field lines in due 

to the complex process of scattering from large spheres. 

 

 







2

RS


LS


For instance, Fig. 33 illustrates the projection of S on the plane perpendicular to the 

direction of excitation and containing the center of the sphere. Notably, the bending of 

the Poynting vector field lines as seen in Fig. 3 determines large angles between the S 

and ρ, resulting in experimentally measurable SOI effects.  This intermediate zone spans 

up to several , and, therefore, an observation can be performed without significantly  

disturbing the field near the sphere‟s interface. The large intermediate zone for a sphere is 

due to the evanescent fields, which in this case exhibit inverse power law decay, as 

opposed to the exponential decay for a planar interface.   

 

Observing the circulation of the Poynting vector in scattering from a sphere requires a 

detection scheme sensitive to the local energy flow.  One such experiment could involve 

optical forces, where the trajectories of probe scatterers are analyzed in the proximity of 

the sphere. A much simpler procedure however can be based on a common tool having 

angular selectivity, i.e. a single-mode optical fiber.  The coupling efficiency of a single 

mode fiber effectively depends on the local field distribution 

                                                    


 dyHEC s  ˆ)(2 *
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                                            (51) 

where Es and H are the scattered field and fiber mode, ŷ  is the unit vector along the fiber 

and τ is the electric field transmission coefficient.  The integration is performed in the 

plane σ perpendicular to the fiber.        

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Due to spin-orbit interaction, a circularly polarized plane wave 

suffers a transversal shift  in any plane . This shift depends on the direction 

of observation and is a manifestation of the spin Hall effect in scattering. 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 34.    Schematic of the experimental setup using a single mode 

optical fiber as a means for sensing local power flow direction.  

 

 

We used an experimental setup based on an array of single-mode optical fibers (a 

coherent fiber bundle) as depicted in Fig. 34.  A series of measurements were performed 

as the fibers were scanned in the intermediate region of dielectric spheres, perpendicular 

to the direction of propagation of the incident field.  To avoid interferences with the 

substrate, the spheres were suspended in oil matching the index of the microscope slide.  

To reveal the asymmetry in the field distribution resulting from excitation with different 

spins, we performed sequential measurements and recorded the corresponding scattered 

intensities. Subsequently, these values were subtracted to reveal the shift in the direction 

of S.    

 

We have also calculated analytically the intensity coupled through single-mode optical 

fibers after scattering from a sphere and compared them to the experimental results.  The 

remarkable agreement is illustrated in Fig. 35 and demonstrates not only the asymmetry 

of the scattered fields, but also our capability to infer a shift in the perceived location of 

the interaction volume (sphere‟s location).  This constitutes the first observation of 

transversal spin transport (a manifestation of the spin Hall effect) in scattering from finite 

size objects, using an object rather than the exciting field to localize the interaction.  

In conclusion, due to spin-orbit interaction, an encounter with a gradient of refractive 

index leads to transport of spin similar to the electronic spin Hall effect. Our experiments 

have demonstrated that transversal spin transport is possible even when the symmetry of 
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optical interaction is of higher dimensionality. For a wave in a pure state of polarization, 

the spin-orbit interaction results in a spiraling power flow that is determined by the extent 

of the interaction.  These results constitute the first demonstration that spin transport can 

be manipulated and enhanced in confined geometries, and open the possibility for 

developing new functionalities for sensing devices. 
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Figure 35   Comparison between the analytical prediction (a) and the experimental 

results (b) for the coupled power through a single mode fiber scanned across a 

polystyrene sphere of 4.6μm diameter. The graphs depict the difference between the 

scattered intensities corresponding to pure states of excitation plotted as a function of 

fiber‟s position with respect to   the center of the sphere.   

 

The significance of our demonstration is manifold. First, optical experiments are suitable 

tools to model spin phenomena that in electronic conduction may be difficult or even 

impossible to approach. This could lead to the discovery of novel manifestations of spin 

transport in confined geometries where effects such as loss of coherence and dissipation 

are expected to be minimized. Second, understanding subtle aspects of conservation laws 

in optical scattering should provide insights into phenomena such as spin transfer and 

power flow which, in turn, are essential for developing new sensing approaches at 

nanoscales.  

 

Manipulating the polarization properties of electromagnetic fields may also have 

consequences for controlling the subwavelength behavior of optical forces. Lastly, 

circular polarization is rather exotic in nature and also robust in propagation. The ability 

to distinguish between left and right may provide unique communication channels.  

 



7.  Conservative and nonconservative optical torques 
 

A fundamental consequence of an applied force is the ability to induce torque with 

respect to some reference point. Torques can also be induced by optical fields.  Several 

concepts for optical spin motors or “nano-rotators” have been discussed based on optical 

traps created with circularly polarized light or vortex beams and relaying on object‟s 

asymmetry, absorption, or birefringence. Another notable proposal uses the subtle 

interplay between conservative and nonconservative forces in an optical trap to create a 

“nano-fountain” with constant circulation of trapped particles. The idea of mechanical 

action of light has been pursued for hundreds of years. The ability to trap and maneuver 

small objects such as microparticles, polymer chains, cells, etc. is undoubtedly one of the 

most exciting use of what is now commonly referred to as optical tweezers.  A host of 

applications are being pursued where optical forces are employed for manipulation, 

measurements, or for creating and controlling new states of matter.  

Two particles excited by a common field can form a bound “optical dimer” when they 

arrange themselves to a stable position where the radial forces acting on them are zero. 

We studied the canonical case of two lossless spheres that are electromagnetically 

coupled. Electromagnetic fields can induce conservative forces resulting from field 

gradients as well as nonconservative forces appearing due to radiation pressure and 

gradients of phase. The calculation of optical forces acting on matter is believed to be a 

well-established routine. The same is true for the optical forces arising in basic OB 

situations, even though care must be taken in describing the particle-particle interaction.   
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Figure 36  Optical binding in elliptically polarized light EI. Apart from the 

binding force FR, interacting particles experience tangential forces FT. Note the 

existence of differential forces F leading to individual spinning in addition to 

common orbiting of particles around the system‟s center of mass. 

 



Let us examine the system of two identical spherical particles illuminated by a plane 

wave propagating perpendicularly to the radius-vector connecting the centers of the 

particles, as shown in Figure 36. Forces are generated on the spheres due to the three-

dimensional, polarized field established as a result of scattering. Due to symmetry in the 

x-y plane, the force acting on each particle can be decomposed into radial (binding) and 

tangential (rotational) components. There is also a scattering force along k, but its effect 

is identical for the two particles and does not hamper their transversal movement.  

In the simplest case of bound Rayleigh particles (dipoles), the force acting on one 

scatterer can be estimated as  
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where   is the scatterer‟s polarizability, E  is the electric field, zyxu ,, , and * denotes 

complex conjugate. The field E  is found by solving self-consistently the system of 

equations that takes into account the mutual interaction between the particles  
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In Eq. (53), 
1r and 

2r  represent the dipole locations, )(rE I
 is the incident field, and the 

tensor |)(| 21 rrG   is the inter-dipole propagator.  The field derivative is then calculated 

to obtain the final expression for the force in Eq.(52).  

A popular way for evaluating the derivative u /E is to differentiate the final solution of 

the system of equations (53). By doing so, however, the results contradict the calculation 

of time-averaged forces based on the well-established formalism of momentum flux 

tensor (Maxwell stress tensor). The correct way of evaluating the derivative u /E  is to 

differentiate with respect to either  
1r  or 

2r  directly in Eq. (53). Nevertheless, it is 

interesting to note that the way u /E  is calculated has a minor effect for the radial, 

binding force; this is perhaps the reason this inconsistency has not been noticed before.  

When evaluating the tangential forces, however, there are situations where the way the 

calculation of field derivatives is conducted becomes important as it will be demonstrated 

here. 

Using  Eqs. (52) and (53) one can now evaluate the radial and tangential forces to be 
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where 3/)1)(exp(2 RikRikR  , and 322 /)1)(exp( RikRRkikR   are eigenvalues 

of G, R is the distance between particles, and k  is the wavenumber. IE , IE||  are the 

components of incident field perpendicular and parallel to the separation vector. We can 

now proceed to examine the effect of the incident polarization. 

 



7.1   Optical binding with linearly polarized light 

Because the depth of the potential wells in the stationary points depends on the incident 

polarization, the system of optically bound particles tends to orient itself such that it 

occupies the most energetically favorable position. This may be interpreted as the result 

of an effective anisotropy of the system ofspheres bound as a consequence of optical 

interaction. When the interaction is weak ( 1 , 1 ), Eq. (54b) simplifies to 

)/)Re(()2cos(|||| 22 RF IT   E , where   is the angle between polarization and 

separation vectors. We note that the tangential force varies in space proportionally to 

)cos(kR  or )sin(kR  having the same periodicity as the radial (binding) force. The 

tangential force acting on a dipole-like particle is zero when the field polarization is along 

or orthogonal to the separation vector.   

 For systems of larger particles there are no simple analytical results; one has to go 

beyond the simple dipole approximation and use numerical procedures. The method of 

choice is the Coupled Dipole Approximation (CDA) where a continuous volume is 

modeled as an array of point dipoles responding to both the excitation and mutual 

interactions.  For modeling OB effects, we use an extension of CDA that accounts for the 

interaction between particles without discretizing of space between them.  The 

calculations yield the local field distribution from which the forces acting on each 

individual dipoles are found. Subsequently, one may readily find the corresponding 

torques   

j jTjT r )(FRΓ  by summing over all dipoles in the system. Here 

jR  is the 

component of the radius vector perpendicular to the chosen axis. In the case of OB 

spheres, one may identify torques resulting in two special rotational motions: (i) sphere 

orbiting together around their common center of mass and (ii) spheres spin about their 

own axis.   
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Figure 37 Torques in an optically bound system of silica spheres in water 

excited with a field polarized linearly at an angle θ with respect to the optical 

binding vector: (a) orbital torque about the system‟s center of mass and  (b) spin 

torque of a sphere about its own axis.  Results are shown for spheres of different 

sizes as indicated and the torques are normalized to 362

0 aIE . 

 



Typical results of CDA calculations are illustrated in Fig. 37. As can be seen, there are no 

torques when the incident polarization is orthogonal or along the separation vector. 

However, torques arise at any other angle resulting in orbital and spin motions. The 

unexpected appearance of spin torque is due to a gradient in the tangential force across 

the diameter of the spheres as shown in Fig. 36.  Note that the torque does not reach its 

maximum for /4 as may have been expected. The reason is that the separation vector 

corresponding to a stable binding position is also a function of angle  . Another 

observation is that, remarkably, the spin torque can change sign for different polarization 

angles. In fact, the mere existence of these spin torques is a significant result, 

demonstrating that OB interaction can lead to rotations of lossless dielectric objects. 

 

The torques in Fig 37 are mostly determined by gradient forces and, hence, determined 

by the conservative part of the total force.  In any system with damping, the mechanical 

motion created by a conservative force will eventually cease. It follows that the OB 

particles will eventually align perpendicularly to the direction of polarization and that the 

time scales of their motion will depend heavily on the specific constraints of the damping 

mechanism.  In the following we will reveal other situations where the nonconservative 

forces are the main cause for such torques, which can be controlled by the polarization of 

the external electromagnetic field. 

7.2  Optical binding with circularly polarized light 

Recently, we demonstrated that scattering of circularly polarized light from a sphere 

generates a spiraling energy flow around it. This effect arises from the conversion of spin 

angular momentum of incident light into orbital angular momentum of scattered light. 

One can envision that a test object placed in the vicinity of such a sphere will experience 

the radiation pressure from the curved power flow, causing the object to move along 

curled trajectory. In reality, the situation is complicated by the interaction between the 

two bodies as was discussed before. Moreover, together with radiation pressure, the field 

gradient force and the force due to gradient of phase may play a significant role. Thus, 

the real outcome can only be found by analyzing self-consistently the problem of 

electromagnetic interaction.  

Starting from Eq. (3b) in the simple case of small non-absorbing dielectric particles, the 

tangential force can be approximated to be 
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The sign is determined by the polarization‟s handedness. It is worth noting that the force 

magnitude changes as a function of R with twice the frequency compared to the optical 

binding force evaluated from Eq. (54a). Furthermore, contrary to the case of linear 

excitation, the potential landscape is now circularly symmetric as shown in the inset of 

Fig. 38.  This means that the tangential forces are completely nonconservative and create 

a steady-state orbital torque about the system‟s center of mass.  In addition to this 

continuous rotation around the common axis, the particles will also exhibit a continuous 



rotation around their own axes due to the gradient of the nonconservative tangential force 

along the radial direction. 

To estimate the torques acting on larger particles we used again the CDA numerical 

approach. A typical summary plot of the orbital torque for the first two stable bound 

positions is shown in Fig. 38 as function of particle radius. Also shown, are the analytical 

predictions of Eq. (55) for Rayleigh particles, which seem to make a good description up 

to a radius of about 10/a . As apparent in Fig. 38, an interesting effect occurs for 

larger spheres: the orbital rotation can change its sense depending on the particle size. 

This change in the direction of rotation, not present in the case of small particles, can 

happen even when moving between the different stationary orbits. Our calculations also 

indicate that for particles with a , the radial and tangential forces have now similar 

periodicities as a function of R and, moreover, the zeros of radial force (stationary orbits) 

and the zeros of the tangential force occur approximately in the same place.  Thus, a 

slight modification in the radial position of spheres can change the direction of rotation.  
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Figure 18. Magnitude of orbital torque as a function of the radius of interacting spheres for 

the first (blue) and second (red) stationary orbits. The plus symbols indicate regions where 

the torque has opposite sign.  The dashed lines indicate the analytical predictions based on 

Eq. (55) for Rayleigh particles.  The calculations are for silica spheres in water excited with 

a plane wave of intensity 
210mW m .  The black line shows the magnitude of torque due 

to Brownian force at 290K.  The inset depicts the symmetric potential energy landscape and 

the trajectory of a bound particle due to nonconservative orbital torques. 

 

In addition to electromagnetic interaction, OB systems can also be subject to 

environmental effects. In fluids for example, the tangential force is compensated by the 

viscous Stokes force which, for spherical particles, is avFS 6 , where   and v  are 

the dynamic viscosity and the particle velocity, respectively.  For particles of radius 

0.41 ma  , for instance, the values for orbital torques in Figure 18 can be used to show 



that maximal angular velocity is 2 3.7o v R rad s    in the first stationary orbit. This 

angular velocity is easily detectable experimentally. 

Another experimental aspect is Brownian motion. Directional motion due to optical 

forces will be affected by the additional chaotic movement associated with some random 

force TakF BB 122  .  The torque resulting from the Brownian force provides a useful 

reference for the magnitude of orbital torques.  In Figure 18, one can clearly see that for 

0.3 ma  and an optical intensity of 210mW m  , the optically induced torques 

dominate.  

Due to the complex interaction, the OB particles are also subject to spin torque with 

respect to the individual axes as shown in Figure 39. As can be seen, for the chosen 

parameters, the spin torque increases with the particle size but, similar to the orbital 

torque, the sense of rotation is not always the same.  Examining the two types of torques 

in Figs. 3 and 4, one can see that the spin and orbital torques have the same direction for 

small particles but their behavior becomes more complicated when the sizes increase.   
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Figure 39  Magnitude of spin torque s  as a function of the radius of interacting 

spheres for the first (blue) and second (red) stationary orbits. The plus symbols 

indicate regions where the torque has opposite sign.  The calculations are for silica 

spheres in water excited with a plane wave of intensity 
210mW m . The black 

line shows the magnitude of absorption-induced spin torque of one silica sphere 

with refractive index 
71.59 10in i  . 

  

Circular polarization can induce torques on a small object due to asymmetry, absorption 

or birefringence. Therefore, it is instructive to compare the magnitude of OB spin torque 

with the optical torque exerted on a particle due to its intrinsic absorption. The later can 

be estimated as kQaE absIabs 422
  [

i
], where absQ  is the absorption coefficient.  



Estimations based on typical values for absorption in silica are shown in Fig. 4, and, as 

can be seen, spin torque dominates for the entire range of particle sizes.  Notably, because 

the OB spin torque does not necessarily have the same direction as the excitation 

handedness while the torque due to absorption is always in the same direction, the two 

torques can combine to increase or to cancel the net rotation.  Our calculations show that 

for these two types of torques to have similar magnitudes, the imaginary part of the 

refractive index should be on the order of 310 . Finally, one can estimate the typical 

angular speeds s  of spinning using the fact that the torque imparted to a rotating sphere 

by surrounding viscous liquid is defined as sv a  38 .  For a sphere of radius 

0.41 ma   and an intensity of 210mW m one finds that the corresponding spin angular 

velocity in water is 
38 32s s a rad s    .   

 

These results constitute the first demonstration that optical interaction forces can lead not 

only to binding, but also to complex rotations. The interplay between conservative and 

nonconservative forces constitutes a new mechanism to induce torques on spherically 

symmetric, optically isotropic, and lossless objects.  

We have found that when the incident field is linearly polarized, the torques are mostly 

conservative and affect only the transient behaviors. For circular polarization on the other 

hand, the nonconservative torques are significant and lead to nontrivial phenomena. In 

particular, we have shown that bound systems can rotate not only around the common 

center of but also around their own axes. In the intermediate case of elliptically polarized 

light, the conservative torque will determine a transient orbital motion, whereas the 

nonconservative one will lead to a continuous spin rotation.  The whole system can be 

seen as a „nano-mixer‟ with complex mutual rotations of constituents. The direction and 

speed of these rotations can be dynamically controlled through the intensity, state of 

polarization, and spatial profile of the incident radiation. Our estimations indicate that 

effects are easily observable under reasonable environmental conditions. Finally, the 

bound system discussed here constitutes a new kind of “optical matter” having its 

mechanical properties strongly coupled to the exciting radiation. 
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