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Abstract  

A multilinear parametric uniaxial stress strain approach has been used to obtain the 

closed form nonlinear moment curvature response based on strain compatibility in 

bending for epoxy resin materials. The stress strain curves, consisting of a bilinear 

ascending curve followed by strain softening and constant plastic flow in tension and 

compression, are described by two main parameters in addition to five non-dimensional 

tensile and seven non-dimensional compressive parameters. The main parameters are 

modulus of elasticity and strain at the proportional elastic limit point in tension. 

Parametric studies show that ultimate tensile stress and compressive yield stress as well 

as tension and compression flow stresses have the highest effects on flexural load 

carrying capacity. Moment curvature equations in conjunction with deformation 

localization and static equilibrium conditions were used to simulate the flexural load 

deflection response of a beam under three-point bending condition. The simulations 

reveal that the direct use of uniaxial tensile and compressive stress strain curves 

underestimates the flexural response due to the differences in the effective volume of the 

material subjected to critical stresses.  
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CE Database subject headings: polymer, stress strain relations, moment distribution, 

curvature, load, deflection, localization, nonlinear response 

Introduction 

Stress strain curves of polymeric materials are still a challenge for researchers. 

Difficulty of a constitutive law in polymeric material is mainly due to the characterization 

of its mechanical behavior under different kind of loading conditions. The hydrostatic 

component of stress has a significant effect on the load deformation response of resins 

even at low levels of stress (Ward and Sweeny 2004). Hydrostatic stresses are known to 

affect the yield stress and nonlinear response of epoxy resin materials. In order to develop 

a general model for polymeric materials, their behavior under different types of loading 

conditions has to be understood.  

Several constitutive models have been proposed for polymeric materials in the past 

three decades. The most successful models are proposed by groups at Oxford (Buckley 

and Jones 1995; Buckley and Dooling 2004), MIT (Boyce et al. 1989; Boyce et al. 1994; 

Hasan and Boyce 1995; Mulliken and Boyce 2006), and Eindhoven (Tervoort et al. 1996; 

Tervoort et al. 1998; Govaert et al., 2000). These models have been successful, especially, 

in fitting quasi-static inplane test results. Wineman and Rajagopal (2000) used a 

viscoplasticity model to capture the behavior of polymers. Zhang and Moore (1997), and 

Gilat et al. (2007) modified the Bodner–Partom model originally developed for metals to 

obtain the nonlinear uniaxial response of polymeric materials. By modifying the 

definitions of the effective stress and effective inelastic strain rate in the Drucker-Prager 

yield criteria, Li and Pan (1990), Chang and Pan (1997), and Hsu et al. (1999) developed 

an approach for the constitutive law of polymeric materials. Jordan et al. (2008) modified 
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the original model of Mulliken and Boyce (2006) for one dimension to capture the 

compressive mechanical properties of polymer composites. The original model is a three 

dimensional model for thermoplastic polymers. Lu et al. (2001) used the constitutive 

model developed by Hasan and Boyce (1995) to simulate the experimental results on the 

uniaxial compressive stress strain behavior of epon E 828/T-403. Chen et al. (1998) 

modeled the uniaxial compressive response of epon E 828/T-403 using Johnson-Cook 

model (Johnson 1983). They simulated the experimental compression response up to 10% 

of true strain, but reported experimental stress strain curves showing elastic deformation, 

a yield-like peak, and a strain softening region up to around 35%. The majority of the 

parameters were determined by fitting the model to experimental tensile and compressive 

data. Naaman and Reinhardt (2006) used multi linear stress strain and stress crack 

opening approaches to characterize the mechanical behavior of high performance fiber 

reinforced cement composites. Hobbiebrunken et al. (2007) and Goodier (1993) studied 

the correlation between presence of defects (voids and micro cracks) and the volume 

under stress in epoxy resin glassy polymers. The crack initiation by void nucleation or a 

pre-existing flaw in epoxy resins was observed and the dependency of the failure 

behavior and strength on the size effect, stress state, and the volume of the body 

subjected to stress was studied (Hobbiebrunken et al. 2007, Bazant and Chen 1997; 

Odom and Adam 1992). Flexural strength distributions and ratio of flexural strength to 

tension strength of epoxy resin and PMMA materials were studied using Weibull model 

(Giannotti et al. 2003; Vallo 2002). Giannotti et al. (2003) used a modified two-parameter 

Weibull model to compare the effect of loading systems on the mean stress in polymeric 
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materials, and observed that it predicts a mean flexural strength up to 40% higher than the 

mean tensile strength for Weibull modulus greater than 14.   

This study is motivated by the need to better characterize the flexural behavior of 

epoxy resin materials. Closed form solutions for moment curvature response were 

derived based on nonlinear tension and compression stress strain curves. The results were 

expressed in normalized form to eliminate the effects of sizes and strength of specimen. 

A technique based on the uniaxial tension and compression stress strain relations, strain 

compatibility in bending, static equilibrium, deformation localization, and moment area 

method was used to simulate flexural load deflection response in a statically determinate 

structure.  Since the solution is derived explicitly, iterative procedures required for 

handling material nonlinearity are not required; hence this method is powerful for 

forward and inverse analyses. The effects of different segments of tension and 

compression stress strain curves for improving the flexural performance of epoxy resin 

materials were studied. The purpose of this study is two folds: (i) to correlate the uniaxial 

tension and compression material response with flexural behavior in epoxy resins; (ii) to 

evaluate the effect of different segments of tension and compression stress strain curve on 

flexural response.  

Strain Softening With Plastic Flow in Tension and Compression 

Epoxy resin materials share some similarities such that while the compressive and 

tensile moduli are approximately equal, the first point showing deviation from linearity in 

the stress strain curve in tension is weaker than the one in compression stress strain curve 

(Ward and Sweeney 2004). It is critically important to observe that the general shapes of 

the stress strain curves in tension and compression in epoxy resin materials are similar as 
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they represent initial linear behavior followed by an ascending curve with reduced 

stiffness in the pre-peak region, and strain softening response in the post-peak region 

(G’Sell and Souahi 1997; Boyce and Arruda 1990; Buckley and Harding 2001; Shah 

khan et al. 2001; Jordan et al. 2008; Littell et al. 2008; Chen et al. 2001). Fig. 1 shows the 

complete tension and compression stress strain curves.  The two parameters 

characterizing the tensile response in the pre-peak region are Proportionality Elastic 

Limit (PEL) and Ultimate Tensile Strength (UTS). Post-peak region in tension model is 

expressed with slope of softening (Esoft,t),  plastic flow (f), and the ultimate strain (Ut). 

Yield stress is often assumed to be equal to the first peak stress in the stress strain curve. 

Pre-peak region in compression is characterized by Proportionality Elastic Limit in 

compression (PEL,c) and Compressive Yield Stress (CYS). The post-peak response in 

compression is determined by slope of softening (Esoft,c), compression plastic flow (f,c), 

and the compressive ultimate strain (Uc). The tension and compression strain stress 

model is defined in Table 1. 

 
 

Fig. 1 Bilinear ascending curve and strain softening post peak response in tension and compression 

  
Table 1: Definition of stress in tension and compression 

Stress Definition Domain of strain 

t(t) Et 0  t  PEL 
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E (PEL +  (t - PEL)) PEL < t  t1 PEL 

E (PEL +  PEL (t1-1) +  (t -t1PEL)) t1 PEL < t  t2 PEL 

E (PEL +  PEL (t1-1) + PEL (t2 - t1)) t2 PEL < t  Ut PEL 

0 Ut PEL < t 

c(c) 

 E c 0  c  c0 PEL 

E( c0 PEL +  ( c - c0 PEL)) c0 PEL < c  c1 PEL 

E( c0 PEL +   PEL (c1 - c0) + (c - c1PEL)) c1 PEL  <  c  c2 PEL 

E( c0 PEL +   PEL (c1 - c0) +  PEL (c2 - c1)) c2 PEL  <  c  Uc PEL 

0 Uc PEL < c 

 

The complete tension and compression stress strain curves are defined uniquely by 

two material parameters: modulus of elasticity in tension (E), and strain at the tensile 

proportionality elastic limit (PEL); and twelve normalized parameters: t1, t2, Ut, co, c1, 

c2, Uc, , , , , and . The tensile and compressive stresses at the PEL point are 

related empirically to the stresses at the UTS and CYS points. Elastic modulus in tension 

and compression are practically identical (Foreman et al. 2010). However, bi-modulus 

material constants (  1) are considered in tension and compression. Equations (1) to (3) 

show the definitions of the normalized parameters. 

PEL

cPEL

c





,

0  , 
PEL

CYS
c




 1 , 

PEL

Sc
c




 2  , 

PEL

Uts
t




 1 , 

PEL

St
t




 2       (1) 

PEL

Uc
Uc




  ,

PEL

Ut
Ut




                     (2) 

E

Ec ,
E

E cPEL ,
 , 

E

E csoft,
 , 

E

E tPEL ,
 , 

E

E tsoft,
     (3)  
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Closed-form Moment Curvature Response 

Strain compatibility in bending is considered to derive moment curvature relationship 

for a rectangular cross section with the width of b and the depth of h. Using the stress 

strain relationships in Fig. 1 and the known applied compressive strain at the top fiber 

(PEL), sixteen different cases of strain and stress distributions are shown in Fig. 2. The 

development of the stress strain relation across the cross section, and the possibilities of 

tension or compression failures are presented in Table 2. In this approach, moving 

through different stages depends on the transition points (tpij) which are functions of 

material parameters. Indices i and j refer to origin and destination stages, respectively. 

Stress strain develops at least to stage 4 where compressive and tensile failure is possible 

if max = Uc in case 10, or max = J in case 9. Characteristic points, A to P, are calculated 

as functions of material parameters to satisfy the following relation at each load step.  

PELt              (4) 

Where t  is the tensile strain at the bottom fiber and , depending on the case of stress 

distribution, is one of the followings: 1, t1, t2, Ut.  t is expressed as a linear function of 

the applied compressive strain at the top fiber (c) 

ct 








1
          (5) 

Where c is equal to   PEL and  is the depth of the neutral axis which is a function of 

material parameters.  Characteristic points A and B are presented in Equation (6) as an 

example. As the applied strain parameter  is incrementally imposed, the strain and stress 

distribution is determined and the internal tension and compression forces are computed. 

For instance, the internal forces for the tension and compression subzones for case 
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sixteen (Fig. 2-q) normalized to the tension force at the PEL point (bhEPEL) are as shown 

in Equations (7) to (14). 










1
A , 

   



 


2

00 cc
B      (6) 





 2

1 
PEL

t

bhE

F
         (7) 

  




 2

12 112 
 tt

PEL

t

bhE

F
      (8) 

     




 2

122 121213 ttttt

PEL

t

bhE

F 
     (9) 

     
   121

21214 11
11

ttt
tttt

PEL

t

bhE

F










   (10) 

 




 2

2

01 c

PEL

c

bhE

F
          (11) 

    




 2

2 010012 ccccc

PEL

c

bhE

F 
      (12) 

      




 2

22 12010123 ccccccc

PEL

c

bhE

F 
    (13) 

      





1201024 cccccc

PEL

c

bhE

F 
    (14) 

Net force is calculated as the difference between the tension and compression forces 

for each case. By applying internal equilibrium, the value of  is obtained. The 

expressions of net force in some stages result in more than one solution for . For an 

isotropic material, the first  value is 0.5 since the neutral axis coincides with the centroid 

of the rectangular section. Since the neutral axis changes incrementally, the next value of 
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 is the closest to the previous neutral axis. Using a large amount of numerical tests 

covering possible ranges of material parameters, the solution of  which yields a valid 

value 0 <  < 1, is determined. For instance, the  for case sixteen (Fig. 2-q) is as below 

             
    

   
    

1

121

222

2

121

2

1

2

2

2

1

2

0

16

112

121

112

































ttt

t

ttt

tccc









  (15) 

 

Moment expressions are obtained by taking the first moment of the compression and 

tension forces about the neutral axis. Curvature is calculated by dividing the top 

compressive strain by the depth of the neutral axis h. The general equations for 

normalized moment and curvature are 

 UcUtttcccPEL MMM  ,,,,,,,,,,,, 21210
                                         (16) 

 UcUtttcccPEL  ,,,,,,,,,,,, 21210
          (17) 

 
i

UcUtttccci





2
,,,,,,,,,,,, 21210  ,    i = 1,2,3,…,16          (18)  

Where MPEL and PEL are moment and curvature (for  = 1) at the tensile PEL and are 

defined in Equation (19). Normalized moment for case sixteen (Fig. 2-q) is defined as  

6

2

PEL
PEL

Ebh
M


   ,  

h
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

2
            (19)  
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(a) rectangular cross section (b) case one 

  
(c) case two (d) case three 

  

(e) case four (f) case five 

 
 

(g) case six (h) case seven 
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(i) case eight (j) case nine 

 
 

(k) case ten (l) case eleven 

 
 

(m) case twelve (n) case thirteen 

 
 

(o) case fourteen (p) case fifteen 

 
(q) case sixteen 

Fig. 2 (a) Rectangular cross section, (b) to (q) sixteen cases of strain and stress distributions. 
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Table 2: Stress development in the cross section at different stages of flexural loading 

Stage Possible Cases Transition Point 

(tpij) 

One One     Min (c0, A) 

Two Two 

Three 

        Min (c0, C) & 

         Min (c1, B) 

Three Four 

Five 

Six 

         Min (c0, F) & 

         Min (c1, E) & 

         Min (c2, D) 

Four Seven 

Eight 

Nine 

Ten 

         Min (c1, I)  & 

         Min (c2, H) & 

         Min (c0, J) & 

         Min (Uc, G) 

Five Eleven 

Twelve 

Thirteen 

         Min (c2, L)  & 

         Min (c1, M) & 

         Min (Uc, K) 

Six Fourteen 

Fifteen 

         Min (Uc, N) & 

         Min (c2, O) 

Seven Sixteen          Min (Uc, P) 

Eight failure 

       

The closed form solutions for the location of neutral axis i, and normalized moment 

M’i for all the cases are presented in Tables 3 and 4 in the appendix. The normalized 
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ultimate moment for a material like resin at very large  values (M’) is computed by 

substituting  =  in the expression for  in case sixteen in Equation (15) and by 

substitution of    =  and  in the normalized moment expression in Equation (20). 

Equation (21) presents the value of  for very large  values. As it is logically expected, 

the numerator is a function of material parameters in tension while the denominator is a 

function of both tension and compression parameters. Normalized ultimate moment is 

obtained as a function of tension and compression material parameters as follows 

   
       12010121

121

11

11

cccccttt

ttt









   (21) 

         
         12010121

12010121

11

113

cccccttt

ccccctttM







   (22) 

Equation (18) clearly shows that normalized curvature would be a very large number 

for very large  values. For elastic perfectly plastic materials with equal tensile and 

compressive elastic moduli and equal yield stress and strain ( =  = 0,  =  =  = 1, t1 

= c1 = 1), Equations (21) and (22) yields to 0.5 and 1.5, respectively, validating the 

theoretical value that the plastic moment capacity of a rectangular section is 1.5 times of 

its elastic yield strength (Salmon 1990). 

Parametric Study  

A set of analytical parametric studies based on developed closed form solutions for 

moment curvature response is presented. The flexural strength and ductility for each 

material parameter were expressed as the normalized moment curvature response, which 

is independent of specimen sizes and PEL strength. Although polymeric materials show 

strain softening behavior with a percentage of the UTS, a complete set of parametric 
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studies is conducted to examine the effect of post peak behavior on flexural response. 

Mechanical characteristic of Epon E 862 epoxy resin was chosen as a base set of 

parameters (Littell et al., 2008):  E = 2069 MPa,  Ec = 2457 MPa,  PEL = 0.0205,  Uts = 

0.076,  St  = 0.16,  Ut = 0.24,  PEL,c  = 0.019,  CYS = 0.092,  Sc = 0.15, Uc = 0.35,  Uts  

= 70 MPa,  f  = 60.5 MPa,  CYS = 93 MPa,  f,c = 87 MPa  

Fig. 3 shows the effect of tensile flow stress on the moment curvature and the location 

of neutral axis.  = 0.3 and  = 0.001 correspond to tensile plastic flow equal to 25% and 

almost 100% of the UTS, respectively. Fig. 3 shows that moment curvature response is 

extremely sensitive to the variations in constant tensile flow as the location of maximum 

flexure and the post peak regime completely changes with changing tensile plastic flow 

stress. For the parameters given, Equation (22) yields to  = 0.306 for M’ =1; values of 

 > 0.306 leads to moment capacity at failure less than elastic moment capacity at PEL. 

In other words, in order to obtain the bending moment at large top compressive strains 

equal to or greater than the elastic bending capacity, the required tensile plastic flow 

should be equal to or greater than 25% of the UTS.   = 0.05 exactly characterizes the 

material behavior of Epon E 862 for which Equation (22) indicates M’ = 2.55 at ultimate 

point.  Fig. 3 also shows that decreasing the level of tensile flow decreases the neutral 

axis depth, especially for  values greater than 0.2.  = 0.2 corresponds to a tensile 

plastic flow stress equal to 50% of UTS. It is observed that the strain softening region of 

tensile response contributes to the flexural load carrying capacity and nonlinear energy 

dissipation when subjected to the flexural stress.  

Fig. 4 shows the effect of different values of UTS at constant UTS on the moment 

curvature and neutral axis location. Since the flow stress in tension is constant, the post 
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PEL and the softening slopes are calculated for different UTS values. The strength gain is 

almost proportional to UTS; the stiffness remains about the same, while ductility slightly 

increases. However, the amount of 
M  is not affected as much as the flexural strength 

since for cases  = 0.4,  = 0.16 and  = 0.5,  = 0.226 the moment at infinity is less 

than the flexural strengths. Fig. 4 illustrates that by increasing the UTS, neutral axis 

moves downward and exceeds   = 0.5 for the case of  = 0.5,  = 0.226. Fig. 5 shows 

the effects of different post PEL slopes, strain at UTS point, and softening slopes with 

constant UTS on flexural response. Results show that changes in the location of the UTS 

point with a constant value slightly change the moment curvature response. It is observed 

that the location of the UTS point, for a wide range of normalized top compressive strains 

between one and four, changes the location of the neutral axis and stress distributions. Fig. 

6 illustrates the effect of compressive plastic flow on moment curvature and location of 

neutral axis. Since the epoxy resin epon E 862 is stronger in compression than tension, 

changes in compressive plastic flow do not change the moment capacity, but affects the 

moment at failure considerably. It illustrates that decrease of compression plastic flow 

increases the neutral axis depth for top compressive strains greater than 0.103.  Fig. 7 

shows the effects of CYS values at constant strain. Like tension, increase of peak strength 

in compression at constant strain increases the flexural capacity of the epoxy resin. It is 

observed that change in CYS values at constant strain affects moment at failure less than 

flexural capacity. Results show that an increase of compression peak stress decreases the 

neutral axis depth considerably.   

Researchers have observed different compression behavior in post-peak response for 

epoxy resins with different specimen shape and dimensions. Strain softening at yield, 
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followed by strain stiffening at higher strains in compression for different low and high 

strain rates has been reported (Littell et al. 2008; Jordan et al. 2008; Fiedler et al. 2001; 

Behzadi and Jones 2005; G’Sell and Souahi 1997; Boyce and Arruda 1990; Buckley and 

Harding 2001). However, Shah khan et al. (2001) and Chen et al. (2001) didn’t observe 

any strain stiffening at high strains. Fig. 8 illustrates the effect of tension and 

compression behavior at high strains at stress development at a point of material for epon 

E 862 under flexural loading. Tensile failure is the governing mechanism for all cases. 

Materials with   0.2 do not experience compression plastic flow and their stress strain 

relationship in the compression side always is in the ascending region and/or first part of 

the softening regime. This is the reason that their neutral axis depth and moment capacity 

drops sharply by increasing the top compressive strain. Results show that shape of stress 

strain curve for high strain values in compression do not influence the flexural response 

of materials in which compression is stronger than tension.   
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Fig. 3 Effect of tensile flow stress on moment curvature and location of neutral axis 
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Fig. 5 Effect of post PEL and strain softening slopes at constant Uts on flexural response 
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Fig. 6 Effect of compression flow stress on moment curvature and location of neutral axis 
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Fig. 4 Effect of Uts at constant Uts on moment curvature and location of neutral axis 
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Fig. 7 Effect of CYS at constant CYS on moment curvature and location of neutral axis 
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Fig. 8 Effect of tension plastic flow on stress development at a point of material 

 

Load Deflection Algorithm 

The load-deflection response is obtained by using the moment curvature response, 

deformation localization, and the moment area method. In displacement control, the 

normalized top compressive strain is incrementally imposed to generate a stress 

distribution profile in a given cross section. For resins, if the compressive strength is 

greater than the tensile strength, the shape of the moment curvature diagram greatly 

depends on the value of the post peak tensile stress as observed in the parametric study. 

Fig. 9 shows a typical moment curvature diagram for epoxy resins which consists of an 

ascending curve from 0 to Mmax  and a descending curve from Mmax  to Mfailure.  
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Fig. 9 Moment curvature and crack localization 

 

The first deviation from linearity in a moment curvature or load deflection curve is 

called Limit of Proportionality (LOP), and the first peak moment or load is called 

Modulus of Rupture (MOR) as determined in Fig. 9. When a beam is loaded beyond 

MOR in a material with strain softening behavior, the increase of the deformation 

decreases load. Polymeric materials are characterized by the existence of a fracture 

process zone with distributed cracking damage (Bazant and Chen 1997). Fig. 10 shows a 

3PB with deformation localization in the cracking region at the vicinity of the load at the 

groove (region 2) while other zones outside the groove (region 1) undergo unloading 

during softening. In order to obtain the load deflection response for 3PB from the 

moment curvature diagram, static equilibrium is used and an array of load steps is 

derived from a series of discrete data points along a moment curvature diagram.  Moment 

distribution along the length of a beam is obtained by static equilibrium and the 

corresponding curvature is obtained from a moment curvature relationship. The 

deflection at the mid span is calculated using moment area method for discrete curvature 

points at each load step. This procedure is repeated for the number of load steps till a 

complete load deflection response is obtained. 



20 

 

The specimen is loaded from 0 to PLOP in the ascending portion of the moment 

curvature diagram from 0 to MLOP. The curvature for this portion is determined directly 

from the moment curvature diagram. Beyond the LOP, as the specimen undergoes 

softening, the curvature distribution depends on the localized or non-localized zones and 

prior strain history.  The strain and curvature unloads elastically for an un-cracked section. 

If the section is loaded beyond MLOP, the unloading curvature of the cracked section 

follows a quasi-linear recovery path as shown in Fig. 9 and as observed by Littell et al. 

(2008). Since analytical simulation is done for 3PB under displacement control, cracks do 

not close when material softens.  For sections in the localized zone, the unloading 

curvature is determined from the descending portion of the moment curvature diagram 

from Mmax  to Mfailure. 

 

 

Fig. 10 Crack localization in a beam with groove under a point load at mid span 

 

Simulation of Flexural Load Deflection Response 

Tension, compression, and 3PB bending tests were conducted on epoxy resin epon E 

863 with a hardener EPI-CURE 3290 using a 100/27 weight ratio at room temperature. 

Digital image correlation technique, ARAMIS 4M (2006), was used to study the strain 

fields. Dog bone samples with a 14 mm gage length and an averaged rectangular cross 

section of 3.18 mm  3.43 mm were selected to conduct the monotonic tensile tests. 

Small cubic samples (side 4 mm) were tested under monotonic compression. Small 

beams with 4mm average width, 10mm thickness, and 60mm length with a groove 
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(radius of approximately 3.5 mm) in the middle of the beam were selected to conduct 

3PB tests. Sections 1 and 2 in Fig. 11 shows that the length of deformation localization at 

493 str/sec and 59 str/sec in the softening stage, obtained from strain field analysis, are 

5mm and 4.5 mm, respectively. Figs. 12-a, 12-b, 13-a, and 13-b illustrate the 

representative experimental tension and compression true stress strain curves at 493 

str/sec and 59 str/sec. Since the compression stress strain curve was not available at 59 

str/sec, it was built based on the linear relationship between the mechanical 

characteristics and the logarithm of the strain rate. Experimental results show a strain 

softening behavior beyond the peak point followed by a constant plateau before failure. A 

simulation was made to study the load deflection response of epon E 863 and to evaluate 

the effects of out of plane loading.  

The two main parameters and twelve non-dimensional parameters for the models at 

493 str/sec and 59 str/sec are: E = 3049 MPa, PEL = 0.0162, c0 = 1.148, c1 = 3.52, 

c2 = 6.79, Uc = 15.70, t1 = 2.55, t2 = 8.64, Ut = 20.98,  = 1.09,  = 0.395,  = 0.298, 

 = -0.0385 and  = -0.117 for 493 str/sec and E = 2877 MPa, PEL = 0.0154, c0 = 

1.331, c1 = 3.896, c2 = 6.79, Uc = 19.48, t1 = 2.753, t2 = 8.05, Ut = 19.87,  = 0.83,  

= 0.33,  = 0.285,  = -0.0352 and  = -0.122 for 59 str/sec. Figs. 12-c and 13-c show 

the 3PB load deflection curve compared with the simulation results. The figures illustrate 

that the tension and compression stress strain curves underestimate the load deflection 

response due to the difference between stress distribution profile in uniaxial tests and 

bending test. In tension and compression tests, the entire volume of the sample is 

subjected to the same load and has the same probability of failure. However, in a bending 

test, only a small fraction of the tension and compression regions are subjected to the 
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maximum peak stress. Therefore, the probability of crack nucleation, propagation, and 

failure development in tension and compression samples is higher than in bending 

samples. Results of the parametric study show that simulation of the flexural response 

can be improved by changing the ultimate tensile and compressive level and further 

adjustments of the other parameters. In order to quantify these effects and based on the 

results of parametric study, one scaling factor (C1) is proposed to modify the strength of 

the material.   

  
(a)                                                                  (b) 

Fig. 11 Deformation localization area and longitudinal strain distribution (a) 493 str/sec; (b) 

59 str/sec 
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(a)                                                          (b)                                                          (c) 

Fig. 12 Experiment and simulation of tension, compression and load deflection response at 493 str/sec 
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Various amounts of imperfections in the material directly affect C1. However, back 

calculation showed that C1 for Epon E 863 for 493 str/sec and 59 str/sec are around 

1.14 and 1.24, respectively. An inverse analysis approach of flexural results will establish 

a statistical relationship between the compression, tension stress strain curves and the 

flexural response. 
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Fig. 13 Experiment and simulation of tension, compression and load deflection response at 59 str/sec 

 

Conclusions 

Explicit moment curvature equations using nonlinear tension and compression stress 

strain relation for epoxy resin materials have been developed. A multilinear stress strain 

relation for epoxy resin materials, consisting of strain softening and flow stress in tension 

and compression has been used. The material model is described by two intrinsic material 

parameters: (a) tensile modulus of elasticity, and (b) tensile strain at the PEL point, in 

addition to five non-dimensional parameters for tension and seven non-dimensional 

parameters for compression. A parametric study showed that the moment-curvature 

response is primarily controlled by the post peak tensile and compressive strengths, UTS, 

and CYS. It was concluded that compression stress strain parameters have less effect on 

flexural behavior than tension parameters as long as compression strength is higher than 
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tension strength. For materials with small post peak tensile strength values, moment at 

failure is much less than the moment carrying capacity and the response terminate at a 

relatively low compressive strain. Materials with higher normalized post peak tensile 

strength have a gradual reduction in the height of the compressive zone, therefore larger 

deformations are possible. Epoxy resin materials with a considerable amount of post peak 

tensile strength have a moment capacity around 2.5 times the moment at the PEL point. 

An increase of CYS by increasing the post compressive PEL stiffness at high CYS values, 

marginally affects the moment capacity in polymeric materials. It is observed that the 

flexural response in polymeric materials that are stronger in compression than in tension 

is independent of the shape of the compression stress strain curve at high strain values. 

Simulation of the load deflection response of epoxy resins in 3PB test revealed the effect 

of stress gradient on the material behavior. Results indicate that direct use of tension and 

compression data underestimates the flexural strength. By applying a scaling factor (C1) 

to uniaxial tension and compression strength in stress strain curve, flexural behavior of 

epoxy resins were predicted accurately.  
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Notation 

b       = beam width 

E      = modulus of elasticity in tension (if   1) or modulus of elasticity (if  = 1) 
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Ec   ()        = modulus of elasticity in compression if   1  

EPEL,c ()    =  stiffness at the post proportionality limit in compression  

EPEL,t ()    =  stiffness at the post proportionality limit in tension  

Esoft,c  ()    =  slope of softening at the post peak region in compression  

Esoft,t  ()    =  slope of softening at the post peak region in tension  

Fi       =   force component in each sub-zone ( i = 1,2,3,4) of stress diagram 

h    =   beam depth 

Mj (M’j)       = moment for each case of stress distribution across the depth 

c                 =  compressive strain  

CYS (c1)     =  strain at the compressive yield strength (peak) point  

PEL      =  strain at the proportionality elastic limit point 

PEL,c (c0)   =  strain at the proportionality elastic limit point in compression  

Sc   (c2)     =  strain at the end of compressive strain softening point  

St  (t2)       =  strain at the end of tensile strain softening point  

t                 =  tensile strain 

Uc  (Uc)     =  strain at the compressive failure point  

Uts (t1)      =  strain at ultimate tensile strength (peak) point  

Ut (Ut)       =  strain at the tensile failure point  

j   =  neutral axis depth ratio for each case of stress distribution  

   =  normalized applied top compressive strain ( c / PEL ) 

                = auxiliary parameter 

j (’j)          = curvature for each case of stress distribution across the depth  
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f                 =  plastic flow stress in tension 

f,c               =  plastic flow stress in compression 

t1, t2, Ut, co, c1, c2, Uc, , , , ,  , M’j, and ’j are normalized values. 
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Table 4: Normalized moment for each case 
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