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Abstract— Curves and natural frames can be used for de-
scribing and controlling motion in both biological and en-
gineering contexts (e.g., pursuit and formation control). The
geometry of curves and frames leads naturally to a Lie
group formulation where coordinated motion is represented
by interacting particles on Lie groups - specifically, SE(2) or
SE(3). Here we consider a particular type of optimal control
problem in which the interactions between particles arise from
a cost function dependent on each particle’s steering, and which
penalizes steering differences between the particles (expressed
via the graph Laplacian). With this choice of cost function,
we are able to perform Lie-Poisson reduction. Furthermore,
we are able to derive a closed-form expression (using Jacobi
elliptic functions) for certain special solutions of the coupled
multi-particle problem on SE(2).

I. INTRODUCTION

It is convenient to decompose the problem of multi-vehicle
coordinated control into two tasks: trajectory generation
(based on pursuit, formation flight, or some other mission-
guided strategy), and trajectory tracking (the role assigned
to the autopilot). Similarly, in analyzing data and testing hy-
potheses about biological motion it is convenient to separate
the task of trajectory reconstruction (based on measured data)
from the problem of trajectory generation by the animal (as
it implements a particular strategy) [5], [16]. Inspired by
considerations of high-speed vehicles and UAVs, the task of
trajectory generation can be formulated in terms of constant-
speed particle motion, or equivalently, in terms of curves and
moving frames. By packaging the curve and frame equations
as left-invariant systems on SE(2) (for planar curves) or
SE(3) (for curves in three-dimensional space), we are led
to interaction laws for particles in Lie groups as a basis for
designing coordinated vehicle trajectories for tasks such as
pursuit, formation flight, and boundary tracking [8], [9], [17],
[11], [18]. These tasks have been formulated using relative
shape, i.e., the system has a group symmetry, which the Lie
group formulation allows us to exploit.

In this paper, we retain the Lie group formulation of curves
and moving frames for describing trajectories of multiple
coordinated vehicles, but we consider a different type of
strategy: collective optimization of trajectories subject to
fixed endpoint conditions. From a practical standpoint, this
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type of strategy could be appropriate if it is desired to
coordinate the arrival of particular vehicles at particular
locations at scheduled points in time. Here we consider
minimizing the cumulative “steering energy” for the in-
dividual particles, along with “steering difference energy”
for multiple particles. For a single particle, minimizing the
steering energy is a reasonable objective for certain types of
vehicles (particularly high-speed vehicles), because turning
requires extra fuel consumption, reduces dynamic stability
(e.g., leading to roll-over in a high-speed ground vehicle),
and places more demands on an autopilot than traveling in
a straight line. For multiple vehicles in proximity to each
other, and moving at roughly the same speed (and in roughly
the same direction), minimizing the differences among their
steering controls is a technique for reducing the likelihood
of collision. The advantage of penalizing steering control
differences, rather than inter-vehicle distances, is that Lie-
Poisson reduction can be applied to simplify the description
of the interacting particle dynamics, which is the main theme
of this paper.

To understand the advantage of Lie-Poisson reduction, it
is helpful to consider the various types of reduction used
in mechanics [7], [15]. Poisson reduction can be applied to
various mechanics problems involving coupled rigid bodies
to reduce the dimension of the space in which solutions
need to be computed. For example, the overall rigid motion
symmetry in a coupled two-body problem considered in [6],
[12] allows Poisson reduction from the state space

T ∗SO(3)× T ∗SO(3) ∼= SO(3)×SO(3)× so∗(3)× so∗(3)

to the reduced space SO(3)× so∗(3)× so∗(3). However, in
mechanical problems it is unusual to have further reduction
associated with Lie-Poisson (in this example, to so∗(3) ×
so∗(3)). There are examples of such Lie Poisson reduction
in physics, e.g., nonlinear optical polarization dynamics [2],
[13], but here we focus on optimal control problems which
admit Lie Poisson reduction.

This paper is organized as follows. We first formulate
a general optimal control problem for multiple particles
in an arbitrary matrix Lie group. The particles are cost-
coupled through a connected, undirected graph. The Max-
imum Principle is applied, and the first-order necessary
conditions for regular extremals are derived. Furthermore,
the Lie-Poisson reduced equations are computed. Next, we
specialize to SE(2), and express the reduced equations in
a more concrete form. For a single particle in SE(2), the
reduced equations can be solved in closed form using Jacobi
elliptic functions - indeed, this is a simple example from
elastica theory [7]. What we show is that there are special
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solutions for the multi-particle reduced dynamics which can
also be written in closed form using Jacobi elliptic functions.
The conclusion is that for certain special fixed-endpoint
conditions, the optimal multi-particle steering law (where the
cost function includes both “steering energy” and “steering
difference energy” terms) consists of steering controls for the
individual particles which are all proportional to one another.
Dedication: It is a pleasure to dedicate this work to Tudor
Stefan Ratiu on the occasion of his sixtieth birthday.

II. OPTIMAL CONTROL PROBLEM

A. Problem formulation
Consider a connected, undirected graph with vertices

v1, v2, ..., vN ∈ V , without self loops, and denote the degree
of vertex vi by d(vi), i = 1, ..., N . The adjacency matrix
A is then defined by aij = 1 if vertices vi and vj are
connected, and aij = 0 otherwise, i, j = 1, ..., N . We define
the degree matrix D = diag(d(v1), ..., d(vN )), and the graph
Laplacian by B = D−A, where we note that A, D, and B
are symmetric matrices [4].

We seek to minimize

L =
∫ T

0

L(ξ1(t), ..., ξN (t))dt, (1)

subject to the controlled dynamics ġk = gkξk, gk ∈ G,
a matrix Lie group (having real-valued entries), with fixed
endpoints gk(0) = gk0, gk(T ) = gkT , k = 1, ..., N , where
the Lagrangian

L(ξ1, ..., ξN ) =
1
2

 N∑
k=1

|ξk|2 + χ

N∑
k=1

N∑
j=1

akj |ξk − ξj |2
 ,

(2)
with χ > 0 a constant. We use the trace norm |ξ|2 =
tr
(
ξT ξ

)
, and inner product 〈ξ, η〉 = tr

(
ξT η

)
, ξ, η ∈ g,

where g is the Lie algebra associated with G. We have
N∑

k=1

N∑
j=1

akj |ξk − ξj |2 = 2
N∑

k=1

N∑
j=1

bkj 〈ξj , ξk〉 , (3)

where we have used the symmetry of A, and thus we can
rewrite (2) as

L(ξ1, ..., ξN ) =
1
2

N∑
k=1

|ξk|2 + χ
N∑

k=1

〈
ξk,

N∑
j=1

bkjξj

〉
. (4)

Remark: Note that the expression (ξk − ξj) is used in the
Lagrangian (2), rather than

(
ξk − Adg−1ξj

)
, g = g−1

j gk,
which would be more natural from a mechanics viewpoint.
The attitude we take here is to posit a Lagrangian, solve
the corresponding optimal control problem, and then assess
whether the resulting analysis (specifically, the form of the
Lie-Poisson reduced dynamics) provides any useful insight
regarding control of particle collectives.

We take ξk to be affine in the control vector uk for each
k, i.e., we take

ξk = Xq +
m∑

i=1

ukiXi, k = 1, ..., N, (5)

where uk = (uk1, ..., ukm) ∈ Rm, {X1, X2, ..., Xn} is a
basis (assumed to be orthonormal with respect to the trace
inner product) for the Lie algebra g, m < n, and q ∈ {(m+
1), ..., n}. Thus, the system is underactuated and has drift.
(Replacing Xq in (5) with zero yields a driftless system.)
With the substitution (5) we can write L = L(u1, ..., uN ).

B. Maximum Principle

Restricting attention to regular extremals of the fixed
endpoint problem posed in the previous subsection, we define
the pre-hamiltonian

H(p, g, u) = 〈p, gξu〉 − L(u) (6)

where p ∈ T ∗
g GN , the cotangent space at g, and GN denotes

the direct product of N copies of the Lie group G. Here

g = diag(g1, g2, ..., gN ), ξu = diag(ξ1, ξ2, ..., ξN ), (7)

i.e., g and ξu are block-diagonal matrices, and u =
(u1, u2, ..., uN ) is the control vector (of length mN ). Then
(6) can be written as

H(p, g, u) = H(p1, ..., pN , g1, ..., gN , u1, ..., uN )

=

(
N∑

k=1

〈pk, gkξk〉

)
− L(u1, ..., uN ), (8)

where pk ∈ T ∗
gk

G for k = 1, ..., N . The Maximum Principle
then states that if u1, ..., uN minimizes L, g1, ..., gN denotes
the corresponding trajectory in GN , and the only extremals
of L are regular extremals, then

H(p1, ..., pN , g1, ..., gN )
= sup

vk∈Rm, k=1,...,N
H(p1,..., pN, g1,..., gN, v1,..., vN), (9)

for a.e. t ∈ [0, T ], were H is the hamiltonian [7], [14]. The
first-order necessary condition for (9) is ∂H/∂uki = 0, or

∂

∂uki

 N∑
j=1

〈pj , gjξj〉

− L(u1, ..., uN )


=

〈
pk, gk

∂ξk

∂uki

〉
− ∂L

∂uki
= 0, (10)

for k = 1, ..., N and i = 1, ...,m, where (u1, ..., uN ) denote
the optimal controls.

Using (5), we have ∂ξk/∂uki = Xi, and from (4), we
compute

∂L

∂uki
= uki + 2χ

N∑
j=1

bjkuji. (11)

Also,〈
pk, gk

∂ξk

∂uki

〉
= 〈pk, gkXi〉 = 〈µk, Xi〉 = µki, (12)

where the translation to the identity of pk is given by µk ∈
g∗, the dual space of the Lie algebra of G, and

µk =
n∑

i=1

µkiX
[
i , (13)
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where {X[
1, X

[
2..., X

[
n} is the dual basis to {X1, X2, ..., Xn}.

Thus, (10) becomes

µki = uki+2χ
N∑

j=1

bjkuji, k = 1, ..., N, i = 1, ...,m. (14)

Defining µ̃k =
[
µk1 µk2 · · · µkm

]T
, we have

µ̃k = uk + 2χ
N∑

j=1

bjkuj , (15)

or  µ̃1

...
µ̃N

 = ((IN + 2χB)⊗ Im)

 u1

...
uN

 , (16)

where ⊗ denotes the Kronecker product. For convenience,
we define

Ψ = ((IN + 2χB)⊗ Im)−1 = (IN + 2χB)−1 ⊗ Im, (17)

assuming that the inverse exists. All of the eigenvalues of
B are real and nonnegative, including (at least) one zero
eigenvalue [4]. Therefore, Ψ is guaranteed to exist for χ > 0.
We then have  u1

...
uN

 = Ψ

 µ̃1

...
µ̃N

 , (18)

and substituting the optimal controls back into the hamilto-
nian gives

H =
N∑

k=1

〈µk, ξk〉 − L(u1, ..., uN )

=
N∑

k=1

〈µk, ξk〉−

1
2

N∑
k=1

|ξk|2 + χ

N∑
k=1

〈
ξk,

N∑
j=1

bkjξj

〉.

(19)

After some calculation, we obtain

H =
N∑

k=1

µkq+
1
2
[

µ̃1 · · · µ̃N

]
Ψ

 µ̃1

...
µ̃N

−1
2
N, (20)

where our assumption that B is symmetric implies that
Ψ is also symmetric. H, being independent of g, permits
reduction.

C. Lie-Poisson reduction

The process of Lie-Poisson reduction takes the original
system on (T ∗G)N and reduces it to a system on (g∗)N ,
with the reduced variables defined as µk, k = 1, ..., N . The
reduced hamiltonian has already been computed as (20): we
can ignore the constant term and write

h =
N∑

k=1

µkq +
1
2
[

µ̃1 · · · µ̃N

]
Ψ

 µ̃1

...
µ̃N

 , (21)

where we recall that µ̃k encodes the first m components of
µk for each k = 1, ..., N .

Defining µ̆ =
[
µ1 µ2 · · · µN

]T
, so that µ̆ is a

vector of length n̆ = Nn, the dynamics for µ̆ are

˙̆µ = Λ(µ̆)∇h = Λ(µ̆)


∂h/∂µ̆1

∂h/∂µ̆2

...
∂h/∂µ̆n̆

, (22)

with

Λ(µ̆)=

−
n∑

k=1


µ1k 0 · · · 0
0 µ2k · · · 0
...

. . .
...

0 · · · 0 µNk

⊗


Γk
11 Γk

12 · · · Γ1n

Γk
21 Γk

22 · · · Γ2n

...
...

...
Γk

n1 Γk
n2 · · · Γnn

,
(23)

where Γk
ij are the structure constants for g, and all of the

coupling between the µk, k = 1, ..., N , in the reduced
equations are due to ∇h. Due to the block diagonal structure
of (23), each Casimir, invariant on g∗, associated with G
contributes N Casimirs to the reduced system (22).

III. SPECIALIZATION TO G = SE(2)

By specializing to G = SE(2), we can carry the cal-
culation further. Consider N coupled particles in SE(2):
specifically, equation (5) becomes

ξk = X2 + ukX1, k = 1, ..., N, (24)

where uk is a scalar steering control for each k, and the basis
we use for the Lie algebra se(2) is

X1 =
1√
2

 0 −1 0
1 0 0
0 0 0

, X2 =

 0 0 1
0 0 0
0 0 0

, X3 =

 0 0 0
0 0 1
0 0 0

,
(25)

which is normalized so that |X1| = |X2| = |X3| = 1 with
respect to the trace norm.

From (21) we have

h =
N∑

k=1

µk2 +
1
2
[

µ11 · · · µN1

]
Ψ

 µ11

...
µN1

 . (26)

The Lie-Poisson reduced dynamics are given by (22) and
(23), where now

Λ(µ̆) = − 1√
2


Ω1 0 · · · 0
0 Ω2 · · · 0
...

. . .
...

0 · · · 0 ΩN

 , (27)

with

Ωk =

 0 µk3 −µk2

−µk3 0 0
µk2 0 0

 , k = 1, ..., N. (28)
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Also,

∂h

∂µ̆
=


∂h/∂µ1

∂h/∂µ2

...
∂h/∂µN

 , ∂h/∂µk =

 ∂h/∂µk1

1
0

 , (29)

k = 1, ..., N , with
∂h/∂µ11

∂h/∂µ21

...
∂h/∂µN1

 = Ψ


µ11

µ21

...
µN1

 , (30)

and Ψ = (IN + 2χB)−1.

A. Motivation
The optimization problem we pose for coupled particles

in SE(2) can be viewed as an optimal control problem for
framed curves in R2, where the objective is to minimize
the curvature (and curvature differences) subject to fixed
endpoint conditions. Framed curves in R2 can be defined
by the system

ṙ = x, ẋ = yu, ẏ = −xu, (31)

where r ∈ R2 is the position vector, x ∈ R2 is the unit
tangent vector to the trajectory, y ∈ R2 is the unit normal
vector, and u is the plane curvature (i.e., the steering control).
Here, we assume unit-speed motion, so that time t is also
the arc length parameter. (Note that u in (31) differs from
uk in (24) by a factor of 1/

√
2, due to our normalization of

the basis for se(2).) An alternative way to express (31) is

θ̇ = u, ṙ =
[

cos θ
sin θ

]
, (32)

where θ is the angle associated with the unit tangent vector
to the trajectory.

B. Single-particle optimization problem
For a single particle in SE(2), consider minimization of

L =
1
2

∫ T

0

|ξu(t)|2dt =
1
2

∫ T

0

(
1 + u(t)2

)
dt, (33)

subject to the dynamics ġ = gξu, ξu = X2 + X1u, and the
endpoint conditions g(0) = g0, g(T ) = gT . For this single
particle fixed endpoint problem we have the Lie-Poisson
reduced dynamics

d

dt

 µ1

µ2

µ3

 = − 1√
2

 0 µ3 −µ2

−µ3 0 0
µ2 0 0

 µ1

1
0

 , (34)

along with the conserved quantities

h = µ2 +
1
2
µ2

1, c =
1
2
(
µ2

2 + µ2
3

)
, (35)

the (reduced) hamiltonian and Casimir function, respectively
[14]. (Here µ1, µ2, and µ3 are the scalar components of the
single vector µ ∈ se(2)∗.) We thus have

µ̈1 = − 1√
2
µ̇3 =

1
2
µ2µ1 =

1
2

(
h− 1

2
µ2

1

)
µ1. (36)

For certain values of h, this second-order cubic equation
has elliptic function solutions [3]. To obtain these solutions
explicitly, we introduce the variables

µ1(t) = σy(ν(t− η)), (37)

where σ > 0, η, and ν > 0 are constant. Then

σν2y′′(ν(t− η))− 1
2
hσy(ν(t− η)) +

1
4
σ3y(ν(t− η))3 = 0,

(38)
where y′′(·) denotes the second derivative of y(·) with
respect to its argument. Defining m such that

m =
σ2

8ν2
and 1− 2m = − h

2ν2
, (39)

we obtain
y′′ + (1− 2m)y + 2my3 = 0, (40)

which has as its solution the Jacobi elliptic function

y = cn(ν(t− η),m), (41)

provided 0 ≤ m ≤ 1. (Note that this m is unrelated to
the earlier definition of m as the number of control inputs
per particle in G. Henceforth, we use m to refer only to
the parameter of the Jacobi elliptic function.) Thus, we may
conclude that solutions to (36) are of the form

µ1(t) =
(
2
√

2 ν
√

m
)

cn(ν(t−η),m), m =
1
2

(
1 +

h

2ν2

)
,

(42)
with ν2 ≥ |h|/2. We then have the optimal control u given
by u = µ1.

Remark: For G = SE(2), we can express the dynamics as
(32) with fixed endpoints

θ(0) = θ0, r(0) = r0, θ(T ) = θT , r(T ) = rT . (43)

Thus, the endpoint conditions involve not only the position
endpoints in the plane, r0 and rT , but also the tangent vectors
to the trajectory at the endpoints, θ0 and θT . Note that (42)
has three parameters, ν, η, and m, as degrees of freedom
for meeting the endpoint conditions (which also represent
three degrees of freedom, because without loss of generality
we can take r0 = (0, 0) and θ0 = 0). It is clear that a
solution satisfying a given set of endpoint conditions (43)
exists provided |rT − r0| < T . It is thus reasonable to speak
of optimal solutions, provided |rT − r0| < T .

C. Special class of coupled solutions

For the coupled system of N > 1 particles in SE(2),
we have not found a closed-form solution like (42) that
applies in general. However, there are special solutions to
(22) with G = SE(2) which do take the form of Jacobi
elliptic functions.

Suppose χ and B are fixed, and consider the following
class of candidate solutions, analogous to (42):

µk1 = σkcn(ν(t− η),m), k = 1, ..., N, (44)
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where σk > 0, k = 1, ..., N , ν, η, and m are given constants.
Then

∂h/∂µ11

∂h/∂µ21

...
∂h/∂µN1

 = Ψ


σ1

σ2

...
σN

 cn(ν(t− η),m), (45)

and from (26) we have

h =
N∑

k=1

µk2 +
1
2

[σ1 · · ·σN ] Ψ

 σ1

...
σN

 cn(ν(t− η),m)2.

(46)
We also have N Casimirs of the form ck = 1

2 (µ2
k2 + µ2

k3),
k = 1, ..., N .

We would like to find all possible choices of σ1, ..., σN , ν,
η, and m for which (44) solves system (22) with G = SE(2).
However, we leave this problem for future work, and instead
here ask the simpler question: given fixed positive values for
σ1, ..., σN , how do they constrain the remaining constants,
and what form must the controls u1, ..., uN take?

Suppose that β1, β2, ..., βN , positive constants, satisfy

[σ1 · · ·σN ] diag(β1, ..., βN )

 σ1

...
σN

 = [σ1 · · ·σN ]Ψ

 σ1

...
σN

.
(47)

(Note that for σ1, ..., σN given, this amounts to one scalar
equation relating the N variables β1, ..., βN .) Then we can
define

hk = µk2 +
1
2
βkµ2

k1, k = 1, ..., N, (48)

and it follows that h =
∑N

k=1 hk. Furthermore, ∂h/∂µ11

...
∂h/∂µN1

 = diag(β1, ..., βN )

 σ1

...
σN

 cn(ν(t− η),m),

(49)
and we obtain the reduced dynamics µ̇k1

µ̇k2

µ̇k3

 = − 1√
2

 0 µk3 −µk2

−µk3 0 0
µk2 0 0

 βkµk1

1
0

 ,

(50)
for k = 1, ..., N , which leads to

µ̈k1 =
βk

2

(
hk −

1
2
βkµ2

k1

)
µk1, k = 1, ..., N. (51)

But (51) is satisfied by (44) when

hk = constant, m =
β2

kσ2
k

4ν2
, 1− 2m = −βkhk

2ν2
, (52)

for all k = 1, ..., N . Note that (52) implies

βjσj = βkσk, j, k = 1, ..., N, (53)

which imposes N −1 independent constraints on β1, ..., βN .
Along with (47), there are a total of N independent scalar
equations for the N quantities β1, ..., βN we seek to solve

for (given σ1, ..., σN ). If a solution β1, .., βN > 0 to these
equations exists, we say that the collection σ1, ..., σN is
admissible.

To summarize, the reduced dynamics for the coupled
system of N particles (with χ and B fixed a priori) is
given by (22). However, we focus on special solutions to
(22), having the form (44), where the collection of positive
constants σ1, ..., σN is admissible. Then ν, η, and m exist
(indeed, η is arbitrary, and we can choose ν so that 0 ≤
m ≤ 1), such that (44) is in fact a solution to (22). Finally,
because the optimal controls can be related to the reduced
variables through u1

...
uN

 = Ψ

 µ11

...
µN1

 , (54)

we have  u1

...
uN

 = Ψ

 σ1

...
σN

 cn(ν(t− η),m). (55)

D. Interpretation of special solutions
The special solutions (55) have the property that each

particle’s steering control is proportional to every other
particle’s steering control. We only expect such special
solutions to apply to a thin set of endpoint conditions for a
system of N particles. However, the definition of this space
of special solutions is not vacuous: there are examples of
sets of endpoint conditions consistent with coupled optimal
solutions having the form (55).

In fact, despite applying to only a thin set of endpoint
conditions, there is a reasonable amount of freedom in (55)
through the choice of σ1, ..., σN . We can generate collections
of trajectories using (55), and then state that among all
possible collections of curves satisfying the same endpoint
conditions, the trajectories we have generated satisfy the
(necessary) condition for optimality of the coupled system.

E. Numerical example
Suppose we take N = 2, χ = 1,

B =
[

1 −1
−1 1

]
, (56)

σ1 = 1, and σ2 = 1/2. Then we have

Ψ = (IN + 2χB)−1 =
[

1 + 2χ −2χ
−2χ 1 + 2χ

]−1

=
1
5

[
3 2
2 3

]
.

(57)
From

β1σ
2
1 + β2σ

2
2 =

[
σ1 σ2

]
Ψ
[

σ1

σ2

]
=⇒ β1+

1
4
β2 =

1
10
[

1 1
2

][ 3 2
2 3

][
1
1
2

]
=

23
40

, (58)

and β1σ1 = β2σ2 =⇒ β1 = 1
2β2, we obtain β1 = 23/60,

β2 = 23/30. Choosing T = 6, m = 1
2 , and η = 0, we have

ν =
β1σ1

2m
=

23
60

, (59)
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Fig. 1. Controls u1(t) and u2(t) given by (60) plotted vs. time t.

Fig. 2. Planar trajectories corresponding to the steering controls in figure 1.
The short bold arrows indicate the corresponding fixed endpoint conditions.

so that, finally,

u1(t) =
1
5

(3µ11 + 2µ21) =
4
5

cn(ν(t− η),m),

u2(t) =
1
5

(2µ11 + 3µ21) =
7
10

cn(ν(t− η),m), (60)

for t ∈ [0, T ]. Figure 1 shows u1(t) and u2(t) given by (60).
Figure 2 shows the corresponding planar trajectories.

Two caveats about this example merit emphasis. First, we
have chosen initial headings which are aligned: other than
through boundary conditions, the steering controls do not
feel the effects of relative positions and headings between
the particles, and so there is no guarantee of noncollision in
this setting. Second, the endpoint conditions in this example
are such that the special solutions (based on proportional
elliptic function steering controls) apply; for arbitrary end-
point conditions, these special solutions need not apply, and
we must resort to solving (22), e.g., numerically.

IV. DIRECTIONS FOR FUTURE WORK

For planar trajectories, the correspondence between a par-
ticle in R2 moving along a (smooth) trajectory, and a particle
(i.e., a group element) evolving in SE(2) is unambiguous.

Associated with the particle trajectory in R2, there is an
orthonormal frame consisting of a unit tangent vector and
unit normal vector, and these vectors along with the position
vector map in a one-to-one fashion to elements of SE(2).
A particle in R3 moving along a (smooth) trajectory has an
intrinsically defined unit tangent vector and corresponding
normal plane, but this is not enough to have a one-to-one
mapping to elements of SE(3). This introduces subtleties in
interpreting results for moving particles in SE(3) in terms
of curves and frames in R3. Single-particle fixed endpoint
optimal control problems on SE(3) (with generalizations to
SE(n)) are explored in [10].

In his recent work [1] Brockett investigates the collective
and individual behaviors of a set of identical agents with
nonlinear dynamics, all subject to identical controls, and
asks questions about collective response to a coordination
signal broadcast by a leader. In such a setting he shows
that nonlinearity plays a critical role. While his focus is on
closed loop effects (whereas our subject is open loop optimal
control), it may be useful to examine the results of section
III.C on special proportional controls from the perspective
of his paper.
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