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Wet-electron Enhanced Surface Dissociative Electron Attachment
Chemistry of Halocarbons - Final Report

By time-resolved two-photon photoemission (2PP) spectroscopy and electronic
structure theory, we have explored photocatalytic chemistry of small molecules
on TiO2(110) surfaces that are of interest to environmental remediation. In this
report we will focus on some of the main results including: 1) the formation of
wet electron states; 2) the theoretical structure of methanol chemisorption and
wet electron states; and 3) oscillatory photocatalytic dynamics on TiO2 surfaces.
We describe each of these topics in turn.

The formation of wet electron states

In a previous MURI funded project we discovered the wet electron states
for H2O and CHsOH overlayers on TiO: surfaces, where electrons excited from
the TiO2 substrate are trapped transiently in the protic solvent overlayer at an
energy of about 2.3 eV above the Fermi level. We demonstrated that the primary
site for stabilization of wet electrons is surface OH species, formed by the
deprotonation or dissociation of the parent molecule. In addition, undissociated
O-H or C-H species of the parent molecule help to stabilize the wet electron state.

In experiments supported by the present grant we have shown that the
wet electron state does not exist on as deposited surfaces. If a monolayer of H0
and CHsOH are deposited on TiO: surface with concurrent irradiation with 400
nm light, the wet electron resonance appears as coverage approaches 1 ML (Fig.
la). If the sample is moved then so that the laser excites a previously
unirradiated spot, the wet electron state is initially absent from 2PP spectra, but it
gradually rises in intensity for subsequent measurements as the irradiation dose
is increased (Fig. 1b).

These observations indicate that the species responsible for the wet
electron resonance is a product of a photocatalytic reaction, which once formed is
relatively stable on the surface (but see further discussion below). In STM
experiments of our collaborators (Bing Wang, University of Science and
Technology, China), it was shown that 400 nm light dissociates both H>O and
CHsOH molecules to produce the surface OH. So the rise of the wet electron
state signal with irradiation is consistent with our assignment of the wet electron
resonance to surface OH species. Such species can be generated by exothermic
dissociation of the parent molecule at O atom vacancy defects, or by
photocatalytic activity of the surface. The observation of the photocatalytic
process is a new finding that will help to elucidate the process of organic



molecule mineralization on TiO: surfaces. The deprotonation dynamics are
probably associated with proton-coupled electron dynamics,! which we have
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signal reaches a plateau. The intensity;however, does not rise smoothly, and is
punctuated by sharp negative bursts of unknown origin. Now, we can only
speculate the origin of these bursts. Near-UV excitation of TiO: surface excites
electron hole pairs across the 3.0 eV band gap. Because holes have a large
overpotential for oxidation of H20, it is likely that the deprotonation to form
surface OH is a hole-driven process. How the hole attack occurs, however, is
unclear because the hole acceptor states of H2O are too deep for this to be an
exothermic process. We are currently studying the nature of the acceptor states
by density functional theory (DFT). Regardless of how it happens, the
consumption of one type of carrier (holes) leaves a surfeit of the other (electrons).
We believe that the occasional negative bursts are associated with the buildup of
electrons and the associated Coulombic interactions this introduces into the TiO:
surface. Further research is required to obtain more clear understanding. We
will return to a discussion of carrier dependent interactions shortly.




Theoretical structure of CH;OH chemisorption and wet electron states

In order to understand the relative
stability of the molecular vs. deprotonated Figure 2. The 2PP intensity as

chemisorption of H2O and CHsOH, we CH3OH/TiO2 surface is
performed extensive DFT calculations of irradiated with 3.1 eV light vs.
CH3sOH on rutile TiO2 surface. Similar irradiation time. Measurements
calculations have been performed for H.0O are performed at the energies

on TiO:2 with controversial outcome. What
is clear is that for H20 the two forms are nearly isoenergetic and their relative
stability depends on the level of theory used in the calculation.

We have examined 11 different structures of CHsOH on TiO:2 for 1
monolayer (ML) coverage, where one CH3OH molecule is chemisorbed per one
Ti surface site. We demonstrated that it is necessary to perform such calculations
to at least 11 TiO: tetrahedron slabs, in order to obtain converged adsorption
energies.> Some of the theoretical discrepancies for H2O chemisorption can be
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shown in Fig. 3. The calculation was performed for two methanol molecules for
a double surface unit cell to allow for different molecule-molecule and molecule-
surface interactions. The most stable methanol structures involve molecular
chemisorption with one molecule making intermolecular hydrogen bond and the
other, a molecule-surface hydrogen bond. The next most stable structures are
singly deprotonated, and the least stable ones are the doubly deprotonated
structures. The reason why intermolecular and molecule-surface hydrogen
bonds are favored in alternating molecules appears to be steric hindrance. The
alternation of hydrogen bonds helps to reduce steric hindrance with respect to
having just one type of bond. In addition to hydrogen bonding and steric
hindrance, it appears that surface stress also makes an important contribution to
overall chemisorption energy. It is likely that similar interactions are important
for the chemisorption of other molecules on TiO: surfaces, but the details will
depend on specific structure-dependent factors.

In addition to the chemisorption structure, we also investigated the wet
electron states on TiO: surfaces. Figure 4 shows the correlation of wet electron
state energy with the surface dipole moment. The chemisorption structures that
have the larges dipole moment also have the lowest energy wet electron states.
This is quite reasonable because the largest dipole moment is associated with the
most acidic hydrogen atoms of the overlayer. The more the electron charge in
the ground state is withdrawn to the substrate, the better are the surface H atoms
as wet electron state acceptor s. The range of wet electron state energies in Fig. 4
is consistent with the large width of the wet electron resonance for CHsOH on
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So far we have described the properties of single species (H20 or CH3OH)
on TiO:2 surfaces under ultrahigh vacuum conditions. There is evidence from
XPS spectroscopy that even at much higher background pressures at room
temperature, TiO: surfaces are covered by approximately 1 ML of water. Under
ambient conditions that would be pertinent for chemical remediation, O: is likely
to be an important reactant in decomposition of organic molecules. Therefore,
we investigated the effect of Oz on TiO: photocatalysis with H2O and CHsOH
overlayers.

For a clean TiO: surface at 90 K O: molecules do not adsorb on
stoichiometric TiO:z surfaces; they only react at and heal O atom vacancies.
Therefore, it is not surprising that exposing H>O or CHsOH covered TiO: surface
to Oz atmosphere does not change the general shape of 2PP spectra. The spectra,
however, take on a rather noisy appearance with the noise depending on the O
background pressure. We therefore measured the time course of the wet electron
peak intensity, as in Fig. 2, at several energies with different background
pressures of Oz. Figure 5a shows the time course of 2PP intensity at the wet
electron energy for a background pressure of 3x10-® mbar of O2. The 2PP signal
in Fig. 5a is clearly fluctuating with time in a manner that is correlated for
different observation energies. The fluctuation amplitude increases with the
background O: pressure. Such behavior is characteristic of oscillating chemical
reactions, which have been observed in catalytic processes and are thought to be
responsible for circadian rhythms in biological clocks.

In order to confirm this interpretation, we performed an autocorrelation
analysis of the signal in Fig. 5a, which is displayed in Fig. 5b. The
autocorrelation function shows a damped oscillating behavior that is consistent
with the interpretation of an oscillating chemical system that is far from
thermodynamic equilibrium. Although we are far from being able to provide a
model for the observed behavior, we speculate that some of the ingredients for
the oscillating photocatalytic activity include: 1) optical generation of electrons
and holes, which provide the thermodynamic driving force; 2) the spatially
separated chemical reactivity of electrons and holes with respect to reactants; 3)
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transport of O2 molecules to and reaction at TiO2 surface; 4) oxidation of CHs:OH
by holes; and 5) reduction of Oz to Oz by electrons. There is evidence that
oxidation and reduction processes on TiO:2 occur at spatially different locations.
With only CH3OH on the surface, we can only drive oxidation process, leading to
accumulation of excess electrons, which may be responsible for the bursts in Fig.
2. With both red-ox processes occurring in the presence of Oz, we see the
oscillations. The separate processes enumerated above could be described by a
set of nonlinear differential equations, which in certain regimes would lead to
nonlinear, chaotic, and oscillating solutions. At this stage this is our hypostasis,
and we plan to do further research to establish a kinetic model to describe these
oscillating chemical processes. Being able to describe photocatalytic
decomposition of organic molecules in presence of Oz and light would represent
a major step in understanding the photocatalytic properties of TiO..

Other accomplishments

Besides the topics described above, we have also performed the research
described briefly hereafter. More extensive descriptions have been provided in
previous reports:

1) Characterization of the electronic properties of O atom vacancies on
TiOz. By low temperature STM and electronic structure theory we characterized
the distribution of charge at TiO: surface following removal of O atoms. Such
defects are present at few-percent level on any TiO: surface prepared by UHV
surface science methods, and they represent the most reactive sites for thermal
chemistry. We have shown that the charge density is distributed over multiple
Ti sites, and therefore it can attract electrophilic and repel electrophobic reactants
with respect to O atom vacancy defects.*

2) The GW calculation of the electronic band structure and exciton
properties of anatase and rutile TiOz. Despite being a paradigm for
photocatalytic chemistry, the electronic structure of TiO: had not been
investigated by high-level electronic structure theory. We have calculated the
optical spectrum of TiOz by the GW method, which is known to give accurate
results for optical properties of semiconductors, and metal oxides. Our
calculations are a starting point for understanding how the electronic structure of
TiO:z determines the properties of electrons, holes and excitons that are generated
by optical excitation.’
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