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ABSTRACT 
 
Fatigue reliability calculations during iterations of the design process have been demonstrated as practical using new 
analytical and numerical methods based on analytical cumulative-damage reliability tools (ܽ-functions).  Effects of 
fatigue strength and usage distribution may be studied in the presence of load variation.  However, to date, the 
development of the ܽ-functions has been centered on use of the Palmgren-Miner cycle-ratio summation rule for 
cumulative damage, also known as the Linear Damage Rule (LDR).  This paper extends the ܽ-function toolbox for 
use in determining reliability based on the Manson-Halford Double Linear Damage Rule (DLDR).   Examples 
demonstrate use of the method and charts are provided to illustrate the sensitivity of the cumulative-damage 
reliability problem to load and strength variations.  For a given reliability, probabilistic DLDR methods demonstrate 
significant reductions in life when compared to LDR methods.  The importance of understanding and applying the 
appropriate LDR, DLDR, or other material characterization is apparent.   
 
 

NOTATION 
 
  material constant (log-log, intercept)  ܣ
ܽሺ•,•ሻ  Benton ܽ-function defined in [5] 
  ሺ•,•,•ሻ  generalized ܽ-function defined in [7]כܽ
ܽ஽௅஽ோூ

כ ሺ•,•,•,•,•ሻ  generalized DLDR-based phase I 
ܽ-function defined herein  

ܽ஽௅஽ோூூ
כ ሺ•,•,•,•,•ሻ  generalized DLDR-based phase II 

ܽ-function defined herein  
  material constant (log-log, slope)  ܤ
 material constant (log-log, cycles at  ܥ

endurance)  
ܱܥ ாܸ endurance limit coefficient of variation  
ܱܥ ௌܸ load amplitude coefficient of variation  
  accumulated fatigue damage ܦ
 ூିூூ accumulated fatigue damage thresholdܦ

between DLDR phases I and II  
  ூ DLDR phase I damage fractionܦ
  ூூ DLDR phase II damage fractionܦ
  endurance limit  ܧ
ாሺ1ߤ ,௪  working endurance limitܧ െ ܱܥ 3 ாܸሻ  
ܦ ఋ  critical endurance limit forܧ ൌ   ߜ
expሺ•ሻ exponential function  

ா݂ሺ•ሻ endurance limit probability density 
function  

ா݂௡ሺ•ሻ ܧ-݊ joint probability density function  
௡݂ሺ•ሻ damaging cycles probability density 

function  
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݃ாሺ•ሻ damage rate as a function of endurance 
limit  

݃ா௡ሺ•,•ሻ accumulated damage as a function of ܧ 
and ݊  

݅ load cycle index  
݆ component index  
݇ material constant (factor)  
݉ material constant (exponent)  
݉଴ DLDR ܽ- (and ܾ-)function parameter 

(exponent)   
ܰ number of cycles to failure  

௥ܰ௘௙ DLDR reference number of cycles  
  number of cycles at DLDR break point כܰ

ூܰ number of cycles within DLDR phase I 
ூܰூ number of cycles within DLDR phase II 

݊ number of applied load cycles 
݊ூ number of applied phase I load cycles 
݊ூூ number of applied phase II load cycles 
ܲ variable used for DLDR (factor) 
  load condition index ݌
ܳ variable used for DLDR (exponent) 
ܴ component reliability  
ܵ oscillatory load amplitude  
ܵଽହ 95th percentile oscillatory load amplitude 

(estimated “top of scatter” load)  
  generalized ܽ-function parameter ݒ
 dummy variable used in Gauss-Laguerre ݔ

quadrature  
 DLDR ܽ- (and ܾ-)function parameter ݕ

(factor)   
  standardized normal load amplitude ݖ
 ଴ standardized normal damaging loadݖ

amplitude  
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(4) 

 ,accumulated fatigue damage at failure ߜ
phase I damage fraction at phase I-II 
threshold, or phase II damage fraction at 
failure (typically ߜ ൌ 1) 

 ,஺ material constant tolerance band (log-logߜ
intercept)  

  mean (of load amplitudes) ߤ
  ா mean endurance limitߤ
  ௌ mean load amplitudeߤ
 load condition usage spectrum weighting ߦ

factor  
  standard deviation (of load amplitudes) ߪ
߶ሺ•ሻ standardized normal probability density 

function  

ሾሿሬሬԦ vector  
ሾሿሬሬԦ் vector transpose 
 
 

INTRODUCTION 
 
Recent advances in helicopter fatigue engineering 
methods have demonstrated great promise for 
providing efficient calculations to determine the 
fatigue reliability of helicopter dynamic components 
(see [1],[2],[3],[4],[5],[6], and [7] for example).  
Once mature, such methods will enable helicopter 
materiel developers and original equipment 
manufacturers to design more robust equipment 
while reducing the life-cycle costs inherent to system 
safety risk management, airworthiness qualification, 
and continued airworthiness processes.    
 
In [5] and [7], the author has developed and 
demonstrated new cumulative-damage reliability 
tools (so called, “ܽ- and ܾ-functions”) which may be 
used to study effects of fatigue strength and usage 
distribution in the presence of load variation.  
However, to date, development of ܽ- and ܾ-functions 
and generalized ܽ- and ܾ-functions has been centered 
on use of the Palmgren-Miner cycle-ratio summation 
rule for cumulative damage, also known as the Linear 
Damage Rule (LDR).   
 
This paper extends generalized ܽ-functions to allow 
determination of fatigue reliabilities based on an 
alternative cumulative damage theory, namely the 
Double Linear Damage Rule (DLDR) developed by 
Manson and Halford (see [8],[9], and [10] for 
details).  Examples demonstrate use of the DLDR ܽ-
functions.  In addition, charts are provided to 
illustrate the sensitivity of the DLDR cumulative-
damage reliability problem to load and strength 
variations. 
 
 

Readers wishing to understand differences between 
Palgrem-Miner LDR and Manson-Halford DLDR 
theories and various other cumulative fatigue theories 
are referred to the literature survey in [11].    
 

BACKGROUND 
 
ASTM Standard E 739 [12] equation (2a) presents a 
common characterization of fatigue strength, namely:  
 

log ܰ ൌ ܣ ൅ ሺlog ܤ ܵሻ 
 
which is applicable for values of S above the 
endurance limit.  This “log-log” representation of 
fatigue strength is typically plotted with tolerance 
bands as:   

log ܰ ൌ ܣ ൅ ሺlog ܤ ܵሻ േ  ஺ߜ
 
Let ாܰ௅ ൌ 10஼ represent the number of cycles at the 
endurance limit, where 6 ൑ ܥ ൑ 10 and the 
logarithm of the corresponding endurance limit is 
 

log ܧ ൌ ஼ି஺
஻

 

 
As explained in [7], the log-log strength curve may 
be rearranged to calculate the damage fraction for the 
݅-th cycle applied to the ݆-th component as 
 

1

௜ܰ,௝
ൌ ቐ

1
݇

ቆ ௜ܵ

௝ܧ
ቇ

௠

݂݅ ௜ܵ ൐ ௝ܧ

0 ݁ݏ݅ݓݎ݄݁ݐ݋

 

 
where ݇ ൌ 10஼ and ݉ ൌ െܤ are material constants 
and ௜ܰ,௝ is the number of cycles to failure for a given 
load ௜ܵ and endurance limit ܧ௝.  Considering the 
material constants ݇ and ݉ (and therefore ܤ and ܥ) 
as invariant within the population of components, the 
logarithm of the endurance limit for the ݆-th 
component is   

log ௝ܧ ൌ
஼ି஺ೕ

஻
 

  
As derived in [7], the following expression represents 
the Palmgren-Miner LDR damage accumulated in 
݊ cycles for normal-distributed loads:    
 

௝ܦ ൌ ݊ ቈ
1
݇

ቆ
ߪ
௝ܧ

ቇ
௠

቉ ܽכ ൬
௝ܧ െ ߤ

ߪ
, ݉, െ

ߤ
ߪ

൰ 

 
where ߤ is the mean load, ߪ is the load standard 
deviation, and the “generalized ܽ-function” is defined 
for ݒ ൑  ଴ asݖ

,଴ݖሺכܽ ݉, ሻݒ ൌ න ሺݖ െ ݖሻ݀ݖሻ௠ ߶ሺݒ
ஶ

௭బ

 

(1) 

(2) 

 
(3) 

 
(5) 

 
(7) 

 
(6) 



with 

߶ሺݖሻ ൌ
1

ߨ2√
exp ቆെ

ଶݖ

2
ቇ 

 
which is the standardized normal probability density 
function.   
 
Manson and Halford have proposed a Double Linear 
Damage Rule (DLDR) composed of two phases with 
distinct linear fatigue damage accumulation patterns.  
Although the concept of two phases originated from 
an analogy to crack initiation and crack propagation, 
these two phases are no longer identified with a 
definable physical process (see [10]).  For the ݅-th 
load level and the ݆-th component, one may describe 
the number of cycles in each phase as ூܰ,௜,௝ and ூܰூ,௜,௝.   
 
Per [10], the fatigue damage accumulated at the end 
of phase I is 

ூିூூܦ ൌ 0.35 ൬ ௥ܰ௘௙

כܰ ൰
଴.ଶହ

 

 
where ௥ܰ௘௙ is the Palmgren-Miner LDR number of 
cycles for a reference load level and ܰכ is the 
particular life level used to define phase I with a 
damage-curve break point occurring at damage ܦூିூூ, 
as shown in Figure 1.   
 
Manson and Halford recommend that the value of 

௥ܰ௘௙ be selected lower than all life levels in the 
spectrum.  As such, it is typically acceptable to select 

௥ܰ௘௙ ൌ 10ଷ as a lower bound for high-cycle fatigue 
loads.   
 
Manson and Halford recommend in [8] that ܰכ be 
selected as the highest life level in the spectrum and 
provide an example of minimal effects resulting from 
alternate ܰכ selections.  In [9] and [10], Manson and 
Halford propose various more complex spectrum-
dependent iterative methods of selecting values for 
 Notwithstanding such recommendations, the  .כܰ
probabilistic nature of the loads and spectrum 
inherent to present work prompts the author to delay 
consideration of ܦூିூூ spectrum dependency by 
pursuing initial development of DLDR-based 
methods based on selecting ܰכ ൌ ாܰ௅ ൌ 10஼  (i.e., 
the highest damaging life level possible in any 
spectrum).  Once the author’s DLDR methods are 
established, readers may wish to use the methods 
derived herein to assess the potential benefits of re-
introducing ܦூିூூ spectrum dependency into more 
complex methods.   
 
Adapting Manson-Halford equations in [8] to avoid 
notation conflicts and facilitate calculating damage  

 
Figure 1:  Double Linear Damage Rule 

Determination of DLDR phases using the כࡺ 
damage-curve break point (adapted from [10]).   

 
 
for the ݅-th load level and the ݆-th component, the 
number of cycles in phases I and II are calculated as 
 

ூܰ,௜,௝ ൌ ௜ܰ,௝ exp൫ܲ ௜ܰ,௝
ொ൯ 

 
and 
 

ூܰூ,௜,௝ ൌ ௜ܰ,௝ െ ூܰ,௜,௝ 
 
respectively, where intermediate variables ܳ and ܲ 
are defined as 
 

          ܳ ൌ
1

ln ൬ ௥ܰ௘௙
כܰ ൰

ln ቎
lnሺܦூିூூሻ

ln ቀ1 െ
0.65
0.35 ூିூூቁܦ

቏ 

 

ܲ ൌ
ln ூିூூܦ

௥ܰ௘௙
ொ  

 
and where ௜ܰ,௝ is the LDR number of cycles to failure 
for the ݅-th load level and the ݆-th component.   
 
Dashed lines in Figure 1 show the results of adjusting 
damage curve break points for life levels other than  

௥ܰ௘௙ and ܰכ to match the ூܰ,௜,௝ ൌ ௜ܰ,௝ exp൫ܲ ௜ܰ,௝
ொ൯ 

equation based the ܰכ break point.  Thus, the DLDR 
formulation allows fatigue damage to be considered 
linear in each phase while closely approximating 
damage curves generated from two-load-level fatigue 
test results (see [8], [9], and [10] for these test results 
and other details related to the DLDR formulation).   
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Figure 2:  Comparison of the number of cycles in 
DLDR phases I and II to LDR cycles to failure – 

total DLDR phase I and II cycles at any given load 
level equals LDR cycles but high values of ࡱ/ࡿ in 

phase I limit lower values in phase II. 
 
 
Figure 2 further illustrates the DLDR concept where 
high values of ܵ/ܧ during phase I would limit the 
number of cycles to failure for lower values of ܵ/ܧ 
during phase II.  However, for simple cases involving 
a single load level, the number of cycles is split 
between the two phases and the total number of 
cycles remains unchanged.   
 

DOUBLE-LINEAR RELIABILITY THEORY  
 
This paper aims to establish a double-linear reliability 
theory based on expressions using generalized 
ܽ -functions or similar for each DLDR phase.  The 
inverse of phase I cycles for the ݅-th cycle applied to 
the ݆-th component may be expressed as 
 

1

ூܰ,௜,௝
ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

  

1
݇ ൬ ௜ܵ

௝ܧ
൰

௠
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௠

൨
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ቋ

݂݅ ௜ܵ ൐ ௝ܧ

  

0 ݁ݏ݅ݓݎ݄݁ݐ݋

 

 
for which generalized ܽ-functions are not applicable 
without first incorporating the effects of the 
denominator terms absent from similar expressions 

for LDR.  As such, a new class of generalized 
DLDR-based phase I ܽ-functions is defined herein 
for ݒ ൏  ଴ asݖ
 
ܽ஽௅஽ோூ

כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ ൌ 

න
ሺݖ െ ሻ௠ݒ

expሾݕሺݖ െ ሻ௠బሿݒ
 ߶ሺݖሻ݀ݖ

ஶ

௭బ

 

 
where ߶ሺݖሻ is the standardized normal probability 
density function.   
 
Generalized DLDR-based phase I ܽ-functions may be 
applied to phase I damage calculations, as follows 
 

ூ,௝ܦ ൌ ݊ூ ݃ா,ூ൫ܧ௝൯ 
 
where ܦூ,௝ is the Manson-Halford DLDR phase I 
damage fraction and the corresponding phase I 
damage rate ݃ா,ூ൫ܧ௝൯ is calculated for the case of 
normal-distributed loads as 
 

݃ா,ூ൫ܧ௝൯ ൌ ቈ
1
݇

ቆ
ߪ
௝ܧ

ቇ
௠

቉  ൈ 

ܽ஽௅஽ோூ
כ ቆ

௝ܧ െ ߤ
ߪ

, ݉, െ
ߤ
ߪ

, ܲ݇ொ ቆ
ߪ
௝ܧ

ቇ
௠బ

, ݉଴ቇ 

 
where ݉଴ ൌ െ݉ܳ.  In accordance with Manson-
Halford DLDR theory, the ݆-th component is 
predicted to enter phase II after accumulating phase I 
damage of ܦூ,௝ ൌ 1.   
 
The inverse of phase II cycles for the ݅-th cycle 
applied to the ݆-th component may be expressed as 
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for which a new class of generalized DLDR-based 
phase II ܽ-functions is defined herein for ݒ ൏  ଴ asݖ
 
ܽ஽௅஽ோூூ

כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ ൌ 

න
ሺݖ െ ሻ௠ݒ

1 െ expሾݕሺݖ െ ሻ௠బሿݒ
 ߶ሺݖሻ݀ݖ

ஶ
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As in the case of phase I, generalized DLDR-based 
phase II ܽ-functions may be applied to phase II 
damage calculations, as follows 

ூூ,௝ܦ ൌ ݊ூூ ݃ா,ூூ൫ܧ௝൯ 

1

10

100

S/E

n

ASTM Curve Shape, A = 6, B = -2

DLDR Phase I, Nref = 10^3 N* = 10^6

DLDR Phase II, Nref = 10^3 N* = 10^6

(14) 
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where ܦூூ,௝ is the Manson-Halford DLDR phase II 
damage fraction and the corresponding phase II 
damage rate ݃ா,ூூ൫ܧ௝൯ is calculated for the case of 
normal-distributed loads as 
 

݃ா,ூூ൫ܧ௝൯ ൌ ቈ
1
݇

ቆ
ߪ
௝ܧ

ቇ
௠

቉ ൈ 

ܽ஽௅஽ோூூ
כ ቆ
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, ݉଴ቇ 

 
Per Manson-Halford DLDR theory, the ݆-th 
component is predicted to fail after entering phase II 
and accumulating phase II damage of ܦூூ,௝ ൌ 1.   
 
For completeness, similar DLDR-based functions for 
use with Weibull loads (extending the ܾ-function 
tools from [5] and [7]) are developed in Appendix A.  
 

EVALUATION TECHNIQUES 
 
Although the author introduced analytic evaluation of 
a certain subset of ܽ-functions in [5], the author 
recommends numerical integration techniques 
introduced in [7] be applied for evaluation of the 
generalized DLDR ܽ-functions, ܽ஽௅஽ோூ

כ ሺ•,•,•,•,•ሻ and 
ܽ஽௅஽ோூூ

כ ሺ•,•,•,•,•ሻ.   
 
In [7], evaluation of ܽ-functions with non-integer m 
values is accomplished using 15-point Gauss-
Laguerre quadrature formulas (see [13] and [14] for 
details).  To correct for inaccuracies in use of Gauss-
Laguerre for evaluating the ܽ-function for small 
values of |ݖ଴| and ݉, [7] recommends that the 
ܽ-function integral be evaluated in two steps.  
Adapting the methods of [7] to the generalized 
DLDR phase I ܽ-functions integral results in the 
following:   
 

ܽ஽௅஽ோூ
כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ ൌ ܽଵ ൅ ܽଶ 

 
where 
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and  

ଵݖ ൌ 1 ൅ ଵ
ଶ
଴ݖ ൅ ට݉ ൅ ଵ

ସ
଴ݖ
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It is recommended that the integral for ܽଵbe 
evaluated using a Newton-Coats formula, such as a 
1000-step 4th-order formula (i.e., Boole’s method, see 
[13] for details).   
 
Implementation of Gauss-Laguerre requires a change 
of coordinates.  As was the case in [7], let ݔ ൌ భ

మ
௭మ 

and ݔ௦௛௜௙௧ ൌ భ
మ

௭భ
మ for the generalized DLDR 

ܽ-function.  One may evaluate ܽଶ as  
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௠
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and values for ݓ௜ and ݔ௜ are provided in [14].   
 
Evaluation of generalized DLDR phase II 
ܽ-functions, ܽ஽௅஽ோூூ

כ ሺ•,•,•,•,•ሻ may be accomplished 
with similar methods after making the following 
modifications to certain of the above expressions:   
 

ܽ஽௅஽ோூூ
כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ ൌ ܽଵ ൅ ܽଶ 
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Numerical procedures and all other expressions 
remain unchanged from those used in evaluation of 
the generalized DLDR phase I ܽ-function.   
 

APPLICATION NOTES 
 
In this section, generalized DLDR-based phase I and 
phase II ܽ-functions are applied to three special cases 
of fatigue reliability problems.  Each case adapts 
results in [7] to study double-linear reliability in the 
presence of load and strength variation.  Two cases of 
deterministic usage are considered, one for usage 
characterized by a single load condition and the 
second for a distributed usage over multiple load 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

 
 

(26) 

 
(25) 

 
(27) 

 
(28) 

 
(29) 

 
(30) 

 
(31) 



conditions.  Also, a probabilistic usage case is 
considered for a single load condition.   
 
An approach to apply LDR-based ܽ-function tools to 
multivariate probabilistic usage problems is presented 
in [7].  However, due to the complexity of the 
effective composite DLDR damage rate for multiple 
load conditions, a similar approach is not available 
for application to the DLDR case at this time.    
 
Single Load Condition Deterministic Usage 
 
Application is first considered for deterministic usage 
with a single load condition.  At component failure, 
accumulated damage ܦ௝ in the ݆-th component is 
equal to some threshold value, ߜ (typically failure is 
considered to occur at ߜ ൌ 1).  At failure, the phase I 
and phase II damage fractions are also at the 
threshold, namely:  ܦூ,௝ ൌ ூூ,௝ܦ and ߜ ൌ    .ߜ
 
The reader may object to the concept of using the 
same threshold value for phase I and II.  In fact, the 
sequence of damage accumulation is that phase I is 
first accomplished prior to initiation and completion 
of phase II.  However, the author’s concept of the 
threshold is such that both phases have been 
completed at failure by reaching the threshold (each 
in turn).  Sequence is only important if the 
deterministic usage changes with time and varies 
between phase I and phase II.  In such cases, the 
phase I and II damage rates should be calculated 
according to the appropriate usage spectrum during 
each phase and the following discussion would 
remain applicable.   
 
The number of cycles to failure (specifically, to 
achieve  ܦ௝ ൌ  is calculated as (ߜ
 

݊ ൌ ݊ூ ൅ ݊ூூ ൌ ߜ ቆ
1
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൅

1

݃ா,ூூ൫ܧ௝൯
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Solving for ߜ yields the accumulated damage as 
 

௝ܦ ൌ  ݃ா௡൫ܧ௝, ݊൯ ൌ ݊ ݃ா൫ܧ௝൯ 
 
where 

݃ா൫ܧ௝൯ ൌ
݃ா,ூ൫ܧ௝൯݃ா,ூூ൫ܧ௝൯

݃ா,ூ൫ܧ௝൯ ൅ ݃ா,ூூ൫ܧ௝൯
 

 
may be considered the effective composite DLDR 
damage rate.   
 

Let ܧ be randomly distributed with density function 
ா݂ሺܧሻ.  The probability that the damage in a given 

component is less than the failure threshold ߜ is  
 

  Prሺܦ ൏ ሻߜ ൌ ሻߜ஽ሺܨ ൌ න ா݂ሺܧሻ ݀ܧ
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where Prሺܦ ൏    .ܴ ,ሻ is the component’s reliabilityߜ
 
Conversely, the probability that the damage in a 
given component exceeds the failure threshold ߜ is  
 

             Prሺܦ ൐ ሻߜ ൌ න ா݂ሺܧሻ ݀ܧ
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where Prሺܦ ൐  ሻ is the probability of componentߜ
failure.  Considering a specific critical endurance 
limit ܧఋ such that  ݃ா௡ሺܧఋ, ݊ሻ ൌ  for a given value ߜ
of ݊, one may clarify the integration as 
 

Prሺܦ ൐ ሻߜ ൌ න ா݂ሺܧሻ ݀ܧ

ாഃ 

ିஶ

 

 
which is 
 

Prሺܦ ൐ ሻߜ ൌ  ఋሻܧாሺܨ
 
by definition, where ܨாሺ•ሻ is the cumulative 
endurance limit distribution.  It is important to clarify 
that the particular type of fatigue strength distribution 
is not specified (i.e., the methods of this paper are 
applicable to normal strength, log-normal strength, 
Weibull strength, etc.).   
 
Single Load Condition Probabilistic Usage 
 
With probabilistic usage, the number of cycles of 
each load condition at retirement is also a random 
variable.  The simple case of a single damaging load 
condition is considered, where the accumulated 
damage may be expressed as  
 

௝ܦ ൌ ௝݊݃ா൫ܧ௝൯ ൌ ݃ா௡൫ܧ௝, ௝݊൯ 
 
where 
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is the effective composite DLDR damage rate.   
 
For this case, one may substitute the effective 
composite DLDR damage rate directly into the 
discussion of probabilistic usage in [7], where the 
probability that the damage is above some threshold 
 is calculated as (probability of component failure) ߜ
 
Prሺܦ ൐ ሻߜ ൌ ாሺ0ሻܨ
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൰൨ ܧ݀ 

ஶ

଴
 

 
where ܧ and ݊ are independent and randomly 
distributed with density functions ா݂ሺܧሻ and ௡݂ሺ݊ሻ 
and cumulative distributions ܨாሺܧሻ and ܨ௡ሺ݊ሻ, 
respectively.   
 
Multiple Load Conditions Deterministic Usage 
 
For the case of deterministic usage with ݌ multiple 
(potentially damaging) load conditions in the usage 
spectrum, the Manson-Halford DLDR phase I and 
phase II damage fractions are calculated as follows:   
 

ூ,௝ܦ ൌ ݊ூ ߦԦ் ݃ா,ூሬሬሬሬሬሬԦ൫ܧ௝൯ 
 
and 

ூூ,௝ܦ ൌ ݊ூூ ߦԦ் ݃ா,ூூሬሬሬሬሬሬሬሬԦ൫ܧ௝൯ 
 
respectively, where  

Ԧߦ ൌ ൦

ଵߦ
ଶߦ
ڭ

௣ߦ

൪ 

 
is a vector of load condition weighting factors 
describing the usage spectrum, and the vectors 
 ݃ா,ூሬሬሬሬሬሬԦ൫ܧ௝൯ and  ݃ா,ூூሬሬሬሬሬሬሬሬԦ൫ܧ௝൯ contain corresponding DLDR 
phase I and phase II damage rates for each load 
condition in the usage spectrum.   
 
The number of cycles to failure (ܦ௝ ൌ   is (ߜ
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Solving for ߜ yields the accumulated damage as 
 

௝ܦ ൌ  ݃ா௡൫ܧ௝, ݊൯ ൌ ݊ ݃ா൫ܧ௝൯ 
 
where 

       ݃ா൫ܧ௝൯ ൌ
 ൛ߦԦ் ݃ா,ூሬሬሬሬሬሬԦ൫ܧ௝൯ൟ ൛ߦԦ் ݃ா,ூூሬሬሬሬሬሬሬሬԦ൫ܧ௝൯ൟ

൛ߦԦ் ݃ா,ூሬሬሬሬሬሬԦ൫ܧ௝൯ൟ ൅ ൛ߦԦ் ݃ா,ூூሬሬሬሬሬሬሬሬԦ൫ܧ௝൯ൟ
 

is the effective composite DLDR damage rate for 
multiple load conditions.   
 
As before, one may consider a specific critical 
endurance limit ܧఋ such that  ݃ா௡ሺܧఋ, ݊ሻ ൌ  for a ߜ
given value of ݊ and solve for the probability of 
component failure as 
 

Prሺܦ ൐ ሻߜ ൌ  ఋሻܧாሺܨ
 
where ܨாሺ•ሻ is the cumulative strength distribution.   
  

EXAMPLES 
 
Examples are used demonstrate application to single 
and multiple load cases.   
 
Tables 1 through 4 present an example intended to 
allow demonstration of the double linear reliability 
methods developed in this paper.  Table 1 presents 
the problem parameters where ݇ and ݉ correspond to 
the curve shape shown in Figure 2 and the mean load 
is twice the mean endurance limit.   
 
For those unfamiliar with ܽ-functions presented in 
[5] and [7], a baseline solution is developed via 
application of traditional methods with results 
provided in Table 2.  A fatigue life of just over 
90,000 cycles is calculated using a fatigue curve with 
mean minus three sigma working endurance limit, 
 ௪, and a load level corresponding to 95th percentileܧ
(or top of scatter) vibratory loads, ܵଽହ. 
 
Table 3 presents results for the example problem 
using double linear theories developed in this paper.  
A fatigue life of nearly 68,000 cycles corresponds to 
“six nines” of reliability (ܴ ൌ 0.999999) for the 
problem characterized by parameters in Table 1, 
which is 25% less than the fatigue life predicted 
using traditional methods (see Table 2).  The reader 
should attempt replicating the single load case results 
provided in Table 3 prior to attempting more realistic 
problems involving multiple-load cases. 
 
Table 4 presents results for LDR methods developed 
in [7].  These results are presented to allow the reader 
to test the ability to duplicate simpler LDR results 
prior to attempting DLDR methods.  As one might 
expect, comparison of DLDR and LDR results in 
Tables 3 and 4, respectively, indicates little 
difference between DLDR-based and LDR-based 
reliability methods when applied to problems with a 
single damaging load condition.     
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Table 1:  Parameters Used for a  
Single Load Condition Example 

Parameter Value 

݇ 1.0 ൈ 10଺ 

݉ 2 

 ா 5ߤ

ܱܥ ாܸ 0.1 

 ௌ 10ߤ

ܱܥ ௌܸ  0.1 

௥ܰ௘௙  1.0 ൈ 10ଷ 

 כܰ 1.0 ൈ 10଺ 

 
 
 

Table 2:  Results for Traditional LDR Method†  

Variable Name Value‡ 

 ௪ 3.50000ܧ

ܵଽହ 11.6449 

 
݊  

(per traditional method) 
90337 

† Calculation is based on mean minus 3 sigma working 
fatigue strength curve and 95-th percentile top of scatter 
vibratory load. 
‡ Note: intermediate results in this and each of the other 
tables in this paper are rounded to 6 digits and calculated 
fatigue lives are rounded to the nearest whole cycle.   
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Single Load Condition Example Results 
with a Target Reliability of “Six Nines” (0.999999) 

Variable Name Value  

 ூିூூ 0.0622398ܦ

ܲ െ62.7717 

ܳ െ0.451408 

 ௖௥௜௧ 2.62329ܧ

 ଴ െ7.37671ݖ

 ݒ െ10.0000 

 ݕ െ0.0514247 

݉଴  0.902817 

ܽ஽௅஽ோூ
כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ  153.562 

ܽ஽௅஽ோூூ
כ ሺݖ଴, ݉, ,ݒ ,ݕ ݉଴ሻ  297.367 

݃ா,ூ  2.23147 ൈ 10ିହ 

݃ா,ூூ  4.32117 ൈ 10ିହ 

݃ா 1.47155 ൈ 10ିହ 

݊ 67955 

 
 
 
Table 4:  Comparative Results for LDR Case with 

Six Nines Target Reliability 

Variable Name§ Value 

,଴ݖሺכܽ ݉,  ሻ  101.000ݒ

݃ா 1.46767 ൈ 10ିହ 

݊ 68135 

§ Note, variables in this table are defined per methods 
presented in [7] rather than double linear equations herein.   



To demonstrate application to problems involving 
multiple load conditions, an example is borrowed 
from [9] where four load conditions are applied 
which would produce nominal lives of 10ଷ, 10ସ, 10ହ, 
and 10଺ cycles (for mean loads and strength).  As in 
[9], each block of loads contains 1 percent of the 
nominal failure cycles for each loading level 
individually.  Tables 5 and 6 adapt this example to 
demonstrate the methods developed in this paper.  It 
is noted that the author has modified the problem by 
assuming that each “block” of loads corresponds to 
400 flight hours (selected to correspond to 100 hours 
per damaging load condition).   
 
Results are presented in Figure 3, where four 
solutions are shown for each of the LDR and the 
DLDR theories: 
 Nominal method (mean endurance limit)   
 Traditional method (working endurance limit)   
 Probabilistic method (ܽ-functions)   
 Probabilistic method (ܽ-functions) with 

additional load below working endurance limit   
 
First, a life is calculated using nominal methods 
applied for the mean endurance limit (100 load units), 
resulting in a 10,000 hour life for LDR and a 
4,596 hour life for DLDR.  The LDR result is as 
expected when considering that four load conditions 
are applied per 400 hour block which each produce 
1% damage fraction per block (4% damage per 400 
hours ratios to 100% damage per 10,000 hours).  
Also, the DLDR result corresponds to within 0.2% of 
that presented in [9] (after adjusting for 400 hours per 
load block).     
 
Second, using the working endurance limit (70 load 
units), traditional methods result in lives of 4,900 
hours and 2,089 hours for LDR and DLDR cases, 
respectively.   
 
Next, the methods provided in [7] and herein are 
applied to the problem based on the strength 
Coefficient of Variation (COV) and the load COV 
specified in Table 5.  To maintain six nines of 
reliability, the resulting lives are 2,725 hours and 
1,222 hours for LDR and DLDR cases, respectively.   
 
Finally, the usage spectrum in Table 7 is considered, 
where an additional load is included with load level 
below the working endurance limit, ܧ௪, and 
occurring 10,000 cycles per 400 hour block.  This 
level of load would be neglected by traditional 
methodologies where loads below ܧ௪ do not impact 
the calculation.  However, the probabilistic methods 
provided in [7] and herein are impacted at high  

Table 5:  Parameters Used for a  
Multiple Load Condition Example 

Parameter Value 

݇ 1.0 ൈ 10଺ 

݉ 2 

 ா 100ߤ

ܱܥ ாܸ 0.1 

 ௌ variesߤ

ܱܥ ௌܸ  0.1 

௥ܰ௘௙  1.0 ൈ 10ଷ 

 כܰ 1.0 ൈ 10଺ 

 
 
 

Table 6:  Usage Spectrum for Example with 
Multiple Load Conditions 

Index, ݌ 
Mean Load 

Level 

Nominal 
Cycles to 
Failure 

Cycles per 
400 hour 

Block 

1 3162.28 10ଷ 10 

2 1000.00 10ସ 100 

3 316.228 10ହ 1000 

4 100.000 10଺ 10000 

 
 
 

Table 7:  Alternative Usage Spectrum for 
Example with Multiple Load Conditions  

Index, ݌ 
Mean Load 

Level 

Nominal 
Cycles to 
Failure 

Cycles per 
400 hour 

Block 

1 3162.28 10ଷ 10 

2 1000.00 10ସ 100 

3 316.228 10ହ 1000 

4 100.000 10଺ 10000 

5 66.6667 ∞ 10000 

 
 
 



 
 
Figure 3:  Results for the Multiple-Load-Condition Example (Adapted from [9]) with 400 Hour Load Blocks 

 
reliability levels based on overlap of the load and 
strength distribution tails.  To maintain six nines of 
reliability, the resulting lives are 2,455 hours and 934 
hours for LDR and DLDR cases, respectively.  The 
impact of the additional load level below ܧ௪ is 
magnified in the DLDR case due to reductions in 
cycles to failure at low load-levels during phase II 
(see Figure 2).   

 
SENSITIVITY STUDIES 

 
This section illustrates the sensitivity of the DLDR 
cumulative-damage reliability tools to load and 
strength variations.  To avoid complex sensitivity 
studies based on multiple load condition interactions, 
the single load condition example with parameter 
values provided in Table 1 is taken as a baseline for 
comparison.  Although single load condition 
examples do not take full advantage of DLDR 
theories, these sensitivity studies fully apply the 
DLDR method and may be used to understand the 
impact of changes in any given load condition.     

Figures 4 and 5 demonstrate the increase in 
probability of failure (decrease in reliability) as the 
number of cycles is increased and with increasing 
load ratio.  Although the nominal ASTM log-log 
strength curve demonstrates a sharp corner at 

ாܰ௅ ൌ 10஼, the author notes that probabilistic 
methods tend to smooth the corner.   
 
Figure 6 presents results for increases in load COV 
with six nines reliability.  Load variability effects are 
more significant below the endurance limit where the 
curves in Figure 6 “fan out” with additional cycles 
and increased load variation.  Figure 6 demonstrates 
the importance of understanding load distributions 
for sustained steady-state conditions such as level 
flight, which are typically underrepresented in a 
composite worst case usage spectrum.  Figure 7 
presents results for increases in strength COV.  
Comparison of the 14% strength COV case from 
Figure 7 to the 50% load COV case from Figure 6 
indicates greater sensitivity to strength variation at 
each load level (see [5] for similar LDR results).      
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Figure 4:  Probability of Failure as a Function of Cycles for Various Ratios of Mean Load to Mean Strength, 

ࡿࣆ ⁄ࡱࣆ , with ࢑ ൌ ૚૙૟, ࢓ ൌ ૛, ࡱࢂࡻ࡯ ൌ ૙. ૚, ࡿࢂࡻ࡯ ൌ ૙. ૚, ࢌࢋ࢘ࡺ ൌ ૚૙૜, and כࡺ ൌ ૚૙૟ 
 
 
 

 
Figure 5:  Ratio of Mean Load to Mean Strength, ࡿࣆ ⁄ࡱࣆ , as a Function of Cycles for Various Reliability 

Levels, with ࢑ ൌ ૚૙૟, ࢓ ൌ ૛, ࡱࢂࡻ࡯ ൌ ૙. ૚, ࡿࢂࡻ࡯ ൌ ૙. ૚, ࢌࢋ࢘ࡺ ൌ ૚૙૜, and כࡺ ൌ ૚૙૟ 
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Figure 6:  Ratio of Mean Load to Mean Strength, ࡿࣆ ⁄ࡱࣆ , as a Function of Cycles for Various Levels of Load 

Variation, with six nines reliability, ࢑ ൌ ૚૙૟, ࢓ ൌ ૛, ࡱࢂࡻ࡯ ൌ ૙. ૚, ࢌࢋ࢘ࡺ ൌ ૚૙૜, and כࡺ ൌ ૚૙૟ 
 
 
 

 
Figure 7:  Ratio of Mean Load to Mean Strength, ࡿࣆ ⁄ࡱࣆ , as a Function of Cycles for Various Levels Strength 

Variation, with six nines reliability, ࢑ ൌ ૚૙૟, ࢓ ൌ ૛, ࡿࢂࡻ࡯ ൌ ૙. ૚, ࢌࢋ࢘ࡺ ൌ ૚૙૜, and כࡺ ൌ ૚૙૟ 
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CONCLUSIONS 
 
The author’s conclusions are as follows:   
1.  The work described in this paper extends the 

generalized ܽ-function tools developed in [5] and 
[7] to allow calculation of fatigue reliability based 
on the Manson-Halford DLDR, thus formulating a 
new double-linear reliability theory.   

2.  A sensitivity study has been performed which 
indicates the importance of understanding the 
strength distribution, especially the strength COV.   

3.  A multiple-load-condition example clearly 
demonstrates that the selection of cumulative 
damage theory impacts reliability.   
a.  Probabilistic DLDR methods demonstrate 

significant reductions in fatigue life to 
maintain six nines of reliability when 
compared to LDR methods.   

b.  The importance of understanding and applying 
the appropriate LDR, DLDR, or other material 
characterization is apparent.   

4.  Future efforts should include the following:   
a.  The potential benefits of re-introducing ܦூିூூ 

spectrum dependency into more complex 
methods should be assessed.   

b.  The applicability of double-linear reliability 
methods described in this paper would be 
significantly improved by the development of 
an approach to apply DLDR-based methods to 
multivariate probabilistic usage problems.    
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APPENDIX A 
 
This appendix presents double-linear reliability 
theory for use with Weibull distributed loads by 
extending the ܾ-function methods of [5] and [7].  
Although the material in this appendix is not required 
to understand and apply the ܽ-function methods to 
problems involving normally distributed loads, these 
tools are provided for completeness.   
 
Additional Notation used in Appendix A:   
 
ܾሺ•,•,•ሻ  Benton ܾ-function defined in [5]  
  ሺ•,•,•,•ሻ  generalized ܾ-function defined in [7]כܾ
ܾ஽௅஽ோூ

כ ሺ•,•,•,•,•,•ሻ  generalized DLDR-based phase I 
ܾ-function defined herein  

ܾ஽௅஽ோூூ
כ ሺ•,•,•,•,•,•ሻ generalized DLDR-based phase II 

ܾ-function defined herein  
  generalized ܾ-function parameter ݑ
  standardized” Weibull load amplitude“ ݓ
 ௜ weighting value used in Gauss-Laguerreݓ

quadrature  
 ଴ “standardized” Weibull damaging loadݓ

amplitude  
  Weibull slope (for load amplitudes) ߚ
γሺ•,•ሻ “standardized” Weibull probability 

density function  
 Weibull minimum expected value (for ߜ

load amplitudes) – also used above as 
accumulated fatigue damage   

 Weibull characteristic value (for load ߟ
amplitudes)  

 
 
Double-Linear Reliability Theory for Weibull Loads 
 
The DLDR phase I damage rate, ݃ா,ூ൫ܧ௝൯, is 
calculated for the case of Weibull loads as  
 

݃ா,ூ൫ܧ௝൯ ൌ ቈ
1
݇

ቆ
ߟ െ ߜ

௝ܧ
ቇ

௠

቉ ൈ 

ܾ஽௅஽ோூ
כ ቆ

௝ܧ െ ߜ
ߟ െ ߜ

, ݉, ,ߚ െ
ߜ

ߟ െ ߜ
, ܲ݇ொ ቆ

ߟ െ ߜ
௝ܧ

ቇ
௠బ

, ݉଴ቇ 

 
where and ܲ, ݇, ܳ, and ݉଴ are as defined in the main 
body of this paper; ߟ ,ߚ, and, ߜ are Weibull 
distribution parameters; and the new class of 
generalized DLDR-based phase I ܾ-functions is 
defined for ݑ ൑ maxሺݓ଴, 0ሻ as 
 
ܾ஽௅஽ோூ

כ ሺݓ଴, ݉, ,ߚ ,ݑ ,ݕ ݉଴ሻ ൌ 

න
ሺݓ െ ሻ௠ݑ

expሾݕሺݓ െ ሻ௠బሿݑ
,ݓሺߛ  ݓሻ݀ߚ

ஶ

୫ୟ୶ሺ௪బ,଴ሻ
 

 

with 
 

,ݓሺߛ ሻߚ ൌ ൝
ఉିଵݓ ߚ exp൫െݓఉ൯ ݓ ݂݅ ൒ 0

0 ݁ݏ݅ݓݎ݄݁ݐ݋
 

 
 
Similarly, the DLDR phase II damage rate, ݃ா,ூூ൫ܧ௝൯, 
is calculated for the case of Weibull loads as  
 

݃ா,ூூ൫ܧ௝൯ ൌ ቈ
1
݇

ቆ
ߟ െ ߜ

௝ܧ
ቇ

௠

቉  ൈ 

ܾ஽௅஽ோூூ
כ ቆ

௝ܧ െ ߜ
ߟ െ ߜ

, ݉, ,ߚ െ
ߜ

ߟ െ ߜ
, ܲ݇ொ ቆ

ߟ െ ߜ
௝ܧ

ቇ
௠బ

, ݉଴ቇ 

 
where the new class of generalized DLDR-based 
phase II ܾ-functions is defined for ݑ ൑ maxሺݓ଴, 0ሻ as 
 
ܾ஽௅஽ோூூ

כ ሺݓ଴, ݉, ,ߚ ,ݑ ,ݕ ݉଴ሻ ൌ 

න
ሺݓ െ ሻ௠ݑ

1 െ expሾݕሺݓ െ ሻ௠బሿݑ
,ݓሺߛ  ݓሻ݀ߚ

ஶ

୫ୟ୶ሺ௪బ,଴ሻ
 

 
It is noted that the DLDR phase I and phase II 
damage rates for Weibull loads, ݃ா,ூ൫ܧ௝൯ and 
݃ா,ூூ൫ܧ௝൯, respectively, may be substituted into 
equations used for various special cases in the 
APPLICATION NOTES section of the main body of this 
paper to calculate the effective composite DLDR 
damage rate, ݃ா൫ܧ௝൯. 
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