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Abstract. We theoretically study light propagation through sub-wavelength apertures on a silver 
substrate filled with GaAs, in the enhanced transmission regime. We predict enhanced conversion 
efficiencies even under high absorption conditions. 
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1. Introduction  

During the last few decades several groups have pointed out the existence of a double peak structure in the second 
harmonic generation (SHG) process under phase and group velocity mismatch conditions. This trapping process has 
been demonstrated to be produced by the inhomogeneous term solution of the wave equation at the interface 
between a linear and a nonlinear medium [1-4]. The evidence for this phenomenon can be found in several 
experimental works, where the large phase mismatch between the fundamental and the second harmonic waves 
allows the observation of two distinct SH pulses travelling at different phase and group velocities [5-7]. As recently 
shown, this peculiar behavior can also be interpreted as a phase-locking mechanism that remains valid also for 
negative index [8] or absorbing materials [9, 10] thanks to a trapping and dragging mechanism between the 
fundamental and phase-locked generated pulse [6-10]. It has also been demonstrated that sub-wavelength apertures 
carved on metal substrates lead to an enhanced linear response [11], and that surface waves and cavity effects are 
simultaneously important also in nonlinear processes [12]. In this paper we combine the resonant behavior of these 
structures with the phase locking mechanism to study nonlinear wave propagation including second and third 
harmonic generation in wavelength shorter than the band edge, where the nonlinear optical coefficients may be 
unusually high (i.e. GaAs and or GaP in the visible and UV regimes). 
 
2. Linear response of a single sub-wavelength slit on Silver substrate and the enhanced nonlinear response 

For simplicity we consider a silver [13] layer having thickness w and a single aperture of size a, which has been 
filled with GaAs. A necessary and sufficient condition for phase locked harmonic generation to occur in the 
absorption region is that the pump itself be tuned to a region of transparency. By tuning the pump at λ = 1064nm we 
have  ε(1064)GaAs ~ 12.10+ i0. Both second (532nm) and third (354nm) harmonic wavelengths are tuned deep in the 
absorbing regions and no harmonic generation is expected.  Nevertheless, as already shown in the case of planar 
Fabry-Perot cavities, our calculations show the generation of SH and TH fields phase locked to the pump [10] that 
resonate inside the nano-cavity. In order to maximize the linear response at λ = 1064nm we varied the thickness of 
the substrate and aperture size and obtained a transmission map that clearly reveals the strong resonant nature of the 
structure (see Fig.1). We thus sought to enhance the nonlinear response that we previously reported on similarly 
resonant but empty sub-wavelength structures [12].  We simulated a single 60nm-lit carved on a silver substrate of 
variable depth filled with GaAs. We performed our simulations by assuming a d14 = d25= d36 =50 pm/V [14], an 
incident TM-polarized incident pump signal having peak intensity I0=2 GW/cm2. The mere assumption that the metal 
is nonlinear via Coulomb and Lorentz contributions [12] makes it possible to generate both TE- and TM-polarized 
harmonic fields, as Fig.2 demonstrates.  These fields are generated even under high-absorption conditions, and 
survive thanks to a phase locking mechanism that sets in between the pump and its harmonics.   
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Fig.1. (a) Transmission map @ λ=1064nm for a single slit carved on a silver substrate, filled with a material having εX=12.10+ i0. The 
maximum for the transmission is obtained for a 76nm aperture carved on a 104 nm substrate (T = 212 %). (b) Transmittance vs. 
Substrate thickness for a slit 60nm wide, and correpsonds to tracing the yellow line in Fig.1a. 
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Fig.2: TM-polarized incident pump (a), SH (b) and TH (c) Magnetic intensity profiles; TE-polarized SH (d) and TH (e) electric field 

intensities inside the 60nm wide by 104nm long nano-cavity. 
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