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Abstract

Distributed sensor networks scek to enablc adaptive and cognitive behavior in networked
information systems. These networks will exhibit truly ad hoc behavior as they adapt in
situ to maintain or optimize operations under various conditions. Network topologies and
membership may change in response to unpredictable variations in conditions such as
spectrum availability, link conditions, power and energy constraints, latency, and
routing. As a distributed system of devices, networks must support truly dccentralized
information exchange, and fusion.

Undecr the ONR Grant: #N000140711211, George Mason University has been developing
a distributed fusion methodology that is both analytically tractable and can be readily
implemented in a distributed and autonomous manner. The mcthod is grounded in set-
theoretic derivations of information fusion wherc we develop information genealogy to
provide a global view of distributed fusion events for each agent under adverse opcrating
conditions. The technique requires no a priori knowledge of network topology, or
communications patterns and is applicable to both low-level and high-level fusion
processes with disparate sensors comprised of traditional and non-traditional data types.

This report summarizes our research progress for the performance period from Scpt. 2007
to Dee. 2010. Note that GMU received a no-cost extension of the project to June 2011.




1. Introduction

Current US Navy and Department of Defensc (DoD) networking systems are inereasing
in utilization and complexity. An ongoing theme across US military operations is the
time-intensive, labor-intensive, cognitive effort required to maintain situation awareness
for rapid and accuratc decision making. Whether the work domain is nctwork opcrations
management, ISR management, or battle management, the common issue is to find and
fusc and continuously convert disparate data into actionable information.

In nctwork-centric architectures such as FORCEnet in Navy’s operational construct, a
global information grid is proposed to be implemented through thc use of mobilc ad hoe
systems to form sensor networks. These networks will have the capability to collect vast
amounts of disparate and complementary information from geographically dispersed
sourccs throughout the battlespace. In the architecture, there is neither a fixed central
data fusion site nor a central communication facility. Instcad, the data arc cither
processed or fused at each nctwork node and these nodes communicate on a point-to-
point basis. The network topology, which may be unknown, is assumcd to bc changing
dynamically.

Under the current effort, GMU is devcloping innovative mathematically rigorous
mcthods for combining data from multiple sources to providc the best estimate of objccts
and events in the battlespace. Specifically, the key challenge for this research is to
dcvelop autonomous fusion algorithms designed for ad hoc wireless network opcrating
under severe communication constraints. These algorithms must be ablc to scale to large
numbers of entities and to combine many disparatc types of data.

In particular, we have been working four componcnts of research deseribed below:

* A mathematical foundation for ad hoe sensor nctworks with arbitrary connectivity
and message delays as well as random or non-synchronous local sensing and
communication rates while minimizing thc amount of data exchanged betwecn
agents to ensure accurate and unbiased results.

* A sct of practical and robust autonomous fusion algorithms for propagating
uncertainty through the intcgration proccss and a methodology for thc comparison
and selection of fusion rules, communication architccturc, and deployment
eonfiguration of distributed sensor nctworks.

e Complementary multi-level dynamic Baycsian nctwork (DBN) modcling and
inferenee algorithms that provide the infrastructure to aggregate traditional and
non-traditional data from disparate sourees at each fusion level.

e A general framework for quantifying the operational characteristics of ad hoc
scnsor networks, a set of metrics for evaluating the operational performance of a
sensor network, and evaluating the fusion performance of multiple, asynehronous
sensors of varying quality.




2. Project Tasks

The general research tasks for this research are summarized thus:

Conduct research to develop theories and innovative algorithms and software for
distributed sensor system to enable the synergistic fusion and interpretation of
data from disparate sensors (traditional and non-traditional data sources)

® Decvelop sct-theoretic information fusion theories bascd on information graph
and information genealogy to provide a solid foundation for distributed
fusion.

* Dcvelop scalable and autonomous fusion algorithms with dynamic
communications characteristics to be implemented in distributed agents.

e Develop fusion performance modeling and evaluation methodologies with a
set of defined pcrformance metrics.

e Develop methodology and software prototype to validate and cvaluatc the
performance of the fusion algorithms. Provide performance assessment for a
simulated networking system to be analyzcd and validated.

Perform model development and engineering analysis as requircd to support the
research initiatcs as defined by the ONR Program Managcr.

e Perform technical development in collaboration with other performers.
¢ Initiate technology transfer to industry or government as specified by ONR.

Support the technical exchanges and special studics as requircd by the ONR
Program Manager.

e Attend and participate in technical interchange mectings at thc ONR-spccified
locations to discuss technical issues related to the rescarch tasks.

e Lead and participate in spccial studies as required.

e Document and distribute the technical findings and thce simulation results as
needed.

Management and Reporting.

® Prepare monthly financial reports and semi-annual technical progress rcports.
e Prepare annual progress review and comprehensive annual technical reports.




3. Project Schedule and Milestones
The project Work Plan Schedule is provided in Table 1. Specific milestones include:

e Preliminary Software Prototype at the end of year | and 2
— Intcrim MATLAB prototype for initial testing (complcted)
— Test scalability and autonomy through simulation (completed)

* Final Software Prototype available at the end of year 3
— Verified analytical performance bounds with dcfined metrics (completed)
— Confirmed performance prediction through Monte Carlo simulation
(completed)
— Final MATLAB prototype for complete capability testing (completed)

* Transition Readincss Level: TRL 3 at the end of the year 3
— Basic principles coded, experiments with synthetic data (complcted)
— Limited functionality implcmentations, cxperiments with small
represcntative data sets (completed)

Table 1. Work Plan Schedule

Tasks Month Months | Months | Months Months | Months
16 712 13-18 19-24 25-30 31-36

1.a Develop set-theoretic information fusion theories and
information genealogy for distributed fusion l ﬂ

i
1.b Develop scalable and autonomous fusion algorithms I I I {

1.c Develop fusion performance modeling and metrics %

1.d Develop software prototype to validate performance %

2. Participate technology transfer as specified by ONR %

3. Support ONR technical exchanges as required
4. Prepare project progress review and technical reports




6. Project Management

This rescarch project is directed by Dr. KC Chang of George Mason University, who is
devoting 20% of his time during the academic year and six weeks during the summer to
this research. Thc research effort is performed by Dr. KC Chang (PI) togcther with
several graduate students. Spccifically,

¢ Two PhD student, Mr. Todd Martin (part-time) and Mr. Rommel Carvalho (full
time), who has been working on (1) the development of a mathcmatical
foundation and analytical methodology for distributed genealogy based fusion, (2)
defining metrics to quantify the overall performance of the systems, and (3)
devcloping analytical methods to predict fusion pcrformance assessments given
thc newly developed algorithms.

¢ One MS student, Mr. Vikas Katori (full time), who has been working on
developing (1) a modeling and simulation environment with MATL.AB to support
specification and performance evaluations, and (2) a set of represcntative
scenarios and the validation of the proposed methodologies under a range of
operating conditions.

Note that GMU received a no-cost extension in late 2010. The original projcet end date
was cxtended from Dec. 2010 to June 2011.




7. Technical Progress

The prineipal issues in the design and deployment of sensor nctwork systems include:

e An architecture that decides where and how the sensor reports are fused and the
methods to avoid duplicate information

e Methods for optimizing sensor allocation and fusion rules for large-scale
programmed or ad hoc networks

e Performance evaluation and trade-off analyses of different design architcctures as
regards to survivability, performance, data transfer and computational
requirements

e Communication issues and bandwidth considerations that impact thc choice of
data processing and quantization approaches for sharing data amongst fusion
nodes

While researchers in the ficld of sensor and data fusion have advanced significantly
during the last decade, these algorithms have been limited for the most part to relatively
well-defined network architectures.

7.1 Technical Accomplishments

The theoretic fundamentals of distributed information fusion are well documented and
have been studied in depth. It is noted, however, that practical applications of thesc
theoretical results to non-deterministic information flow has remained a challenge. The
main difficulty is the need to identify and remove common information from data sets to
be fused, while minimizing the amount of data exchanged betwecn agents.

In the first two years of the project, we have been developing rigorous mathematical
foundation and a set of algorithms for distributed fusion in dynamie networks. In
particular, we have been focused on the following researeh:

e A mathematical foundation based on information genealogy for networked sensor
fusion with arbitrary eonnectivity and message delays as well as a set of praetical
autonomous information fusion and dissemination algorithms. We have
documented and published several papers on this area [1-4]. The papers were
well received. Specifically, the papcr published in Fusion 2008 [1] was the
runner-up of the best paper award (top 1% of the 300+ papers). A reprint of the
journal paper [8] is attached in the report.

e Complementary multi-level dynamic Bayesian nctwork (DBN) modeling and
inferenee algorithms that provide the infrastructure to aggregate traditional and
non-traditional data from disparate sourees at each fusion level. We have
documented and published several papers on this area [5][7]. Specifically. the
paper published in Fusion 2009 [5] received onc of the best student paper awards.

Our overall goal is to provide provable methodologics which follow directly from
theoretieal developments and to provide quantitative actionable performanee prediction
measures.




During the last year of the effort, we have been focused on the following tcchnical areas:

Scalable inference in distributed hybrid Baycsian network — This is an important
area for research but remains a difficult task because of its potentially arbitrary
distributions and possible nonlinear dependence relationships between variablcs.
In the past year, we have conducted significant research in this area and have
developed a new scalable method undcr a framework of message passing. We
proposed a unified computing schemc of messages propagating between different
types of variables. We have documented and published several papers on this
area [6][9][12][14]. A reprint of thc journal paper [6] is attached in thc report.

Mixture distribution representation and metrics for scalable fusion - Mixture
distributions have been used in many applications for dynamic state estimation
including distributed tracking, and multisensor fusion. Howecver, the recursive
processing of the mixture distributions incurs rapidly growing computational
requirements. In order to keep the computational complexity tractable and to
ensure scalability while trading-off performance, we dcveloped a recursive
mixture reduction algorithm with a given error bound. We have documented and
published our work in [11][13]. A reprint of the paper [13] is attachcd in the
report.

Test real data - We have identified several data sources to test and validate our
algorithms. Specifically, the first data set is for under water minc detection with
acoustic sonar sensor. The data set is obtained from UC Irvine data repository.
We applied and test our algorithm to combine multiplc acoustic sensor data to
ecmulate scnsor fusion for mine dctection. We have obtaincd some preliminary
results and the it will be published in a paper [15]. A reprint of the paper is
attached in the report. The sccond data set is for land mine detection with ground
penetrating radar sesnor. This Ground Standoff Minc Detection System
(GSTAMIDS) data set is obtained from Dr. Ken Hintz of George Mason
University with the permission from Dr. Pete Howard from the Army. Since
there was only one type of sensor data, we were not able to emulate and
demonstrate the scnsor fusion process with this data sct.

Technology transfer - Wc have been working with several small businesses to
apply our technology to other applications. For example, we have been working
with Dr. Chris Smith of Decisive Analytic Corporation to apply the scalable
fusion technique we dcveloped in this effort for missile defcnse applieation [11].
We have also worked with Dr. Craig Agate of Toyon corporation on applying our
fusion techniques for ad hoc UAV sensor networks [16].
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Message Passing for

Hybrid Bayesian Networks:
Representation, Propagation,
and Integration

WE] SUN

K. C. CHANG
George Mason University

The traditional message passing algorithm was originally
developed by Pearl in the 1980s for computing exaet inferenee
solutions for discrete polytree Bayesian networks. When a loop
is presenl in 1he network, propagating messages are nol exact,
b the loopy algorithm usually converges and provides good
approximate solutions. However, in general hybrid Bayesian
nelworks, lhe message representalion and manipulation for
arhitrary continuous variable and message propagation between
differeni 1ypes of variables are still open problems. The novelly of
the work preseniled here is to propose a framework (o eompute,
propagale, and inlegrale messages for hybrid models. Firsl, we
combine unscented transformation and Pearl’s message passing
algorithm 10 deal wilh 1he arhitrary funclional relalionships
between continuous variahles in the network. For the general
hybrid model, we partilion the network into separate nelwork
segments hy introducing the eoncept of interface node. We
then apply different algorithms for each subnetwork. Finally
we integrate the information through the ehannel of interfaee
nodes and then eslimate 1he posterior distributions for all hidden
variables. The numerieal experiments show 1hat the algorithm

works well for nonlinecar hyhrid BNs.
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. INTRODUCTION

Bayesian network (BN), also known as probability
belief network, causal network, [7. 23, 24] is a
graphical model for knowledge representation under
uncertainty and a popular tool for probabilistic
inference. It models dependence relationships between
random variables involved in the problem domain by
conditional probability distributions (CPDs). In the
network, CPD is encoded in the directed arc linking
the associated random variables. The random variables
that have arcs pointing to other random variables
are called parent nodes and the random variables
that have incoming arcs are called children nodes.

The most important property of the BN is that it

fully specifies the joint distribution over all random
variables by a product of all CPDs. This is because
each random variable is conditional independent

of its nondescendant given its parents. Factoring
reduces the numbers of parameters representing

the joint distribution and so saves the computations
for reasoning. One of the important tasks after
constructing the BN model is to conduet probabilistic
inference. However, this task is NP-hard in general
[8]. This is true even for the seemingly easier task

of finding approximate solutions [10]. Nevertheless,
for some special classes such as discrete polytree

or linear Gaussian polytree networks, there exists

an exact inference algorithm using message passing
[24] that could be done in linear time. In the past
decades, researchers have proposed a great number of
inference algorithms for various BNs in the literature
[12]. They can be divided into two basic groups: exact
and approximate algorithms. Exact inference only
works for very limited types of networks with special
structure and CPDs in the model. For example, the
most popular exact inference algorithm—Clique tree
120, 28], also known as junction tree or clustering
algorithm [13]—only works for a discrete network

or the simplest hybrid model called conditional lincar
Gaussian (CLG) [18]. In general, the complexity

of the exact inference is exponential to the size of

the largest clique' of the triangulated moral graph

in the network. For networks with many loops or
general hybrid models that have mixed continuous and
discrete variables, the intractability rules out the use of
the exact inference algorithms.

For probabilistic inference with hybrid models,
relatively little has been developed so far, The simplest
hybrid model CLG is the only hybrid model for which
exact inference could be done. The state-of-the-art
algorithm for exact inference in CLG is Lauritzen’s
algorithm [17, 19]. It computes the exact answers in
the sense that the first two moments of the posterior
distributions are correct, while the true distribution
might be a mixture of Gaussians. In general, the

A fully connected subnetwork.
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hybrid model may involve arbitrary distributions and
arbitrary functional relationships between continuous
variables. It is well known that no exact inference is
possible in this case. However, approximate methods
have been proposed {6, 16] to handle different hybrid
models. In recent years, researchers also proposed
inference algorithms using mixture of truncated
exponentials (MTE) [9, 21] to approximate arbitrary
distributions in order to derive the close-form solution
for inference in hybrid models.

Generally, there are three main categories of
approximate inference methods for BNs: model
simplification, stochastic sampling, and loopy
belief propagation. Model simplification methods
simplify the model to make the inference algorithm
applicable. Some commonly applied simplification
methods include the removal of weak dependency,
discretization, and linearization. Stochastic sampling
is a popular framework including a number of
algorithms, such as likelihood weighting (LW)

[11, 27] and the state-of-the-art importance sampling
algorithm called adaptive importance sampling
(AlIS-BN) for discrete BNs [5]. The major issue

for sampling methods is to find a good sampling
distribution. The sampling algorithm could be very
slow to converge or in some cases with unlikely
evidence, it may not converge even with a huge
sample size. In recent years, applying Pearl’s
message passing algorithm to the network with
loops, so-called “loopy belief propagation™ (LBP)
[22, 29], has become very popular in the literature.
Although the propagating messages are not exact,
researchers found that LBP usually converges, and
when it converges it provides good approximate
results, Due to its simplicity of implementation

and good empirical performance, we propose to
extend LBP for approximate inference for hybrid
model. Unfortunately, because of the differences in
representation and manipulations of messages with
discrete and continuous variables, there is no simple
and efficient way to pass messages between them. In
[30], the authors use general nonparametric form to
represent messages and formulate their calculation by
numerical integrations for hybrid models. The method
requires extensive functional estimations, samplings,
and numerical integrations, and therefore is very
computational intensive.

Under the framework of a message passing
algorithm, first of all, we need to find a general way
to represent messages. Essentially, messages are
likelihoods or probabilities. In discrete case, messages
are represented and manipulated by probability
vectors and conditional probability tables (CPTs)
which is relatively straightforward. For continuous
variables, however, it is more complicated for
message representation and manipulation as they
may have arbitrary distributions. In this paper, we
propose to use the first two moments, mean and
variance, of a probability distribution to represent

1526 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 45, NO. 4

the continuous message regardless of its distribution.
This simplification makes message calculation and
propagation efficient between continuous variables
while keeping the key information of the original
distributions. Furthermore, to deal with the possible
arbitrary functional relationship between continuous
variables, a state estimation method is needed to
approximate the distribution of a random variable
that has gone through nonlinear transformation.
Several weighted sampling algorithms such as
particle filtering [1] and Bayesian bootstrapping

[2] for nonlinear state estimation were proposed in
the literature. However, we prefer to use unscented
transformation {14, 15] due to its computational
efficiency and accuracy. Unscented transformation
uses a deterministic sampling scheme and can
provide good estimates of the first two moments

for the continuous variable undergone nonlinear
transformation. For arbitrary continuous network,
this approach we called unscented message passing
(UMP) works very well [25]. But in the hybrid
model, message propagation between discrete and
continuous variables is not straightforward due to their
different formats. To deal with this issue, we propose
to apply conditioning. First we partition the original
hybrid BNs into separate, discrete, and continuous
network segments by conditioning on discrete parents
of continuous variables [26]. We can then process
message passing separately for each network segment
before final integration.

One of the benefits of partitioning networks is
to ensure that there is at least one cfficient inference
method applicable to each network segment. In hybrid
networks, we assume that a continuous node is not
allowed to have any discrete child node. Therefore,
the original networks can be partitioned into separate
parts by the discrete parents of continuous variables.
We call these nodes the interface nodes. Each
network segment separated by the interface nodes
consists of purely discrete or continuous variables.
By conditioning on interface nodes, the variables in
different network segments are independent of each
other. We then conduct loopy propagation separately
in each subnetwork. Finally, messages computed in
different segments are integrated through the interface
nodes. We then estimate the posterior distribution of
every hidden variable given evidence in all network
segments.

The algorithm proposed in this paper aims to
tackle nonlinear hybrid models. We believe that the
proposed combination of known efficient methods
and the introduction of interface nodes for hybrid
network partition makes the new algorithm a good
alternative for inference in nonlinear hybrid models.
The remainder of this paper is organized as follows.
Section II first reviews Pearl’s message passing
formulae. We then discuss the message representation
and manipulation for continuous variable and how
to propagate messages between continuous variables

OCTOBER 2009




with nonlinear functional relationship. Section 111
describes the methods of network partition and
message integration by introduecing the coneept of
interface nodes. We show how message passing can
be done separately and finally integrated together
via the channel of interface nodes. Section IV
presents the algorithm of hybrid message passing

by conditioning. Several numerical experiments are
presented in Section V. Finally, Section VI concludes
the research we have done in this paper and suggests
some potential future work.

II.  MESSAGE PASSING: REPRESENTATION AND
PROPACGATION

Pearl’s message passing algorithm [24] is the first
exact inference algorithm developed originally for
polytree discrete BNs. Applying Pearl’s algorithm in
the network with loops usually provides approximate
answers, and this method is called LBP. Recall that
in Pearl’s message passing algorithm, ey and e,
are defined as the evidence from the subnetwork
“above” a node X and the subnetwork “below” X,
respectively. In a polytree, any node X d-separates
the set of evidence e into {e},ex}. In the algorithm,
each node in the network maintains two values called
A value and 7 value. X value of a node X, defined as

MX) = P(ey | X) (D

is the likelihood of observations e, given X. 7 value
of a node X, defined as

n(X)=P(X |ey) 3

is the conditional probubility of X given ey.

The belief of a node X given all evidence is
the normalized product of 7 value and A value.
Each node, after updating its own belief, sends new
A message to its parents and new 7 message to
its children. For a typical node X with m parents
T(T,,T,,...,T,)) and n children Y(},.Y,,...,Y,) as
illustrated in Fig. 1, the conventional propagation
equations of Pearl’s message passing algorithm can
be cxpressed as the following [24]:

BEL(X) = an(X)A(X) 3)
AX) = f[Ayl(X) C)
j=1
w(X) = ZP(X | T)ﬁwx(T-) (5)
=1
Ax(T)) = LA(X) Y PXID[[m@)  ©
Tk #i k#i
my (X) = o | [[ 20| 70 (M

k#j
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Fig. 1. Typical node X with m parents and n children.
where )‘Y,(X) is the A message node X rececives from
its child Y, Ay (7)) is the A message X sends to its
parent T; 7y (T}) is the 7 message node X receives
from its parent T, my (X) 1s the = message X sends
to its child Y;; and « is a normalizing constant.

When this algorithm is applied to a polytree
network, the messages propagated are exact and so are
the beliefs of all nodes after receiving all messages.
For the network with loops, we can still apply this
algorithm as the “loopy propagation” mentioned
above. In general, loopy propagation will not provide
the exact solutions. But empirical investigations on its
performance have reported surprisingly good results.

For discrete variables, messages could be
represented by probability vectors, and the conditional
probability table of node X given its parent T,

P(X | T), could be represented by a matrix. Therefore
the calculations in the above formulae are the
product of vectors and multiplication of vector and
matrices, which can be carried out easily. However,
for continuous variables, message representation

and the corresponding calculations are much more
complicated. First, an integral replaces summation in
the above equations. Furthermore, since continuous
variable could have arbitrary distribution over the
continuous space, in general it is very difficult to
obtain exact close-form analytical results when
combining multiple continuous distributions. In order
to make the computations feasible while keeping

the key information, we use the first two moments,
mean and variance, to represent continuous message
regardless of the original distribution. Then, the
product of different continuous distributions could

be approximated with a Gaussian distribution. Note
that for the continuous case, P(X | T) is a continuous
conditional distribution, and it may involve an
arbitrary funetion between continuous variables. To
integrate the product of continuous distributions as
shown in (5) and (6), it has to take nto account the
functional transformation of continuous variables.
Fortunately, unscented transformation [14, 15]
provides good estimates of mean and variance for the
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continuous variables through nonlinear transformation.
In our algorithm, unscented transformation plays

a key role for computing continuous messages.
Specifically, we use it to formulate and compute the

7 and A messages since both computations involve the
conditional probability distribution in which nonlinear
transformation may be required.

A. Unscented Transformation

Proposed in 1996 by Julier and Uhlmann [15],

unscented transformation is a deterministic sampling
method to estimate mean and variance of continuous
random variable that has undergone nonlinear
transformation. Consider the following problem:
a continuous random variable x with mean x and
covariance matrix P, undergoes an arbitrary nonlinear
transformation, written as y = g(x); the question is
how to compute the mean and covariance of y?

From probability theory, we have

ply) = /1)()’ [ X)p(x)dx.

However, in general the above integral may be
difficult to compute analytically and may not always
have a close-form solution. Therefore, instead of
finding the distribution, we retreat to seek for its
mean and covariance. Based on the principle that it is
easier to approximate a probability distribution than an
arbitrary nonlinear function, unscented transformation
uses a minimal set of deterministically chosen sample
points called sigma points to capture the true mean
and covariance of the prior distribution. Those sigma
points are propagated through the original functional
transformation individually. According to its formulae,
posterior mean and covariance calculated from these
propagated sigma points are accurate to the 2nd order
for any nonlinearity. In the special case when the
transformation function is linear, the posterior mean
and variance are exact.

The original unscented transformation encounters
difficulties with high-dimensional variables, so the
scaled unscented transformation was developed
soon afterward [14]. The scaled unscented
transformation is a generalization of the original
unscented transformation. We will use the two terms
interchangeably, but both mean scaled unscented
transformation in the remainder of this paper.

Now let us describe the formulae of unscented
transformation. Assume x is I.-dimensional
multivariate random variable. First, a set of 2L + 1
sigma points are specified by the following formulae:

A=c’(L+x)-L

X, =X i=0
X =< X =x+(/(L+)P,),
X i—(,/(1,+,\)Px)'

8 Sl Ve 205
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and the associated weights for these 27. + 1 sigma
points are

A

(m) _ =

RS e h=i
A

(c) 2) :

e e, : 3 =0 C

W, I,+,\+(l a” +43)  i=( 9
: 1

(m) _ () _ -

‘VO _‘V() —m l,...,2],

where «a, 3, x are scaling parameters and the
superscripts “(m),” “(¢)” indicate the weights
for computing posterior mean and covariance,
respectively. The values of scaling parameters could
be chosenby 0 < a <1, 7> 0, and k > 0. It has been
shown empirically that the specific values chosen
for the parameters are not critical because unscented
transformation is not sensitive to those parameters.
We choose a = 0.8, # = 2 (optimal for Gaussian prior
[14]), and x = 0 in all of our experiments.
After the sigma points are selected, they are

propagated through the functional transformation:

y,' = g(x,)

i=0,...,2L. (10)

Finally, the posterior mean and covariance are
estimated by combining the propagated sigma points
as follows:

2L
y=>) w"y, (1)
=0

2L
Pym ) W, -0, - 9"

i=0

(12)

2L
P~ w&X - Q-

i=0

(13)

In short, we denote the unscented transformation
for X undergoing a functional transformation ¥ =
f(X) as the following:

(Y.mu,Y.cov) = UT (x % Y) . (14)
We demonstrate the unscented transformation

by a simple two-dimension Gaussian example. Let
X = [x; x,] with mean and covariance matrix given as

f] el )

In order to show the robustness of unscented
transformation, we choose a set of functions with

severe nonlinearity shown below:
e
Y = log(xf)cos(xz), Yo = vexp(x,)sin(xx,).

The true posterior statistics are approximated very
closely by brute force Monte Carlo simulation
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Fig. 2. Demonslration of unscenled transformation. (a) Prior distribution. (b) Afier nonlinear transformation.

using 100,000 sample points drawn from the
prior distribution and then propagated through the
nonlinear mapping. We compare them with the
estimates calculated by unscented transformation
using only S sigma points. Fig. 2 shows that the
mean calculated by transformed sigma points is
very close to the true mean and that the posterior
covariance seemns consistent and efficient because
the sigma-point covariance ellipse is larger but
still tight around the true posterior covariance
ellipse.

B. Unscented Message Passing

Now let us take a closer look at Pearl’s general
message propagation formulae shown in (3)—(7). In
recursive Bayesian inference, 7 message represents
prior information and A message represents evidential
support in the form of a likelihood function. Equations
(3), (4), and (7) are essentially the combination of
different messages by multiplication. They are similar
to the data fusion concept where estimates received
from multiple sources are combined.

Under the assumption of Gaussian distribution,
the fusion formula is relatively straightforward [3].
Specifically, (3), (4), and (7) can be rewritten in
terms of the first two moments of the probability
distributions as the following:

Lo, ] :
A(X).cov

cov = (
BEL(X)

w(X).cov 5)
. a(X).mu  A(X).mu
M = OV 1 (X)cov + AX)cov
1
&y [y ‘ I
s < Xy, (X)cov
AX) (16)

/\y (X).mu
nmu = cov L /\y(X) e
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1 - 1
FoE = w(X).cov * = Ay (X).cov
WyI(X)
m(X).mu Ay, (X) mu
e w(X).cov L /\M(X).LOV

(17)
where mu, cov stand for corresponding mean and
covariance, respectively.

Equation (§) computes the 7 value for node
X. Analytically, this is equivalent to treating X as
a functional transformation of T and the function
is the one defined in CPD of X denoled as h(X).
Technically, we take T as a multivariate random
variable with a mean vector and a covariance matrix;
then by using unscented transformation, we obtain
an estimate of mean and variance of X to serve
as the 7 value for node X. In (5), (7)) is the 7
messages sending to X from its parent 7;, which
is also represented by mean and covariance. By
combining all the incoming ny(7}) messages, we can
estimate the mean vector and covariance matrix of
T. Obviously, the simplest way is to view all parents
as independent variables; then combine their means
into a mean vector, and place their variances at the
diagonal positions to form a diagonal covariance
matrix.? With that, we can compute the 7 value of
node X by

e XD
(X)o7 (X).cov) = UT (T 0 X)) (1)

Similarly but a bit more complicated, (6) compules
the A message sending to its parent (7)) from node
X. Note here that we integrate out X and all of its
parents except the one (T;) we are sending A message
to. Theoretically, this is equivalent to regarding 7;
as the functional transformation of X and T\7. It

2This is actually how the original loopy algorilhin works and why
il is not exacl. To improve the algorithm, we can estimale the
correlations between all parenls and include them in the covariance
matrix of T.
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is necessary to mention that the function used for
transformation is the inverse function of the original
one specified in P(X | T) with 7, as the independent
variable. We denote this inverse function as v(X, T\7}).
Note that in practical problems, the original function
may not be invertible, or its inverse function may not
be unique. In such a case, we need additional steps

to apply the method. In this paper, we assume the
inverse function is unique and always available. To
compute the message, we first augment X with T\7; to
obtain a new multivariate random variable called TX;
then the mean vector and covariance matrix of TX are
estimated by combining AMX) and 7, (T,)(k # i). After
applying unscented transformation to TX with the
new inverse function v(X,T\7}), we obtain an estimate
of the mean and variance for 7; serving as the Ay (7;)
message as below:

WX T\T)
———

Ay ().mu, Ay (T}).cov) = UT (TX 7;) . (19)

With (15)—(19), we can now compute all messages
for continuous variables. As one may notice,
unscented transformation plays a key role here. This
is why we call it UMP for continuous BNs.

So far, we have summarized message
representation and propagation for discrete and
continuous variables, respectively. However, for the
hybrid model, we have to deal with the messages
passing between both types of variables. Since they
are in different formats, messages cannot be integrated
directly. As mentioned in Section 1, our approach is
to partition the original network before propagating
messages between them.

1. NETWORK PARTITION AND MESSAGE
INTEGRATION FOR HYBRID MODEL

First of all, as mentioned earlier, we assume that
a discrete node can only have discrete parents in the
hybrid models, which implies continuous variable
cannot have any discrete child node.

DEFINITION | In a hybrid BN, a discrete variable is
called a discrete parent if and only if it has at least
one continuous child node.

It is well known that BN has an important property
that every node is independent of its nondescendant
nodes given its parents. Therefore the following
theorem follows.

THEOREM 1 All discrete parents in the hybrid BN
model can partition the network into independent
network segments, each having either purely discrete

or purely continuous variables. We call the set of all
discrete parents in the hybrid nerwork the interface
nodes. In other words, the interface nodes “d-separate”
the network into different network segments.
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Fig. 3. Demonslralion of inlerface nodes and network partition.

It is obvious that the variables in different
segments of the network are independent of each
other given the interface nodes. An example is
shown in Fig. 3 where a 13-node hybrid model is
presented. Following the convention, we use a square
or rectangle to depict the discrete variable and a circle
or ellipse to depict the continuous variable. As can
be seen, K, A, and C are the interface nodes in this
example. By representing the arcs between discrete
parents and their continuous children as dot lines, four
independent network segments are formulated—two
discrete parts (H, B, F, K, G and J, A, C) and two
continuous parts (T, R, § and X, ).

After partitioning the network with the interface
nodes, we choose the most appropriate inference
algorithm for each network segment. In fact, we can
also combine some segments together if the same
algorithm works for all of them. The purpose of
introducing the interface nodes is to facilitate the
network partition so that at least one algorithm could
be applicable to each segment. In general, separate
message passing in either discrete or continuous
network segment is always doable. Typically, the
continuous network segment with nonlinear and/or
non-Gaussian CPDs is the most difficult one to deal
with. In such case, we apply UMP presented in
Section IIB for approximate solutions.

Finally, we need to summarize the prior and
evidence information for each network segment and
encode it as messages to be passed between network
segments through the interface nodes. This is similar
to general message passing but requires message
integrations between different network segments.

A. Message Integration for Hybrid Model

For a hybrid model, without loss of generality,
let us assume that the network is partitioned into
two parts denoted as D and C. Part D is a discrete
network and it is solvable by appropriate algorithms
such as junction tree or discrete loopy propagation.
Part C is an arbitrary continuous network. Let us
denote the observable evidence in part D as I,
and the evidence from C as [_. Therefore the entire
evidence set E consists of E; and 7. As mentioned
before, given interface nodes, variables from the two
network segments are conditional independent of each
other. The evidence from part D affects the posterior
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probability of hidden nodes in part C and vice versa
only through the channel of the interface nodes.

We therefore summarize the prior and evidence
information of each network segment and encode
them as either 7 or A value at the interface nodes.
Assuming that the set of interface nodes between two
network segments is I, then the two messages are:
A = P(E_| 1) and n(X) = P(1 | £;). These values are
to be passed between network segments to facilitate
information integration. As in Pearl’s algorithm, this
approach can be easily integrated with the UMP-BN
loopy algorithm mentioned above in a unified manner.

We use the following concrete example to illustrate
how to integrate messages from different network
segments. As can be seen in Fig. 4, synthetic hybrid
model-1 has K as the interface node dividing the
network into a discrete part consisting of H, B, F,

K, G and a continuous part consisting of T, R, S, M,
Y. For the purpose of illustration, let us assume all
discrete nodes are binary and all continuous nodes are
scalar Gaussian variables.

Suppose the leaf nodes (G, M, Y are observable
evidence. We first focus on the continuous segment,
In this step, we compute the A message sending to
the interface node K from continuous evidence. And
conditioning on each possible state of K, we estimate
the posterior distributions for all hidden continuous
variables given continuous evidence. Under Gaussian
assumption, these posterior distributions are
represented by means and variances and they are
intermediate results that will be combined after we
obtain the a posterior probability distribution of the
interface node K given all evidence. Probabilities
of all possible states of K are served as the mixing
weights, similar to computing the mean and variance
of a Gaussian mixture.

Given K, it is straightforward to compute the
likelihood of continuous evidence M =m, Y =y
because we can easily estimate the conditional
probability distribution of evidence node given
interface nodes and other observations. For example,
let

PM=mY=y|K=1)=a
PM=mY=y|K=2)=bh.

Then to incorporate the evidence likelihood is
equivalent to adding a binary discrete dummy node as
the child of the interface node K with the conditional
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probability table shown as the following:

Dummy
K ] 2
1 | aa l-xa | where « is a normalizing constant.
2 |ab l-ab

By setting “Dummy” to be observed as state 1, the
entire continuous segment could be replaced by the
node Dummy. Then the original hybrid BN can be
transformed into a purely discrete model shown in
Fig. 5 in which Dummy integrates all of the
continuous evidence information.

The second step is to compute the posterior
distributions for all hidden discrete nodes given
G = g, Dummy = 1. We have several algorithms to
choose for inference depending on the complexity of
the transformed model. In general, we can always
apply discrete loopy propagation algorithm to
obtain approximate results regardless of network
topology. Note that the posterior distributions of the
discrete nodes have taken into account all evidence
including the ones from continuous segment via the
Dummy node. However, we need to send the updated
information back to the continuous subnetwork via
the set of interface nodes. This is done by computing
the joint posterior probability distribution of the
interface nodes denoted as P(I| E). Essentially, it is
the m messages to be sent to the continuous network
segment.

With the messages encoded in the interface nodes,
the last step is to go back to the continuous segment
to compute the a posterior probability distributions for
all hidden continuous variables. Recall that in the first
step, for any hidden continuous variable X, we alrcady
have P(X | I,E,) computed and saved. The following
derivation shows how to compute P(X | E):

P(X |E) = P(X | E,,E,)

=Y PRI E B
1

=Y PX |LE EJPU| E,.E)
1

=Y PX | LE)P(I|E). (20)
1
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The fourth equality is due to the fact that the set of
interface node d-separate the node X with F.

Assuming given an instantiation of the set of
interface nodes 1 =i, P(X |1 =i,E_) is a Gaussian
distribution with mean X; and variance n,-z. Then (20)
is equivalent to computing the probability density
function of a Gaussian mixture with P(I =i | E) as
the weighting factors. Denoting P(I =i | E) as p,,
the mean x and the variance o2 of P(X | E) can be
computed as the following [3, p. 56]:

= Zpi}i 2n
i
g Xpiniz + Zpi},-z ¥ (22)

Through the above three steps, we successfully
integrate messages from different subnetworks to
obtain the approximate posterior marginal distribution
for both continuous and discrete hidden variables
given all evidence. There are two approximations in
the algorithm. One is from loopy propagation method
itself. Another one is that we approximate continuous
variable as Gaussian distributed as we only use the
first two moments to represent continuous messages.
However, it provides promising performance as seen
in the numerical experiment results.

IV. HYBRID MESSAGE PASSING ALGORITHM

We have presented separate message passing in
either discrete or continuous network segment and
message integration in hybrid model via interface
nodes. In this section, we summarize the general
algorithm of message passing for hybrid BNs as
shown in Table 1.

In order to incorporate evidence information, we
allow a node to send a A message to itself. For a
discrete network, we initialize thec messages by letting
all evidence nodes send to themselves a vector of a
“1" for observed state and Os for other states. All
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TABLE |
Hybrid Message Passing Algorithm for General Mixed BN

Algorithm: Hybrid Message Passing for General Mixed BN
(HMP-BN).
Input: General hybrid BN given a set of evidence.

Output: Posterior marginal distributions of all hidden nodes.

1. Determine the iterface nodes and partition the network
into independent segments with interface nodes. Choose the
appropriate inference algorithm for cach network segment.

2. Continuons network segment: compnte the A message
sending to the interface nodes and the intermediate
posterior distribution of the hidden continuous variables
given the interface nodes and the local evidence.

3. Transform the original network into an equivalent discrete
model with a dummmy node added as a child of the
interface nodes. This dummy discrete node carries the A
message fram continnous evidence to the interface nodes.

4. Compute the posterior distribution for every hidden discrete
variable using the transformed discrete model. The joint
posterior probability table of the interface nodes is saved as
the 7 message to be sent back to the continuous network
segment.

5. Compute the posterior distribution for every hidden
continuous variable given all evidence by integrating the n
message using (20).

other messages are initialized as vectors of Is. For
continuous network, a message is represented by
mean and variance. We initialize the messages for

all continuous evidence nodes, sending themselves

as the one with the mean equal to the observed value
and the variance equal to zero. All other messages

in continuous network are initialized as uniform,
specifically, zero-mean and infinity variance (the
so-called “diffusion prior”). Then in each iteration,
every node computes its own belief and outgoing
messages based on the ineoming messages from its
neighbors. We assess the convergence by checking if
any belief change is less than a prespecified threshold
(for example, 10" %). We use parallel updating for each
node until the messages are converged.

V. NUMERICAL EVALUATION

A. Experiment Method

We use two synthetic hybrid models for
experiments. One is shown in IFig. 4 as mentioned in
Section 1A called GHM-1. GHM-1 has onc loop in
each network segment, respectively, (partitioned by
the interface node K). Another experiment model is
shown in Fig. 6 called GHM-2. GHM-2 has multiple
loops in the continuous segment.

For GHM-1, we assume that the leaf nodes G,M,Y
are observable evidence. We model its continuous
segment as a linear Gaussian network given the
interface node K. Therefore the original nctwork is a
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CLG so that the exact inference algorithm (junction
tree) can be used to provide the true answer as a
golden standard for performance comparison. The
CPTs and CPDs for nodes in GHM-1 are randomly
specified.

Note that our algorithm can handle general
arbitrary hybrid model, not just CLG. GHM-2 is
designed specifically to test the algorithm under the
situation where nonlinear CPDs are involved in the
model. The structure of the continuous segment in
GHM-2 is borrowed from [17] in which the author
proposed junction tree algorithm for CLG. The
discrete nodes in the GHM-2 are binary, and we
randomly specify the CPTs for them similar to the one
in GHM-1. But the CPDs for the continuous nodes are
deliberately specified using severe nonlinear functions
shown below to test the robustness of the algorithm:

F~N(-10,3)
W ~ N(100,10)

B|K =1~ N(50,5)

B|K =2~ N(60,5)
E~N(W +2F,1)
C~N(e? 3)
D ~ N (VW x log(E) — B,5)

Min ~ NV (VW +6,3)
Mout ~ N(0.5 x D x Min,5)

L ~N(-5x D,5).

We assume that the evidence set in the GHM-2 is
{H,C,Mout,L}. Since no exact algorithm is available
for such model, for comparison purposes, we use the
brute force sampling method, likelihood weighting,
to obtain an approximate true solution with a large
number of samples (20 million samples).

In our experiments, we first randomly sample
the network and clamp the evidence nodes by their
sampled value. Then we run HMP-BN to compute
the posterior distributions for the hidden nodes.

It is important to mention that in both discrete

and continuous network segments, we implement
HMP-BN using loopy algorithms to make it general,
although junction tree could be used in network
segment whenever it is applicable. In addition, we
run LW using as many samples as it can generate
within roughly the same amount of time HMP-BN
consumes. There are 10 random runs for GHM-1 and
5 random runs for GHM-2. We compare the average
Kullback-Leibler (KL) divergences of the posterior
distributions obtained by different algorithms.

Given unlikely evidence, it is well known that
the sampling methods converge very slowly even
with a large sample size. We use GHM-1 to test
the robustness of our algorithm in this case because
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typical runs.

junction tree can provide the ground true for GHM-1
regardless of the evidence likelihood. We generate
10 random cases with evidence likelihood between
107% ~ 10 '3 and run both HMP-BN and LW to
compare the performances.

B. Experiment Results

For model GHM-1, there are 4 hidden discrete
nodes and 3 hidden continuous nodes. Fig. 7
illustrates the posterior probabilities of hidden discrete
nodes computed by junction tree, HIMP-BN, and LW
in two typical runs. Since GHM-1 is a simple model
and we did not use unlikely evidence. both HMP-BN
and LW perform well.

For continuous variables in GHM-1, Fig. 8 shows
the performance comparisons in means and variances
of the posterior distributions for the hidden continuous
nodes in all of the 10 runs. The normalized error is
defined as the ratio of the absolute error over the
corresponding true value. From the figure, it is evident
that HMP-BN provides accurate estimates of means,
while the estimated variances deviate from the true
somewhat but HMP-BN is still better than LW in most
cases.

We then demonstrate the robustness of HMP-BN
by testing its performance given nnlikely evidence
shown in Fig. 9. In this experiment, 10 random sets
of evidence are chosen with likelihood between
10 5 and 105, As can be seen, IMP-BN performs
significantly better than LW in this case. The average
KL divergences are consistently small with the
maximum value less than 0.05. This is not surprising
because LW uses the prior to generate samples so that
it hardly hits the area close to the observations.

We summarize the performance results with
GHM-1 in Table 1l. Note that given unlikely evidence,
the average KL divergence by HMP-BN is more than
one order of magnitude better than LW.

In GHM-2, due to the nonlinear nature of
the model, no exact method exists to provide the
benchmark. We use LW with 20 million samples
to obtain an approximation of the true value. We
implemented five simulation runs with randomly
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sampled evidence. In this experiment, we adopt our
newly developed algorithm UMP-BN for inference in
continuous network segment [25]. Fig. 10 shows the
performance comparison in means and vaniances of
the posterior distribution for the hidden continuous
variables. Also, Table III summarizes the average

KL divergences in testing GHM-2. From the data,
we see that HMP-BN combining with UMP-BN
applied in the continuous subnetwork produces very
good results. In this nonlinear model with the normat
evidence, the new algorithm performs much better
than LW despite its advantages of being a model-free
algorithm. However, since there is only one interface
node in these models, implementing HMP-BN is
relatively simple.

C. Complexity of HMP-BN

In general, when there are multiple interface
nodes, HMP-BN computes the posterior distributions
of hidden continuous variables given continuous
evidence, conditioned on every combination of
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TABLE 11

Average KL-Divergence Comparison in Testing GIM-1

Average Normal Evidence Unlikely Lividence
KL divergence > 108 10 5-10-1%
HMP-BN 0.0011 0.0108
1w 0.0052 0.67
TABLE 111

Average KL-Divergence Comparison in Testing GHM-2

Average KL Divergence

HMP-BN
LW

0.0056
0.0639

instantiations of all interface nodes. So the complexity
of the algorithm is highly dependent on the size

of interface nodes. To assess the complexity of
HMP-BN, we conducted a random experiment using
network structure borrowed from the ALARM model
[4] as shown in Fig. 11 in which there are 37 nodes.
We randomly selected each nade 10 be discrete or
continuous with only a requirement that continuous
variable cannot have any discrete child node. In this
experiment, the average number of interface nodes
was about 12. HMP-BN still provided good estimates
of the posterior distributions but it took a much longer
time than the one with only one interface node. If we
have n interface nodes K,,K,,.... K, with number of
states ny,n,,...,n, respectively, the computational
complexity of HMP-BN is proportional to O(n, x

ny x ny---x ng). This implies that our algonithm is

not scalable for a large number of interface nodes.
However, our goal is not to propose an algorithin for
all models (NP-hard in general) and we suspect that

it 1s rare to have a large number of interface nodes in
most practical models. Even with the considerable size
of interface nodes, HMP-BN provides good results
within a reasonable time while the stochastic sampling
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methods can perform very poorly using the same
amount of time. In addition, there are several ways
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lIig. 10. GHM-2: Performance comparison for 5 random runs (the reference base is provided by LW with 20 millions samples).
(a) Mecan comparison. (b) Variance comparison.
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Fig. 11. ALARM: network constructed by medical expert for monitoring palients in intensive care.

continuous variables. In the algorithm, we first
partition the network into discrete and continuous

to reduce the computational burden such as assuming  segments by introducing the interface nodes. We then

that some interface nodes with small correlations
are independent of each other. Nevertheless, this
is beyond the scope of the paper and could be an
interesting topic for future research.

VL

algorithm for general BNs with mixed discrete and
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apply message passing for each network segment
and encode the updated information as messages to
be exchanged between segments through the set of
interface nodes. Finally we integrate the separate
messages from different network segments and
compute the a posterior distributions for all hidden
nodes. The preliminary simulation results show that
the algorithm works well for hybrid BN models.

CONCLUSION
In this paper, we develop a hybrid propagation
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The main contribution of this paper is to provide
a general framework for inference in hybrid model.
Based on the principle of decomposition and
conditioning, we introduce the set of interface nodes
to partition the network. Therefore it is possible to
apply exact inference algorithms such as junction
tree to some applicable network segments which
enables the integration of different efficient algorithms
from multiple subnetworks. For complicated network
segment such as the one with nonlinear and/or
non-Gaussian variables, we provide options to use a
loopy-type message passing algorithm.

Although the bottleneck of our algorithm is the
size of interface nodes, we believe that HMP-BN is a
good alternative for nonlinear and/or non-Gaussian
hybrid models since no efficient algorithm exists
for this case (as far as we know from the literature),
especially given unlikely evidence. We are currently
exploring another idea of propagating messages
directly between different types of nodes without
network partition or interface nodes. However, it is
beyond the scope of the current paper.

Note that the focus of this paper is on developing
a unified message passing algorithm for general
hybrid networks. While the algorithim works well
to estimate the means and vanances for the hidden
continuous variables, the true posterior distributions
may have multiple modes. In practice, it might be
more important to know where the probability mass
is than just knowing mean and variance. One idea for
future research is to utilize the messages computed in
HMP-BN to obtain a good importance function and
apply importance sampling to estimate the probability
distributions. Another future research direction is to
extend the hybrid algorithm to the general BN models
without restriction of node ordering, such as to allow
continuous parents for discrete variables. If successful,
it would be a significant step forward.
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The theorelical fundamentals of distribnted information fusion
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fairly well established. However, practical applications of these
theoretical results to dynamic sensor networks have remained
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I.  INTRODUCTION

A distributed data fusion system consists of
a network of sensors and processors that may be
colocated with the sensors. Sensors generate data
by observing the environment. Processors process
local sensor data and fuse data from other sensors or
processors. The performance of a distributed fusion
system over a network depends on three factors: the
network architecture, the reliability of communication
links within the network, and applicable fusion
algorithms. Even though the network architecture
may be fixed and known, adaptive communication
strategies and possible communication link failures
will result in a dynamically changing communication
structure among the fusion nodes. Thus, a distributed
fusion algorithm is not really practical unless it can
handle a dynamic communication structure.

There has been a great deal of work in developing
distributed fusion algorithms applicable to a
network centric architecture [1-5]. However, most
of these algorithms have been designed for fixed
communication structures and may not be practical for
distributed systems such as ad hoc sensor networks
where the communication architecture changes
dynamically [6]. In particular, the distributed fusion
algorithm based on the information graph approach
[7] was developed to optimally combine information
from multiple nodes by maintaining information
pedigree and using it to avoid any double counting
of information. However, when the communication
structure changes in real time, this algorithm may
not scale because of its requirements to carry long
pedigree information for decorrelation.

In this paper, we focus on several scalable fusion
algorithms and analytically compare their performance
through steady-state estimate error prediction. To
demonstrate our performance analysis approach, we
use a nominal three-node fusion processing scenirio
with cyclic communications as shown in Fig. 1.

We conduct extensive simulations to validate the
theoretical predictions. We have chosen this network
structure because of its complexity due to multiple
paths for information propagation, and the availability
of the optimal analytical solution that can be derived
and used as a performance baseline.

Specifically, we consider the fusion algorithms
listed below and compare their performance against
the optimal information fusion solution.

Channel filter

Naive fusion
Chernoff fusion
Shannon fusion
Bhattacharyya fusion

Our goal is to investigate how these different
fusion algorithms perform for a specific scenario
under limited communication bandwidth. This is
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part of a wider objective to understand the system
trades involved in a general decentralized ad hoc
sensor network. The rest of this paper is organized

as follows. Section II briefly describes the set of
scalable distributed fusion algorithms to be considered
in this paper. Section lII derives the analytical fusion
performance evaluation in terms of steady-state mean
square error. Section IV summarizes the technical
findings of the study, and Section V presents some
future research directions.

Il.  SCALABLE FUSION ALGORITHMS

The theoretic fundamentals of distributed
information fusion are well documented and have
been studied in depth [7-11]. It is noted, however,
that practical applications of these theoretical results
to nondeterministic information flow have remained a
challenge. The main difficulty is the need to identify
and remove common information from the data sets
to be fused, while minimizing the amount of data
exchanged between agents.

The basic fusion process, as described in {7],
follows from set theory, where the combination of n
event probabilities ®(- | ;) given the information /; can
be represented as

n n
l 1 -1
o |- =EHS§ % M
i=1 i=1

where §; represents the combination of i event
probabilities such that, §; = [T, ®(- | 1)), S, =
H?:ll,jr‘,{i+l...,.n} P(- | I; m[j)" il =@ l nnhNn---1,).
The alternating multiplication and division of
Jjoint probabilities from (1) removes conditional
dependencies from the data sets in the form of shared
information.

While the removal of duplicate information
is straightforward in the theoretical formulation,
identification of duplicate information for distributed
estimation systems can be difficult in practical
implementations. The difficulty is due to the need
to recognize correlated information resulting from
past fusion events and know the values of their data
sets. The information graph (1G) technique presented
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Three sensor cyclic communicalion scenario.

in [7-9] provides an analytical tool for identifying
duplicate information in distributed estimation
systems. The approach is a symbolic representation of
the collection, propagation, and fusing of data among
a set of fusion agents. An example of an 1G is shown
in Fig. 1, where a simple cyclical communications
pattern is demonstrated. Each numbered row of
symbols represents the events of a given agent.
Within each time step, each agent may perform time
updates of estimates, receive sensor data, perform
measurement updates, transmit the local estimate to |
other agents, and fuse estimates received from other
agents.

The difficulty with the IG approach is that it
is communication pattern dependent—it needs to
consider all relevant common priors and to remove
the common information at these nodes from the
current track update. Determining these nodal
connections over a varying network can be difficult
and time-consuming. For examplc, in the simple three
sensor cyclic communication network shown in Fig. [,
the resulting formula for the fusion between the first
two sensors at time k is [7]

_ l[’l‘k(x)l’z‘/((-‘)lh,k 3{(x)
€ Py 2 0Py (X)

p(x) (2)
where ¢ is the normalization constant, p(x) 1s the
conditional probability at node 51 after fusion, and
p;x(x) is the conditional probability at node si and
time k before fusion. In the case when all probability
densities are Gaussian, the fusion formula becomes
(see Fig. 1)

1 _p| y—1 p 1 p 1 1
=y vy — R — By g FE
12 _ p-1a 12 Sl =
B X =P px B Xy, 1yl Xg 2
p-1 z 1%
—l’u_ 1X24 VB3 . 3)

In general, to construct the “optimal”! fusion formula
may require carrying long pedigree information? that

"The IG approach is optimal when the underlying system is
deterministic.

*Information includes communication and fusion events history as
well as past fusion data.
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might not be practical in an environment with limited
communication bandwidth [12].

To address the scalability issue, we have developed
cach of the fusion algorithms described in the
following sections for autonomous sensors in
arbitrary network conditions. All of these approaches
are suboptimal in general but provide adequate
performance when basic assumptions are met.

A. Channel Filter

The channel filter approach [13-16] is simpler
than IG fusion in that only the first order redundant
information is considered. Each channel is defined
by a pair of agents—a transmitting agent and a
receiving agent. The transmitting agent for a particular
channel is responsible for removing redundant
information; as such, it needs only keep track of the
previous transmission from itself to the receiving
node.

However, in a dynamic ad hoc network, the
transinitting data may never reach the receiving end
because of link uncertainty. Therefore, another idea is
to have the receiving agent of a particular channel be
responsible for removing the redundant information.
In this way, the receiving agent only needs to keep
track of the previous data transmitted to or received
from the channel at the previous communication
time and remove it when combining the current
estimates. There is no need to maintain long histories
of previous activity. In a sense, this can be considered
as a first order approximation to the optimal 1G
approach.

Specifically, the channel filter fusion equation is
given as

P py(x)/ p(x)
Jp (O, (x)/ p(x)ldx

where p,(x) and p,(x) are the two probability
density functions to be fused (one local and the
other received from a particular channel) and p(x)
is the density function received from the same
channel at the previous communication time and is
the common “prior information” to be removed in
the fusion formula. When both p,(x) and p,(x) are
Gaussian density with mean and covariance x,,/}
and ,'\?2,1’2, respectively, the fused state estimate and
corresponding covariance error can be written as

plx) = 4)

P l=I)1v|+I)2 l_I__) 1
12 15 12 _ p-l1z (3)

P 'x=F "X+ 'x,—P 'x
While simpler, it is obvious that dependent
information is more likely to be lost in the channel
filter when compared with the 1G approach. On the
other hand, if the time between when that redundancy
occurred and the current processing time is relatively
long, the impact could be minimal.
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B. Naive Fusion

Naive fusion is the simplest fusion approach,
where it is assumed that the dependency between the
density functions is negligible. This fusion approach is
the simplest type, but it can be unreliable. The naive
fusion formula can be written as

P (xX)py(x)

px) = 3 (6)
I pi(x)py(x)dx
For the Gaussian case, the fused state estimate and
corresponding error covariance are shown as
P et g
(N

2l S S 1 el Frod =112
P x=P""x +P x,.

Note that the fused track covariance is the inverse of
the sum of the inverses of the local track covariance
matrices. Thus, because of the lack of common prior
information, the fused covariance could be much
smaller, which can lead to overconfidence. Also when
the common prior has very large covariance, (7) is
equivalent to (5).

C. Chernoff Fusion

When the dependency between two distributions is
unknown, one idea is to use the Chernoff information
[17]. The fusion formula is based on the following:

W 1-wn
plx) = 0 I (X)Plz '('\L
I pypy *(xdx

where w € [0 1] 1s an appropriate parameter that
minimizes a chosen criteria. When the criterion to be
minimized is the Chernoff information as defined in
the denominator of (8), we call it Chernoff fusion.
It can be shown that the resulting fused density
function that minimizes the Chernoff information

is the one “halfway” between the two original
densities in terms of the Kullback Leibler distance
[17, p. 312]. In the case when both p,(x) and

Py(x) are Gaussian, the resulting fused density is
also Gaussian with mean and covarniance obtained
as

(8)

I)rl

wh 4+ (1 -wip, !

. )

Pz

wP '3 + (= w)ly %,

This formula is identical to the covariance intersection
(CI) fusion technique [14-15]. Therefore, the CI
technique can be considered as a special case of (8).
In theory, Chernoff fusion can be used to combine any
two arbitrary density functions in a log-linear fashion.
However, the resulting fused density may not preserve
the same form as the original ones. Also in general,
obtaining the proper weighting parameter to satisfy

a certain criterion may involve extensive search or
computation [18].
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D. Shannon Fusion

A special case of (8) is when the parameter w
is chosen to minimize the determinant of the fused
covariance [18, 19]. In the Gaussian case, it is
equivalent to minimizing the Shannon information
of the fused density. This is because the Shannon
information defined as /, = — [ p(x)In p(x)dx can be
shown to be equal to /, = 1 In((27)"|P|'/?) + n/2 when
p(x) is Gaussian with covariance P [18]. We call this
special case the Shannon fusion. Note that with (9),
the Shannon information is a convex function of the
parameter w, and therefore the maximum is located at
the extreme points (either w = 0 or w = 1). Moreover,
in scalar case where both /; and £, are scalar, the
minimum of Shannon information is also located at
the extremes [18].

£. Bhattacharyya Fusion

Another special case of (8) is when the parameter
w is set to be 0.5. In this case, the denominator of
(8) becomes B = [ \/p,(x)p,(x)dx, which is the
Bhattacharyya bound. We call the resulting fusion
formula, p(x) = (1/B)/p,(x)p,(x), the Bhattacharyya
fusion. When both p,(x) and p,(x) are Gaussian, the
fusion equation can be written as

PR R
PrigalP=ty, +20) (1o
E L s B R e )

Thereforc, in the Gaussian case, Bhattacharyya
fusion is similar to naive fusion; the resulting fused
covariance is merely twice as big as that of naive
fusion. Note that the fusion equation can be rewritten
as

P 1

JE B = B4 4

P'% an

3B E + P )

P75 + B ) - 3P + 1Y),

This formula replaces the common prior
information of (5) for the channel filter by the average
of the two sets of information to be fused. Namely,
Ple—t@ '+ Yand P33P 7'%, + P %), In
other words, instead of removing the common prior
information from the previous communication, as
in the channel filter case, the common information
of Bhattacharyya fusion is approximated by the
“average” of the two locally available information
sets.

In the next section, we derive the analytical
performance of channel filter, naive fusion, and
Bhattacharyya fusion in terms of true steady-state
mean square error. We will derive the results based on
the specific cyclic communication scenario as given in
Fig. 1. We will also conduct extensive simulation to
evaluate other alternative fusion algorithms.
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. ANALYTICAL PERFORMANCE PREDICTION

As shown in Fig. 1, wherc at time k we define
DX=X R=Bpandx=X 1 P=B_1; as
the fused state estimates and the associated filter
covariances at time k and k — 1: 2) X; = X;;.: B = Py
as the local updated state estimates and thc associated
filter covariances; and 3) X, = X;; 4 3/} = Py y, a5
the local updated state estimates and the associated
filter covariances at the previous time instance
k—1.

Our goal is to find the steady-state mean square
error covariance of the fused estimate, namely, §} =
lim |, ElGyy — )G — X1 = E[G - 0 - x)'].

In the following, we assume that the dynamic system
follows a scalar random walk model, namely, x,,, =
x; + v, where v, is a zero mean Gaussian process
noise with variance Q. We further assume that the
observation model is similar for the three sensors
and is linear Gaussian, i.e., z;; = x; +w;; where w;,
is a zero-mean Gaussian measuremcnt noise with
variance R; for sensor i. In the following, we assume
that the sensors have the same quality, i.e., R, =R, =
R; = R. Therefore, in steady state, let £ = P, then
=By g =dgp = B =2,

A. Channel Filter

With a channel filter, as shown in (5), the fusion
equations are written as

R A Rt T (12)
PR =B% + B %~ Bb i ys D)
Equation (13) can be rewritten as,
A=P'G-0=P"'G, -0+P G- x)
—I—)Z.,k}kr 1Oy — %)
=PIG -0+P'GG-0-P+Q) '~ %)
= (x—x)=FRA

=PP(x — )+ RPIE, - Y)

~B(P+Q) (%, x). (14)
Therefore,
Q= E[(x — x)?] = BEAA)P,. (15)
In the scalar case,
(x—x)* = f‘i(i —x)+ —:’2-(5( X+ —:’2—(1- )2
pz'l P2 24 (I’+Q)2.2 :
2P3(E; - - %) 2PA(E, — X)(%, — %)
P2 PP+ Q)
2PHR, — X)X, — X)
T PGP0 (16)
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2 g asily sl hat
. 2;:2) (B+EY+ o E)Q):(B +0) casily shown tha
20 PP+ QOPT+20HP - 20DR=0.  (29)
O . S 7 . ‘ .
PP +Q)(C' +6yi () A closed form real solution of the preceding cubic
h polynomial can be solved and the resulting £, as a
s function of various (0 and R is shown in Fig. 2.
El(x, —x)?] = E[()'cu[k e xk)Z] Note that the filter variance is not the same as the
true mean square error. To obtain the true mean square
=E[(ox 1~ X%~ l)2] error as given in (17), we will need to derive each of
the three terms listed in (19)—(21). It can be shown
=By (18)  that (the details are omitted),
— FIE — Y] = FI(% — )2
BBy =xrl=Elm=xr] O oo pip sd-plos £in=0ow 05
E'= 13[(321 = x)()?z —x)] 20)

E'=(1 - K{EIG, — % )G~ 5 D)+ 0}

C, = El(x; — x)(x, — d
1 [(xz .X)(.xz 0l an Q1) =(l= K)Z[Ep + 0] (26)

C, = E[(x, — x)}(x, — x)].

5\ 2 P 2
11— 0 N Q Al
Note that in (17), £, and P are the steady-state “filter” E, = (p) (BE =+ B)* (,) 1 Q) E+Q)
variances. They can be obtained by solving the

: : 2
following two equations: ) (P(P/IL Q)) (€, +C, +2D) 27
B'=P I+I’2"|"‘l_)2.klwk [ =2t <P e Q) P, P,
1-Ky( 2B+ 0
=R =P +Q)/(P+2Q) (22) i ( )(I’ TP +Q>
1 == P
(5 + Q) 5 0 e
P = (F, = '=(P S LS R >
P=(FH+Q-KSK =(f,+Q) P +0+B P+Q

_U-Kyr+0 (I - K)P +2Q)

= (F'+ B+ )
_ K+ OR (23) 2P +0) KP X g—KP
F+Q0+ R
=nE' +B)+1/ (28)
where K = (1) + 0)/(F), + Q + R) is the steady-state
Kalman gain and § = I, + Q + R is the steady state and
innovation variance. From (22) and (23), it can be D =n2E") +1). 29
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Using relations (25)—(29), (17) can be rewritten as
2

1]
(P +0Q)?
B 4p;
P+0Y PP+Q)"

= (283
52
= L" Y54
P2 PP+ Q)

g
B an?

1)2
rPr 0l PP+
=LB+LE +l; = +L,MHB+L,f,+14

2
0 2
PP+ Q)(2( )

)8

2
2

2=

(B+EY+

B+Q)-

287

!

=mB+m, =m (M) +a)+m,

my« +m,

Q= :
- I —mA

(30)
Fig. 3 compares the analytical mean square errors
(MSE) based on (30) with the average MSE based
on 1000 Monte Carlo simulation trials. It is clear that
they are in perfect agreement. Fig. 3 also shows that
the filter variance F) is very close to the true MSE,
which indicates that the algorithm behaves well and is
reasonably consistent [9].

B. Naive Fusion

With the notations defined earlier, the naive fusion
equations can be written as

B =@ R =R (31)

CHANG ET AL.: ANALYTICAL AND COMPUTATIONAL EVALUATION

%= BPI5 + 5R) =R e 52, (3D)

From (31), (x — x) = [(X, — x) + (%, — x)]/2; therefore,

0 = E{(x—x)°)

LELG, — x)°] + E[(x, — x)°] + 2E[(x, - 0)(k, —0)]]

= 4B +E) (33)

where, as defined before, B = E[(%, - x)?]
E[(X, — x)?] and E' = E[(X; — x)(X, — )]
From (25), B = AQ + o, and from (20),

E' = E[Gy — 5@, — )

= (1 = K{EIE) — x,_)E — 5 D] + @)

= +(1 - K) (B +3E' +40)
. (=K
= E _4_3(1_K)2(B+4Q) (B +40).

(34
Therefore, from (25), (33), and (34), we have,

Q=3B+EY=10+)B+20

0+ a2 +2u0
1= (1 +m)X/2

(35)

%(l + A+ )+ 20 = Q =

Note that in (31), £ and P are the steady-state “filter”
variances, which are not the same as the true MSEs.
They can be obtained by solviug the following two
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Fig. 4. Companson of naive fusion analytical MSE with simufated MSE (1000 MC trials).

equations:
BB s PP =3P s R s PR (36)
(P, + Q)
e D) s 1 = ) )i 1]
P=(F+Q)-KSK'=(+Q) ——(lf)+Q+R)
_ (P/2+ Q)R
T((PR2+Q+R) L
From (36) and (37), it can be easily shown that
PP +(QQ+RP 20R=0
wsiag V20O + R)? +§QR—(2Q+R)‘
(38)

Fig. 4 compares the analytical MSEs based on (35)
with the average MSE based on 1000 Monte Carlo
simulation trials. It is clear that they are very close
to each other when the process noise is not very
small. However, when the process noise is extremely
small (< 10~%), the simulation results are slightly
lower than the analytical prediction. This could be
due to numerical round off error caused by the small
magnitude of the noise. Fig. 4 also shows that the
steady-state filter variances £}y are signifieantly smaller
than the true MSE, especially when the proeess noise
is not very large. This implies that naive fusion

is too optimistie and has poor filter consistency

[11].
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C. Bhattacharyya Fusion

As in the naive fusion case, the Bhattacharyya

fusion equations can be written as
B GRS B =P (39)
= ARW R 4 P = (3 +5,)/2. (40)
As in (33)
Q= E[(x—x))
= HE[G, — x)*] + E[(X, - x)7] + 2E[(%, ~ x)(X, —x)]}
= 3B+E) 41)
where, as defined before, B = A{) + a and E’' =
[(1=K)?/4—-3(1 - K)* (B +4Q) = u(B + 4Q).
Therefore, as in (35)
Sl=(l+/l)“/2+ZILQ- 42)

1 —(Lay)x/3

Note that the only difference between naive and
Bhattacharyya fusion is in (38), where £}, and P
are the steady-state “filter” variances, which can be
obtained by solving the following equation:

(h +0)°

2 =GP - "'=(P ) B e ———
(Rl +O0)Y—KSK' =), + 0) P +0+R)

(P + ()R

T(P+O+R) e
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Fig. 5. Comparison of Bhatacharyya fusion analylical and simulated MSE (1000 MC trials).

From (43), it can be easily shown that

2 pa—
”2+PQ—QR=O=>P=—VQ+‘2‘QRQ‘

(44)

Fig. 5 compares the analytical MSEs based on (41)
with the average MSE based on 1000 Monte Carlo
simulation trials. Again, they are in perfect agreement.
However, as can be seen in the figure, a critical

issue with this approach is that the steady-state

filter variances are almost twice as large as the

true MSE. This indicates that the Bhattacharyya
fusion algorithm is too pessimistic and is severely
inconsistent.

IV.  SIMULATION RESULTS AND DISCUSSION

In addition to the theoretical analysis for channel
filter, naive fusion, and Bhattacharyya fusion, we
conducted extensive simulation for Chernoff fusion
and Shannon fusion to compare their performances
against optimal centralized fusion. The results are
shown in Fig. 6. As can be seen, in addition to naive
fusion, Shannon fusion also performs poorly. This is
because in the scalar case, Shannon fusion essentially
picks the density with smaller vanance. Therefore
the fusion performance converges to single sensor
performance when the sensor qualities are identical.

As shown in Fig. 6, the remaining three algorithms
have very similar performance. A closer look (Fig. 7)
reveals that channel filter performs close to optimal

while Chernoff fusion and Bhattacharyya fusion
perform slightly worse. Note that when all sensors
have the same quality, Chernoff fusion converges to
Bhattacharyya fusion.

We then evaluate the fusion algorithms with
different sensor qualities. Instead of homogeneous
quality as in the previous case, the sensor
measurement error variances are set as (.5, 1.0,
and 2.0 for the three sensors, respectively. The
results are shown in Fig. §, which compares the
performance of channel filter, Chernoft fusion, and
Bhattacharyya fusion versus optimal fusion. From the
figure, it is clear that channel filter performs the best,
Bhattacharyya fusion performs slightly worse, while
Chernoff fusion performs the worst among the three,
particularly when the process noise is large.

To simulate the stochastic nature of the
communication link, we model the reliability of each
link with a probabilistic measure. For example, a
link with 0.5 reliability means that the information
will pass through the channel only 50% of the time.
We then test the three fusion algorithms and their
robustness under various link reliabilities. Because
all algorithms under consideration are scalable and
autonomous, no additional changes are necessary in
the algorithms for the test. The results in Fig. 9 show
that the performances are in general proportional to
the communication quality, which is quite intuitive.
The results also show that all three algorithms
are quite stable and they perform according to
expectation.
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It should be noted that channel filter, while
requiring a one-step memory to retrieve and remove
the common prior information in each channel, has a
rather simple implementation. On the other hand, the
Chernoff fusion algorithm, in addition to its poor filter
consistency, needs significantly more computation
to search for the optimal weighting factor. Our
preliminary experiments show that channel filter is at
least one order of magnitude faster than the Chernoff
fusion. Further investigation is needed to compare the
trade-offs between these promising algorithms in a
more reliable manner.
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V.  SUMMARY

In this paper, we focus on the analysis and
comparison of several scalable algorithms for
distributed fusion in a cyclic communication sensor
network. Specifically, we evaluate the performance
of channel filter fusion, naive fusion, Chernoff
fusion, Shannon fusion, and Bhattacharyya fusion
algorithms. We also compare their performance to
“optimal” centralized fusion algorithms under a
specific communication pattern.

The results show that naive fusion and Shannon
fusion perform poorly while several other scalable
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algorithms including channel filter, Chernoff

fusion, and Bhattacharyya fusion, require minimum

communication and perform fairly well. Their

performance is comparable with that of the optimal
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fusion algorithm. In particular the channel filter

fusion, representing a first-order approximation to IG

fusion, works surprisingly well and has been shown to

CHANG ET AL.: ANALYTICAL AND COMPUTATIONAL EVALUATION

be the only “consistent” fusion algorithm.
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One of the future research directions is to extend
and validate the results to more general network
scenarios. In particular, to address the real world
network-centric tracking and fusion problems. It is
important to consider heterogeneous sensors with
different sampling interval and error characteristics
under dynamic communication topology and
constraints. It is also useful to develop theoretical
analysis for specific algorithms whenever possible for
a given network scenario.
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Scalable Fusion with Mixture Distributions in Sensor
Networks

KC Chang and Wei Sun
Dept. of Systems Engineering and Operations Research

George Mason University
Fairfax, VA 22030, USA

Abstract - Mixture distributions such as Gaussian mixture model
(GMM) have been used in many applications for dynamic state
estimation. These applications include robotics, image and
acoustic processing, distributed tracking, and multisensor data
fusion. llowever, the recursive processing of the mixture

distributions incurs rapidly growing computational requirements.

In particular, the number of components in the mixture
distribution grows exponentially when multiple of them are
combined. In order to keep the computational complexity
tractable, it is nccessary to approximate a mixture distribution by
a reduced onc with fewer components. Mixture reduetion is
traditionally done by iteratively removing insignificantly
components or merging similar ones. However, a systematic
procedure is needed in order to ensure scalability while trading-
off performance. In this paper, we propose a recursive mixture
reduction algorithm for Gaussian mixture distribution with a
given error bound. To mecet the error bound, we applied a
constraint optimized weight adaptation to minimize the
integrated squared crror (ISE) between the redueed distribution
and the original one. With extensive simulations, we showed that
the proposed algorithm provides an efficient and effective

mixture reduction performanece in distributed fusion applications.

Keywords - Gaussian mixture reduction, Constraint optimization,
Integral squared crror, distributed fusion, sensor networks.

I. INTRODUCTION

A mixturc distribution is a combination of different probability
density functions (pdfs). For example, Gaussian Mixture
Model (GMM) is a special case of mixture distribution where
a set of Gaussian pdfs are linearly combincd. It is well known
that GMM can be used to represent arbitrary probability
densities to any desircd accuracy. Due to this universal
approximation property, GMM has been employed in many
applications such as robotics [1], image processing [2],
acoustic and spcech recognition [3], multitarget tracking [4],
distributed fusion [5], and Bayesian inference [6-7].

For instancc, in content-based image retrieval (CBIR) systems
the search could be based on criteria such as color, shape,
texture or any such information. In such systems each
scmantic class can be represented by a Gaussian mixture
model. When the query is made a template GMM is provided
with the required characteristics. The distance between the
refcrence and images in the database is then calculated to find
the degree of similarity for retrieval [2][8]. Also in audio
classification, the pdf of acoustic signal frequency spectrum is
typically modeled by a Gaussian mixture model. A measure of

similarity between a reference and a given samplc is
calculated by using a pre-defined distance metric in ordcr to
classify music [9]. Similarly, in distributed nonlinear tracking,
a proper distance metric is defincd to compare/correlate two
tracks with mixture distributions [10].

However, most of these applications have to deal with the
recursive processing of the mixturc densitics. For example, in
multitarget tracking and fusion with distributed sensor
networks, the “fusion™ proccss is usually performed by
multiplication of these densities [11]. Whilc the product of
Gaussian mixtures can be computed exactly, the number of
components in the resulting mixture increascs cxponentially.
In order to keep the computational and memory rcquirements
bounded, it is essential to control this growth by
approximating the resulting mixture with fewer components.

Several methods wcre developed recently to managc mixturc
reduction. Typically, the reduction is achieved by successivcly
combining similar components or pruning away insignificant
ones. For example, Salmond [12] proposed a joining and
clustering algorithm for targct tracking in clutter and West
[13] proposed to collapse mixture componcnts by replacing
nearest neighboring components with mecrged component.
Instead of repeatedly removing mixture components, another
approach builds up the Gaussian mixturc successively to
approximate the original mixture [14-15]. Starting with a
single Gaussian density, the algorithm proposcd in [15] adds
new Gaussian components to the approximate niixturc by
splitting existing components to provide bettcr approximation.

In order to control and mcasure the performance of the
mixture reduction, various similarity mcasures were proposcd
and employed in different algorithms. For instancc, an
Integral Square Error (ISE) based cost-function approach was
developed to hypothesis control problem for multiple model
tracking algorithms [16-17], and a Kullback-Leiblcr (KL)
discrimination measure was used for the GM reduction [18].

In this paper, we first describe thc distributed fusion problem
with GMMs. We then examinc several existing GMM
reduction algorithms and develop a new approach by taking
advantages of the state-of-the-art algorithms. Thc paper is
organized as the follows. Section 2 describes thc application
of GMM in the distributed fusion problem, which is thc one
we are primarily interested in. Section 3 presents gencral
Gaussian mixture reduction algorithms and our proposcd

ICARCV2010



approach. The simulation results are presented in Section 4
followed by some concluding remarks.

11. DISTRIBUTED FUSION WITH GAUSSIAN MIXTURE

In a mixture model, a probability distribution is represented as
a linear combination of basis funetions. Specifically, a
Gaussian mixture model (GMM) can be expressed as,

f0)=F aN(x,.P) ()

wherc i"zl and N(x:i,.lj) is a Gaussian distribution
=1

component with mean vector x and covariance matrix P .

In a distributed fusion problem, assuming two GMMs,
Six)= za,,N (x:x,,P,)and [ (x)= ZarbN (x;%,,P,) are to be
fused with a
¥,
f;(X)=ZI:a,,V(x:},,,P,,)-

With a standard fusion formula {11], the fused pdf ean be
obtained as,

common prior distribution,

=lf|(x)fz(x) 2)
fl-(x) f,(x) (2
where = j’fl_(;)(ﬁ)(i)dx is a normalization constant. From (1)
(x
and (2), we h
&2 xx,,. ,, (xx,l )
(x)=— a,a (3)
s ZZ y ()
where
N W N ;“ P N
“22%““1‘ (X o ,) XXZ] Zzah 21 y (4)
1=l g=1 f;( ) = g=1

is a normalization constant. In general, the integration in
Equation (4) can not be obtained in elosed-form due to the
mixture term in the denominator. To avoid the potential
eomplexity using numerical integration, one idea is to

approximate the denominator, f,(x), with a single Gaussian
pdf. Namely,

0= Z

whcre x x5 _Za x, and P = Za,,[ +(%,- )(fs,‘;‘:)']'

With this approxlmatlon, the integration in (4) can be earried
out analytieally and equation (3) can be rewritten as,

[i(x)= zzal,azlc -N xx”,P) (6)

I|[|

(52, R =N (x5, F) (3)

where £ <[+ - 5T and 5, = [ B'5, + B, =875
Note that in the case when no common prior information was

shared by the two distributions, equation (2) becomes,

Silx)== f(X)f,(X)——Za N(x:%,.P,)

NN
Z Z"u"z:

1l

N(X:iu*”z:)
] (N

N(x;x,,P,) N(xi.iz,.f’!_)

N, N
"n"z,] N(x:%,, I’")N(x;i,,. rM ZZa,pucy

=] j=l =1 =1

I
M

= Rl 5 n N
and ) =[/’|,' +p“'] and j = ’7,[”. 5+ P,__'x,,].
With that, equation (7) can be rewritten as,

fi(x)= zza“a’“c‘” N xx,,,l’) (8)
=1 y=1

As one can see from both equations (6) and (8), thc fused

probability density function has exponentially growing number

of eomponents as morc GMs are multiplied. To ensure

sealability, it is necessary to managc the growth with a

systematic and effeetive proeedure.

111. GAUSSIAN MIXTURE REDUCTION

Given a Gaussian mixture distribution with ¥ eomponents, we
wish to approximate it by a redueed one with A components,
where Af < N. Traditionally, a mixture reduetion algorithm is
recursively eonducted such that the number of components is
reduced by repeatedly choosing two components that appear to
be most similar to each other and merging them. For example,
K-means algorithms and some variations can be applied to
cluster Gaussian mixture components in groups, use a eenter
component to represent all componcnts in each group, and
then refine the parameters in the center components based on
their members aecordingly.

West [13] proposed to eollapse mixture eomponents by simply
replacing nearest neighboring components with a single
merged eomponent. The basie routine proceeds as follows:
First, locate the component with smallest wcight. Then find
another eomponent, which is the nearest neighbor of the
selected one. Finally, merge the two components such that the
resulting eomponent is the weighted average of thc two. The
procedure is repeated until the desirable reduction of
components is achicved.

A Mixture Distance Metrics

In general, there is no single bcst way to measure the distanec
between two mixture distributions. Thcre are a few distance
metrics proposed in the litcraturc. Williams [16] used integral
squared error (ISE) as the similarity measure. Runnalls [18]
used the Kullbaek-Leibler (KL) discrimination measure. In
[10], we compared several distanee metries for mixtures
distributions. Speeifieally, we foeus on the Integral Square
Error (ISE) distance, the Bhattacharyya distance, and the
Kullback-Leibler distanee together with a general mixture
distance (GMD) [19]. Among them, ISE is the most popular
one due to its simplieity and closed forms expressions in
Gaussian ease.



Specifically, the ISE distance between two probability
distributions is defined as,

Dy = ﬂ:f(x)"](x)]z dx (9

When both f(x)and f(x) are Gaussian mixtures, equation (9)

can be carried out in closed form [20]. Note that the I1SE
distancc we used in the simulation is the square root of the
normalized version of the ISE distance, namely,

By = ;;J[f(T)-f(.*)];;’* (10)
i3 l\i II(X)ZdXiJ!](X)Z

The normalized distande varies from 0 to 1. [')m_ =0 indicates

a perfect match and p =1 is the maximum possible

distance. It can be shown that for two one-dimcnsional unit-
variance Gaussian distributions with mean X andX,

respectively,  the  normalized ISE  distance s

5 Ji-¢ ax’/a , where Ax =|I'l —Yzl. For example, a one
STD merging distance threshold described in the next section

would be y =+/1-¢* 0.47.

B. GMM Reduction Algorithm

In this section, we propose a GMM reduction algorithm based
on a combination of the enhanced West/K-mean algorithm and
a constraint optimized weight adaptation (COW A) algorithm.
Specifically, with a pre-specified error bound £ , 2 minimum
number of components x , and a distance threshold y , the

algorithm consists of the following steps:
(1) Select a component to be merged

In the first step, a normalized (by the determinant of the
covariance) weight of each component is obtained such that

W o= —— (an
et (P)

These normalized weights are used to order the GMM
components such that the component with the smallest weight
is selected as a candidate to be merged with another one that is
closest to it in the ISE sense. However, the candidate
component will be merged only when the closest neighbor is
within a pre-defined distance threshold ¥ . This is to avoid a

potential elimination of a “unique” isolated feature from the
mixture distribution. If no qualified neighbor can be found for
the current candidate, select the next one from the list with a
larger weight until a qualified nearest neighbor is found.

(2) Merge the two selected components

The chosen candidate and its qualified closest component are
merged based on the following linear combination rule,

H'" =W, = M",

u,=Au +Au,
i
P,=AP+AP + A4 (u,~u )(u-u) (2
where 4 = W:/W.-, and /1] =, w}/w,} A

(3) Apply constraint optimized weight adaptation

After each reduction step, apply the constraint optimized
weight adaptation algorithm (COWA) [20] to adjust the
weights of the reduced GMM components such that the 1SE
distance between the reduced GMM and the original one is
minimized. The details of thc adaptation algorithm arc
presented in the next section.

(4) Repcat the above steps until either no more candidates can
be found or the pre-specified stopping criterion is met. The
stopping criterion states that eithcr thc number of components
reaches the goal x or the ISE distance meets the pre-
determined threshold € .

C. Constraint Optimized Weight Adaptation

Suppose that we have initially located a Gaussian mixture of K
components to approximate an original Gaussian mixturc of N
components, where K<N. We now use constraint optimization
method to adjust the K-componcnt weights to minimize the
ISE from the original GMM. The optimization problem can be
formulated as

-2

min -[[ﬁ:(x,N(xlul.l’,)—iﬂlN(xlu;,l’,') -dx (13)

Q
K

sd. Zﬂ, =1
=0

where N(x | R, ,) denotes the i-th component of the original

multivariate Gaussian density with mean, u,, and covariance,
P,. The weights satisfyZ”la' 1. With a GMM reduction

process, the reduced GMM can be rcpresented ad,
-~ K .
f(x):lZﬂI-N(xlu,, ) (14)
1=l
where K<N and Z”J}I =1. Our objective is to find the best

set of weights {8} to minimize ISE as shown in (13). Using
the Lagrange formulation, we have

[ia,N(nu,,P,)-iﬂ,N(ﬂu;,r,')]},i(Kp,-l] (15)

It has been shown that the optimal solution for {#} can be
derived in closed forms [20], specifically,

b = H'a-H'c(c'H a-1)(c'H"c)’ (16)

|], b'E[/}l B, - /}k]

where ¢' E[l ]




T
| SNl 0. R) - SaN(1n.2;+)] 07
=) 1=
and
N(u |u;.2P)) N(u;|u,.P, +P;)
H= : 3 (18)

N(uj u, B +B) o Nfu|u, 2F)

IV.TEST AND EVALUATION

To test the algorithm, we simulate a network with a number of
cooperating sensors. Each sensor is assumed to observe an
object in a one-dimensional (ID) or two-dimensional (2D)
space and produce a mixture distribution representing its
estimate of the object state. The sensors communicate their
estimates with each other in a sequential manner where each
scnsor node is responsiblc to “fusc” the incoming estimates
with its own estimate and pass the resulting fused estimate to
the next node. For example, for a network with »n nodes,
supposc each sensor has a local statc estimate represented by a
GMM of m components. Aftcr a scquence of communication
and fusion (sensor 1 sends its estimate to sensor 2, sensor 2
combines the estimates and sends the fused results to sensor 3,
etc.), the total number of components of the resulting GMM at

the end of the process will be m” which is clearly not
desirable.

To ensure scalability, we apply the algorithm described in
Section 3 to “compress” the combined mixture distribution
before forwarding it to the next node. In order to meet thc
accuracy requirement, a pre-defined error bound in terms of
ISE distance is given so that the reduced GMM is guaranteed
to be within the specified distance to the original GMM at the
end of each fusion step.

A. Scenario |

In the first scenario, we simulate a network of eight sensors
cach estimating a one-dimensional target state with a two-
component GMM. As mentioned before, the communications
are taken place in a sequential manner whcre each sensor
participates exactly once at a particular order. Without the
reduction process, at the n™ stage of the communication chain,
the resulting GMM will have 2" components. It is the result
of the product of n GMMs each with 2 components and will
serve as the ground truth to compare the reduced GMMs.

For a sample trial, Figure | shows the local estimates (GMM
and its components) from the eight sensors before fusion.
Afier the sequential fusion, the resulting true fused GMMs and
thc corresponding reduced GMMs together with their
components are shown in Figure 2. In the trial, the simulation
parameters were set to be € =0.01, k¥ =1, and y=0.47. At

the end of the chain (sensor node 8, bottom-right of Figure 2),
the reduced (fused) GMM requires only 5 components and it is
less than 1% away (in the ISE sense) from the true GMM

consisting of 2* = 256 components.

We test the scenario with 100 Montc Carlo trials with similar
parameters and the results are shown in Figurcs 3-4. As can
be seen, with £=0.01 or £ =0.001, the crrors are well within
the bounds and the computations are relatively scalable.
When £ =0.0001, the complexity increases slightly more than
linearly to the network size whilc the accuracy is still wcll
within the bound.

B. Scenario 11

In this scenario, we simulate a network of eight scnsors cach
cstimating a 2D target state with a two-component GMM. As
in scenario 1, the communications are taken place in a
sequential manner. For a sample trial, Figure 5 shows thc
local estimates (GMM and its components) from the cight
sensors. The resulting true fused GMMs and the
corresponding reduced GMMs togcther with their components
are shown in Figures 6 and 7 respectively.

The results with 100 Monte Carlo trials shown in Figures 8-9
are very similar to the ones in Figures 3-4. It also shows that a
trade-off bctween performance and complexity could bc
achieved by selecting a proper operating point (error bound) at
each local reduction step.

V. SUMMARY

This paper presents a method to approximate a Gaussian
mixture by a smaller onc with fewer components. The method
ensures that the ISE error between the original GM and its
approximation is smallcr than a predefined threshold with a
minimum number of components. Wc also show cmpirically
that the cumulated error, afler compressing and fusion, is
somewhat boundcd. This is important for controlling thc tradc-
off between system performance and scalability particularly
for distributed estimation in a large sensor nctworks. We
conducted extensive tests with a distributed fusion scenario.
The simulation results demonstrate the validity and scalability
of the algorithm. The results also suggest a simple approach
to control the trade-off between the performance and the
complcxity.

To ensure scalability and undcrstand the theoretical
performance bounds, one important future rcsearch direction is
to analyze the propagation of the local error bounds over
multiple fusion steps and to conduct the convergence analysis
of the algorithm. In addition to distributed fusion, another
potential application of the algorithm is for probabilistic
inference in hybrid Bayesian Nctworks as described in [6-
7][21]. In these networks, mcssages in tcrms of mixture
distributions are propagated between discrete and continuous
nodes. The infercnce process involves multiplication of
multiple mixture densities.  Further rescarch along this
direction is critical in order to manage the complexity of
probabilistic inference in hybrid dynamic Bayesian nctworks.
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Fusion and Gaussian Mixture Based Classifiers for SONAR Data
Vikas Kotari * and KC Chang®
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ABSTRACT

Underwater mines are inexpensive and highly effcctive weapons. They are difficult to detcct and classify. Hencc
detcction and classification of underwatcr mines is essential for the safety of naval vessels. This neccssitatcs a
formulation of highly efficient classifiers and detection techniques. Current techniqucs primarily focus on signals from
one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, wc formulated a
fusion-based classifier and a Gaussian mixture model (GMM) based elassifier for classification of underwater mines.
The emphasis has been on sound navigation and ranging (SONAR) signals duc to their extensive use in current naval
operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI)
repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior
classification accuracy over conventional single source cases and validate our approach.

Keywords: Data Fusion, Gaussian Mixture model, SONAR, detection and classification

1. INTRODUCTION

Protecting a nation’s ocean border is very important for its defcnse. A nation’s oceans can be attackcd in a varicty of
ways of which naval mines are the easiest. Underwater mines can easily flood oceans. Since 1950, naval mines have
been responsible for more ship causalities on US fleet than all other threats combincd [1]. They have also been
accounted for damage to local economies, marine life, and sailor life. These underwater mines are very inexpcnsive to
acquire and dcploy yet highly destructive. Underwater mines comc in variety of typcs such as, bottom mincs, shallow
mines, and magnetic mines. Irrespective of the type their lethality is high. This combined with the difficulty in detecting
and classifying them makes them highly effective. This necessitates a formulation of efficient classifiers and detection
techniques. Most prevalent mcthods of classification focus on signals from single sourcc, such as learned classification
using massively parallel networks [2], MML inference of oblique decision trees [3], and sccond order cone programming
approach [4]. Although some data fusion based methods, such as algorithm fusion [5] and computer aidcd detection and
fusion [6] have been proposed, the application of these methods is limited due to their complexity. Each of the
aforementioned methods has limitations in terms of accuracy and applicability.

Data fusion is traditionally applied for command and control operations. However reccntly data fusion techniqucs are
being employed for classification purposcs [7]. Similarly, Gaussian mixtures are well established mcthods that have been
extensively used in speech recognition and other classification applications [8]. But thcir use in undcrwater mine
classification is limited.

In this paper, we propose a fusion based classifier and a Gaussian mixture based classificr. These classifiers have been
applied to SONAR data due to its extensive use in practice. The goal is to investigate the proposcd classifiers and to
evaluate its performance. The remaining of the paper is organizcd as follows. Section 2 dcscribes briefly about the
SONAR data we will be testing and describes some initial classification analysis. Scction 3 presents the data fusion
classifiers and Section 4 explains the Gaussian mixture classifiers. Section 5 presents the performance results in terms of
receiver operator characteristic (ROC). Section 6 summarizes our study and proposcs some future research directions.




2. INITIAL DATA ANALYSIS

Almost all naval vessels use SONAR systems extensively. This is attributed to their cost cffectiveness, detection
accuracy and ease of use. Therefore our focus will be on classification with these SONAR signals. To this end we
obtained data from UCI repository. This data consisted of 208 returns from a SONAR system. Of the 208 returns 111
were returns bouncing off from a mine at different depths and angles and 97 were from a rock. The aspect angles of the
signals varied from 90 degrees to180 degrees. The signal strength in the data represents the cnergy at a particular
frequency band. Each data set consists of a vector of 60 elements [9]. The data are represented in figure | and figure 2
below. Figure | presents the signal received from mine detection Figure 2 presents the signal from rock detection. Figure
3 shows the high similarity between the rock and mine templates created from the average of the signals. To understand
the data quality, a simple but efficient nearest neighbor method using Euclidean distance was used to determine thc
Bayesian bound. Euclidean distance is a special case of L, norm, where k =2. For a d-dimensional space, the Ly norm is
defined as,

L(x,y) = }d:(llx' -y ()
i=1

It was observed from the SONAR data set that the classification accuracy was 82.69% based on nearest neighbor.
Therefore, the Bayesian performance bound would be B, <1-1(1-0.8269)=0.9134 =91.34%[10].
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Figure 1. Signal for Mine Detection
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Figure 3. Mine and Rock Signal Templates

After the Bayesian bound analysis, initial classification was performed on the entire dataset by dividing the data into
training and testing datasets. Among the 208 data samples all the even samiples were treated as training datasets and odd
samples as testing datasets. After which every single data point from the testing case was compared to every other data
point in the training data set. The Euclidean (L2) distance was initially used to determine the k-nearest neighbor (KNN).
Based on the similarity of a sample with the training data set, it was determined if the neighbor was cither a rock or a
mine. This process of classification was repeated for different values of k (i.e.. number of neighbors). Due to limited
number of data samples, this approach resulted in relatively poor performance. We then repeated the analysis by
converting the data to GMMs, which is detailed in section 4. For GMM, the Euclidean distance was replaced by integral
square error (ISE) distance. The Integral Square Error (1SE) distance is defined as [11]:



Js=I (g00)~h(x))dx = I{gz(x)-2g(x)h(x)+h2(x) dx } (2)

where g(x)and #(x) represent two density functions. For GMM, the ISE distance can be obtained in close form [11].

The GMM method resulted in an increased accuracy of 85.09%. It was observed that the GMM method performs
superior to the conventional kNN classifier based on Euclidean distance.

3. DATA FUSION BASED CLASSIFIERS

Data fusion systems combine data from multiple sources/sensors to improve situation asscssment. This is done to
increase accuracies and achieve better inferences than achieved by a singlc sensor alone. Historically, developed for
command control communication and intelligence applications, they are currently finding a plethora of possibilities in
areas ranging from manufacturing to medicine. One such application is in classification. Fusion based classifiers were
developed because of their advantages ovcr single source based classifiers. Some of the advantages of data fusion are
robust operational performance, increased spatial and temporal coverage, incrcased confidence, and reduced ambiguity
[12]. The data fusion approach in this work was applied in a two-fold manner, whcrein the first approach was to combine
data and the other was to combine decision.

In the first approach, we form an augmented data vector by combining each data with every other sct of data from the
same source to emulate data received from a 2-sensor scenario. The combination process rcsulted in a significant number
of synthetic data set. In each data set, the number of elements increases from 60 to 120. Each of these 120 element vector
represents either a rock or a mine, detected by 2 SONAR sensors. This process is to simulate a centralized 2 scnsor
fusion scenario. The combined data was tested and the nearest neighbor was found over the entire data to dctermine the
accuracy. Because of the cnhanced performance due to sensor fusion, the accuracy had substantially incrcased to 94.34%
and thc corresponding Bayesian bound also increased to 97.17%. Employing the kNN based approach described in
section 2 for the data fusion case, the performance of the classifier also increased significantly. This can evidently bc
attributed to the advantagcs of the sensor fusion approach.

Although the accuracy was substantially superior for data fusion approach, the communication requirements for the
centralized data fusion case were high. Another approach is to use decision fusion based classificrs. In decision fusion,
instead of rclaying all the 120 bits (each sensor contributes 60 bits of data) of the data, only one bit indicating (decision)
whether the data is rock or mine is communicated and fused. This reduces the bandwidth by more than 99%. The XOR,
the OR and, the majority vote fusion rules were tested. For the OR rule, as long as one of the two scnsors classifics the
object as a mine, the object was classified as a mine. The accuracy in this case was about 77.59 with L2 distance. As
expected the XOR rule performed inferior to the OR rule. This is because XOR classified a return as a rock even if onc
sensor called the objcct the rock. The accuracy with the samc L2 case reduced to 64.6%. The majority fusion rule
considered 3 sensors and used 2/3-majority vote, which produced best overall accuracy of 88.03% as cxpected. It is clear
that the dccision fusion approach would perform worse than the centralized fusion case due to significantly reduccd data
quantity. However, when communication bandwidth is paramount to the system, then decision fusion could be a good
alternative.

4. GAUSSIAN MIXTURE BASED CLASSIFIERS

Gaussian Mixture Model (GMM) is a special case of mixturc distributions where a sct of Gaussian densitics is lincarly
combined. Mixturc distributions subsist in many applications, such as specech recognition, image retrieval, nonlinear
filtering, and target tracking [8][11][13][14]. Gaussian mixture model (GMM) is typically used in classification
applications to model thc probability density function (PDF) of a signal’s frequency spcctrum. A similarity measurc is
calculated with respect to a reference sample to classify data. It is therefore natural to formulate a GMM based classifier
for SONAR data.

The acquired UCI data was first converted to GMMs using expectation maximization (EM) method. Once the data was
converted to Gaussian mixtures the classifier was trained. The integral square distance (ISE5) was used to measurc thc




similarity between the data sample.

It was observed that the classification performance based on ISE distance is superior to other distance metrics in a high
signal to noise ratio cases [15]. For the case of 60 (full data size) terms GMM, thc accuracy was 85.09% with the
Bayesian bound increased to 92.51%. To test the tradeoff between complexity and performance, we reduced the number
of terms in GMM from 60 to 20 and lower. It was observed that with 20 terms, the accuracy reduced to 83.65%, which is
still better than the performance based on the original data using L2 norm distance. We applicd the similar fusion
method described in the previous section to the GMM data. It was observed that the accuracy improved to 92.59%.

We also tested the decision fusion performance based on the GMM converted data. ISE distancc metric was used with
ncarest neighbor approach analogous to the previous case. The accuracy valucs for OR, XOR and majority votc fusion
rule were 79.22%, 67.16%, 89.88% respectively. Again, they perform slightly better than the case with the original data
described in Section 3.

5. ROC CURVE ANALYSIS

Designed initially for RADAR systems, the receiver operation characteristic curve is a standard mectric to measure a
classifier’s performance. These curves were obtained by varying the detection threshold to observe thc tradeoff betwcen
probability of detection and probability of false alarm. With the original data, the resulting ROC curves for the single
sensor and two-sensor centralized fusion cases are shown in figure 4. It is cvident that the two-sensor case pcrforms
significantly better than the single sensor case.

To test the trade-off betwcen communication requirements and performance for the centralized fusion, we lowered the
communication requirements by transmitting only partial data. The results are presented in Figurc 5. It can bc observed
that with 1/3" of the data transmitted (every third data point, a total of 20 data points for each sensor obscrvation), the
classification performance was only slightly worse than the one with full data rate. Similarly it can be seen that when
only 1/12" of the data points from each sensor were transmitted for fusion, the performance was much poorer but was
comparable to the single sensor case.

Similar analysis was performed based on GMM approach with the ISE distance. The ROC curves were generated for
two-scnsor case for both GMM and the original data. The plot showing the ROC curves for both ISE and L2 distancc
case are presented in Figure 6. It can be seen from the figurc that the performance of both approaches are comparable
although the GMM approach works marginally better at lower detection thresholds (higher false alarm rates).
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Figure 4. ROC curvc for two-sensor case and singlc-sensor case




ROC Cunvwe showing communication bandwidth tradeoff
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Figure 5. ROC curve showing tradeoff between communication bandwidth and performance.

ROC Cunwe showing GMM and data fusion case for 60 terms
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Figure 6. ROC curve showing ISE distance and L2 distance methods

The majority of this study has focused on using Euclidean distance, which uses the 1.2 distance. It has bcen shown that
for high dimensional data, the performance improves with reduced ordcr of the distance (L) [16][17]. We testcd the
effectiveness of the classifiers by varying the distance parameter of L distance. The results arc prescnted in lFigurc 7. It
can be seen from the figure that while the classification performance does not change too much between L1-norm to
L10-norm distance, a significant jump in performance was observed when the distance mcasure gocs from LI to
fractional distance. This is consistent with the observation in [18] where the fractional distance provides significant
performance improvements for high dimensional data over Manhattan distance (L.1) and Euclidean distance (L.2). We
then varied the values of L-norm distance metric to obtain the ROC curves. Figure 8 presents the ROC curves with L
values varying from 0.5 to 5 for single sensor case and Figure 9 presents similar ROC curves for two sensor centralized




fusion case. It is interesting to observe that as the values of L decreased from 5 to 0.5 the performance of the classifier
improved greatly.
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Figure 8. ROC curve showing varying L values for single sensor casc.




ROC curwe showing different values of L for centralized fusion case
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Figure 9. ROC curvc showing varying L values for centralized fusion case.

6. SUMMARY

We focus on formulation of fusion based and GMM based classifiers for application on SONAR signals. We perform
extensive simulations to test the validity of our approach. In our analysis we havc observed that GMM based nearcst
neighbor classifiers using ISE distance metric perform analogous to conventional Euclidean distancc mctric ncarest
neighbor classifiers. We have also observed that thc performance of muiti-sensor based centralized fusion classifiers is
superior to single source methods. Since the communication bandwidth requirements for the ccntralized fusion bascd
classifier 1s very high, compressed versions of the data with or without GMM can bc communicated and classification
can be performed with reduccd bandwidth. We have observed that this data compression approach limits the
communication bandwidth usage whilc performs superior to the conventional nearest neighbor methods with the singie
sensor data. When the communication bandwidth is extremely limited, we propose to fuse decisions in place of data. The
simulation results showed that the dccision fusion approach could be highly efficient with some performance
degradation. We have also tested the influence of various L-norm distances on this high dimensional data and observed
that fractional L-norm distance perform superior to higher order L-norm distance.

One of the future research directions is to test the applicability of the classifiers with data from various other types of
sensor system. They include SONAR systcms, vidco systems, and other imaging techniques. Another research direction
is to perform communication bandwidth tradeoff studies on fusion pcrformancc with muiti-modality data. We aiso
intend to investigate the possibility of identifying the optimal L-norm distance for various typcs of high dimensionai
data.
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