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1 SUMMARY

Modeling the behavior of interacting humans in routine but complex activities has many
challenges, not the least of which is that humans can be both purposive and negligent, and
further can encounter unexpected environmental hazards requiring fast action. The challenge
is to characterize and model the humdrum routine while at the same time capturing the
deviations and anomalies which arise from time to time. Because of the disruptive impact
that anomalies (such as accidents) can have and the importance for incorporating them in our
models, this report focuses on one technique for identifying anomalies in complex behavior
patterns especially when there is no sharp demarcation between routine and unusual activity.

The technique we evaluate is that of Mahalanobis distance which is known to be useful
for identifying outliers when data is multivariate normal. But, the data we use for evaluation
is deliberately markedly non-multivariate normal since that is what we confront in complex
human systems. Specifically, we use one year’s (2008) hourly traffic-volume data on a major
multi-lane road (I-95) in one location in a major city (New York) with a dense population
and several alternate routes. The traffic data is rich, large, incomplete, and reflects the
effects of bad weather, accidents, routine fluctuations (rush hours versus dead of night), and
one-time social events.

The results show that Mahalanobis distance is a useful technique for identifying both
single-hour outliers and contiguous-time clusters whose component members are not, in
themselves, highly deviant.

1
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2 INTRODUCTION

People walking, driving cars, and flying airplanes are interacting entities whose behavior is
typically purposeful and generally characterized by an avoidance of collisions.

Such dynamically interacting agents usually comply reasonably well with “soft” con-
straints such as traffic speed limits, one-way streets, and parking regulations. Soft con-
straints can also include unstated social “conventions” such as pedestrians on a sidewalk
usually walking on the right of on-coming people, and cars discouraged from passing on the
right of a car traveling in the same direction.

“Usually comply” does not mean “always comply” and this means that accidents some-
times happen. Further, accidents can happen due to factors beyond a driver’s control such
as environmental surprises including a heavy rain, ice, a large pot-hole, or a large animal
darting across a road.

One conclusion is that the collective behavior of relatively-autonomous softly-constrained
independent purposeful agents in real environments will be hard to understand. But we do
want to understand how people behave in routine and non-routine circumstances. That
means that in addition to the mundane, our models must capture the types, effects, and
frequencies of anomalies in everyday life. Toward that end, this report focuses on exploring
one technique for identifying anomalies—especially when there is no sharp demarcation be-
tween routine and unusual activity—and their frequencies in one facet of daily life, namely,
highway traffic. But although traffic analysis is our exemplar, our aim is the more general
problem of modeling complex purposive behavior and anomalies.

2.1 Modeling Complex Purposive Behavior & Anomalies

Modeling the behavior of interacting humans in routine but complex activities has many
challenges, not the least of which is that humans can be both purposive and negligent, and
further can encounter unexpected environmental hazards requiring fast action. The challenge
is to characterize and model the humdrum routine while at the same time capturing the
deviations and anomalies which arise from time to time.

The humdrum and routine collective behavior of ants, termites, and other insects can cre-
ate complex structures, order, and patterns which, as research in the area of self-organization
in biological systems shows (Camazine, Franks, Sneyd, Bonabeau, & Deneubourg, 2003), can
be effectively modeled. But the key term here is “purposeful.”

Purposefulness, together with its evil relative “negligence,” can be argued to be disruptive
of natural order. Even well-motivated well-intentioned persons exercising carefully planned
and direct control in a complex situation can unleash a rare but devastating catastrophe.
Such anomalies must be assessed for frequency and magnitude before they can be incorpo-
rated for in our models. That is, our models of complex interactive human behavior must
be able to account for both the routine and the non-routine.

The collective behavior of individuals is not without order and pattern (e.g., Miller &
Page, 2007). Even in unregulated dense merging street traffic, there can be order albeit
in apparent chaos (Vanderbilt, 2008). Within regulated highways, there are fascinating
emergent wavefronts and the models and simulations of them are quite striking (e.g., Beaty,
2011).

2
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Developing a model for well-ordered behavior is one thing, but developing a model which
can account for disruptions requires much more than model sophistication. We need to have
data on the frequency and types of anomalies and their effects. Hence, as a prerequisite for
model building, this report focuses on one technique for identifying anomalies in complex
behavior patterns especially when there is no sharp demarcation between routine and unusual
activity.

2.2 Identifying Individual Outliers & Anomalies

The technique we evaluate is that of Mahalanobis distance (Mahalanobis, 1936) which is
known to be useful for identifying outliers when data is multivariate normal. But, the data
we use for evaluation is deliberately markedly non-multivariate normal since that is what we
confront in complex human systems.

Since the problem of outlier detection is well-studied and well-discussed in statistics and
data mining (e.g., Barnett & Lewis, 1994; Johnson & Wichern, 2007; Shekhar, Lu & Zhang,
2003; Rousseeuw & Leroy, 1987), what is unique or interesting about the current report and
analysis? Our concern is with:

e I[dentifying outlier contiguous clusters and not just stopping with identifying individual
outliers;

e Determining usefulness in spite of assumption failures; and

e Analyzing traffic-volume data to illustrate the techniques.

2.3 Identifying Anomalous Contiguous Clusters

Typically, the unit of analysis or “unit of data” or data “record” is generally fixed or given,
and the typical task focuses on identifying unusual records. More graphically, the usual
problem is to identify individual outlier points in a (multi-dimensional) scatter plot. In the
cases of interest in this report, the (only) available data-records are indeed traditional data-
“points,” but the emphasis is on identifying spatially or temporarily contiguous clusters of
points or data-records. It may well be that none of the members of an outlier cluster are
particularly deviant as individual points.

Note that the emphasis is on multiple data-records in the discussion of clusters. This
should not be confused with extremeness on the variables within a data-record. As Barnett
and Lewis (1994, p. 270) point out: “A multivariate outlier need not be extreme in any of its
components. Someone who is short and fat need not be the shortest, or the fattest, person
around.” For an illustration, see Figure 2.

2.4 Robustness Considerations

Another feature of this report is its concern with determining usefulness in spite of assump-
tion failures. Instead of dwelling on probabilities based on theoretical distributions, We
advocate the use of percentiles and comparison with an external information which can pro-
vide “ground truth.” Since no one method solves all problems, we need to know when a
method such as Mahalanobis distance breaks down and its use contraindicated.

3
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2.5 Traffic Volume Analysis

Traffic data, in general, is especially well-suited to study the effects of purposive and negligent
behavior in complex situations due to the variety of choices and actions which can be, and
often must be, made. Purposeful and somewhat unconstrained traffic behavior by sentient
drivers includes conscious choice of roads (“surface streets”) or highways, direction of travel,
speed (including too fast or too slow), lane (including choosing to drive slowly in a fast
lane), lane changes, highway entrance and exit, and time of travel. Yet another interesting
voluntary behavior is rubbernecking—slowing down to watch an accident scene.

Traffic volume data, in particular, is especially interesting to illustrate the problem of
cluster outlier identification. The data records used here are hourly traffic volumes crossing a
particularly active location on a major Interstate Highway. Yet, the events of interest—such
as accidents—often span several hours, hence we are faced with the higher-order problem
of identifying unusual patterns beyond single outliers. Also, the data-set is real and hence
generally not (multivariate-)normal. Further, the data-set has missing records which always
presents challenges. The analysis challenge is increased since ancillary data, such as weather
and accident records, are not always available to establish “ground truth.”

4
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3 MAHALANOBIS DISTANCE

Given a theoretical distribution or an empirical data set and a particular data point, a
basic question concerns the “rarity” or extremeness of the datapoint relative to the other
data points. How distant is the point from the center of the distribution? How likely or
unlikely is it that the point lies at that particular distance (or closer) from the center of the
distribution?

For univariate data, familiar Euclidean distance and rarity are easily related, but for
multivariate data, the concept of distance, as we will see, must be modified in order to relate
“distance” and rarity. That requisite modification is Mahalanobis distance. It enables a
powerful technique for detecting multivariate outliers. But before presenting this general
multivariate method, we briefly review some basic methods for identifying univariate and
bivariate outliers and anomalous data points.

3.1 Detecting Univariate Outliers & Rarity

In elementary statistics, we learned to transform raw scores into z-scores using the mean
and standard deviation of the data by:

_ score —mean T — ]

°T standard deviation o (1)

The z-scores are the signed distances of the datapoints from the mean in units of the standard

deviation. They simply rescale the data so that the mean is zero and the standard deviation

is one. Hence, z-scores preserve the shape of the original distribution. Furthermore, since
the units of the numerator and denominator are the same, z-scores are dimensionless.

If the distribution is normal, the probability of observing a particular z-score (or one
closer to the mean of zero) is easily calculated or obtained from a table of so-called “normal
deviates.” Thus, distance and rarity are solidly linked.

Even if the distribution is not normal, Tchebycheff’s (a.k.a. Chebyshev’s) Inequality
assures us that there is still a reasonable linkage between rarity and the (unsigned) distance
of a point from the mean:

e The probability of a z-score with an absolute value greater than or equal to, say, k,
must be less than or equal to 1/k%. For example, no matter what the distribution of
the data, the probability of observing a z-score of 5 or greater is no greater than 1/5% or
.04. And the closer the distribution is to normal, the probability could be considerably
less. Hence, a z-score of 5 is always unusual enough to consider as a possible outlier.

The following transform of Equation 1 is not in elementary books, but enables a bridge
or generalization to multivariate data. First, square the z-score:

2
52 — (z —p)
o2
Next, rewrite the righthand side to produce
Z = (z—p)(e®)(z —p) (2)

Admittedly, Equation 2 provides no computational advantage, but its peculiar form is the
form necessary for generalization to multivariate data.

5
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3.2 Detecting Bivariate Outliers & Rarity

A bivariate datapoint or observation consists of two linked values, x and y, drawn from two
populations, X and Y. The pair of values may be represented by a column vector

pP=p= lﬂ:[w,y]'

where the prime signifies transpose! in statistics.
The means of the X and Y distributions, taken together, define the centroid:

—

i=p = [Z“’; ] = (1t 1) (3)

Now assume the two independent populations, X and Y, representing two independent
variables, are each normally distributed but with unequal standard deviations o, and o.
Further assume that the variables are uncorrelated so that the covariance o, is zero.

We now examine two types of distance of a point p'= [z, y|’ to the centroid fi = [, ]
One is Euclidean and the other is a non-Euclidean distance useful in statistics.

3.2.1 Euclidean Distance to Centroid

If the means of both the X and Y distributions are both zero, the Euclidean distance from
the point [z,y]" to the centroid located at the origin is the familiar

d= /27 +

but since, in general, the means of the variables will not be zero, the centroid will not be at
the origin but rather at

(12, 41y
so the Euclidean distance of a point to the centroid fi = [pts, f1,]" is:
d= /(e — ) + (5 — py)? (4)

Equation 4 is technically correct but not completely satisfactory from a statistics point
of view.

e [f the two variables carry different units, e.g., one in miles per hour and one in fatalities,
it is not clear what the units for the two-dimensional distance should be.

e Even if the two variables carry the same units, Equation 4 is sensitive to the scale
used so the distance values can vary wildly with different scale units. This complicates
evaluating what constitutes an extreme value.

!Note that [z,y]’ is a column vector despite appearances. A prime on a column-vector transposes it into
a row vector: ,
. x
p/:p/: |: y:| :[x’y]
The transpose of column vectors is common in statistics to conform to the rules of vector and matrix
operations.

6
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e Equation 4 ignores information provided by the standard deviations. Even if the
variables have the same units, standard deviations can reflect the quality of the mea-
surement process. If the trustworthiness of the two variables is not the same, it is
inappropriate to give them the same weight which is what Equation 4 does.

e The locus of all pairs of points [z, y] at the same distance from the centroid is a circle
since setting d to a constant yields the equation of such a circle. This is a graphic
realization that Equation 4 gives equal weights to the two variables.

3.2.2 Non-Euclidean Weighted Distance to Centroid

The inadequacies of Equation 4 can be finessed by appealing to the logic behind the use of
standard scores (see Eq. 1). Instead of using (z—pu,) and (y—p,) as components in a distance
equation, first weigh each difference by the inverse of its associated standard deviation. That
is, compute weighted distances using z-scores instead of the differences from the means of

the variables:
dy = (/22 + 22 (5)

. J (= po | (&= pn)? ©)

2 2
o o,

or, equivalently:

This procedure counters the objections raised about the unweighted Euclidean distance:

e Since z-scores are are dimensionless, the problem of mixing apples and oranges disap-
pears.

e Since z-scores rescale everything to standard deviation units, the problem of different
scales per variable disappears and assessment of extremeness can be based on a function
of the z-scores, namely, x2. (See Section 3.4.)

e Rescaling scores by the inverse of the standard deviations means that the more vari-
able factors are given less weight thereby incorporating information provided by the
magnitude of the standard deviation.

To better appreciate the weighted distance, it is useful determine the locus of all points
having the same weighted distance from the centroid. Begin by squaring Equation 6:

P fiz)? N (z — py)°
w T 2 2
oz g,

and then dividing both sides by d2 to get:

_ (‘T B ILLI)2 (.T B :uy)Q (7)
o2’ o2d2

Equation 7 is just the equation of an ellipse centered at the centroid i = [ps, ity]" and having
axes of length o0,d,, and o,d,,. Since Equation 7 is equivalent to Equation 5, the iso-weighted-
distance contours defined by Equation 7 tell us that points located along the same ellipse can

7
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be considered to have the same statistical “closeness” or “extremeness” from the centroid
even though their Euclidean distances can differ. Indeed, the ellipses can be interpreted as
probability density contours. (See Section 3.4.)

3.2.3 Alternate Computational Forms

As was the case with univariate data, it is useful to work with squared distances and to seek
alternate computational forms. Squaring Equations 5 and 6 yields:

a2 =22+ zi (8)
or, equivalently:
R )2
lop o,

Equation 9 can be “vectorized” as follows:

e Form the column vector
e Form the covariance matrix

e Form the inverse of the covariance matrix 3. Since, in this special case, ¥ is diagonal:

-1 1/0'923 0
> _[ 0 1/o}

e Lastly, set

& = [(x — i), (y — 1)) [ 1/0072” 1/005 1 l 5:52 ] (10)

When the vector and matrix multiplications in Equation 10 are carried out, the result is
Equation 9. Note that Equation 10, and thereby, Equation 9, can be written compactly as:

dy, = [p— [ 7P [i) (11)

which has structural and content affinities with Equation 2.

3.2.4 Generalizing Beyond Two (Uncorrelated) Variables

The form of Equations 8, 9 and 10 reveals a pattern that may be used to include a third
variable, z, and more assuming all variables are uncorrelated. But for adding variables
beyond z, the current notation quickly becomes unwieldly. Two enhancements to enable
generalization beyond two variables and a more compact notation are:

e First, replace z, y, and presumably z and beyond, with z1, x2, 23, etc., and z,, 2,
with 21, 29, etc. From here on this is how variables will be denoted.

8
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e Second, capitalize on the new notation for variables and replace the string of similar-
patterned terms using an index and a summations sign.

Thus:
R ) (12)

or, equivalently:

iy =y o p (13

If all the covariances among the variables are zero, then by the same procedure used to
derive Equation 7, Equations 12 and 13 can be put in the standard form of ellipsoids and
hyper-ellipsoids depending on the number of variables. And, as was the case with Equation 7,
if d,, is set to a constant, the resulting (hyper-)ellipsoid is an iso-weighted-distance shell and
can be interpreted as a probability density shell.

Since Equation 12 is a sum of z-scores, one for each variable, it is also the equation of a
x? probability distribution which becomes the key to evaluating the rarity of the weighted-
distances.

By the same procedure leading to rewriting Equation 9 as Equation 11, Equation 13 can
also be rewritten as Equation 9 with no change in notation needed! The vectors and matrices
get larger as the number of variables grows, but the basic pattern is the same.

So far, all variables have been assumed uncorrelated and all covariances assumed zero.
This is highly unrealistic with real data. This limitation is eliminated by the distance metric
developed by Mahalanobis (1936). Further, his distance metric applies to the weighted
distance between any two multivariate points, not just between a point and the centroid.

3.3 Concept & Definition of Mahalanobis Distance

The basic idea behind Mahalanobis distance is shown in Figure 1. Assume the ellipse rep-
resents the outline of a bivariate-normal scatterplot. Although all points on the circle are
equidistant from the center, a point on the circle on the short axis is statistically more “de-
viant” (in terms of its probability of being that far-out in the periphery of the scatterplot)
than a point on the circle along the long axis (which being close to the center of the scat-
terplot relative to the long-axis has a high-probability of occurrence). Statistically speaking,
all the points on an ellipse are argued to be equiprobable and thus, statistically equidistant
from the center of the ellipse. In fact, some (such as Johnson & Wichern, 2007) just use
the term “statistical distance” or “standard distance” (e.g., Flury, 1997) or even “elliptical
distance.” A set of nested concentric ellipses, each corresponding to one probability value,
are referred to as probability density ellipses.

In general, if # = [z1,29,...,7,)7 and §¥ = [y1,¥2,...,y,|" are multivariate data-points
(or observations or records or cases) drawn from a set of p variables with a p x p covariance
matrix S, then the Mahalanobis distance d,,, between them is defined as:

(T —§) = (T — DTS UT~ ) (14)

In spite of the straight-forward definition, a few points need to be kept in mind:

9
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Euclidian vs. Mahalanobis Distance

y values
0
!

X values

Figure 1: Euclidian vs. Mahalanobis Distance

Although, the motivation behind the definition appeals to ellipses and multivariate
normal distributions, the definition is silent about the underlying p distributions from
which the data vectors are drawn.

There is no standard notation for Mahalanobis distance in the literature.

Many authors prefer to work with the square of the Mahalanobis distance. There are
some benefits to the use of this so-called “generalized distance”:

— The resulting equation, if written out, has the appearance of the canonical form
of the equation for an ellipse.
— The squared value, for multivariate-normal data, is intimately related to the y?

distribution.

One drawback is that a few authors appear to erroneously refer to the squared-value
as the Mahalanobis distance.

The usefulness of Equation 14 depends on the distributions of the p variables and also
the specifics of the reference or comparison vector ¥.

3.4 Multivariate Normal Distributions & Ellipses

In particular, if the underlying distribution of the p random variables is exactly multivariate
normal with with a p x p covariance matrix ¥ and if ¥ = [y1,va,...,%,)7 has the constant
value ji = [y, f12, - .., )" formed from the population means of the p random variables then
the Mahalanobis distance d,, of a particular multivariate data-point Z from fi is:

10
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A (%) = \J (& = {)TS (7 - i) (15)

Setting d,, to a constant ¢ defines a multidimensional ellipsoid with centroid at ji. The

shell of the ellipsoid is a probability density contour, and the probability associated with

each ¢? (not c) shell follows a x? distribution with p degrees of freedom. As Johnson and
Wichern (2007, p. 155, Eq. 4-8) state: “The solid ellipsoid of # values satisfying

(@ — @) ST = i) < x(a) (16)

has probability 1 — a.” (emphasis added and some notation changed)

3.5 Strengths of d,, for Outlier Detection: Usage Notes

Mahalanobis distance is often used to determine multivariate outliers due to its several
strengths:

e [t features numerical and graphical thresholds to determine outliers.

e [t is flexible and permits the use of robust and independent choices for the centroid
and covariance matrix values.

e [t is amenable to techniques for mitigating the influence of outliers during the search
for the outliers.

e [t can detect unusual patterns within a multivariate observation.

e [t provides an alternative to regression techniques when there is no obvious value to
be predicted.

Thresholds for outliers. The theory embodied by Equation 15 is compelling and
the relationship to x? facilitates evaluation of “candidate” outliers. For example, for two
variables (p = 2), and a = .05, x? = 5.99. Equation 16 then means that only 5% of squared
Mahalanobis distances are expected to be greater than 5.99. Graphically, only 5% of points
should lie outside of an ellipse whose contour is defined by setting:

dp =c=V2=/x2=+5.99 =245

Thus, the square root of the critical value of x? can serve as a threshold for determining
outliers.

Fexibility. Another reason Mahalanobis distance is useful for outlier detection is its flex-
ibility. The defining equation (Eq. 14) deliberately used S (an empirical or sample quantity)
for the covariance matrix rather than ¥ (a theoretical or population quantity). Obviously,
in empirical work, a data-based estimator of the centroid must be used, but instead of using
the means of the p variables, a researcher can readily use a centroid based on medians or
trimmed means.

Mitigating outlier effects while searching for outliers. The problem of determining
outliers from a dataset containing outliers is well illustrated by Roussseuw and Leroy (1987).
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Within the context of classical multiple regression, they point out that outliers cannot always
be discovered by looking at least squares residuals: Some outliers are leverage points which
greatly distort the regression lines or surfaces so that they (the leverage-point outliers) yield
relatively small least squares and some “good” points yield large least squares. Roousseuw

and Leroy (p. 8) state that “...there are many multivariate data sets ...where the outliers
remain invisible even through a careful analysis of the LS residuals.” (LS means least
squares. )

Within the context of Mahalanobis distance (where least squares is not germane), there
is a similar problem of the distortion effects of outliers on the basic technique.

Using medians or trimmed means is one way of mitigating the effects of outliers on the
referent data-set. The problem here is that the means-based centroid and the covariance
matrix of a data-set are themselves distorted by outliers. But using a, say, median-based
centroid does not solve the problem of a distorted covariance matrix.

To mitigate the effects of outliers on both the centroid and the covariance matrix, one
technique is to remove the point (data vector) whose Mahalanobis distance is being deter-
mined and compute the centroid and covariance matrix from the remaining n — 1 points of
the n-point full data set. This procedure would be done for each of the n points in turn. If
the dataset is large, this procedure requires computing a centroid and covariance matrix—
and its inverse—for each of the n data vectors. But if the dataset is very large, then the
effect of an outlier on a large mass could be negligible and the extra computational load
avoided.

Detecting an Observation Having an Unusual Pattern. Since a multivariate
record or observation is a set of numbers, the numbers can form patterns, some of which
are typical and some of which are less typical. For example, in a three-variable set, the first
two numbers might tend to be high and nearly equal but the third number might tend to be
very low. If this is the typical pattern, then an observation in which all three number were
roughly equal might be anomalous.

The numbers can be plotted in various ways which make the patterns stand out visually.
For example, Figure 17 shows one way to plot a set of three numbers, but it would have
been possible to plot the linked numbers as vertical bars or star charts. The linked lines were
chosen to emphasize that a typical pattern in that dataset has all three numbers roughly
equal but that, at the same time, the relative height of the pattern is not generally a factor
in typicality.?

Use Where Regression Not Obvious. As the above discussion of Mahalanobis dis-
tance shows, d,, can be directly used to detect unusual patterns in observations. Regression
techniques can also be used to detect outliers (e.g., Rousseeuw & Leroy, 1987). But in the
case of certain types of data, such as traffic-volume per lane of a multi-lane highway, what is
to be the dependent variable or variables? It is possible to create some variable (e.g., total
highway volume or total volume in one direction) to be a function or composite of the inde-
pendent variables (e.g., the individual lane volumes), but there has to be a cogent reason for
the new composite variable and a compelling argument made for why it can indicate useful
outliers. For the data analyzed in Section 4, it is the case that total same-direction volume

2“Generally” is used here to signal caution. For the dataset underlying Figure 17, an observation of three
numbers all zero or near zero, would indeed be anomalous.
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as such, for example, is not directly linked to anomalies since low total volume is typical in
late-night hours and high lane-volumes during a rush hour can still show unusual patterns.
Perhaps some composite using ratios of lane volumes or lane-volume differences might be
devised as a good indicator composite, but it is not obvious what it would be. Mahalanobis
distance avoids such difficulties.

3.6 Weakness of d,, with Non-Multivariate Normal Distributions

If the underlying distribution of one or more of the p variables is not normal, the quadratic
form in Equation 14 still yields an ellipse when set to a constant. However, the interpre-
tation of the elliptical shells as probability density contours, and the ellipsoid volumes as
representing probabilities following a Xi distribution is no longer justified.

When the deviation from a multivariate normal distribution is slight, it might be argued
that the Xf) probabilities are, at least, suggestive and that the Mahalanobis approach is
reasonably robust. But, terms like “slight” and “reasonable” are imprecise.

Moreover, some distributions, such as those which are multimodal, are especially prob-
lematic. Figure 2 shows a classic illustration of one problem in outlier identification with
multivariate data: Namely, the problem that a mid-valued observation among polarized data
can be an outlier.

Mid—Value Outlier — Bimodal Distributions
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Figure 2: Two Bimodal Variables: Outlier in Middle

As a literally extreme example, if the mid-valued outlier in Figure 2 has the same vector-
value as the centroid, i.e., if

7= (17)
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where ;:j is the estimator of ;i given by the means of each of the p variables, then the
Mahalanobis distance from the centroid is zero. Further discussion of this, and similar, cases
is deferred until later.

3.7 Non-Normal Distributions: Statistical Approaches

There are so many ways that individual and compound distributions can deviate from nor-
mality that there is no single technique to determine when conclusions based on normality
assumptions break down. Several techniques for assessing the assumption of normality are
presented in, for example, Barnett and Lewis (1994) and Johnson and Wichern (2007). John-
son and Wichern (p. 177), in particular, note that since “all linear combinations of normal
variables are normal and the contours of the multivariate normal density are ellipsoids,” it is
reasonable to ask if (1) the marginal distributions of the data appear to be normal including
the distributions of a few linear combinations of variables, and (2) if the scatter plots of pairs
of observations give an elliptical appearance.

Techniques include using histograms, scatter-plot matrices, normal Q-Q plots, correla-
tions coefficient tests, and chi-square plots. There is a predominance of graphical procedures,
accompanying visual inspections, and judgment calls by an analyst.

Such procedures are very enlightening, but not readily amenable to automation and thus
cumbersome when there are large numbers of cases and variables. The workload is especially
compounded when there are many separate analyses to be performed, for example, when
analyzing data from many multi-lane traffic sensor locations.

In situations involving large numbers of cases and large numbers of analyses, some de-
viations from normality are to be expected, and it is reasonable to ask how seriously the
deviations should be taken.

3.8 Non-Normal Distributions: Percentile Approach

Let us not lose sight of what we are after: We are after multivariate outliers, but these
can, to again use Rousseeuw and Leroy’s (1987, p. 8) words, “remain invisible” when there
are more than two variables. Our own Figure 2, although bivariate and therefore subject
to visual scrutiny, is suggestive and illustrative of the greater-than-two multivariate case.
The conclusion is that, in general, visual inspection of plotted data is not always a viable
approach to outlier detection.

One non-visual solution is to use a statistical technique and define and outlier as being in
the outer 1% or 5% of the assumed distribution function. But, since statistical assumptions
are often not met, especially when there are outliers present, the indicated thresholds or
cut-off values will not declare exactly 1% or 5% of the data as outliers.

But if visual inspection is barred to us, and we must resort to using percentages to define
outliers, why use techniques which can yield actual percentages other than the ones we use
to define an outlier?

The approach to outlier definition we advocate here is to declare exactly the outer (one-
or two-tailed as appropriate) 1% or 5% or some other 2% of the empirical values of some
summary per-observation index, such a Mahalanobis distance, as outliers. This finesses the
problems of assumption failure and robustness. The researcher can then modify the criterion
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based on properties of the distribution of the empirical index values. For example, does the
histogram of the empirical values show any groupings or gaps indicating a better cut-off for
declaring outliers?
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4 VEHICULAR TRAFFIC EXAMPLE

Vehicular traffic, whether routine or unusual, is in and of itself an interesting dynamic social
system with social and economic consequences beyond just highways. As such, the more we
understand traffic flows, the better future highways can be designed for greater safety and
fuel economy.

The problem of understanding vehicular traffic patterns on a major highway also affords
a nice opportunity to assess the advantages, limitations, and subtleties of using Mahalanobis
distances for analyzing social dynamics.

The specific data featured here consists of hourly traffic counts at a particular road
location, so the Mahalanobis distance technique will focus on identifying unusual patterns,
i.e., outliers, in the hourly traffic counts. But many events of interest, such as accidents or
construction disruptions, can span several hours, so techniques to identify outlier clusters
which exceed the span of an hour will also be explored.

4.1 Specific Roadway & Traffic Dataset

Traffic data is from a sensor station located on Interstate 95 (I-95) between Jerome Avenue
and Webster Avenue in Bronx County in New York City (See Figure 3). The sensor station
is 2.66 miles from where I-95 crosses the border from New Jersey on the George Washington
Bridge into New York City’s Manhattan Island. Between New Jersey and The Bronx, I-
95 passes briefly through a relatively non-commercial section of Manhattan far from its
commercial heart. This stretch of I-95, also known as the Cross Bronx Expressway, despite
its designated North and South lanes, actually runs East and West. It is a major highway,
passing through America’s largest city and linking two dense population areas northeast and
southwest of New York City. Further, the highway and sensor site are surrounded by several
significant highways and surface streets. Contrary to expectations for many commercial
centers, the site does not experience a pronounced imbalance (although there is some) in
traffic in different directions corresponding to a net influx of morning commuters and a net
exodus of evening commuters.

The data consists of hourly traffic counts for each of six lanes (three northbound and
three southbound) throughout the Year 2008.

4.1.1 Data Source & Source Data

All traffic data were downloaded from the website of the New York State Department of
Transportation (New York State DOT, 2011) which specifically states:

“The data is intended for a user to perform their own analyses.”

The NYSDOT website has descriptions of the data collection procedures and the contents
and formats of the reference and data files.

e File NYHeader_easier.csv contains sensor site information. Information for the I-95
site in The Bronx, which has the unique road segment identifier (RC_ID) of 010003, is
found in row 4,592.

e File vol 2008.csv, which is 31 MB, contains data from many locations.
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Figure 3: Map of Interstate 95 in The Bronx, New York City

4.1.2 Working Data File Preparation

Since file vol_2008.csv contains data from many locations, a new file was created from
only those rows containing the value 10003 in the column labeled RC_ID. This intermedi-
ate file retained the format of the NYSDOT source file which has five columns: RC_ID,
Date.Time, Direction, Lane, and Count. This format generally results in six rows with the
same Date.Time value: one row for each combination of two directions and three lanes per
direction. However, sometimes there is missing data in one direction or the other, so some-
times there are only three or no rows for a given Date.Hour. With 366 days and 24 hours
per day, there were 8,784 hours in 2008. With 6 rows for each Date.Hour, there should be
52,704 rows of data. The file actually has 48,879 data rows indicating that there are 3,825
traffic counts missing.

After dropping the RC_ID column (since all entries were 10003), a more “multivariate-
analytic”-oriented working data file was then created with each row containing a unique
Date.Time value and six columns (labeled S1, S2, S3, N3, N2, N1) containing hourly traffic
counts for each of the six traffic lanes or NA if volume data was missing for a lane.

4.2 Individual-Lane Traffic Volume Statistics

There were 8,784 hours in 2008 (366 days x 24 hours per day). However, there were 502
hourly traffic volume counts missing per each southbound lane and 773 per each northbound
lane. This still leaves large n’s per lane for the volume counts: 8,282 southbound and 8,011

northbound.

4.2.1 Basic per-Lane Descriptive Statistics

Table 1 and Figure 4 show the basic traffic hourly volume statistics per lane for the year
2008. For at least one hour, there was no volume on five lanes. Only the middle northbound
lane (N2) maintained some traffic on an hourly basis, but the small number of vehicles, 20,
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Table 1: Basic Volume Statistics per Lane

| | S1 S2 S3] N3 N2 NI|
Minimum 0 0 0 0 20 0
Mean | 1288 1216 1048 | 1175 1223 1185
Median | 1473 1305 1197 | 1318 1317 1352
Maximum | 2069 1910 1829 | 2038 1843 1781

suggests that no traffic passed by the sensor for the better part of that low-volume hour. In
fact, low volume is rare in both north and south middle lanes as shown by the outliers in
Figure 4. There are no outliers on the high end.

Full Year 1-95 Hourly Traffic Volume: S.1.2.3 N.3.2.1
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—_ —_
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Hourly Traffic Volume
1000
1

500
1

Figure 4: Hourly Traffic: All Six Lanes

4.2.2 Evaluating Normality Assumptions

The relatively high position of the medians on all six boxplots coupled with the relatively
shorter upper whiskers suggests that the volume distributions are skewed. And, since one
purpose of this analysis is to evaluate the usefulness of Mahalanobis distance under non-
normal distributions, it is incumbent to check the empirical distributions more closely. His-
tograms and normal Quantile-Quantile plots are an effective way to check for normality.
The traffic-volume histograms in Figure 5 clearly show that traffic is asymmetric with
high volume more common than low volume. Not only is the distribution asymmetric, but
Figure 5 reveals a bi-modality in each histogram. The relative height of the lessor mode,
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Figure 5: Individual Lane-Volume Histograms

toward the low-volume end, is weak for both (North and South) outer lanes, moderately
stronger for both middle lanes, and clearly defined for both left-most lanes.

The conclusion of non-normality due to asymmetric bimodal distributions shown in the
histograms is further supported by the markedly non-linear Q-Q plots shown in Figure 6.
This means that the x? probabilities and ellipses associated with the (squared) Mahalanobis
distance values discussed below are, at best, suggestive.
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Figure 6: Individual Lane-Volume Normal Q-Q Plots. If traffic volume were normally dis-
tributed, the Q-Q plots would follow the straight lines. The “X”’s on the lines mark the
volume means. The position of the “X”’s high in the plots indicates skewness.
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4.2.3 Sample Time Series: One Week Southbound

Summary statistics do not capture patterns revealed in time series. Figure 7 shows three
time series for traffic volumes on the three southbound lanes for the week (7 days, 168 hours)
beginning midnight on 30 April 2008 and ending midnight 4 May 2008. The volume for Lane
2 is stacked on the volume for Lane 1. Volume for Lane 3 is stacked on the other two so the
contour for Lane 3 also represents the total southbound volume per hour.

The most notable revelation of Figure 7 is the marked diurnal variation in traffic volume
which is due to heavy traffic during the daytime and light traffic after midnight and before
dawn. The “notched” structure within the peaks can be attributed to day-time subpeaks
during morning and evening rush hours with still heavy but lessor traffic midday. Also notice
that the undulation is not sinusoidal but is asymmetric: The daytime highs are broad (with
subpeaks and notches) whereas the pre-dawn valleys are short and “V”-shaped.

Traffic Volume per Hour: 3 South Lanes (Stacked)
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| |

Volume: Southbound Traffic
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1 Week: 168 Hours (Range 4—27-08 to 5—4-08)

Figure 7: Hourly volume, southbound lanes, week of 4-27-2008 to 5-04-2008. Volume for
middle lane stacked onto volume for rightmost lane. volume for leftmost lane further stacked
onto that of middle lane.
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4.3 Multiple Lane Relationships: Fractional Volumes

So far, the six traffic lanes have been treated as if their volumes were independent. But
traffic on one lane is not totally unrelated to traffic on the other two lanes in the same
direction. For example, an accident in one lane can affect traffic in the other two same-
direction lanes. An example of this is in Figure 7 where, shortly after midnight on April 30,
2008, the depressed volume for several hours in the two rightmost southbound lanes, and
the corresponding increased volume on the leftmost lane, suggests that an accident occurred.
There is more discussion of this conjectured accident later. It is also possible that an accident
in one direction can affect traffic in the opposite direction, for example, by inducing rubber-
necking. And of course, severe weather can depress traffic across all lanes and directions
simultaneously.

One way to assess multiple lane relationships is to look at lane traffic as a percent of
total multi-lane volume. Another way is to look at the correlations and scatterplots.

4.3.1 Lane Volume as a Percentage of Multi-Lane Volume

Raw traffic counts do not readily convey relative traffic patterns across lanes. A priori, one
might expect each southbound and each northbound lane to carry 1/3rd of the volume in
each direction. Table 2 presents basic statistics for each lane’s volume as a percent of the
total volume in the same direction. The mean and median percent lane volumes are very
roughly 1/3rd, but there is a wide range. Volume in both the south and north middle lanes
(S2 & N2) never exceeded 2/3rd’s of the total direction volume, whereas on at least two
(hourly) occasions, the volume on the two other southbound lanes was almost 100%.

Table 2: Lane Volume as Percent of Total Volume in One Direction

| | S1 S2 S3]] N3 N2 NI1|

Minimum 0 0 0 0 6.00 0
Mean | 35.95 36.10 27.95 | 31.23 35.84 32.92
Median | 36.52 33.52 29.80 || 33.15 33.52 32.70
Maximum | 99.90 65.10 99.44 || 53.07 61.70 90.30

The wide range in percent lane-volumes is most easily seen in the boxplots in Figure 8.
Figure 8 also shows that the interquartile ranges are relatively tight as are the whisker
extents. One consequence of the relative tightness is that there are a large number of outliers.
The pattern of tight ranges with many outliers in Figure 8 stands in sharp contrast to the
pattern of broad ranges and few outliers among the (raw) lane volumes shown in Figure 4.3

3Since the two figures are drawn from the same data, why is the information conveyed so different? The
reason is that raw and percent volumes are not mere transforms of each other. Besides the difference in ranges
and numbers of outliers between Tables 1 and 2 and Figures 4 and 8, there is a more fundamental difference
between volume and percent-volume statistics. Volumes for all lanes can have any values whatsoever (the
discussion at the start of this section notwithstanding). However, since percentages for traffic in the same
direction must total 100%, there are only two degrees of freedom in determining the percentages for three
same-direction lanes. That is, percentages capture a relationship among the lanes and in so doing consume
one degree of freedom. This loss of a degree of freedom becomes important in selecting a variance-covariance
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Figure 8: Hourly Traffic: Fractional volume carried by lanes in same direction

4.3.2 Evaluating Normality Assumptions: Fractional Volumes

Since the boxplots in Figures 4 and 8 are so different, and the fact that the same-direction
fractional lane-volumes entail one degree of freedom fewer that raw lane-volumes, we would
expect that fractional-volume histograms are different from the raw-volume histograms
shown in Figure 5. Indeed, the fractional-volume histograms in Figure 9 are very differ-
ent. The histograms are clearly unimodal in contrast to the bimodal histograms in Figure 5.
But the very tall single-mode peaks suggest a leptokurtic distribution different from that
associated with a normal distribution. Also, four of the six histograms of Figure 9 show a
skewed tail. These two factors suggest checking for non-normality using normal Q-Q plots.

As were the normal Q-Q plots in Figure 6 for lane-volume distributions, the Q-Q plots in
Figure 10 are markedly non-linear and highly contorted indicating that the distribution of the
fractional lane volumes are clearly not normally distributed. This means that the x? prob-
abilities and ellipses for fractional lane-volumes associated with the (squared) Mahalanobis
distance values discussed below are, at best, suggestive.

matrix for determining the Mahalanobis distances of the percent volumes.
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Figure 10: Normal Q-Q plots of fractional volume carried by lanes in same direction. If
fractional volumes were normally distributed, the Q-Q plots would follow the straight lines.
The “X”’s on the lines mark the fractional-volume means.
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4.3.3 Sample Time Series: One Week Southbound Percentages

As an example of the value of looking at percent or fractional volume, Figure 11 shows the
hourly fractional volumes for the same one week’s traffic shown in Figure 7. The multi-hour
anomaly shortly after midnight on April 30, 2008 noted earlier in the discussion of Figure 7
stands out more sharply in Figure 11: For several hours, traffic all but disappears from
the two rightmost southbound lanes and the left lane carries almost 100% of the volume.
As Figure 7 shows, raw volume was generally habitually low after midnight. By using
percentages, the change in pattern stands out.

Traffic Fraction per Hour: 3 South Lanes

0.8 1.0
|

0.6

Fraction Southbound Traffic
0.4
|

0.2

0.0

I T I
2850 2900 2950

1 Week: 168 Hours (Range 4-27-08 to 5-4-08)

Figure 11: Hourly fractional-volume, southbound lanes, week of 4-27-2008 to 5-04-2008.
Fraction for middle lane stacked onto fraction for rightmost lane. Fraction for leftmost lane
further stacked onto that of middle lane

One reason for looking at percent-volumes was the expectation that percentages would
mitigate, if not eliminate, the diurnal patterns visible in Figure 7: Although rush-hour
volume is high and pre-dawn traffic is low, the relative proportion of traffic per lane “should”
remain a constant at about 33.3%. Contrary to expectation, Figure 11 shows that the diurnal
variation evident in Figure 7 still persists even when the data is plotted as percentages. For
raw volume (Figure 7), diurnal variation is easy to explain in terms of high daytime traffic,
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especially at rush hours, and fewer drivers out in pre-dawn hours. But, lane variation in
percentage traffic is a mystery. Perhaps it is easier to switch lanes late at night while traffic
volume is sparse whereas lane-switching is somewhat constrained during bumper-to-bumper
rush-hour traffic? If so, this further supports the contention that same-direction lane volumes
are not independent.

Figure 12 shows the same data as in Figure 11 but the lane percentages are in their own
bands to more easily see the diurnal variation per band.

Traffic Fraction per Hour: 3 South Lanes — Unstacked

Fraction Southbound Traffic
5
|

0

2850 2900 2950

1 Week: 168 Hours (Range 4-27-08 to 5—-4—-08)

Figure 12: Hourly fractional-volume bands, southbound lanes, week of 4-27-2008 to 5-04-
2008.

4.3.4 North & South Percentages: Possible Rubbernecking?

Percentage or fractional volume is also useful for comparing traffic on both directions. On
some roads leading into and out of a small city with few alternates routes, morning inbound
traffic can exceed morning outbound traffic with a reverse pattern in the evening. However,
as the map in Figure 3 shows, [-95 is surrounded by alternate routes and is in a major city,
so the northbound/southbound ratio fluctuations are complex as is seen in Figure 13.
Figure 13 spans the same one week shown in Figures 7 and 11 which only showed south-
bound traffic but which revealed a possible accident on April 30, 2008. What is interesting
is that, on a percentage basis, southbound traffic increased relative to northbound traffic
during the hours of the (putative) accident. This is shown by the spike in the upper curve of
Figure 13. But what is more interesting is the very large spike in the traffic carried by the
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Figure 13: Hourly traffic: Below black line: Fraction carried by all southbound lanes. Above
black line: Fraction carried by northbound lanes. Dashed line: Fraction leftmost southbound
lane carried of all southbound traffic.

leftmost southbound lane as a fraction of the total southbound volume. We have seen this
spike before in Figures 7 and 11, but now it can be seen to be coincident with the north-south
spike of April 30.

One possible explanation for the coincidence of the two spikes is that northbound absolute
and relative volume decreased as a consequence of rubbernecking: Northbound drivers slowed
to observe the accident scene. The putative accident of April 30 can be verified by accident
records. The rubber-necking conjecture cannot be verified with this dataset, but the type
of spike pattern observed here could be checked using datasets that include traffic speeds as
well as volume.

If other data support the rubbernecking conjecture, then we would have a method for
indirectly detecting correlated activity. “Correlated” in the sense that there is a direct
contemporaneous linkage between two events.

Direct contemporaneous linkages, in general, are easily viewed in scatter plots.
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4.4 Multiple Lane Relationships: Scatterplots

In preparation for the Mahalanobis distance analysis, and since the individual lane-volumes
are skewed and exhibit a bimodal distribution with a minor mode about 1/4 to 1/3rd the
height of the major mode, it is useful to look at the underlying bi-variate distributions as
scatterplots.

4.4.1 Multi-Lane Volume Scatterplots

Figure 14 pairs the total northbound hourly volumes with the corresponding total south-
bound hourly volumes. Paired north and south data is missing for 1,185 of the 8,784 hours
in 2008 leaving n = 7,599 hours of complete data in both directions. (Southbound data
is missing for 502 hours, northbound for 773 hours, and both southbound and northbound
simultaneously missing such that fewer than 502 + 773 hours are missing.) The “top heavy”
skew of daytime volume is evidenced by the large dense sub-region of Figure 14. The exis-
tence of a minor mode of low-volume nighttime traffic is a also apparent by a slight thinning
between the two ends of the deformed ellipse or between the large head and small tail of the
pattern.

Northbound v. Southbound Traffic

2000 3000 4000 5000
| | | |

Hourly Northbound Volume

1000

0
|

0 1000 2000 3000 4000 5000

Hourly Southbound Volume

Figure 14: Scattterplot of total northbound vs. total southbound volume. Full year 2008.
n = 7,599 data points.
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Figure 15 shows the volumes for the paired-lane components whose totals appear in
Figure 14. The overall lane-to-lane volume correlations and non-unimodal distributions
that are evident in Figure 14 are also evident in the components of Figure 15 but not as
prominently and with their own individual peculiarities. Note that the ranges are not always
equal among the plots.
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Figure 15: Scatterplots of traffic volume in same-direction lane-pairs. Full year 2008.

4.4.2 Multi-Lane Fractional-Volume Scatterplots

Fractional-volume multi-lane patterns are different from the analogous raw-volume patterns
due to the loss of a degree-of-freedom forced by the constraint that the relevant total frac-
tional volume must be unity. Most notably, since raw volume is (usually) unconstrained, high
volume in one lane is normally accompanied by high volume in same-direction lanes. How-
ever, since percentages are linked, a percentage increase in one area is generally accompanied
by a percentage decrease in another area.

The inverse relationship is 100% when comparing traffic in one direction as a percent or
fraction of the total volume in both directions. Since fractional northbound volume must
be 1 minus the fractional southbound volume, there is only one degree of freedom and the
correlation between the the fractional volumes is exactly r = —1. A scatterplot analogous to
Figure 14 (fractional southbound volume versus fractional northbound volume) would show
all points along a straight line with negative slope.

Since there are two degrees of freedom for the fractional volumes among each set of three
same-direction lanes, the scatterplots in Figure 16 are more interesting. All clouds show
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a clear negative slope reflecting the usual inverse relationship that an increase in fractional
volume in one lane is accompanied by a decrease in the other two lanes. A priori, all fractional
volumes would be about 1/3, so all centroids would have coordinates (.33, .33). Indeed, the
clouds are generally located toward the lower left quadrants of the plots since all axes run
from zero to 1 for ease of comparison.

What is most striking is the very poor elliptical structure of the clouds. The less the
cloud structure is described by confocal elliptical shells, the less accurately the (squared)-
Mahalanobis distance of the points follows a x? distribution. We turn now to the Mahalanobis
analysis.
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Figure 16: Lane-lane fractional same-direction volume in same-direction lane-pairs. Full year
2008. All ranges are 0 to 1.
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5 MAHALANOBIS DISTANCE (d,,) RESULTS

Mahalanobis distances are a nice way to reduce the dimensionality of multivariate data sets.
Since a multivariate data set can be conceived as points in a multivariate space or scatterplot,
the several elements of one multivariate data point can be associated with the data-point’s
(Mahalanobis) distance from the centroid of the scatterplot.

We report here the Mahalanobis distance for each triplet of the per-lane hourly-volumes
in each direction. Since the raw volumes are unconstrained, there are three degrees of
freedom with each volume triplet, and three degrees of freedom for comparing the (squared)-
Mahalanobis distances with the x? distribution.

We also report the Mahalanobis distance for the same data transformed into fractional
traffic per lane per direction since the previous section showed that the raw volumes and frac-
tional volumes are not perfectly correlated and hence convey different information. However,
since each fractional-volume triplet must sum to one, there are only two degrees of freedom
for each fractional-volume triplet, and thus only two degrees of freedom for comparing these
(squared)-Mahalanobis distances with the x? distribution.

Dimensionality reduction is not enough: We are searching for unusual hourly patterns
and that can be done in several ways besides using 2.

5.1 Detecting Unusual Patterns Using d,,

The mean percent southbound volume carried by each of the three southbound lanes was
36%, 36%, and 28% respectively (See Table 2). When actual lane-volumes per hour are
plotted with lines between adjacent lane-volumes, the resulting patterns are most often
similar to the sample patterns shown in Figure 17. The several lines are progressively three
hours apart on January 1, 2008. They are intended to convey, in a static figure, that hourly
lane-volumes vary systematically throughout the day.

When the linked lines are shown as a movie with one hour’s three volumes and linked
lines per frame, the resulting impression is that of a bird in flight rhythmically ascending
and descending with wings flapping as in Figure 17 most of the time. The rhythmically
ascending and descending of the linked lines corresponds to the normal diurnal traffic ebbs
and flows depicted in Figure 7.

However, every now and then, the wings assume an unusual attitude defined by a rare
combinations of volumes, say, 1000, 1500, and 5 vehicles per hour or a rare percentage
pattern, say, 90%, 9%, and 1%. Both of these patterns would suggest an accident in the
third lane.

These examples show how the multivariate data points can be conceived of as geometric
figures or patterns. Mahalanobis distance can also serve as a means for determining typicality
and unusualness among sets of geometric figures.
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Figure 17: Sample linked 3-lane hourly volumes. Linked hourly samples are progressively
three hours apart on January 1, 2008. The varying heights reflects the change in traffic
throughout the night. If shown as a movie, the hourly changes resemble a bird in flight.
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5.2 Full Year 2008 Fractional & Raw Volume d,,

Typical and unusual Mahalanobis distances for hourly volumes and fractional-volumes per
traffic direction are captured in Table 3 and Figures 18 and 19.

Table 3 lists basic Mahalanobis distance statistics: Minimums, means, medians, and
maximums. No minimum d,, is exactly zero since such no multivariate data point was exactly
equal to its respective centroid. That the medians are smaller than the means suggests a
high-end skew. For both directions, the maximum d,, for fractional volume exceeds that for
raw volume. This is peculiar and suggest looking at the histograms—which we will do after
looking at the entire year’s d,, profiles.

Table 3: Mahalanobis-Distance Volume and Fractional-Volume Statistics per Traffic Direc-
tion

| | S123.Vol  S12.Frac || N123.Vol N12.Frac |

Minimum 0.08 0.02 0.07 0.01
Mean 1.54 1.06 1.56 1.13
Median 1.45 0.79 1.46 0.90
Maximum 12.14 14.80 8.80 15.36

One speculation for the difference in the ranges of the Mahalanobis distances when using
volume versus fractional-volume data is that fractional-volume filters out, in some sense,
variation due merely to diurnal variation. For example, consider three 3-lane raw volumes of
(100, 100, 100], [500, 500, 500], and [1000, 1000, 1000] vehicles as might possibly occur during
the transition from pre-dawn to post-dawn traffic. The volume-based d,, values for these
three cases would all be different, whereas the fractional-volume-based d,,, values would all be
the same since in all three cases the fractional volume pattern is [.33, .33, .33]. On a relative
basis, this suggests that there is less variation in the fractional-volume patterns than in the
raw-volume patterns. Since the procedure for Mahalanobis distance, in essence, weighs scores
inversely by their standard deviations, the relatively smaller variation in fractional-volume
patterns might produce larger Mahalanobis distances.

Figures 18 and 19 show Mahalanobis distances for volume and fractional volume on
southbound lanes and northbound lanes, respectively. The gaps in both Figures are due to
missing data. The dark bands suggest that the vast majority of Mahalanobis distances are
less than four. Outliers several times the mean and median values are rare and seem to
be somewhat correlated within a direction. That is, an outlier signaled by a volume data
d,, often is also usually signaled by a fractional-volume d,,. Note that the d,, ranges are
different within and between traffic directions.
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Figure 18: Mahalanobis Distances for Volume and Fractional Volume on Southbound Lanes
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5.3 One Week’s Fractional & Raw Volume d,,

Figures 18 and 19 each contain 1 year’s or 8,784 hour’s results in each sub-plot (where results
can include a gap for missing data). Graphically, this forces a loss of detail due to horizontal
compression: Valleys or troughs are squeezed into oblivion. To enable valleys to be seen,
Figures 20 and 21 limit themselves to the 168 hours of the week of April 27 to May 5,
2008. Previous figures (Figures 11, 12, & 13) have suggested a possible accident affecting
southbound traffic for several hours shortly after midnight on April 30, and now Figure 21
clearly shows a cluster of very high d,, values at those times. The d,,, spike cluster is virtually
shouting that something very anomalous was happening during those hours. A large spike is
also present that same week in the northbound lanes. Overall, the vertical bars (d,, values)
look generally higher on the northbound plots, but that is an artifact due to the difference

in the vertical scales.
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Figure 20: Mahalanobis Distances for Volume and Fractional Volume on Northbound Lanes.

Week of 4-27-08: 168 Hours
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Mahalanobis Distance: VOLUME in South Lanes 1,2 & 3

8 o~
g Week of 4-27-08 —— 5-4—08
2 ]
L
2 _
g T 7
< |
g o IIIII|||||I|||IIII||n.I|IIII.nIlu||I|Il!|||.ulllllunllllmlulu..l I|II||||I||||||,|..||I|II||I|||||||.|n||mIIII||Iulm||u..||||!|||||II|||IIIII||III||||I|
2850 2900 2950
Hour in Year 2008

Mahalanobis Distance: FRACTION in South Lanes 1 & 2
(<5}
8 o~
g - Week of 4-27-08 —— 5-4-08
2 ©
. : |
5 < |
[} —
?‘:Eu o - llllllllll|lllmmml|||I|ullll|lllll!lllullIIIIllllllllllllllllall |llm||ll|m|:u..||| Illllllllllllllllll.ll“l|lllllllllmllll:ullllllll.lull.lllmll-l

2850 2900 2950

Hour in Year 2008

Figure 21: Mahalanobis Distances for Volume and Fractional Volume on Southbound Lanes.
Week of 4-27-08: 168 Hours
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5.4 Fractional-Volume d,,: Correlation With Volume d,,

In the discussion of Figures 18 and 19, we said that outliers several times the mean and
median values are rare and seem to be somewhat correlated within a direction. That is,
an outlier signaled by a volume data d,, often is also signaled by a fractional-volume d,,
although the d,, ranges are different within and between traffic directions. This conclusion
is amply supported in Figure 22: if an hour is an outlier based on the pattern of its three
volume components (in one direction), it is also an outlier based on the pattern in two of its
three fractional-volume components (in the same direction).

Each scatterplot in Figure 22 contains over 8,000 points. Hence, the lower-left corners
contain an overwhelming number of points and the relatively few points outside of that
corner are indeed outliers on a percentage basis. (1% of 8,000 is 80 — and there are fewer
than 80 points discernible outside of the dense cloud in each sub-figure.)
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Figure 22: Mahalanobis Distances for Volume vs. Fractional Volume. Left Panel: North-
bound Traffic. Right Panel: Southbound Traffic. Northbound and Southbound Volume
Ranges are Different

5.5 Fractional-Volume d,,: Correlation Within Directions

We continue the anomaly analysis now using only fractional-volume results within a traffic
direction.

This is justified by three facts: (1) Figure 22 showed that an outlier flagged by volume
data within a direction is also flagged by fractional-volume data. (2) Mahalanobis distance
for hourly volumes within a direction entails three degrees of freedom and requires a three-
dimensional ellipsoid to portray all the volume relationships. And (3), Mahalanobis distance
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for fractional (or percent) hourly volumes within a direction only entails two degrees of
freedom and a two-dimensional scatterplot to portray all the percent-volume relationships.

In particular, we may use any top-row figure in Figure 16 (and its two sets of per-lane
fractional-volumes) as the basis for a full analysis of the three northbound lanes, and likewise
for southbound traffic.

Figure 23 is a scatterplot of Southbound Lane 1 versus Southbound Lane 2 hourly
fractional-volume. These two values contain all the fractional-volume information since the
fractional-volume for Lane 3 must be equal to one minus the sum of the two shown lanes
fractional-volumes. The unit Mahalanobis distance ellipse as well as the ellipses enveloping
95% and 99% of all points (assuming the data is multivariate normal) are superposed on the
scatterplot. The ellipses do not appear to follow the negative diagonal followed by the broad
sweep of the points when the far corners are included. But this is an artifact: The ellipses
do align with the more vertical-leaning dense cloud of containing most of the over 8,000
points in the plot. It is immediately apparent that any hours containing a 0% or near—0%
fractional-volume are outliers.
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Figure 23: Mahalanobis Distances for South Lane 1 and Lane 2 Hourly Fractional-Volume.
Ellipses at d,, = 1,2.45, & 3.03. The latter two encompass 95% and 99% of all points if data
is multivariate normal. The asterisks are the d,, from the week of 27 April, 2008.
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Also superposed on the scatterplot are the 168 points from the week of April 27, 2008.
These are shown in a lighter color and with asterisks to help them stand out. The vast bulk
of that week’s fractional-volumes are within the 95% ellipse. What is most interesting are
the three points in the lower-left corner which indicate zero or near-zero fractional volumes.
Also interesting is the asterisk at roughly (.45,.59) since this point is a middle-point for
Lane 1 and is an outlier only due to its unusual pattern when the other lanes are considered.
A check with Figure 21 shows that these four points, which do not form a tight cluster in
Figure 23, do correspond to the spike-cluster of d,, in the wee hours of April 30. That is, all
four points belong to the same hypothesized multi-hour accident.

Figure 24 is similar to Figure 23 but using the fractional-volume data from the north-
bound three lanes. The asterisks again correspond to the week of 27 April. Outliers for that
week can be compared with the d,, spikes in Figure 20.
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Figure 24: Mahalanobis Distances for North Lane 2 and Lane 3 Hourly Fractional-Volume.
Ellipses at d,,, = 1,2.45, & 3.03. The latter two encompass 95% and 99% of all points if data
is multivariate normal. The asterisks are the d,, from the week of 27 April, 2008.
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5.6 Fractional-Volume d?, and x? Distributions

The size of the ellipses in Figures 23 and 24 are predicated on the assumption that the
underlying distributions of squared-Mahalanobis distances are multivariate normal. If that
is correct, the d?, should follow a y? distribution as discussed earlier. So, rather than test
the empirical and theoretical distributions with quantile-quantile plots, we plotted the x?
distribution on top of the empirical d2, histogram. By ensuring that both distributions
have unit area, goodness-of-fit can be judged visually. Figure 25 shows the superposed
distributions for the d2, of the fractional-volumes on southbound Lanes 1 and 2 and a x?
distribution with two degrees of freedom in the left panel and the counterpart using the raw
volumes on the three southbound lanes and a y? distribution with three degrees of freedom
in the right panel. To aid visualization, the x-axis is clipped at 16 in both panels since the
few cases of a d?, greater than 16 do not have a density-height noticeable beyond a slight
thickening of the axis. Although there are some overshoots and undershoots between the
curves, they appear to cancel each other such that the two curves run fairly on top of each
other for higher values of d2, and x2. Two vertical bars mark the critical outer .05 and .01
values of y2.
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Figure 25: Left panel: Squared Mahalanobis distances of South Lanes 1 and 2 hourly percent-
volumes. Right Panel: d2, of South Lanes 1, 2 and 3 hourly volumes. If d,, is multivariate
normal, then the distribution of d?, should follow a x? of appropriate degrees of freedom.
Curves are superposed y? distributions. Short vertical lines indicate 95% and 99% critical
values assuming critical d?, do equal critical x? values. All areas under histograms and curves
are equal to one to enable comparison, but all ranges truncated at 16 since there is no visible
distinction from the z-axis beyond 16.
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Figure 26 is the counterpart to Figure 25 using the data from the northbound lanes. The
results are very similar to those of Figure 25 and the conclusions are the same: The empirical
and theoretical distributions are very similar especially for values of squared-Mahalanobis
distances and y? above 10. This suggests that, at least for our dataset, squareroots of x?
critical values can serve reasonably well as threshold or cut-off values for declaring d,,, outliers
even when the underlying distributions are not exactly multivariate normal. But just how
well?

MD.Sq(N12P) & Chi.Sq.2 MD.Sq(N123V) & Chi.Sq.3
© _
o —
n
AN —
o
v
o
o
N
o
<
o
0
> >
B o | B ©
< o o
(] 5]
[a} a}
o
—
N o
o
[Te]
— O —
o o
g _ 8 _ ———
| T T | ° T T |
0 5 10 15 0 5 10 15
Squared Mahalanobis Distance Squared Mahalanobis Distance

Figure 26: Left panel: Squared Mahalanobis distances of North Lanes 1 and 2 hourly percent-
volumes. Right Panel: d? of North Lanes 1, 2 and 3 hourly volumes. If d,, is multivariate
normal, then the distribution of d?, should follow a x? of appropriate degrees of freedom.
Curves are superposed y? distributions. Short vertical lines indicate 95% and 99% critical
values assuming critical d2, do equal critical x? values. All areas under histograms and curves
are equal to one to enable comparison, but all ranges truncated at 16 since there is no visible
distinction from the x-axis beyond 16.

5.7 Accuracy of \/x? as an Outlier Threshold

Figures 5, 6, 9, and 10 show that, for our data, the assumption of multivariate normality is
not strictly tenable. However, Figures 23 to 26 suggest that using the theoretical values of
VX2 leads to reasonable conclusions. But how reasonable is “reasonable”? More generally,
how robust are the results to assumption failure? If there are questions about the accuracy
of v/x2 as an outlier threshold, is there a good alternative