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Abstract 

Distributed sensor networks seek to enable adaptive and cognitive behavior in networked 
information systems. These networks will exhibit truly ad hoc behavior as they adapt in 
situ to maintain or optimize operations under various conditions. Network topologies and 
membership may change in response to unpredictable variations in conditions such as 
spectrum availability, link conditions, power and energy constraints, latency, and 
routing. As a distributed system of devices, networks must support truly decentralized 
information exchange, and fusion. 

Under the ONR Grant: #N000140711211, George Mason University has been developing 
a distributed fusion methodology that is both analytically tractable and can be readily 
implemented in a distributed and autonomous manner. The method is grounded in set- 
theoretic derivations of information fusion where we develop information genealogy to 
provide a global view of distributed fusion events for each agent under adverse operating 
conditions. The technique requires no a priori knowledge of network topology, or 
communications patterns and is applicable to both low-level and high-level fusion 
processes with disparate sensors comprised of traditional and non-traditional data types. 

This report summarizes our research progress for the performance period from Sept. 2007 
to Dec. 2010. Note that GMU received a no-cost extension of the project to June 2011. 



1. Introduction 

Current US Navy and Department of Defense (DoD) networking systems are increasing 
in utilization and complexity. An ongoing theme across US military operations is the 
time-intensive, labor-intensive, cognitive effort required to maintain situation awareness 
for rapid and accurate decision making. Whether the work domain is network operations 
management, ISR management, or battle management, the common issue is to find and 
fuse and continuously convert disparate data into actionable information. 

In network-centric architectures such as FORCEnet in Navy's operational construct, a 
global information grid is proposed to be implemented through the use of mobile ad hoc 
systems to form sensor networks. These networks will have the capability to collect vast 
amounts of disparate and complementary information from geographically dispersed 
sources throughout the battlespace. In the architecture, there is neither a fixed central 
data fusion site nor a central communication facility. Instead, the data are either 
processed or fused at each network node and these nodes communicate on a point-to- 
point basis. The network topology, which may be unknown, is assumed to be changing 
dynamically. 

Under the current effort, GMU is developing innovative mathematically rigorous 
methods for combining data from multiple sources to provide the best estimate of objects 
and events in the battlespace. Specifically, the key challenge for this research is to 
develop autonomous fusion algorithms designed for ad hoc wireless network operating 
under severe communication constraints. These algorithms must be able to scale to large 
numbers of entities and to combine many disparate types of data. 

In particular, we have been working four components of research described below: 

• A mathematical foundation for ad hoc sensor networks with arbitrary connectivity 
and message delays as well as random or non-synchronous local sensing and 
communication rates while minimizing the amount of data exchanged between 
agents to ensure accurate and unbiased results. 

• 

• 

• 

A set of practical and robust autonomous fusion algorithms for propagating 
uncertainty through the integration process and a methodology for the comparison 
and selection of fusion rules, communication architecture, and deployment 
configuration of distributed sensor networks. 

Complementary multi-level dynamic Bayesian network (DBN) modeling and 
inference algorithms that provide the infrastructure to aggregate traditional and 
non-traditional data from disparate sources at each fusion level. 

A general framework for quantifying the operational characteristics of ad hoc 
sensor networks, a set of metrics for evaluating the operational performance of a 
sensor network, and evaluating the fusion performance of multiple, asynchronous 
sensors of varying quality. 



2. Project Tasks 

The general research tasks for this research are summarized thus: 

1. Conduct research to develop theories and innovative algorithms and software for 
distributed sensor system to enable the synergistic fusion and interpretation of 
data from disparate sensors (traditional and non-traditional data sources) 

• Develop set-theoretic information fusion theories based on information graph 
and information genealogy to provide a solid foundation for distributed 
fusion. 

• Develop scalable and autonomous fusion algorithms with dynamic 
communications characteristics to be implemented in distributed agents. 

• Develop fusion performance modeling and evaluation methodologies with a 
set of defined performance metrics. 

• Develop methodology and software prototype to validate and evaluate the 
performance of the fusion algorithms. Provide performance assessment for a 
simulated networking system to be analyzed and validated. 

2. Perform model development and engineering analysis as required to support the 
research initiates as defined by the ONR Program Manager. 

• Perform technical development in collaboration with other performers. 
• Initiate technology transfer to industry or government as specified by ONR. 

3. Support the technical exchanges and special studies as required by the ONR 
Program Manager. 

• Attend and participate in technical interchange meetings at the ONR-specified 
locations to discuss technical issues related to the research tasks. 

• Lead and participate in special studies as required. 
• Document and distribute the technical findings and the simulation results as 

needed. 

4. Management and Reporting. 

• Prepare monthly financial reports and semi-annual technical progress reports. 
• Prepare annual progress review and comprehensive annual technical reports. 



3. Project Schedule and Milestones 

The project Work Plan Schedule is provided in Table Specific milestones include: 

Preliminary Software Prototype at the end of year 1 and 2 
- Interim MATLAB prototype for initial testing (completed) 
- Test scalability and autonomy through simulation (completed) 

Final Software Prototype available at the end of year 3 
- Verified analytical performance bounds with defined metrics (completed) 
- Confirmed performance prediction through Monte Carlo simulation 

(completed) 
- Final MATLAB prototype for complete capability testing (completed) 

Transition Readiness Level: TRL 3 at the end of the year 3 
- Basic principles coded, experiments with synthetic data (completed) 
- Limited functionality implementations, experiments with small 

representative data sets (completed) 

Table 1. Work Plan Schedule 

Tasks Month 
1-6 

Months 
7-12 

Months 
13-18 

Months 
19-24 

Months 
25-30 

Months 
31-36 

1 a Develop set-theoretic information fusion theories and 
information genealogy for distributed fusion 

Lb Develop scalable and autonomous fusion algorithms 

1.c Develop fusion performance modeling and metrics 

1.d Develop software prototype to validate performance 

2. Participate technology transfer as specified by ONR 

3. Support ONR technical exchanges as required 
<•          <•          o          <•          o 

4. Prepare project progress review and technical reports 
<•           O           <•           <•           O     *N 



6. Project Management 

This research project is directed by Dr. K.C Chang of George Mason University, who is 
devoting 20% of his time during the academic year and six weeks during the summer to 
this research. The research effort is performed by Dr. KC Chang (PI) together with 
several graduate students. Specifically, 

• Two PhD student, Mr. Todd Martin (part-time) and Mr. Rommel Carvalho (full 
time), who has been working on (1) the development of a mathematical 
foundation and analytical methodology for distributed genealogy based fusion, (2) 
defining metrics to quantify the overall performance of the systems, and (3) 
developing analytical methods to predict fusion performance assessments given 
the newly developed algorithms. 

• One MS student, Mr. Vikas Katori (full time), who has been working on 
developing (1) a modeling and simulation environment with MATLAB to support 
specification and performance evaluations, and (2) a set of representative 
scenarios and the validation of the proposed methodologies under a range of 
operating conditions. 

Note that GMU received a no-cost extension in late 2010. The original project end date 
was extended from Dec. 2010 to June 2011. 



7. Technical Progress 

The principal issues in the design and deployment of sensor network systems include: 

• An architecture that decides where and how the sensor reports are fused and the 
methods to avoid duplicate information 

• Methods for optimizing sensor allocation and fusion rules for large-scale 
programmed or ad hoc networks 

• Performance evaluation and trade-off analyses of different design architectures as 
regards to survivability, performance, data transfer and computational 
requirements 

• Communication issues and bandwidth considerations that impact the choice of 
data processing and quantization approaches for sharing data amongst fusion 
nodes 

While researchers in the field of sensor and data fusion have advanced significantly 
during the last decade, these algorithms have been limited for the most part to relatively 
well-defined network architectures. 

7.1 Technical Accomplishments 

The theoretic fundamentals of distributed information fusion are well documented and 
have been studied in depth. It is noted, however, that practical applications of these 
theoretical results to non-deterministic information flow has remained a challenge. The 
main difficulty is the need to identify and remove common information from data sets to 
be fused, while minimizing the amount of data exchanged between agents. 

In the first two years of the project, we have been developing rigorous mathematical 
foundation and a set of algorithms for distributed fusion in dynamic networks. In 
particular, we have been focused on the following research: 

• A mathematical foundation based on information genealogy for networked sensor 
fusion with arbitrary connectivity and message delays as well as a set of practical 
autonomous information fusion and dissemination algorithms. We have 
documented and published several papers on this area [1-4]. The papers were 
well received. Specifically, the paper published in Fusion 2008 [1] was the 
runner-up of the best paper award (top 1% of the 300+ papers). A reprint of the 
journal paper [8] is attached in the report. 

• Complementary multi-level dynamic Bayesian network (DBN) modeling and 
inference algorithms that provide the infrastructure to aggregate traditional and 
non-traditional data from disparate sources at each fusion level. We have 
documented and published several papers on this area [5][7]. Specifically, the 
paper published in Fusion 2009 [5] received one of the best student paper awards. 

Our overall goal is to provide provable methodologies which follow directly from 
theoretical developments and to provide quantitative actionable performance prediction 
measures. 



During the last year of the effort, we have been focused on the following technical areas: 

• Scalable inference in distributed hybrid Bayesian network - This is an important 
area for research but remains a difficult task because of its potentially arbitrary 
distributions and possible nonlinear dependence relationships between variables. 
In the past year, we have conducted significant research in this area and have 
developed a new scalable method under a framework of message passing. We 
proposed a unified computing scheme of messages propagating between different 
types of variables. We have documented and published several papers on this 
area [6][9][ 12][ 14]. A reprint of the journal paper [6] is attached in the report. 

Mixture distribution representation and metrics for scalable fusion - Mixture 
distributions have been used in many applications for dynamic state estimation 
including distributed tracking, and multisensor fusion. However, the recursive 
processing of the mixture distributions incurs rapidly growing computational 
requirements. In order to keep the computational complexity tractable and to 
ensure scalability while trading-off performance, we developed a recursive 
mixture reduction algorithm with a given error bound. We have documented and 
published our work in [11][13]. A reprint of the paper [13] is attached in the 
report. 

Test real data - We have identified several data sources to test and validate our 
algorithms. Specifically, the first data set is for under water mine detection with 
acoustic sonar sensor. The data set is obtained from UC Irvine data repository. 
We applied and test our algorithm to combine multiple acoustic sensor data to 
emulate sensor fusion for mine detection. We have obtained some preliminary 
results and the it will be published in a paper [15]. A reprint of the paper is 
attached in the report. The second data set is for land mine detection with ground 
penetrating radar sesnor. This Ground Standoff Mine Detection System 
(GSTAMIDS) data set is obtained from Dr. Ken Hintz of George Mason 
University with the permission from Dr. Pete Howard from the Army. Since 
there was only one type of sensor data, we were not able to emulate and 
demonstrate the sensor fusion process with this data set. 

Technology transfer - We have been working with several small businesses to 
apply our technology to other applications. For example, we have been working 
with Dr. Chris Smith of Decisive Analytic Corporation to apply the scalable 
fusion technique we developed in this effort for missile defense application [II]. 
We have also worked with Dr. Craig Agate of Toyon corporation on applying our 
fusion techniques for ad hoc UAV sensor networks [16]. 
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Hybrid Bayesian Networks: 
Representation, Propagation, 

and Integration 
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The traditional message passing algorithm was originally 

developed by Pearl in the 1980s for computing exact inference 

solutions for discrete polytree Bayesian networks. When a loop 

is present in the network, propagating messages are not exact, 

but the loopy algorithm usually converges and provides good 

approximate solutions. However, in general hybrid Bayesian 

networks, the message representation and manipulation for 

arbitrary continuous variable and message propagation between 

different types of variables are still open problems. The novelty of 

the work presented here is to propose a framework to compute, 

propagate, and integrate messages for hybrid models. First, we 

combine unscented transformation and Pearl's message passing 

algorithm to deal with the arbitrary functional relationships 

between continuous variables in the network. For the general 

hybrid model, we partition the network into separate network 

segments by introducing the concept or interface node. We 

then apply different algorithms for each subnetwork. Finally 

we integrate the information through the channel of interface 

nodes and then estimate the posterior distributions for all hidden 

variables. The numerical experiments show that the algorithm 

works well for nonlinear hybrid BNs. 
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Bayesian network (BN), also known as probability 
belief network, causal network, |7, 23, 24] is a 
graphical model for knowledge representation under 
uncertainty and a popular tool for probabilistic 
inference. It models dependence relationships between 
random variables involved in the problem domain by 
conditional probability distributions (CPDs). In the 
network, CPD is encoded in the directed arc linking 
the associated random variables. The random variables 
that have arcs pointing to other random variables 
are called parent nodes and the random variables 
that have incoming arcs are called children nodes. 
The most important property of the BN is that it 
fully specifies the joint distribution over all random 
variables by a product of all CPDs. This is because 
each random variable is conditional independent 
of its nondescendant given its parents. Factoring 
reduces the numbers of parameters representing 
the joint distribution and so saves the computations 
for reasoning. One of the important tasks after 
constructing the BN model is to conduct probabilistic 
inference. However, this task is NP-hard in general 
[8]. This is true even for the seemingly easier task 
of finding approximate solutions 110]. Nevertheless, 
for some special classes such as discrete polytree 
or linear Gaussian polytree networks, there exists 
an exact inference algorithm using message passing 
[24] that could be done in linear time. In the past 
decades, researchers have proposed a great number of 
inference algorithms for various BNs in the literature 
112]. They can be divided into two basic groups: exact 
and approximate algorithms. Exact inference only 
works for very limited types of networks with special 
structure and CPDs in the model. For example, the 
most popular exact inference algorithm—Clique tree 
|20, 28], also known as junction tree or clustering 
algorithm [13]—only works for a discrete network 
or the simplest hybrid model called conditional linear 
Gaussian (CLG) |18]. In general, the complexity 
of the exact inference is exponential to the size of 
the largest clique1 of the triangulated moral graph 
in the network. For networks with many loops or 
general hybrid models that have mixed continuous and 
discrete variables, the intractability rules out the use of 
the exact inference algorithms. 

For probabilistic inference with hybrid models, 
relatively little has been developed so far. The simplest 
hybrid model CLG is the only hybrid model for which 
exact inference could be done. The state-of-the-art 
algorithm for exact inference in CLG is Lauritzen's 
algorithm [17, 19]. It computes the exact answers in 
the sense that the first two moments of the posterior 
distributions are correct, while the true distribution 
might be a mixture of Gaussians. In general, the 
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hybrid model may involve arbitrary distributions and 
arbitrary functional relationships between continuous 
variables. It is well known that no exact inference is 
possible in this case. However, approximate methods 
have been proposed [6, 16] to handle different hybrid 
models. In recent years, researchers also proposed 
inference algorithms using mixture of truncated 
exponentials (MTE) [9, 21] to approximate arbitrary 
distributions in order to derive the close-form solution 
for inference in hybrid models. 

Generally, there are three main categories of 
approximate inference methods for BNs: model 
simplification, stochastic sampling, and loopy 
belief propagation. Model simplification methods 
simplify the model to make the inference algorithm 
applicable. Some commonly applied simplification 
methods include the removal of weak dependency, 
discretization, and linearization. Stochastic sampling 
is a popular framework including a number of 
algorithms, such as likelihood weighting (LW) 
[II, 27] and the state-of-the-art importance sampling 
algorithm called adaptive importance sampling 
(AIS-BN) for discrete BNs [5]. The major issue 
for sampling methods is to find a good sampling 
distribution. The sampling algorithm could be very 
slow to converge or in some cases with unlikely 
evidence, it may not converge even with a huge 
sample size. In recent years, applying Pearl's 
message passing algorithm to the network with 
loops, so-called "loopy belief propagation" (LBP) 
[22, 29], has become very popular in the literature. 
Although the propagating messages are not exact, 
researchers found that LBP usually converges, and 
when it converges it provides good approximate 
results. Due to its simplicity of implementation 
and good empirical performance, we propose to 
extend LBP for approximate inference for hybrid 
model. Unfortunately, because of the differences in 
representation and manipulations of messages with 
discrete and continuous variables, there is no simple 
and efficient way to pass messages between them. In 
[30], the authors use general nonparametric form to 
represent messages and formulate their calculation by 
numerical integrations for hybrid models. The method 
requires extensive functional estimations, samplings, 
and numerical integrations, and therefore is very 
computational intensive. 

Under the framework of a message passing 
algorithm, first of all, we need to find a general way 
to represent messages. Essentially, messages are 
likelihoods or probabilities. In discrete case, messages 
are represented and manipulated by probability 
vectors and conditional probability tables (CPTs) 
which is relatively straightforward. For continuous 
variables, however, it is more complicated for 
message representation and manipulation as they 
may have arbitrary distributions. In this paper, we 
propose to use the first two moments, mean and 
variance, of a probability distribution to represent 

the continuous message regardless of its distribution. 
This simplification makes message calculation and 
propagation efficient between continuous variables 
while keeping the key information of the original 
distributions. Furthermore, to deal with the possible 
arbitrary functional relationship between continuous 
variables, a state estimation method is needed to 
approximate the distribution of a random variable 
that has gone through nonlinear transformation. 
Several weighted sampling algorithms such as 
particle filtering [1] and Bayesian bootstrapping 
[2] for nonlinear state estimation were proposed in 
the literature. However, we prefer to use unscented 
transformation [14, 15] due to its computational 
efficiency and accuracy. Unscented transformation 
uses a deterministic sampling scheme and can 
provide good estimates of the first two moments 
for the continuous variable undergone nonlinear 
transformation. For arbitrary continuous network, 
this approach we called unscented message passing 
(UMP) works very well [25]. But in the hybrid 
model, message propagation between discrete and 
continuous variables is not straightforward due to their 
different formats. To deal with this issue, we propose 
to apply conditioning. First we partition the original 
hybrid BNs into separate, discrete, and continuous 
network segments by conditioning on discrete parents 
of continuous variables [26]. We can then process 
message passing separately for each network segment 
before final integration. 

One of the benefits of partitioning networks is 
to ensure that there is at least one efficient inference 
method applicable to each network segment. In hybrid 
networks, we assume that a continuous node is not 
allowed to have any discrete child node. Therefore, 
the original networks can be partitioned into separate 
parts by the discrete parents of continuous variables. 
We call these nodes the interface nodes. Each 
network segment separated by the interface nodes 
consists of purely discrete or continuous variables. 
By conditioning on interface nodes, the variables in 
different network segments are independent of each 
other. We then conduct loopy propagation separately 
in each subnetwork. Finally, messages computed in 
different segments are integrated through the interface 
nodes. We then estimate the posterior distribution of 
every hidden variable given evidence in all network 
segments. 

The algorithm proposed in this paper aims to 
tackle nonlinear hybrid models. We believe that the 
proposed combination of known efficient methods 
and the introduction of interface nodes for hybrid 
network partition makes the new algorithm a good 
alternative for inference in nonlinear hybrid models. 
The remainder of this paper is organized as follows. 
Section II first reviews Pearl's message passing 
formulae. We then discuss the message representation 
and manipulation for continuous variable and how 
to propagate messages between continuous variables 
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with nonlinear functional relationship. Section III 
describes the methods of network partition and 
message integration by introducing the concept of 
interface nodes. We show how message passing can 
be done separately and finally integrated together 
via the channel of interface nodes. Section IV 
presents the algorithm of hybrid message passing 
by conditioning. Several numerical experiments are 
presented in Section V. Finally, Section VI concludes 
the research we have done in this paper and suggests 
some potential future work. 

II.    MESSAGE PASSING: 
PROPAGATION 

REPRESENTATION AND 

Pearl's message passing algorithm [24] is the first 
exact inference algorithm developed originally for 
polytree discrete BNs. Applying Pearl's algorithm in 
the network with loops usually provides approximate 
answers, and this method is called LBP. Recall that 
in Pearl's message passing algorithm, ex and ex 

are defined as the evidence from the subnetwork 
"above" a node X and the subnetwork "below" X, 
respectively. In a polytree, any node X d-separates 
the set of evidence e into {ex,ex}. In the algorithm, 
each node in the network maintains two values called 
A value and 7r value. A value of a node X, defined as 

A(X) = P(ex | X) (1) 

is the likelihood of observations ex given X. IT value 
of a node X, defined as 

n(X) = P(X\e+) (2) 

is the conditional probability of X given ex. 
The belief of a node X given all evidence is 

the normalized product of TT value and A value. 
Each node, after updating its own belief, sends new 
A message to its parents and new n message to 
its children. For a typical node X with m parents 
T(7i,7"2,...,7m) and n children Y(YvY2,...,Yn) as 
illustrated in Fig. 1, the conventional propagation 
equations of Pearl's message passing algorithm can 
be expressed as the following [24]: 

BEL(X) = a7r(A-)A(X) 

n 

J=1 

n(X) = Y,P(X\T)Hnx(Ti) 

(3) 

(4) 

(5) 
f=l 

Xx(J]) = Y,MX)^2P(X\T)Y[nx(Tk)      (6) 
X Tk.k?i kjti 

Try (X) = a IIv*> 
k*j 

n(X) (7) 

r: messages hi children 

Fig. 1.    Typical node X wilh m parents and n children. 

where \Y(X) is the A message node X receives from 
its child y, Ax(7,') is the A message X sends to its 
parent 1]\ 7rx(7J) is the 7r message node X receives 
from its parent 7J, 7rv(X) is the 7r message X sends 
to its child Yf, and a is a normalizing constant. 

When this algorithm is applied to a polytree 
network, the messages propagated are exact and so are 
the beliefs of all nodes after receiving all messages. 
For the network with loops, we can still apply this 
algorithm as the "loopy propagation" mentioned 
above. In general, loopy propagation will not provide 
the exact solutions. But empirical investigations on its 
performance have reported surprisingly good results. 

For discrete variables, messages could be 
represented by probability vectors, and the conditional 
probability table of node X given its parent T, 
P(X | T), could be represented by a matrix. Therefore 
the calculations in the above formulae are the 
product of vectors and multiplication of vector and 
matrices, which can be carried out easily. However, 
for continuous variables, message representation 
and the corresponding calculations are much more 
complicated. First, an integral replaces summation in 
the above equations. Furthermore, since continuous 
variable could have arbitrary distribution over the 
continuous space, in general it is very difficult to 
obtain exact close-form analytical results when 
combining multiple continuous distributions. In order 
to make the computations feasible while keeping 
the key information, we use the first two moments, 
mean and variance, to represent continuous message 
regardless of the original distribution. Then, the 
product of different continuous distributions could 
be approximated with a Gaussian distribution. Note 
that for the continuous case, P(X | T) is a continuous 
conditional distribution, and it may involve an 
arbitrary function between continuous variables. To 
integrate the product of continuous distributions as 
shown in (5) and (6), it has to take into account the 
functional transformation of continuous variables. 
Fortunately, unscented transformation [14, 15] 
provides good estimates of mean and variance for the 
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continuous variables through nonlinear transformation. 
In our algorithm, unscented transformation plays 
a key role for computing continuous messages. 
Specifically, we use it to formulate and compute the 
n and A messages since both computations involve the 
conditional probability distribution in which nonlinear 
transformation may be required. 

A.    Unscented Transformation 

Proposed in 1996 by Julier and Uhlmann [15], 
unscented transformation is a deterministic sampling 
method to estimate mean and variance of continuous 
random variable that has undergone nonlinear 
transformation. Consider the following problem: 
a continuous random variable x with mean x and 
covariance matrix P^ undergoes an arbitrary nonlinear 
transformation, written as y = #(x); the question is 
how to compute the mean and covariance of y? 

From probability theory, we have 

p(y) = / piy I x)l*x)dx. 

However, in general the above integral may be 
difficult to compute analytically and may not always 
have a close-form solution. Therefore, instead of 
finding the distribution, we retreat to seek for its 
mean and covariance. Based on the principle that it is 
easier to approximate a probability distribution than an 
arbitrary nonlinear function, unscented transformation 
uses a minimal set of deterministically chosen sample 
points called sigma points to capture the true mean 
and covariance of the prior distribution. Those sigma 
points are propagated through the original functional 
transformation individually. According to its formulae, 
posterior mean and covariance calculated from these 
propagated sigma points are accurate to the 2nd order 
for any nonlinearity. In the special case when the 
transformation function is linear, the posterior mean 
and variance are exact. 

The original unscented transformation encounters 
difficulties with high-dimensional variables, so the 
scaled unscented transformation was developed 
soon afterward [14]. The scaled unscented 
transformation is a generalization of the original 
unscented transformation. We will use the two terms 
interchangeably, but both mean scaled unscented 
transformation in the remainder of this paper. 

Now let us describe the formulae of unscented 
transformation. Assume x is /^-dimensional 
multivariate random variable. First, a set of 2L + 1 
sigma points are specified by the following formulae: 

A = cr(L + K)-L 

X = < 

*0 = x 

Xi=i+{y/(L + X)Px). 

[xl = i-(y/(L + x)r%). 

; = o 

i= I L 

i = L+ 1 2L 

(8) 

and the associated weights for these 21. + 1 sigma 

i' = 0 

points are 

•c = A 

L + X 

< = 
A 

L + A 

< ~ wic> = 

+ (1 -a2 + .() 1=0 (9) 

I 

2(L + A) 
/= I,. ..,2L 

where a, j3, K are scaling parameters and the 
superscripts "(m)," "(c)" indicate the weights 
for computing posterior mean and covariance, 
respectively. The values of scaling parameters could 
be chosen by 0 < a < 1, fi > 0, and K > 0. It has been 
shown empirically that the specific values chosen 
for the parameters are not critical because unscented 
transformation is not sensitive to those parameters. 
We choose a = 0.8, 0 = 2 (optimal for Gaussian prior 
[ 14]), and K = 0 in all of our experiments. 

After the sigma points are selected, they are 
propagated through the functional transformation: 

y,. =g(*,)       1 = 0 21.. (10) 

Finally, the posterior mean and covariance are 
estimated by combining the propagated sigma points 
as follows: 

:/ 

y*Ew'm)y- 
:    II 

21. 

py ~ ^w^'cy,. - yKy - y)1 

i=0 

Pxy~EVV'<<',(*'-X)(>;<      -V)T- 

(11) 

(12) 

(13) 

;=() 

In short, we denote the unscented transformation 
for X undergoing a functional transformation Y - 
f(X) as the following: 

(K.mu, K.cov) = UT (x -I Y). (14) 

We demonstrate the unscented transformation 
by a simple two-dimension Gaussian example. Let 
x = [JT, x2] with mean and covariance matrix given as 

x = 
1 I 

I 

In order to show the robustness of unscented 
transformation, we choose a set of functions with 
severe nonlinearity shown below: 

v, = log(j:f)cos(jf2),        y2 = s/exp(x2)sin(*,.x2). 

The true posterior statistics are approximated very 
closely by brute force Monte Carlo simulation 

1528 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS    VOL. 45, NO. 4    OCTOBER 2(M)<) 



10 

-rM 

-101234587 

(a) 
-4-3-2-101234 

(b) 

Fig. 2.    Demonstration of unscented transformation, (a) Prior distribution, (b) After nonlinear transformation. 

using 100,000 sample points drawn from the 
prior distribution and then propagated through the 
nonlinear mapping. We compare them with the 
estimates calculated by unscented transformation 
using only 5 sigma points. Fig. 2 shows that the 
mean calculated by transformed sigma points is 
very close to the true mean and that the posterior 
covariance seems consistent and efficient because 
the sigma-point covariance ellipse is larger but 
still tight around the true posterior covariance 
ellipse. 

B.    Unscented Message Passing 

Now let us take a closer look at Pearl's general 
message propagation formulae shown in (3)-(7). In 
recursive Bayesian inference, n message represents 
prior information and A message represents evidential 
support in the form of a likelihood function. Equations 
(3), (4), and (7) are essentially the combination of 
different messages by multiplication. They are similar 
to the data fusion concept where estimates received 
from multiple sources are combined. 

Under the assumption of Gaussian distribution, 
the fusion formula is relatively straightforward [3]. 
Specifically, (3), (4), and (7) can be rewritten in 
terms of the first two moments of the probability 
distributions as the following: 

BEL(XH 

I I 
TT(X).COV     A(X).cov 

mu = cov 
7r(X).mu      A(X).mu 

TT(X).COV     A(X).cov 

(15) 

A(X)< 

cov - E —' Ay(X).cov 

mu = cov 
"   An(X).mu 

^  Ay(X).COV 

(16) 

*y(X)< 

cov = £ 7r(X).cov     ^—' Ay (X).cov 

mu = cov 
7T(X).mu     y^ An(X).mu 

TT(X).COV 
+ ^ XY(X).co\ 

(17) 

where mu, cov stand for corresponding mean and 
covariance, respectively. 

Equation (5) computes the n value for node 
X. Analytically, this is equivalent to treating X as 
a functional transformation of T and the function 
is the one defined in CPD of X denoted as /i(X). 
Technically, we take T as a multivariate random 
variable with a mean vector and a covariance matrix; 
then by using unscented transformation, we obtain 
an estimate of mean and variance of X to serve 
as the 7r value for node X. In (5), 7rx('I]) is the n 
messages sending to X from its parent 7J, which 
is also represented by mean and covariance. By 
combining all the incoming 7rx(7,") messages, we can 
estimate the mean vector and covariance matrix of 
T. Obviously, the simplest way is to view all parents 
as independent variables; then combine their means 
into a mean vector, and place their variances at the 
diagonal positions to form a diagonal covariance 
matrix.2 With that, we can compute the n value of 
node X by 

(7r(X).mu,7r(X).cov) = UT h^Xx\.       (18) 

Similarly but a bit more complicated, (6) computes 
the A message sending to its parent (7j) from node 
X. Note here that we integrate out X and all of its 
parents except the one (7j) we are sending A message 
to. Theoretically, this is equivalent to regarding Tt 

as the functional transformation of X and T\7,'. It 

:This is actually how the original loopy algorithm works and why 
it is not exact. To improve the algorithm, we can estimate the 
correlations between all parents and include them in the covariance 
matrix of T. 
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is necessary to mention that the function used for 
transformation is the inverse function of the original 
one specified in P(X | T) with Tt as the independent 
variable. We denote this inverse function as v(X,T\'/J). 
Note that in practical problems, the original function 
may not be invertible, or its inverse function may not 
be unique. In such a case, we need additional steps 
to apply the method. In this paper, we assume the 
inverse function is unique and always available. To 
compute the message, we first augment X with T\7J to 
obtain a new multivariate random variable called TX; 
then the mean vector and covariance matrix of TX are 
estimated by combining A(X) and nx(Tk)(k ^ /). After 
applying unscented transformation to TX with the 
new inverse function v(X,T\7J), we obtain an estimate 
of the mean and variance for'/,' serving as the AX(7J) 
message as below: 

(Ax(7J).mu,Ax(7;).cov) = UT (TX'^^TA . (19) 

With (15M19), we can now compute all messages 
for continuous variables. As one may notice, 
unscented transformation plays a key role here. This 
is why we call it UMP for continuous BNs. 

So far, we have summarized message 
representation and propagation for discrete and 
continuous variables, respectively. However, for the 
hybrid model, we have to deal with the messages 
passing between both types of variables. Since they 
are in different formats, messages cannot be integrated 
directly. As mentioned in Section I, our approach is 
to partition the original network before propagating 
messages between them. 

III.    NETWORK PARTITION AND MESSAGE 
INTEGRATION FOR HYBRID MODEL 

First of all, as mentioned earlier, we assume that 
a discrete node can only have discrete parents in the 
hybrid models, which implies continuous variable 
cannot have any discrete child node. 

DEFINITION 1    In a hybrid BN, a discrete variable is 
called a discrete parent if and only if it has at least 
one continuous child node. 

It is well known that BN has an important property 
that every node is independent of its nondescendant 
nodes given its parents. Therefore the following 
theorem follows. 

THEOREM 1    All discrete parents in the hybrid BN 
model can partition the network into independent 
network segments, each having either purely discrete 
or purely continuous variables. We call the set of all 
discrete parents in the hybrid network the interface 
nodes. In other words, the interface nodes "d-separate" 
the network into different network segments. 

Fig. 3.    Demonstration of interface nodes anil network partition. 

It is obvious that the variables in different 
segments of the network are independent of each 
other given the interface nodes. An example is 
shown in Fig. 3 where a 13-node hybrid model is 
presented. Following the convention, we use a square 
or rectangle to depict the discrete variable and a circle 
or ellipse to depict the continuous variable. As can 
be seen, K, A, and C are the interface nodes in this 
example. By representing the arcs between discrete 
parents and their continuous children as dot lines, four 
independent network segments are formulated—two 
discrete parts (//, B, F, K, G and J, A, C) and two 
continuous parts (7", K, S and X, Y). 

After partitioning the network with the interface 
nodes, we choose the most appropriate inference 
algorithm for each network segment. In fact, we can 
also combine some segments together if the same 
algorithm works for all of them. The purpose of 
introducing the interface nodes is to facilitate the 
network partition so that at least one algorithm could 
be applicable to each segment. In general, separate 
message passing in either discrete or continuous 
network segment is always doable. Typically, the 
continuous network segment with nonlinear and/or 
non-Gaussian CPDs is the most difficult one to deal 
with. In such case, we apply UMP presented in 
Section IIB for approximate solutions. 

Finally, we need to summarize the prior and 
evidence information for each network segment and 
encode it as messages to be passed between network 
segments through the interface nodes. This is similar 
to general message passing but requires message 
integrations between different network segments. 

A.    Message Integration for Hybrid Model 

For a hybrid model, without loss of generality, 
let us assume that the network is partitioned into 
two parts denoted as D and C. Part V is a discrete 
network and it is solvable by appropriate algorithms 
such as junction tree or discrete loopy propagation. 
Part C is an arbitrary continuous network. Let us 
denote the observable evidence in part V as Ed, 
and the evidence from C as Ec. Therefore the entire 
evidence set E consists of Ed and Ec. As mentioned 
before, given interface nodes, variables from the two 
network segments are conditional independent of each 
other. The evidence from part D affects the posterior 
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Fig. 4.    Synthetic hybrid Bayesian networks-1. 

probability of hidden nodes in part C and vice versa 
only through the channel of the interface nodes. 

We therefore summarize the prior and evidence 
information of each network segment and encode 
them as either n or A value at the interface nodes. 
Assuming that the set of interface nodes between two 
network segments is I, then the two messages are: 
A(I) = P'EC 11) and TT(I) = P{\ \ Ed). These values are 
to be passed between network segments to facilitate 
information integration. As in Pearl's algorithm, this 
approach can be easily integrated with the UMP-BN 
loopy algorithm mentioned above in a unified manner. 

We use the following concrete example to illustrate 
how to integrate messages from different network 
segments. As can be seen in Fig. 4, synthetic hybrid 
model-1 has K as the interface node dividing the 
network into a discrete part consisting of H, B, F, 
K, G and a continuous part consisting of T, R, S, M, 
Y. For the purpose of illustration, let us assume all 
discrete nodes are binary and all continuous nodes are 
scalar Gaussian variables. 

Suppose the leaf nodes G, M, Y are observable 
evidence. We first focus on the continuous segment. 
In this step, we compute the A message sending to 
the interface node K from continuous evidence. And 
conditioning on each possible state of K, we estimate 
the posterior distributions for all hidden continuous 
variables given continuous evidence. Under Gaussian 
assumption, these posterior distributions are 
represented by means and variances and they are 
intermediate results that will be combined after we 
obtain the a posterior probability distribution of the 
interface node K given all evidence. Probabilities 
of all possible states of K are served as the mixing 
weights, similar to computing the mean and variance 
of a Gaussian mixture. 

Given K, it is straightforward to compute the 
likelihood of continuous evidence M — m,Y — y 
because we can easily estimate the conditional 
probability distribution of evidence node given 
interface nodes and other observations. For example, 
let 

P(M = m,Y = y \ K = 1) = a 

P(M =m,Y =y\K = 2) = b. 

Then to incorporate the evidence likelihood is 
equivalent to adding a binary discrete dummy node as 
the child of the interface node K with the conditional 

Fig. 5.   Transformed model wilh dummy node. 

probability table shown as the following: 

K 

Dummy 

1       2 

1 aa   1 -CM 

2 ab   1 -ab 

where a is a normalizing constant. 

By setting "Dummy" to be observed as state 1, the 
entire continuous segment could be replaced by the 
node Dummy. Then the original hybrid BN can be 
transformed into a purely discrete model shown in 
Fig. 5 in which Dummy integrates all of the 
continuous evidence information. 

The second step is to compute the posterior 
distributions for all hidden discrete nodes given 
G = g, Dummy = I. We have several algorithms to 
choose for inference depending on the complexity of 
the transformed model. In general, we can always 
apply discrete loopy propagation algorithm to 
obtain approximate results regardless of network 
topology. Note that the posterior distributions of the 
discrete nodes have taken into account all evidence 
including the ones from continuous segment via the 
Dummy node. However, we need to send the updated 
information back to the continuous subnetwork via 
the set of interface nodes. This is done by computing 
the joint posterior probability distribution of the 
interface nodes denoted as P{\ | E). Essentially, it is 
the 7T messages to be sent to the continuous network 
segment. 

With the messages encoded in the interface nodes, 
the last step is to go back to the continuous segment 
to compute the a posterior probability distributions for 
all hidden continuous variables. Recall that in the first 
step, for any hidden continuous variable X, we already 
have P(X \ \,EC) computed and saved. The following 
derivation shows how to compute P(X | E): 

P(X\E) = P(X\Ec,Ed) 

= Y,P(X,l\Er,Ed) 
i 

^P(X\lEc,Ed)P(l\Ee,Ed) 
i 

= ]£>(* | I.£r)/'(I | E). (20) 
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TABU-: I 
Hybrid Message Passing Algorithm for General Mixed BN 

Mout) C,   L 

Fig. 6.   GHM-2. 

The fourth equality is due to the fact that the set of 
interface node d-separate the node X with Ed. 

Assuming given an instantiation of the set of 
interface nodes I = /, P(X | I = i,Ec) is a Gaussian 
distribution with mean i, and variance of. Then (20) 
is equivalent to computing the probability density 
function of a Gaussian mixture with P(l = i | E) as 
the weighting factors. Denoting P(l = i | E) as />,, 
the mean x and the variance n\ of P(X | E) can be 
computed as the following [3, p. 56]: 

= &,*/ 
i 

(21) 

(22) 

Through the above three steps, we successfully 
integrate messages from different subnetworks to 
obtain the approximate posterior marginal distribution 
for both continuous and discrete hidden variables 
given all evidence. There are two approximations in 
the algorithm. One is from loopy propagation method 
itself. Another one is that we approximate continuous 
variable as Gaussian distributed as we only use the 
first two moments to represent continuous messages. 
However, it provides promising performance as seen 
in the numerical experiment results. 

IV    HYBRID MESSAGE PASSING ALGORITHM 

We have presented separate message passing in 
either discrete or continuous network segment and 
message integration in hybrid model via interface 
nodes. In this section, we summarize the general 
algorithm of message passing for hybrid BNs as 
shown in Table 1. 

In order to incorporate evidence information, we 
allow a node to send a A message to itself. For a 
discrete network, we initialize the messages by letting 
all evidence nodes send to themselves a vector of a 
"I" for observed state and Os for other states. All 

Algorithm: 
(HMP-BN). 

Hybrid Message Passing for General Mixed BN 

Input:    General hybrid BN given a sci of evidence. 

Output: 

I 

Posterior marginal distributions of all hidden nodes. 

Determine the interface nodes and partition the network 
into independent segments with interface nodes   Choose the 
appropriate inference algorithm for each network segment. 

2. Continuous network segment: compute the A message 
sending to the interface nodes and the intermediate 
posterior distribution of the hidden continuous variables 
given the interface nodes and the local evidence 

3. Transform the original network into an equivalent discrete 
model with a dummy node added as a child of the 
interface nodes. This dummy discrete node carries the A 
message from continuous evidence to the interface nodes. 

4. Compute the posterior distribution for every hidden discrete 
variable using the transformed discrete model. The joint 
posterior probability table of the interface mxies is saved as 
the n message to be sent back to the continuous network 
segment. 

5. Compute the posterior distribution for every hidden 
continuous variable given all evidence by integrating the n 
mpvKain'  llsino  OtT\ message using (20). 

other messages are initialized as vectors of I s. For 
continuous network, a message is represented by 
mean and variance. We initialize the messages for 
all continuous evidence nodes, sending themselves 
as the one with the mean equal to the observed value 
and the variance equal to zero. All other messages 
in continuous network are initialized as uniform, 
specifically, zero-mean and infinity variance (the 
so-called "diffusion prior"). Then in each iteration, 
every node computes its own belief and outgoing 
messages based on the incoming messages from its 
neighbors. We assess the convergence by checking if 
any belief change is less than a prespecified threshold 
(for example, 10 4). We use parallel updating for each 
node until the messages are converged. 

V    NUMERICAL EVALUATION 

A.    Experiment Method 

We use two synthetic hybrid models for 
experiments. One is shown in Fig. 4 as mentioned in 
Section IIIA called GHM-1. GHM-1 has one loop in 
each network segment, respectively, (partitioned by 
the interface node K). Another experiment model is 
shown in Fig. 6 called GHM-2. GHM-2 has multiple 
loops in the continuous segment. 

For GHM-1, we assume that the leaf nodes G,M, K 
are observable evidence. We model its continuous 
segment as a linear Gaussian network given the 
interface node K. Therefore the original network is a 
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CLG so that the exact inference algorithm (junction 
tree) can be used to provide the true answer as a 
golden standard for performance comparison. The 
CPTs and CPDs for nodes in GHM-1 are randomly 
specified. 

Note that our algorithm can handle general 
arbitrary hybrid model, not just CLG. GHM-2 is 
designed specifically to test the algorithm under the 
situation where nonlinear CPDs are involved in the 
model. The structure of the continuous segment in 
GHM-2 is borrowed from [17] in which the author 
proposed junction tree algorithm for CLG. The 
discrete nodes in the GHM-2 are binary, and we 
randomly specify the CPTs for them similar to the one 
in GHM-1. But the CPDs for the continuous nodes are 
deliberately specified using severe nonlinear functions 
shown below to test the robustness of the algorithm: 

F~Af(-10,3) 

W~Af(100,10) 

B|K=1~AA(50,5) 

B|K = 2~7V(60,5) 

E~Af(W + 2F,l) 

C~JV(<?^,3) 

D ~ Af(\/W x log(^) - B,5) 

Min~Af(v/iV + 6,3) 

Mout ~ JV(0.5 x D x Min,5) 

L~A/"(-5xD,5). 

We assume that the evidence set in the GHM-2 is 
{H,C,Mout,L}. Since no exact algorithm is available 
for such model, for comparison purposes, we use the 
brute force sampling method, likelihood weighting, 
to obtain an approximate true solution with a large 
number of samples (20 million samples). 

In our experiments, we first randomly sample 
the network and clamp the evidence nodes by their 
sampled value. Then we run HMP-BN to compute 
the posterior distributions for the hidden nodes. 
It is important to mention that in both discrete 
and continuous network segments, we implement 
HMP-BN using loopy algorithms to make it general, 
although junction tree could be used in network 
segment whenever it is applicable. In addition, we 
run LW using as many samples as it can generate 
within roughly the same amount of time HMP-BN 
consumes. There are 10 random runs for GHM-1 and 
5 random runs for GHM-2. We compare the average 
Kullback-Leibler (KL) divergences of the posterior 
distributions obtained by different algorithms. 

Given unlikely evidence, it is well known that 
the sampling methods converge very slowly even 
with a large sample size. We use GHM-1 to test 
the robustness of our algorithm in this case because 

Fig. 7.    Posterior probability of hidden discrete variables in two 
typical runs 

junction tree can provide the ground true for GHM-1 
regardless of the evidence likelihood. We generate 
10 random cases with evidence likelihood between 
10 s ~ 10 ,s and run both HMP-BN and LW to 
compare the performances. 

B.    Experiment Results 

For model GHM-1, there are 4 hidden discrete 
nodes and 3 hidden continuous nodes. Fig. 7 
illustrates the posterior probabilities of hidden discrete 
nodes computed by junction tree, HMP-BN, and LW 
in two typical runs. Since GHM-1 is a simple model 
and we did not use unlikely evidence, both HMP-BN 
and LW perform well. 

For continuous variables in GHM-1, Fig. 8 shows 
the performance comparisons in means and variances 
of the posterior distributions for the hidden continuous 
nodes in all of the 10 runs. The normalized error is 
defined as the ratio of the absolute error over the 
corresponding true value. From the figure, it is evident 
that HMP-BN provides accurate estimates of means, 
while the estimated variances deviate from the true 
somewhat but HMP-BN is still better than LW in most 
cases. 

We then demonstrate the robustness of HMP-BN 
by testing its performance given unlikely evidence 
shown in Fig. 9. In this experiment, 10 random sets 
of evidence are chosen with likelihood between 
10 5 and 10 ,5. As can be seen, HMP-BN performs 
significantly better than LW in this case. The average 
KL divergences are consistently small with the 
maximum value less than 0.05. This is not surprising 
because LW uses the prior to generate samples so that 
it hardly hits the area close to the observations. 

We summarize the performance results with 
GHM-1 in Table II. Note that given unlikely evidence, 
the average KL divergence by HMP-BN is more than 
one order of magnitude better than LW. 

In GHM-2, due to the nonlinear nature of 
the model, no exact method exists to provide the 
benchmark. We use LW with 20 million samples 
to obtain an approximation of the true value. We 
implemented five simulation runs with randomly 
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sampled evidence. In this experiment, we adopt our 
newly developed algorithm UMP-BN for inference in 
continuous network segment [25]. Fig. 10 shows the 
performance comparison in means and variances of 
the posterior distribution for the hidden continuous 
variables. Also, Table III summarizes the average 
KL divergences in testing GHM-2. From the data, 
we see that HMP-BN combining with UMP-BN 
applied in the continuous subnetwork produces very 
good results. In this nonlinear model with the normal 
evidence, the new algorithm performs much better 
than LW despite its advantages of being a model-free 
algorithm. However, since there is only one interface 
node in these models, implementing HMP-BN is 
relatively simple. 

C.    Complexity of HMP-BN 

In general, when there are multiple interface 
nodes, HMP-BN computes the posterior distributions 
of hidden continuous variables given continuous 
evidence, conditioned on every combination of 

TABLE II 
Average KL-Divcrgence Comparison in Testing GHM-1 

Average 
KL divergence 

Normal Evidence 
> 10  s 

Unlikely Evidence 
10 s-10   |S 

HMP-BN 
LW 

0.001 I 
0.0052 

0.01 OS 
0.67 

TABLE III 
Average KL Divergence Comparison in  Testing GHM-2 

Average KL Divergence 

HMP-BN 
LW 

0.0056 
0.06.VJ 

instantiations of all interface nodes. So the complexity 
of the algorithm is highly dependent on the size 
of interface nodes. To assess the complexity of 
HMP-BN, we conducted a random experiment using 
network structure borrowed from the ALARM model 
[4] as shown in Fig. 11 in which there are 37 nodes. 
We randomly selected each node to be discrete or 
continuous with only a requirement that continuous 
variable cannot have any discrete child node. In this 
experiment, the average number of interface nodes 
was about 12. HMP-BN still provided good estimates 
of the posterior distributions but it took a much longer 
time than the one with only one interface node. If we 
have n interface nodes K]%K2 K„ with number of 
states rt|,w2.•••>"*> respectively, the computational 
complexity of HMP-BN is proportional to G(n^ x 
n2 x n, • •• x nk). This implies that our algorithm is 
not scalable for a large number of interface nodes. 
However, our goal is not to propose an algorithm for 
all models (NP-hard in general) and we suspect that 
it is rare to have a large number of interface nodes in 
most practical models. Even with the considerable size 
of interface nodes, HMP-BN provides good results 
within a reasonable time while the stochastic sampling 
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methods can perform very poorly using the same 
amount of time. In addition, there are several ways 
to reduce the computational burden such as assuming 
that some interface nodes with small correlations 
are independent of each other. Nevertheless, this 
is beyond the scope of the paper and could be an 
interesting topic for future research. 

VI.    CONCLUSION 

In this paper, we develop a hybrid propagation 
algorithm for general BNs with mixed discrete and 

continuous variables. In the algorithm, we first 
partition the network into discrete and continuous 
segments by introducing the interface nodes. We then 
apply message passing for each network segment 
and encode the updated information as messages to 
be exchanged between segments through the set of 
interface nodes. Finally we integrate the separate 
messages from different network segments and 
compute the a posterior distributions for all hidden 
nodes. The preliminary simulation results show that 
the algorithm works well for hybrid BN models. 
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The main contribution of this paper is to provide 
a general framework for inference in hybrid model. 
Based on the principle of decomposition and 
conditioning, we introduce the set of interface nodes 
to partition the network. Therefore it is possible to 
apply exact inference algorithms such as junction 
tree to some applicable network segments which 
enables the integration of different efficient algorithms 
from multiple subnetworks. For complicated network 
segment such as the one with nonlinear and/or 
non-Gaussian variables, we provide options to use a 
loopy-type message passing algorithm. 

Although the bottleneck of our algorithm is the 
size of interface nodes, we believe that HMP-BN is a 
good alternative for nonlinear and/or non-Gaussian 
hybrid models since no efficient algorithm exists 
for this case (as far as we know from the literature), 
especially given unlikely evidence. We are currently 
exploring another idea of propagating messages 
directly between different types of nodes without 
network partition or interface nodes. However, it is 
beyond the scope of the current paper. 

Note that the focus of this paper is on developing 
a unified message passing algorithm for general 
hybrid networks. While the algorithm works well 
to estimate the means and variances for the hidden 
continuous variables, the true posterior distributions 
may have multiple modes. In practice, it might be 
more important to know where the probability mass 
is than just knowing mean and variance. One idea for 
future research is to utilize the messages computed in 
HMP-BN to obtain a good importance function and 
apply importance sampling to estimate the probability 
distributions. Another future research direction is to 
extend the hybrid algorithm to the general BN models 
without restriction of node ordering, such as to allow 
continuous parents for discrete variables. If successful, 
it would be a significant step forward. 
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Distributed Fusion Algorithms 
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The theoretical fundamentals or distributed information fusion 

have been developed over the past two decades and are now 

fairly well established. However, practical applications of these 

theoretical results to dynamic sensor networks have remained 

a challenge. There has been a great deal of work in developing 

distributed fusion algorithms applicable to a network centric 

architecture. In general, in a distributed system such as ad hoc 

sensor networks, the communication architecture is not fixed. In 

those cases, the distributed fusion approaches based on pedigree 

information may not scale because of limited communication 

bandwidth. In this paper, we focus on scalable fusion algorithms 

and conduct analytical performance evaluation to compare their 

performance. The goal is to understand the performance of these 

algorithms under different operating conditions. Specifically, we 

evaluate the performance of channel filter fusion, naive fusion, 

Chernoff fusion. Shannon fusion, and Bhattacharyya fusion 

algorithms. We also compare their performance to "optimal" 

centralized fusion under a specific communication pattern. The 

results show that the channel filler fusion, representing a first 

order approximation to the information graph fusion, is the only 

"consistent" fusion algorithm. 
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A distributed data fusion system consists of 
a network of sensors and processors that may be 
colocated with the sensors. Sensors generate data 
by observing the environment. Processors process 
local sensor data and fuse data from other sensors or 
processors. The performance of a distributed fusion 
system over a network depends on three factors: the 
network architecture, the reliability of communication 
links within the network, and applicable fusion 
algorithms. Even though the network architecture 
may be fixed and known, adaptive communication 
strategies and possible communication link failures 
will result in a dynamically changing communication 
structure among the fusion nodes. Thus, a distributed 
fusion algorithm is not really practical unless it can 
handle a dynamic communication structure. 

There has been a great deal of work in developing 
distributed fusion algorithms applicable to a 
network centric architecture [l-5|. However, most 
of these algorithms have been designed for fixed 
communication structures and may not be practical for 
distributed systems such as ad hoc sensor networks 
where the communication architecture changes 
dynamically [6]. In particular, the distributed fusion 
algorithm based on the information graph approach 
|7] was developed to optimally combine information 
from multiple nodes by maintaining information 
pedigree and using it to avoid any double counting 
of information. However, when the communication 
structure changes in real time, this algorithm may 
not scale because of its requirements to carry long 
pedigree information for decorrelation. 

In this paper, we focus on several scalable fusion 
algorithms and analytically compare their performance 
through steady-state estimate error prediction. To 
demonstrate our performance analysis approach, we 
use a nominal three-node fusion processing scenario 
with cyclic communications as shown in Fig. I. 
We conduct extensive simulations to validate the 
theoretical predictions. We have chosen this network 
structure because of its complexity due to multiple 
paths for information propagation, and the availability 
of the optimal analytical solution that can be derived 
and used as a performance baseline. 

Specifically, we consider the fusion algorithms 
listed below and compare their performance against 
the optimal information fusion solution. 

Channel filter 
Naive fusion 
Chernoff fusion 
Shannon fusion 
Bhattacharyya fusion 

Our goal is to investigate how these different 
fusion algorithms perform for a specific scenario 
under limited communication bandwidth. This is 
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Fig. I.   Three sensor cyclic communication scenario. 

part of a wider objective to understand the system 
trades involved in a general decentralized ad hoc 
sensor network. The rest of this paper is organized 
as follows. Section II briefly describes the set of 
scalable distributed fusion algorithms to be considered 
in this paper. Section III derives the analytical fusion 
performance evaluation in terms of steady-state mean 
square error. Section IV summarizes the technical 
findings of the study, and Section V presents some 
future research directions. 

II.    SCALABLE FUSION ALGORITHMS 

The theoretic fundamentals of distributed 
information fusion are well documented and have 
been studied in depth [7-11]. It is noted, however, 
that practical applications of these theoretical results 
to nondeterministie information flow have remained a 
challenge. The main difficulty is the need to identify 
and remove common information from the data sets 
to be fused, while minimizing the amount of data 
exchanged between agents. 

The basic fusion process, as described in [7], 
follows from set theory, where the combination of n 
event probabilities <!>(• | /,) given the information /, can 
be represented as 

<l> 

1=1 /    I=I 

. H' 
in 

In). 

where S] represents the combination of / event 
probabilities such that, St = fj^i *(• I '|). S2 = 

n?=i je{/+i..v) *<• 1'<n 7A :-.5„"=«(• I /, n/2 n 
The alternating multiplication and division of 
joint probabilities from (1) removes conditional 
dependencies from the data sets in the form of shared 
information. 

While the removal of duplicate information 
is straightforward in the theoretical formulation, 
identification of duplicate information for distributed 
estimation systems can be difficult in practical 
implementations. The difficulty is due to the need 
to recognize correlated information resulting from 
past fusion events and know the values of their data 
sets. The information graph (IG) technique presented 

in 17-9] provides an analytical tool for identifying 
duplicate information in distributed estimation 
systems. The approach is a symbolic representation of 
the collection, propagation, and fusing of data among 
a set of fusion agents. An example of an IG is shown 
in Fig. 1, where a simple cyclical communications 
pattern is demonstrated. Each numbered row of 
symbols represents the events of a given agent. 
Within each time step, each agent may perform time 
updates of estimates, receive sensor data, perform 
measurement updates, transmit the local estimate to 
other agents, and fuse estimates received from other 
agents. 

The difficulty with the IG approach is that it 
is communication pattern dependent—it needs to 
consider all relevant common priors and to remove 
the common information at these nodes from the 
current track update. Determining these nodal 
connections over a varying network can be difficult 
and time-consuming. For example, in the simple three 
sensor cyclic communication network shown in Fig. 1, 
the resulting formula for the fusion between the first 
two sensors at time k is [7] 

P(x) 
1 P\jk(x)p1Jk(x)pu   ,(.v) 

<"    P\.k iWPu, |W 
(2) 

where c is the normalization constant, p(x) is the 
conditional probability at node j| after fusion, and 
Piit(x) is the conditional probability at node si and 
time k before fusion. In the case when all probability 
densities are Gaussian, the fusion formula becomes 
(see Fig. 1) 

1 — »  1 4. p  1 _ p   1    _p 
+ r2.k       ']Ji   2      r2j n p ' '\.k 

1       ,   »    1 
'2jt   I + rk   3 

-It   - >v* \,k + ^2Jfc x2Ji 

+ r, 

P    '    A Jt   2 

(3) '2jt  i-*2>  1 T '*  i-n  »• 

In general, to construct the "optimal"   fusion formula 
may require carrying long pedigree information2 that 

'The IG approach is optima] when the underlying system is 
deterministic. 
-Information includes communication and fusion events history as 
well as past fusion data 
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might not be practical in an environment with limited 
communication bandwidth [12]. 

To address the scalability issue, we have developed 
each of the fusion algorithms described in the 
following sections for autonomous sensors in 
arbitrary network conditions. All of these approaches 
are suboptimal in general but provide adequate 
performance when basic assumptions are met. 

A.    Channel Filter 

The channel filter approach 113-16] is simpler 
than IG fusion in that only the first order redundant 
information is considered. Each channel is defined 
by a pair of agents—a transmitting agent and a 
receiving agent. The transmitting agent for a particular 
channel is responsible for removing redundant 
information; as such, it needs only keep track of the 
previous transmission from itself to the receiving 
node. 

However, in a dynamic ad hoc network, the 
transmitting data may never reach the receiving end 
because of link uncertainty. Therefore, another idea is 
to have the receiving agent of a particular channel be 
responsible for removing the redundant information. 
In this way, the receiving agent only needs to keep 
track of the previous data transmitted to or received 
from the channel at the previous communication 
time and remove it when combining the current 
estimates. There is no need to maintain long histories 
of previous activity. In a sense, this can be considered 
as a first order approximation to the optimal IG 
approach. 

Specifically, the channel filter fusion equation is 
given as 

P\(x)p2(x)/p(x) 
p(x) = 

,\\P\(x)p2{x)/p(x)\dx 
(4) 

where pt(x) and p2(x) are the two probability 
density functions to be fused (one local and the 
other received from a particular channel) and p(x) 
is the density function received from the same 
channel at the previous communication time and is 
the common "prior information" to be removed in 
the fusion formula. When both pt(x) and p2(x) are 
Gaussian density with mean and covariance xltPt 

and x2,P2, respectively, the fused state estimate and 
corresponding covariance error can be written as 

P  ' =/>-' +P2 ' -P ] 

P  lx = P, % +P2
]x2-P  lx. 

(5) 

While simpler, it is obvious that dependent 
information is more likely to be lost in the channel 
filter when compared with the IG approach. On the 
other hand, if the time between when that redundancy 
occurred and the current processing time is relatively 
long, the impact could be minimal. 

B.    Naive Fusion 

Naive fusion is the simplest fusion approach, 
where it is assumed that the dependency between the 
density functions is negligible. This fusion approach is 
the simplest type, but it can be unreliable. The naive 
fusion formula can be written as 

P(x) = 
Pi(x)p2(x) 

f pt(x)p2(x)dx' 
(6) 

For the Gaussian case, the fused state estimate and 
corresponding error covariance are shown as 

P  ' = /> 

P~}x = P,- x, +/', '*, 
(7) 

Note that the fused track covariance is the inverse of 
the sum of the inverses of the local track covariance 
matrices. Thus, because of the lack of common prior 
information, the fused covariance could be much 
smaller, which can lead to overconfidence. Also when 
the common prior has very large covariance, (7) is 
equivalent to (5). 

C.    Chernoff Fusion 

When the dependency between two distributions is 
unknown, one idea is to use the Chernoff information 
[17]. The fusion formula is based on the following: 

P(x) = 
p^(x)p\K(x) 

$p*(x)p\ K(x)dx 
(8) 

where w G [0  I] is an appropriate parameter that 
minimizes a chosen criteria. When the criterion to be 
minimized is the Chernoff information as defined in 
the denominator of (8), we call it Chernoff fusion. 
It can be shown that the resulting fused density 
function that minimizes the Chernoff information 
is the one "halfway" between the two original 
densities in terms of the Kullback I .eibler distance 
[17, p. 312]. In the case when both p}(x) and 
p2(x) are Gaussian, the resulting fused density is 
also Gaussian with mean and covariance obtained 
as 

/>-' =W/»-] +(1 -w)/'.  ' 

Plx = wPr'x. +(1 - w)P, 'v, 
(9) 

This formula is identical to the covariance intersection 
(CI) fusion technique [14-15]. Therefore, the CI 
technique can be considered as a special case of (8). 
In theory, Chernoff fusion can be used to combine any 
two arbitrary density functions in a log-linear fashion. 
However, the resulting fused density may not preserve 
the same form as the original ones. Also in general, 
obtaining the proper weighting parameter to satisfy 
a certain criterion may involve extensive search or 
computation |18]. 
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D.    Shannon Fusion ANALYTICAL PERFORMANCE PREDICTION 

A special case of (8) is when the parameter w 
is chosen to minimize the determinant of the fused 
covariance [18, 19]. In the Gaussian case, it is 
equivalent to minimizing the Shannon information 
of the fused density. This is because the Shannon 
information defined as /v = - f p(x)\np(x)dx can be 

shown to be equal to /, = {- ln((27r)n|/»|I/2) + n/2 when 
p(x) is Gaussian with covariance P [18]. We call this 
special case the Shannon fusion. Note that with (9), 
the Shannon information is a convex function of the 
parameter w, and therefore the maximum is located at 
the extreme points (either w = 0 or w = 1). Moreover, 
in scalar case where both P, and P2 are scalar, the 
minimum of Shannon information is also located at 
the extremes [18]. 

E.    Bhattacharyya Fusion 

Another special case of (8) is when the parameter 
w is set to be 0.5. In this case, the denominator of 
(8) becomes B = f ^/pi(x)p2(x)dx, which is the 
Bhattacharyya bound. We call the resulting fusion 
formula, p(x) = (\ /B)s/p\(x)p2(x), the Bhattacharyya 
fusion. When both pt (x) and p2(x) are Gaussian, the 
fusion equation can be written as 

P   ' = \{f , '+T1) 
xx up. 'i, +P2

1X2) (10) 

=> i = (/y' + />. ') '(P. 'i, +/v 1       -r '2     '      V'|     -M  T- «2     X2). 

Therefore, in the Gaussian case, Bhattacharyya 
fusion is similar to naive fusion; the resulting fused 
covariance is merely twice as big as that of naive 
fusion. Note that the fusion equation can be rewritten 
as 

P  ' =£</>,  '+/>-') = (/>  '+/»2-') (P  '+/», 

P-lx = \(P} + P 2    *Zt 

= (/>, lJc, +P2 %)-{(P\ % +P2-
,x2). 

2     ) 

(ID 

This formula replaces the common prior 
information of (5) for the channel filter by the average 
of the two sets of information to be fused. Namely, 
P"' «-£(/»,"' +P2"') and P~lx*~ \(PX 

txi+P2 
li2). In 

other words, instead of removing the common prior 
information from the previous communication, as 
in the channel filter case, the common information 
of Bhattacharyya fusion is approximated by the 
"average" of the two locally available information 
sets. 

In the next section, we derive the analytical 
performance of channel filter, naive fusion, and 
Bhattacharyya fusion in terms of true steady-state 
mean square error. We will derive the results based on 
the specific cyclic communication scenario as given in 
Fig. 1. We will also conduct extensive simulation to 
evaluate other alternative fusion algorithms. 

As shown in Fig. 1, where at time k we define 

p = n k~ 11* i 1) x = xk\k;PQ = Pklk and x = xk ^k  , 
the fused state estimates and the associated filter 
covariances at time k and A — 1; 2) jc,- = x^^Pj = P^ 
as the local updated state estimates and the associated 

filter covariances; and 3) xt•,= xfJi  m_i;'j = %*- m  i as 

the local updated state estimates and the associated 
filter covariances at the previous time instance 
k- 1. 

Our goal is to find the steady-state mean square 
error covariance of the fused estimate, namely, i\ = 
Vimk~.ooE^xk\k ~ xk)(xk\k ~ **)*] = /,;l(* - *)<$ " -*)']• 
In the following, we assume that the dynamic system 
follows a scalar random walk model, namely, xk+] = 
xk + vk where vk is a zero mean Gaussian process 
noise with variance Q. We further assume that the 
observation model is similar for the three sensors 
and is linear Gaussian, i.e., Zy = xk + wlk where w;t 

is a zero-mean Gaussian measurement noise with 
variance /?, for sensor i. In the following, we assume 
that the sensors have the same quality, i.e., /?, = R2 = 
/?} = R. Therefore, in steady state, let P, = P, then 

P. ^i ~ ^jt-i|/t~i ^Jl|* - ^i 

A.    Channel Filter 

With a channel filter, as shown in (5), the fusion 
equations are written as 

p-l _ p-I  , p-1 _ p  l 
'() rl      ^ '2 r2*\k    I (12) 

P0   x - P,   xx+P2   x2    P: k k  |<»(i  ,.      (13) 

Liquation (13) can be rewritten as, 

A = PQ
[(,x-x) = P] \X]-x) + P: 

lCx2-x) 

-1*|*-l(x2Jt|*-l ~xl 

= P  '(i,     x) + P• l(jc2 — JC)    [P + Q)  \x2~x) 

=>(x-x) = PoA 

= P0P-1(xl-x)+P0P-l(x2-x) 

-P0(P + Q) l(x2-x). (14) 

Therefore, 

n = E[(x - x)2] = P0E(AA')%- (15) 

In the scalar case, 

(x- x 
P- P2 P- 

)- = 3L(x, - x)- + ^(x2 - x)2 + ,B'G 
P2 (P + Q)2 X-, - x)~ 

IPfd, - x)(i2 - JC)     2P2(xl    jf)(Jc2 - JC) 

P2 P(P + Q) 

2P2(x2 - jc)(Jc; - x) 

P(P + Q) 
(16) 
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IP2 P2 

2ft 
P(P + Q) 

(C.+C) (17) 

where 

E[(Jc2-Jt)2] = £[(Jc2Jkl»_,-Jci)
2] 

= £I(-*2.*-l|*   I ~xk- 

= B + Q 

v*  ,)2] 

B = £[(Jc,-j:)2]-/:[a2-A:)2] 

E'sEKij-jtKJtj-Jc)] 

C, =£I(jC2-Jt)(JC2-*)] 

C2 = P[(i, -x)(x2-x)]. 

and 

(18) 

(19) 

(20) 

(21) 

Note that in (17), P{) and P are the steady-state "filter'' 
variances. They can be obtained by solving the 
following two equations: 

A p.-'+p,-' p ' = 2P 

/(P + 2(2) 

(P + 0 

(22) 

p=(p0+e)-^r=(p0+e)- 

(A + G)P 

(A + Q)2 

(A + 0 + *) 

(/;, + Q+R) 
(23) 

where if = (P0 + (?)/(A + Q + P) is the steady-state 
Kalman gain and S = P(, + Q + R is the steady state 
innovation variance. From (22) and (23), it can be 

easily shown that 

P3+(2C>)P2 + (2<22)P    (2(/)P 0. (24) 

A closed form real solution of the preceding cubic- 
polynomial can be solved and the resulting P{) as a 
function of various Q and R is shown in Fig. 2. 

Note that the filter variance is not the same as the 
true mean square error. To obtain the true mean square 
error as given in (17), we will need to derive each of 
the three terms listed in (19)-(21). It can be shown 
that (the details are omitted). 

fi = (l -K)2Q+(l -K)2Q + K2R = XQ+a 

E' = (1 - K)2{E\CA - Xk  i )Cx'2 - xk  ,)] + Q} 

= (\-K)2[Ep + Q] 

Er={%)2°E' + R)+{vh)U:'+Q) 

*-2 = n 

(25) 

(26) 

(27) 

and 

— %^2 — 

1+(1- K)P + Q 

(l- 
2(P 

K)(P 
+ Q)- KPK •*»+% 

K)(P 

+ Q) 

f2fi) 
KP 

= V(E' + B) + i)' 

D = i)(2E')+ rf. 

(28) 

(29) 
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Using relations (25)-(29), (17) can be rewritten as x = />(/>" '£, + P2 %) = (i, + x2)/2. (32) 

P2 

n = ^(B+£')+( (B + G)- 
2P2 

/'(/, + 0 

•( 

2ft i) 
P2      (P + Q)2     P(P 

V P2      P(P + Q) / 

rotas')- 

P2 
M) rG 

4P2 

(p + e>2    P(P + C?) 

= /,« + l2E' +13 = (/, + /2/, )fl + /2/2 + /, 

= rr^B + m2 = m ^(Xil + a) + m2 

1 - m,A 

(2C)      From (31), (x ~ x) = [(i, -Jt) + (v, - x)]/2; therefore, 

ilsE[(i-x)2] 

= \[E[(x, - x)2] + EUx3 - x)2] + 2E[(Jr, - x)(i2-x)\] 

= UB + E') (33) 

where, as defined before, B = £[(.T] - v)2] = 
E[(x2 - x)2) and FJ = £[(*, - x){x2 - x)]. 

From (25), B = Ml +a, and from (26), 

£' = E[(5, — xA)(*2 — •**)] 

= (I - K?{E[& - Xt_,)(^ - xk  ,)!+(?} 

(30) = i(l-/C)2(P.+3£'+4^) 

=>f = (1 -AT)2 

4-3(l-rC)2(fi + 4C;)""(B+4L;)- 
Fig. 3 compares the analytical mean square errors 

(MSE) based on (30) with the average MSE based 
on 1000 Monte Carlo simulation trials. It is clear that 
they are in perfect agreement. Fig. 3 also shows that 
the filter variance P{] is very close to the true MSE, 
which indicates that the algorithm behaves well and is      <j = I(# + £') = 1(1 + /i)B + 2/iQ 
reasonably consistent [9]. 

(34) 

Therefore, from (25), (33), and (34), we have, 

B.    Naive Fusion 

With the notations defined earlier, the naive fusion 
equations can be written as 

P{) = (P^+P2-'Y
x=P/2 

= fcj +l0cxn+«)+**«»n = (I*"W2 ;%<?. 
1 - (1 +//)A/2 

(35) 

Note that in (31), P0 and P are the steady-state "filter" 
variances, which are not the same as the true MSEs. 

(31)    They can be obtained by solving the following two 
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equations: 

p,r = /», ' +P, i _ 

P = (P0+Q)-KSK' = (P„+Q) 

(P/2 + Q)R 

2P  l => p0 = P/2 (36) 

(P0 + Q + R) 

(37) 
(P/2 + 2 + /?)' 

From (36) and (37), it can be easily shown that 

P2 + (2«2 + R)P - 2QR = 0 

V(2Q + R)2 + KQR - (2Q -t- R) 

* 2 
(38) 

Fig. 4 compares the analytical MSEs based on (35) 
with the average MSE based on 1000 Monte Carlo 
simulation trials. It is clear that they are very close 
to each other when the process noise is not very 
small. However, when the process noise is extremely 
small (< 10 4), the simulation results are slightly 
lower than the analytical prediction. This could be 
due to numerical round off error caused by the small 
magnitude of the noise. Fig. 4 also shows that the 
steady-state filter variances P{) are significantly smaller 
than the true MSE, especially when the process noise 
is not very large. This implies that naive fusion 
is too optimistic and has poor filter consistency 

fill. 

C.    Bhattacharyya Fusion 

As in the naive fusion case, the Bhattacharyya 
fusion equations can be written as 

P0 = 2(^  ' +P2 ')  '=/> (39) 

x = lP0(/>, 'x, + P2 %) = a, + x2)/2.       (40) 

As in (33) 

n=Ei(i-xf] 

= i{E[(i, -x)2]+£[(Jc2 - xf] + 2£[u,    x)(Jtj-x)J} 

where, as defined before, B = Ml + a and £' = 
[(I - K)2/4 - 3( I - K)2](B + AQ) = ,i(B + 40. 
Therefore, as in (35) 

(41) 

il = (l+/i)»/2 + 2>«g 
l-(l +//)A/2 

(42) 

Note that the only difference between naive and 
Bhattacharyya fusion is in (38), where Pt) and P 
are the steady-state "filter" variances, which can be 
obtained by solving the following equation: 

P = (P„ + Q)-KSK' = {Pa + L» 

(P + Q)R 

(/„ + Q)2 

iPv + Q + R) 

(P + Q + R) 
(43) 
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From (43), it can be easily shown that 

P2 + PQ - QR = 0 =* P = 
s/Q2 +4QR-Q 

(44) 

Fig. 5 compares the analytical MSEs based on (41) 
with the average MSE based on 1000 Monte Carlo 
simulation trials. Again, they are in perfect agreement. 
However, as can be seen in the figure, a critical 
issue with this approach is that the steady-state 
filter variances are almost twice as large as the 
true MSE. This indicates that the Bhaltacharyya 
fusion algorithm is too pessimistic and is severely 
inconsistent. 

IV    SIMULATION RESULTS AND DISCUSSION 

In addition to the theoretical analysis for channel 
filter, naive fusion, and Bhattacharyya fusion, we 
conducted extensive simulation for Chernoff fusion 
and Shannon fusion to compare their performances 
against optimal centralized fusion. The results are 
shown in Fig. 6. As can be seen, in addition to naive 
fusion, Shannon fusion also performs poorly. This is 
because in the scalar case, Shannon fusion essentially 
picks the density with smaller variance. Therefore 
the fusion performance converges to single sensor 
performance when the sensor qualities are identical. 

As shown in Fig. 6, the remaining three algorithms 
have very similar performance. A closer look (Fig. 7) 
reveals that channel filter performs close to optimal 

while Chernoff fusion and Bhattacharyya fusion 
perform slightly worse. Note that when all sensors 
have the same quality, Chernoff fusion converges to 
Bhattacharyya fusion. 

We then evaluate the fusion algorithms with 
different sensor qualities. Instead of homogeneous 
quality as in the previous case, the sensor 
measurement error variances are set as 0.5, 1.0, 
and 2.0 for the three sensors, respectively. The 
results are shown in Fig. 8, which compares the 
performance of channel filter, Chernoff fusion, and 
Bhattacharyya fusion versus optimal fusion. From the 
figure, it is clear that channel filter performs the best, 
Bhattacharyya fusion performs slightly worse, while 
Chernoff fusion performs the worst among the three, 
particularly when the process noise is large. 

To simulate the stochastic nature of the 
communication link, we model the reliability of each 
link with a probabilistic measure. For example, a 
link with 0.5 reliability means that the information 
will pass through the channel only 50% of the time. 
We then test the three fusion algorithms and their 
robustness under various link reliabilities. Because 
all algorithms under consideration are scalable and 
autonomous, no additional changes are necessary in 
the algorithms for the test. The results in Fig. 9 show 
that the performances are in general proportional to 
the communication quality, which is quite intuitive. 
The results also show that all three algorithms 
are quite stable and they perform according to 
expectation. 
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It should be noted that channel filter, while 
requiring a one-step memory to retrieve and remove 
the common prior information in each channel, has a 
rather simple implementation. On the other hand, the 
Chernoff fusion algorithm, in addition to its poor filter 
consistency, needs significantly more computation 
to search for the optimal weighting factor. Our 
preliminary experiments show that channel filter is at 
least one order of magnitude faster than the Chernoff 
fusion. Further investigation is needed to compare the 
trade-offs between these promising algorithms in a 
more reliable manner. 

V    SUMMARY 

In this paper, we focus on the analysis and 
comparison of several scalable algorithms for 
distributed fusion in a cyclic communication sensor 
network. Specifically, we evaluate the performance 
of channel filter fusion, naive fusion, Chernoff 
fusion. Shannon fusion, and Bhattacharyya fusion 
algorithms. We also compare their performance to 
"optimal" centralized fusion algorithms under a 
specific communication pattern. 

The results show that naive fusion and Shannon 
fusion perform poorly while several other scalable 
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algorithms including channel filter, Chemoff 
fusion, and Bhattacharyya fusion, require minimum 
communication and perform fairly well. Their 
performance is comparable with that of the optimal 

fusion algorithm. In particular the channel filter 
fusion, representing a first-order approximation to IG 
fusion, works surprisingly well and has been shown to 
be the only "consistent" fusion algorithm. 
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One of the future research directions is to extend 
and validate the results to more general network 
scenarios. In particular, to address the real world 
network-centric tracking and fusion problems. It is 
important to consider heterogeneous sensors with 
different sampling interval and error characteristics 
under dynamic communication topology and 
constraints. It is also useful to develop theoretical 
analysis for specific algorithms whenever possible for 
a given network scenario. 
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Scalable Fusion with Mixture Distributions in Sensor 
Networks 
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Abstract - Mixture distributions such as Gaussian mixture model 
((.MM) have been used in many applications for dynamic state 
estimation. These applications include robotics, image and 
acoustic processing, distributed tracking, and multisensor data 
fusion. However, the recursive processing of the mixture 
distributions incurs rapidly growing computational requirements. 
In particular, the number of components in the mixture 
distribution grows exponentially when multiple of them are 
combined. In order to keep the computational complexity 
tractable, it is necessary to approximate a mixture distribution by 
a reduced one with fewer components. Mixture reduction is 
traditionally done by iteratively removing insignificantly 
components or merging similar ones. However, a systematic 
procedure is needed in order to ensure scalability while trading- 
off performance. In this paper, we propose a recursive mixture 
reduction algorithm for Gaussian mixture distribution with a 
given error bound. To meet the error bound, we applied a 
constraint optimized weight adaptation to minimize the 
integrated squared error (ISE) between the reduced distribution 
and the original one. With extensive simulations, we showed that 
the proposed algorithm provides an efficient and effective 
mixture reduction performance in distributed fusion applications. 

Keywords - Gaussian mixture reduction, Constraint optimization, 
Integral squared error, distributed fusion, sensor networks. 

I INTRODUCTION 

A mixture distribution is a combination of different probability 
density functions (pdfs). For example, Gaussian Mixture 
Model (GMM) is a special case of mixture distribution where 
a set of Gaussian pdfs are linearly combined. It is well known 
that GMM can be used to represent arbitrary probability 
densities to any desired accuracy. Due to this universal 
approximation property, GMM has been employed in many 
applications such as robotics [1], image processing [2], 
acoustic and speech recognition [3], multitarget tracking [4], 
distributed fusion [5], and Bayesian inference [6-7]. 

For instance, in content-based image retrieval (CBIR) systems 
the search could be based on criteria such as color, shape, 
texture or any such information. In such systems each 
semantic class can be represented by a Gaussian mixture 
model. When the query is made a template GMM is provided 
with the required characteristics. The distance between the 
reference and images in the database is then calculated to find 
the degree of similarity for retrieval [2][8]. Also in audio 
classification, the pdf of acoustic signal frequency spectrum is 
typically modeled by a Gaussian mixture model. A measure of 

similarity between a reference and a given sample is 
calculated by using a pre-defined distance metric in order to 
classify music [9]. Similarly, in distributed nonlinear tracking, 
a proper distance metric is defined to compare/correlate two 
tracks with mixture distributions [10]. 

However, most of these applications have to deal with the 
recursive processing of the mixture densities. For example, in 
multitarget tracking and fusion with distributed sensor 
networks, the "fusion" process is usually performed by 
multiplication of these densities [11]. While the product of 
Gaussian mixtures can be computed exactly, the number of 
components in the resulting mixture increases exponentially. 
In order to keep the computational and memory requirements 
bounded, it is essential to control this growth by 
approximating the resulting mixture with fewer components. 

Several methods were developed recently to manage mixture 
reduction. Typically, the reduction is achieved by successively 
combining similar components or pruning away insignificant 
ones. For example, Salmond [ 12] proposed a joining and 
clustering algorithm for target tracking in clutter and West 
[13] proposed to collapse mixture components by replacing 
nearest neighboring components with merged component. 
Instead of repeatedly removing mixture components, another 
approach builds up the Gaussian mixture successively to 
approximate the original mixture [14-15]. Starting with a 
single Gaussian density, the algorithm proposed in [15] adds 
new Gaussian components to the approximate mixture by 
splitting existing components to provide better approximation. 

In order to control and measure the performance of the 
mixture reduction, various similarity measures were proposed 
and employed in different algorithms. For instance, an 
Integral Square Error (ISE) based cost-function approach was 
developed to hypothesis control problem for multiple model 
tracking algorithms [16-17], and a Kullback-Leibler (K.L) 
discrimination measure was used lor the GM reduction [ 18]. 

In this paper, we first describe the distributed fusion problem 
with GMMs. We then examine several existing GMM 
reduction algorithms and develop a new approach by taking 
advantages of the state-of-the-art algorithms. The paper is 
organized as the follows. Section 2 describes the application 
of GMM in the distributed fusion problem, which is the one 
we are primarily interested in. Section 3 presents general 
Gaussian   mixture  reduction  algorithms  and  our  proposed 
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approach. The simulation results are presented in Section 4 
followed by some concluding remarks. 

II. DISTRIBUTED FUSION wrm GAUSSIAN MIXTURE 

In a mixture model, a probability distribution is represented as 
a linear combination of basis functions. Specifically, a 
Gaussian mixture model (GMM) can be expressed as, 

,v 
where   Ya=|   and   N(x;i,,Pl)  is   a   Gaussian   distribution 

component with mean vector x, and covariance matrix P . 

In   a   distributed   fusion   problem,   assuming   two   GMMs, 

/;W=JauAr(r,^,P1I)aiid/2(JE)=£flr^(r,^,/»()are to be 
.=1 H 

fused        with        a        common        prior       distribution, 
\, 

11 

With a standard fusion formula [11], the fused pdf can be 
obtained as. 

/,w=- I f,{x)Mx) 

C     f,(x) 
(2) 

where c- V\\x>h\x) fa is a normalization constant. From (I) 

N{x;xu,Pu)N[x:ill,P1S 
/,(*) 

\. \, N(x;x]„Pl,)N(x;xu,Ph)      AA 
 dxsZ,Lai.ai,1 

(3) 

(4) 

and (2), we have, 

where 

is a normalization constant. In general, the integration in 
Equation (4) can not be obtained in closed-form due to the 
mixture term in the denominator. To avoid the potential 
complexity using numerical integration, one idea is to 
approximate the denominator, /,(*), with a single Gaussian 

pdf. Namely, 

where *, = £aj^ and Pj = ^[^ *&-*,)&-*,)•]. 
.1 H 

With this approximation, the integration in (4) can be carried 
out analytically and equation (3) can be rewritten as, 

/,w«-££ail«Mvff(*v,) (6) 
C

 1 = 1   y=l 

where /> = [/>;' + />-'_/>-'J'and i, = P.frV&Vft} 

Note that in the case when no common prior information was 
shared by the two distributions, equation (2) becomes, 

Mx) = hsx)Mx) = -fjauN(x-,ilrPjfta:iN{x:i!rP2l) 
c c w (7) 

c el H 

where 

c=££<v^J^(-«;-«i,,^)^(jt;^/,/i;)rf*££ai<a»;c, 
1=1 /.i ,1,1 

and^ =[tf+/£]'' and ^ =Pf[lf^ + ^]. 

With that, equation (7) can be rewritten as, 

frto^tt*M'Nfa*r*) (8) 
c
 I=I /=i 

As one can see from both equations (6) and (8), the fused 
probability density function has exponentially growing number 
of components as more GMs are multiplied. To ensure 
scalability, it is necessary to manage the growth with a 
systematic and effective procedure. 

III. GAUSSIAN MIXTURE REDUCTION 

Given a Gaussian mixture distribution with ,V components, we 
wish to approximate it by a reduced one with M components, 
where M < N. Traditionally, a mixture reduction algorithm is 
recursively conducted such that the number of components is 
reduced by repeatedly choosing two components that appear to 
be most similar to each other and merging them. For example, 
A'-means algorithms and some variations can be applied to 
cluster Gaussian mixture components in groups, use a center 
component to represent all components in each group, and 
then refine the parameters in the center components based on 
their members accordingly. 

West [13] proposed to collapse mixture components by simply 
replacing nearest neighboring components with a single 
merged component. The basic routine proceeds as follows: 
First, locate the component with smallest weight. Then find 
another component, which is the nearest neighbor of the 
selected one. Finally, merge the two components such that the 
resulting component is the weighted average of the two. The 
procedure is repeated until the desirable reduction of 
components is achieved. 

A.    Mixture Distance Metrics 

In general, there is no single best way to measure the distance 
between two mixture distributions. There arc a few distance 
metrics proposed in the literature. Williams [16] used integral 
squared error (ISE) as the similarity measure. Runnalls [18] 
used the Kullback-Leibler (K.L) discrimination measure. In 
[10], we compared several distance metrics for mixtures 
distributions. Specifically, we focus on the Integral Square 
Error (ISE) distance, the Bhattacharyya distance, and the 
Kullback-Leibler distance together with a general mixture 
distance (GMD) [19]. Among them, ISE is the most popular 
one due to its simplicity and closed forms expressions in 
Gaussian case. 



Specifically,   the   ISE   distance   between   two   probability 
distributions is defined as. 

DBK = j[/(x)-/(»)]2A (9) 

When both /(j;)and f(x) are Gaussian mixtures, equation (9) 
can be carried out in closed form [20]. Note that the ISE 
distance we used in the simulation is the square root of the 
normalized version of the ISE distance, namely, 

D« 
J[/(')-/(»i dx 

J/(x)^x + f/(x)2 (10) 

The normalized distance varies from 0 to 1. 0 =o indicates 

a   perfect   match   and   0    =)   is   the   maximum   possible 

distance. It can be shown that for two one-dimensional unit- 
variance Gaussian distributions with mean 3cj and x2 

respectively,       the       normalized       ISE       distance       is 

DISF =v\-e~Ax , where Ax = |jc, -x2\- For example, a one 

STD merging distance threshold described in the next section 

would be y = Vl-e"l/4 * 0.47 . 

B. GMM Reduction Algorithm 

In this section, we propose a GMM reduction algorithm based 
on a combination of the enhanced West/K-mean algorithm and 
a constraint optimized weight adaptation (COWA) algorithm. 
Specifically, with a pre-specified error bound £ , a minimum 
number of components K , and a distance threshold y , the 
algorithm consists of the following steps: 

(1) Select a component to be merged 

In the first step, a normalized (by the determinant of the 
covariance) weight of each component is obtained such that 

w. w, 
>*(p() 

(11) 

These normalized weights are used to order the GMM 
components such that the component with the smallest weight 
is selected as a candidate to be merged with another one that is 
closest to it in the ISE sense. However, the candidate 
component will be merged only when the closest neighbor is 
within a pre-defined distance threshold y .   This is to avoid a 
potential elimination of a "unique" isolated feature from the 
mixture distribution. If no qualified neighbor can be found for 
the current candidate, select the next one from the list with a 
larger weight until a qualified nearest neighbor is found. 

(2) Merge the two selected components 

The chosen candidate and its qualified closest component are 
merged based on the following linear combination rule, 

w„ = w, + *>, 

P^P.+^+^u.-u^u.-u,)'   (12) 

where A, = w,/wv and Xj - wjw^ . 

(3) Apply constraint optimized weight adaptation 

After each reduction step, apply the constraint optimized 
weight adaptation algorithm (COWA) [20] to adjust the 
weights of the reduced GMM components such that the ISE 
distance between the reduced GMM and the original one is 
minimized. The details of the adaptation algorithm are 
presented in the next section. 

(4) Repeat the above steps until either no more candidates can 
be found or the pre-specified stopping criterion is met. The 
stopping criterion states that either the number of components 
reaches the goal K or the ISE distance meets the pre- 
determined threshold s . 

C. Constraint Optimized Weight Adaptation 

Suppose that we have initially located a Gaussian mixture of K 
components to approximate an original Gaussian mixture of A' 
components, where K<N. We now use constraint optimization 
method to adjust the AJ-component weights to minimize the 
ISE from the original GMM. The optimization problem can be 
formulated as 

»n J [£«.N(*i".-p.)-Z^N(*iu.-p.') A   (13) 

SJ. L/»,=i 

where N( x if . ,) denotes the i-th component of the original 

multivariate Gaussian density with mean, u,, and covariance, 

P,. The weights satisfy V" a, •= I • With a GMM reduction 

process, the reduced GMM can be represented ad, 

/(«)=£>,• N (x | u;.    ) 04) 

where K N and VA fi=\-   Our objective is to find the best 

set of weights {/?} to minimize ISE as shown in (13). Using 
the Lagrange formulation, we have 

£«,N(x|U„p,)-f>;N(x|u;,p;) 
11 

+ A I*,-' (15) 

It has been shown that the optimal solution for M} can be 

derived in closed forms [20], specifically, 

b'    =    H"'a-H~'c(c'H 'a-l)(c'H"'c) ' (16) 

where cT ^[l    I    •••    l], bT =[fiy    £    •••    ft] 



•A 

and 

II 

(17) 

(18) 

5>,N(u;|u1,P1' + P1)   -   £a,N(u>„P»+P,) 

N(u,|u|.2P;)        ...   N(u||ut,P, + Pt) 

N(«t|u;,p;+p;) - N(U;IU;,2P;) 

IV.TEST AND EVALUATION 

To test the algorithm, we simulate a network with a number of 
cooperating sensors. Each sensor is assumed to observe an 
object in a one-dimensional (ID) or two-dimensional (2D) 
space and produce a mixture distribution representing its 
estimate of the object state. The sensors communicate their 
estimates with each other in a sequential manner where each 
sensor node is responsible to "fuse" the incoming estimates 
with its own estimate and pass the resulting fused estimate to 
the next node. For example, for a network with n nodes, 
suppose each sensor has a local state estimate represented by a 
GMM of m components. After a sequence of communication 
and fusion (sensor 1 sends its estimate to sensor 2, sensor 2 
combines the estimates and sends the fused results to sensor 3, 
etc.), the total number of components of the resulting GMM at 

the end of the process will be m" which is clearly not 
desirable. 

To ensure scalability, we apply the algorithm described in 
Section 3 to "compress" the combined mixture distribution 
before forwarding it to the next node. In order to meet the 
accuracy requirement, a pre-defined error bound in terms of 
ISE distance is given so that the reduced GMM is guaranteed 
to be within the specified distance to the original GMM at the 
end of each fusion step. 

A. Scenario I 

In the first scenario, we simulate a network of eight sensors 
each estimating a one-dimensional target state with a two- 
component GMM. As mentioned before, the communications 
are taken place in a sequential manner where each sensor 
participates exactly once at a particular order. Without the 
reduction process, at the n'h stage of the communication chain, 
the resulting GMM will have 2" components. It is the result 
of the product of n GMMs each with 2 components and will 
serve as the ground truth to compare the reduced GMMs. 

For a sample trial, Figure I shows the local estimates (GMM 
and its components) from the eight sensors before fusion. 
After the sequential fusion, the resulting true fused GMMs and 
the corresponding reduced GMMs together with their 
components are shown in Figure 2. In the trial, the simulation 
parameters were set to be £ =0.01, K = 1, and y = 0.47 . At 

the end of the chain (sensor node 8, bottom-right of Figure 2), 
the reduced (fused) GMM requires only 5 components and it is 
less than 1% away (in the ISE sense) from the true GMM 

consisting of 2* = 256 components. 

We test the scenario with 100 Monte Carlo trials with similar 
parameters and the results are shown in Figures 3-4. As can 
be seen, with £- = 0.01 or c = 0.001, the errors are well within 
the bounds and the computations are relatively scalable. 
Whent = 0.0001, the complexity increases slightly more than 
linearly to the network size while the accuracy is still well 
within the bound. 

B. Scenario II 

In this scenario, we simulate a network of eight sensors each 
estimating a 2D target state with a two-component GMM. As 
in scenario I, the communications are taken place in a 
sequential manner. For a sample trial. Figure 5 shows the 
local estimates (GMM and its components) from the eight 
sensors. The resulting true fused GMMs and the 
corresponding reduced GMMs together with their components 
are shown in Figures 6 and 7 respectively. 

The results with 100 Monte Carlo trials shown in Figures 8-9 
are very similar to the ones in Figures 3-4. It also shows that a 
trade-off between performance and complexity could be 
achieved by selecting a proper operating point (error bound) at 
each local reduction step. 

V.     SUMMARY 

This paper presents a method to approximate a Gaussian 
mixture by a smaller one with fewer components. The method 
ensures that the ISE error between the original GM and its 
approximation is smaller than a predefined threshold with a 
minimum number of components. We also show empirically 
that the cumulated error, after compressing and fusion, is 
somewhat bounded. This is important for controlling the trade- 
off between system performance and scalability particularly 
for distributed estimation in a large sensor networks. We 
conducted extensive tests with a distributed fusion scenario. 
The simulation results demonstrate the validity and scalability 
of the algorithm. The results also suggest a simple approach 
to control the trade-off between the performance and the 
complexity. 

To ensure scalability and understand the theoretical 
performance bounds, one important future research direction is 
to analyze the propagation of the local error bounds over 
multiple fusion steps and to conduct the convergence analysis 
of the algorithm. In addition to distributed fusion, another 
potential application of the algorithm is for probabilistic 
inference in hybrid Bayesian Networks as described in [6- 
7][21]. In these networks, messages in terms of mixture 
distributions are propagated between discrete and continuous 
nodes. The inference process involves multiplication of 
multiple mixture densities. Further research along this 
direction is critical in order to manage the complexity of 
probabilistic inference in hybrid dynamic Bayesian networks. 
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ABSTRACT 

Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence 
detection and classification of underwater mines is essential for the safety of naval vessels. This necessitates a 
formulation of highly efficient classifiers and detection techniques. Current techniques primarily focus on signals from 
one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, we formulated a 
fusion-based classifier and a Gaussian mixture model (GMM) based classifier for classification of underwater mines. 
The emphasis has been on sound navigation and ranging (SONAR) signals due to their extensive use in current naval 
operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI) 
repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior 
classification accuracy over conventional single source cases and validate our approach. 

Keywords: Data Fusion, Gaussian Mixture model, SONAR, detection and classification 

1.   INTRODUCTION 
Protecting a nation's ocean border is very important for its defense. A nation's oceans can be attacked in a variety of 
ways of which naval mines are the easiest. Underwater mines can easily flood oceans. Since 1950, naval mines have 
been responsible for more ship causalities on US fleet than all other threats combined [I]. They have also been 
accounted for damage to local economies, marine life, and sailor life. These underwater mines are very inexpensive to 
acquire and deploy yet highly destructive. Underwater mines come in variety of types such as, bottom mines, shallow 
mines, and magnetic mines. Irrespective of the type their lethality is high. This combined with the difficulty in detecting 
and classifying them makes them highly effective. This necessitates a formulation of efficient classifiers and detection 
techniques. Most prevalent methods of classification focus on signals from single source, such as learned classification 
using massively parallel networks [2], MML inference of oblique decision trees [3], and second order cone programming 
approach [4]. Although some data fusion based methods, such as algorithm fusion [5] and computer aided detection and 
fusion [6] have been proposed, the application of these methods is limited due to their complexity. Each of the 
aforementioned methods has limitations in terms of accuracy and applicability. 

Data fusion is traditionally applied for command and control operations. However recently data fusion techniques are 
being employed for classification purposes [7]. Similarly, Gaussian mixtures are well established methods that have been 
extensively used in speech recognition and other classification applications [8]. But their use in underwater mine 
classification is limited. 

In this paper, we propose a fusion based classifier and a Gaussian mixture based classifier. These classifiers have been 
applied to SONAR data due to its extensive use in practice. The goal is to investigate the proposed classifiers and to 
evaluate its performance. The remaining of the paper is organized as follows. Section 2 describes briefly about the 
SONAR data we will be testing and describes some initial classification analysis. Section 3 presents the data fusion 
classifiers and Section 4 explains the Gaussian mixture classifiers. Section 5 presents the performance results in terms of 
receiver operator characteristic (ROC). Section 6 summarizes our study and proposes some future research directions. 



2.   INITIAL DATA ANALYSIS 
Almost all naval vessels use SONAR systems extensively. This is attributed to their cost effectiveness, detection 
accuracy and ease of use. Therefore our focus will be on classification with these SONAR signals. To this end we 
obtained data from UCI repository. This data consisted of 208 returns from a SONAR system. Of the 208 returns 111 
were returns bouncing off from a mine at different depths and angles and 97 were from a rock. The aspect angles of the 
signals varied from 90 degrees to 180 degrees. The signal strength in the data represents the energy at a particular 
frequency band. Each data set consists of a vector of 60 elements [9]. The data are represented in figure I and figure 2 
below. Figure 1 presents the signal received from mine detection Figure 2 presents the signal from rock detection. Figure 
3 shows the high similarity between the rock and mine templates created from the average of the signals. To understand 
the data quality, a simple but efficient nearest neighbor method using Euclidean distance was used to determine the 
Bayesian bound. Euclidean distance is a special case of Lk norm, where k =2. For a d-dimensional space, the Lk norm is 
defined as, 

L*(x>y) = Ti y' r (i) 

It was observed from the SONAR data set that the classification accuracy was 82.69% based on nearest neighbor. 

Therefore, the Bayesian performance bound would be B < 1-^(1-0.8269) = 0.9134 = 91.34% [10]. 
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Figure 1. Signal for Mine Detection 
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Figure 2. Signal for Rock Detection 
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Figure 3. Mine and Rock Signal Templates 

After the Bayesian bound analysis, initial classification was performed on the entire dataset by dividing the data into 
training and testing datasets. Among the 208 data samples all the even samples were treated as training datasets and odd 
samples as testing datasets. After which every single data point from the testing case was compared to every other data 
point in the training data set. The Euclidean (L2) distance was initially used to determine the k-nearest neighbor (kNN). 
Based on the similarity of a sample with the training data set, it was determined if the neighbor was either a rock or a 
mine. This process of classification was repeated for different values of k (i.e., number of neighbors). Due to limited 
number of data samples, this approach resulted in relatively poor performance. We then repeated the analysis by 
converting the data to GMMs, which is detailed in section 4. For GMM, the Euclidean distance was replaced by integral 
square error (ISE) distance. The Integral Square Error (ISE) distance is defined as [11]: 



Js = I (g(x)-h(X))2dx =   j{^(x)-2g(x)/7(x)+/J
2(x) dx } (2) 

where g(x) and h(x) represent two density functions. For GMM, the ISE distance can be obtained in close form [11]. 
The GMM method resulted in an increased accuracy of 85.09%. It was observed that the GMM method performs 
superior to the conventional kNN classifier based on Euclidean distance. 

3.   DATA FUSION BASED CLASSIFIERS 
Data fusion systems combine data from multiple sources/sensors to improve situation assessment. This is done to 
increase accuracies and achieve better inferences than achieved by a single sensor alone. Historically, developed for 
command control communication and intelligence applications, they are currently finding a plethora of possibilities in 
areas ranging from manufacturing to medicine. One such application is in classification. Fusion based classifiers were 
developed because of their advantages over single source based classifiers. Some of the advantages of data fusion are 
robust operational performance, increased spatial and temporal coverage, increased confidence, and reduced ambiguity 
[12]. The data fusion approach in this work was applied in a two-fold manner, wherein the first approach was to combine 
data and the other was to combine decision. 

In the first approach, we form an augmented data vector by combining each data with every other set of data from the 
same source to emulate data received from a 2-sensor scenario. The combination process resulted in a significant number 
of synthetic data set. In each data set, the number of elements increases from 60 to 120. Each of these 120 element vector 
represents either a rock or a mine, detected by 2 SONAR sensors. This process is to simulate a centralized 2 sensor 
fusion scenario. The combined data was tested and the nearest neighbor was found over the entire data to determine the 
accuracy. Because of the enhanced performance due to sensor fusion, the accuracy had substantially increased to 94.34% 
and the corresponding Bayesian bound also increased to 97.17%. Employing the kNN based approach described in 
section 2 for the data fusion case, the performance of the classifier also increased significantly. This can evidently be 
attributed to the advantages of the sensor fusion approach. 

Although the accuracy was substantially superior for data fusion approach, the communication requirements for the 
centralized data fusion case were high. Another approach is to use decision fusion based classifiers. In decision fusion, 
instead of relaying all the 120 bits (each sensor contributes 60 bits of data) of the data, only one bit indicating (decision) 
whether the data is rock or mine is communicated and fused. This reduces the bandwidth by more than 99%. The XOR, 
the OR and. the majority vote fusion rules were tested. For the OR rule, as long as one of the two sensors classifies the 
object as a mine, the object was classified as a mine. The accuracy in this case was about 77.59 with L2 distance. As 
expected the XOR rule performed inferior to the OR rule. This is because XOR classified a return as a rock even if one 
sensor called the object the rock. The accuracy with the same L2 case reduced to 64.6%. The majority fusion rule 
considered 3 sensors and used 2/3-majority vote, which produced best overall accuracy of 88.03% as expected. It is clear 
that the decision fusion approach would perform worse than the centralized fusion case due to significantly reduced data 
quantity. However, when communication bandwidth is paramount to the system, then decision fusion could be a good 
alternative. 

4. GAUSSIAN MIXTURE BASED CLASSIFIERS 

Gaussian Mixture Model (GMM) is a special case of mixture distributions where a set of Gaussian densities is linearly 
combined. Mixture distributions subsist in many applications, such as speech recognition, image retrieval, nonlinear 
filtering, and target tracking [8][11][13][14]. Gaussian mixture model (GMM) is typically used in classification 
applications to model the probability density function (PDF) of a signal's frequency spectrum. A similarity measure is 
calculated with respect to a reference sample to classify data. It is therefore natural to formulate a GMM based classifier 
for SONAR data. 

The acquired UCI data was first converted to GMMs using expectation maximization (EM) method. Once the data was 
converted to Gaussian mixtures the classifier was trained. The integral square distance (ISE) was used to measure the 



similarity between the data sample. 

It was observed that the classification performance based on ISE distance is superior to other distance metrics in a high 
signal to noise ratio cases [15]. For the case of 60 (full data size) terms GMM, the accuracy was 85.09% with the 
Bayesian bound increased to 92.51%. To test the tradeoff between complexity and performance, we reduced the number 
of terms in GMM from 60 to 20 and lower. It was observed that with 20 terms, the accuracy reduced to 83.65%, which is 
still better than the performance based on the original data using L2 norm distance. We applied the similar fusion 
method described in the previous section to the GMM data. It was observed that the accuracy improved to 92.59%. 

We also tested the decision fusion performance based on the GMM converted data. ISE distance metric was used with 
nearest neighbor approach analogous to the previous case. The accuracy values for OR, XOR and majority vote fusion 
rule were 79.22%, 67.16%, 89.88% respectively. Again, they perform slightly better than the case with the original data 
described in Section 3. 

5. ROC CURVE ANALYSIS 
Designed initially for RADAR systems, the receiver operation characteristic curve is a standard metric to measure a 
classifier's performance. These curves were obtained by varying the detection threshold to observe the tradeoff between 
probability of detection and probability of false alarm. With the original data, the resulting ROC curves for the single 
sensor and two-sensor centralized fusion cases are shown in figure 4. It is evident that the two-sensor case performs 
significantly better than the single sensor case. 

To test the trade-off between communication requirements and performance for the centralized fusion, we lowered the 
communication requirements by transmitting only partial data. The results are presented in Figure 5. It can be observed 
that with l/3,d of the data transmitted (every third data point, a total of 20 data points for each sensor observation), the 
classification performance was only slightly worse than the one with full data rate. Similarly it can be seen that when 
only 1/12lh of the data points from each sensor were transmitted for fusion, the performance was much poorer but was 
comparable to the single sensor case. 

Similar analysis was performed based on GMM approach with the ISE distance. The ROC curves were generated for 
two-sensor case for both GMM and the original data. The plot showing the ROC curves for both ISE and L2 distance 
case are presented in Figure 6. It can be seen from the figure that the performance of both approaches are comparable 
although the GMM approach works marginally better at lower detection thresholds (higher false alarm rates). 

ROC Curve showing single sensor and data fusion (2 sensor) case 
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ROC Curve showing communication bandwidth tradeoff 
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Figure 5. ROC curve showing tradeoff between communication bandwidth and performance. 
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Figure 6. ROC curve showing ISE distance and L2 distance methods 

The majority of this study has focused on using Euclidean distance, which uses the L2 distance. It has been shown that 
for high dimensional data, the performance improves with reduced order of the distance (L) |16][I7]. We tested the 
effectiveness of the classifiers by varying the distance parameter of L distance. The results are presented in Figure 7. It 
can be seen from the figure that while the classification performance does not change too much between LI-norm to 
LlO-norm distance, a significant jump in performance was observed when the distance measure goes from LI to 
fractional distance. This is consistent with the observation in [18] where the fractional distance provides significant 
performance improvements for high dimensional data over Manhattan distance (LI) and Euclidean distance (L2). We 
then varied the values of L-norm distance metric to obtain the ROC curves. Figure 8 presents the ROC curves with L 
values varying from 0.5 to 5 for single sensor case and Figure 9 presents similar ROC curves for two sensor centralized 



fusion case. It is interesting to observe that as the values of L decreased from 5 to 0.5 the performance of the classifier 
improved greatly. 
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ROC curve showing different values of L for single sensor case 
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Figure 8. ROC curve showing varying L values for single sensor case. 



ROC curve showing different values of L for centralized fusion case 
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Figure 9. ROC curve showing varying L values for centralized fusion case. 

6. SUMMARY 

We focus on formulation of fusion based and GMM based classifiers for application on SONAR signals. We perform 
extensive simulations to test the validity of our approach. In our analysis we have observed that GMM based nearest 
neighbor classifiers using ISE distance metric perform analogous to conventional Euclidean distance metric nearest 
neighbor classifiers. We have also observed that the performance of multi-sensor based centralized fusion classifiers is 
superior to single source methods. Since the communication bandwidth requirements for the centralized fusion based 
classifier is very high, compressed versions of the data with or without GMM can be communicated and classification 
can be performed with reduced bandwidth. We have observed that this data compression approach limits the 
communication bandwidth usage while performs superior to the conventional nearest neighbor methods with the single 
sensor data. When the communication bandwidth is extremely limited, we propose to fuse decisions in place of data. The 
simulation results showed that the decision fusion approach could be highly efficient with some performance 
degradation. We have also tested the influence of various L-norm distances on this high dimensional data and observed 
that fractional L-norm distance perform superior to higher order L-norm distance. 

One of the future research directions is to test the applicability of the classifiers with data from various other types of 
sensor system. They include SONAR systems, video systems, and other imaging techniques. Another research direction 
is to perform communication bandwidth tradeoff studies on fusion performance with multi-modality data. We also 
intend to investigate the possibility of identifying the optimal L-norm distance for various types of high dimensional 
data. 
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