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ABSTRACT 

The mission of the Naval Special Warfare (NSW) community is to provide a versatile, 

responsive, and offensively focused force with continuous overseas presence in order to 

have strategic impact in missions that include special reconnaissance, direct action, 

unconventional warfare, and combating terrorism.  Currently, the NSW community has 

large manpower gaps within the officer corps, especially at the Lieutenant Commander 

rank.  This gap threatens the operational readiness of the NSW community, which in turn 

affects our national security.  This thesis presents the development of the Basic 

Underwater Demolition/SEAL (BUD/S) Accession Calculator (BAC), which uses goal 

programming and Markov chain analysis to determine the optimal number of new 

accessions needed to enter the BUD/S training program to meet target-end-strength goals 

for company grade ranks.  By properly manning the junior ranks, the Lieutenant 

Commander rank can be properly manned.  The results demonstrate that the NSW 

community can closely meet target end-strength goals of 127 and 285 for Lieutenant 

Junior Grades and Lieutenants, respectively, with the 100 accessions to BUD/S every 

year.  However, as the attrition rate fluctuates the number of accessions change.  The 

most dramatic impact to BUD/S accession requirements is observed when attrition rate 

increases.  Decreases in attrition rate show that small changes to accession requirements 

occur. 
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EXECUTIVE SUMMARY 

The mission of the Naval Special Warfare (NSW) community is to provide a versatile, 

responsive, and offensively focused force with continuous overseas presence in order to 

have strategic impact in missions that include special reconnaissance, direct action, 

unconventional warfare, and combating terrorism.  Currently, the NSW community has 

large manpower gaps within the officer corps, especially at the O-4 rank.  This gap 

threatens the operational readiness of the NSW community, which in turn affects our 

national security.  This thesis presents the development of the Basic Underwater 

Demolition/Seal (BUD/S) Accession Calculator (BAC), which uses goal programming 

and Markov chain analysis to determine the optimal number of new accessions needed to 

enter the BUD/S training program to meet target end-strength goals for company grade 

ranks.   

The NSW community plans to recruit 100 accessions every year into the BUD/S 

training program.  The BUD/S training program trains recruits to become SEAL 

operators, and the junior officer who successfully complete BUD/S become fully 

qualified SEAL operators. This recruiting goal is believed to allow the NSW community 

to meet target end-strength goals of 127 and 285 for the ranks of Lieutenant Junior Grade 

(LTJG) and Lieutenant (LT), respectively, by Fiscal Year (FY17).  Given this 

information, we developed the BAC and used it to determine the distribution of 

accessions by rank and commissioning source.  Rank and commissioning source play a 

major part to meeting target end-strength goals because different accession sources have 

different success rates for the BUD/S training program.  The BAC verifies that target 

end-strength goals can be met within 6 percent. 

Historical data shows that attrition rates can change from year to year.  In addition 

to studying the distribution of recruits, we developed the BAC to optimize for the number 

of accessions as well.  This allows for the optimal number of accessions to change from 

the NSW standard of 100 per year.  Four alternative scenarios were considered in this 

thesis.  If the attrition rate is increased by 5 and 10 percent, the accessions required to 

 



 xvi

meet target end-strength goals are 245 and 282, respectively.  In addition, if attrition is 

decreased by 5 and 10 percent, the required accessions needed are 193 and 175, 

respectively. 

Target end-strength goals can be closely met with the 100 accessions that the 

NSW community is currently recruiting to BUD/S on a yearly basis.  However, as 

attrition is increased or decreased, the number of accessions required to meet target end-

strength goals in FY17 fluctuates.   
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I. INTRODUCTION  

A. BACKGROUND 

Retaining sailors and meeting yearly target end-strengths has been a prominent 

issue the United States Navy (USN) has had to addresses over the years.  Retention is 

currently not an overall issue at the macro level today but some sub-communities within 

the Navy are facing retention and manpower issues (Cahill, 2010).  One of the 

communities in the USN that is currently suffering from a retention and manpower crisis 

is the Naval Special Warfare community (NSW), specifically, the Sea, Air, and Land 

(SEAL) sub-community (Evenson, 2010).  This manpower issue gets overlooked at first 

glance because the USN comprises 53,071 officers overall, but within the SEAL 

community there are only 674 officers (Cahill, 2010), which is approximately one percent 

of the total officer corps of the USN.  However, the NSW community is a major 

component of the USN and made up of Officer and Enlisted SEAL operators.  The main 

goal of the NSW community is to provide a versatile, responsive and offensively focused 

force with continuous overseas presence (U.S. Navy SEAL, 2011).  In addition, the NSW 

community is a tactical force with strategic impact in missions that include special 

reconnaissance, direct action, unconventional warfare, combating terrorism, foreign 

internal defense, information warfare, security assistance, counter-drug operations, 

personnel recovery and hydrographic reconnaissance (U.S. Navy SEAL, 2011).  These 

tactical and strategic missions are extremely crucial to the protection of our nation from 

both a defensive and security perspective.   

The rise of low intensity conflicts and unconventional warfare is a cause of a high 

operational tempo (OPTEMPO) and demand for the NSW community.  This increased 

demand is the probable cause of retention becoming an even larger problem, especially, 

within the SEAL officer ranks in recent years.  The NSW community conducted a survey 

in 2010 to determine why junior officers were leaving the SEAL community.  The survey 

revealed that the top reason for leaving the navy was “time spent away from home” 

(Evenson, 2010).  In 2007, a separate survey revealed the number one reason for leaving 

the navy was “impact of Navy on family” (Evenson, 2010).  These retention issues in the 
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SEAL Officer community are prominent in the junior ranks of Ensign (ENS), Lieutenant 

Junior Grade (LTJG), and Lieutenant (LT), which results in large manpower gaps within 

the Lieutenant Commander (LCDR) ranks (Evenson, 2010).  Pivotal operational 

leadership billets are held in the LCDR ranks, which the SEAL community is struggling 

to fulfill currently (D. Evenson, personal communication, December 15, 2010).  Figure 1 

shows the manpower gaps, per rank, in the SEAL community between current inventory 

and the officer programmed authorizations (OPA). 

 

Figure 1.   Manpower Gaps Within SEAL Community 

The solid line shows the OPA levels for each Years Commissioned Service (YCS) 

from 1990 to 2009.  The x-axis represents YCS starting in 2009 and the y-axis is the 

number of SEALs.  For example, in the 1999 year group that corresponds to 11 YCS, 

there are 27 LCDR SEALs in the community; however, the OPA requirement is 33 

LCDR SEALs.  The difference of six LCDR SEALs is a shortage for the 11 YCS time 

period.  Figure 1 shows there are significant shortages in the LTJG (approximately 3–4 

YCS), LT (approximately 5–9 YCS) and LCDR (approximately 10+ YCS) ranks.  

The problem of differences on hand in SEAL officers with OPA requirements is 

of particular importance because it deals with operational readiness of the SEAL 
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community.  The LCDR rank is pivotal in the SEAL community because this is one of 

the main operational leadership billets.  A lack of LCDRs leading Troops within the 

SEAL teams, results in the NSW community suffering from a mission and operational 

readiness standpoint.      

One way to grow the SEAL base is through accessions to the Basic Underwater 

Demolition/SEAL (BUD/S) training program. The BUD/S training program is a 6-month 

program that focuses on physical conditioning, small boat handling, diving physics, basic 

diving techniques, land warfare, weapons, demolitions, communications, and 

reconnaissance (U.S. Navy SEAL, 2011).  Junior Officers who successfully make it 

through the BUD/S training program become fully qualified SEAL operators.  The 

manpower gaps within the SEAL community will be addressed by determining the 

optimal number of junior officer accessions needed to enter into the BUD/S training 

program, thus strengthening the SEAL community and ultimately, their operational 

readiness. 

This thesis uses a mathematical approach to determine the number of junior 

officer accessions that are needed to enter the BUD/S training pipeline to meet target end-

strength goals for a specific goal year.  With the understanding that retention is a current 

issue within the SEAL community, this thesis looks to help support the SEAL community 

by helping to close the current manpower gaps in the officer ranks.    

The SEAL community is an extremely vital component to the NSW community 

and Department of Defense (DoD).  Furthermore, the NSW community is an essential 

and significant part to the success of winning the war on terrorism and other major 

national security crises.  Although the NSW personnel make up less than 1 percent of the 

U.S. Navy personnel, they offer big dividends on a small investment.  A fully manned 

and operationally ready SEAL community allows the NSW to be a continued force in the 

world crises, war on terrorism, and national security (U.S. Navy SEAL, 2011). 

B. PROBLEM APPROACH 

The SEAL community is currently undermanned at the ranks of LTJG, LT, and 

LCDR.  The LCDR rank is pivotal from a leadership point of view.  In order for the 
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LCDR rank to be properly manned, the junior ranks of LTJG and LT must be also 

properly manned. By determining the optimal number of new junior officer accessions 

needed to enter the BUD/S training program, target end-strength goals can potentially be 

met, thus directly impacting the LCDR manning issue.  This thesis uses goal 

programming optimization and Markov chain analysis to determine these accession 

requirements.  Historical data indicates commissioning source and rank play a pivotal 

part in determining successful completion of the BUD/S training program.  Using these 

tools and historical data, the optimal number of new accessions by rank and source 

needed to enter the BUD/S training program will be determined.   

Currently, the NSW community is trying to reach target-strength goals of 127 

LTJGs and 285 LTs by FY17.  Senior leaders have determined that this goal is achievable 

if 200 new accessions per 24-month period are sent to BUD/S.  The Markov chain and 

optimization model developed for this research is used to determine the optimal 

allocation of officers to the BUD/S training program based on rank and commissioning 

source in order to meet target end-strength goals.  By determining the optimal allocation 

of new accessions, the SEAL community can potentially meet target end-strength for the 

ranks of LTJG and LT, which in turn will directly impact the LCDR manning issue.  The 

focus of the accessions for this thesis is on the junior ranks of ENS, LTJG, and LT, due to 

the different success rates that these ranks have in completing the BUD/S training 

program.  In addition to determining optimal allocation of officers, the mathematical 

program is used to optimize accession numbers over a range of attrition rates. 

C. RELATED WORK 

Bres, Burns, Charnes, and Cooper (1980) developed a goal programming model 

using discrete time periods to plan for the number of officer accessions needed from 

various commissioning sources to meet manpower goals for each specific officer 

inventory requirement.  This model was created to effectively deal with “choke points” in 

specific critical tour ranks within the officer structure.  A Markov chain approach was 

used with various states. The states that were created were warfare community, 

commissioning source, and YCS.  In addition, the transition rates for the transition matrix 
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were found from historical data.  The central application of the model is to determine the 

operating levels of various commissioning sources and the distribution of officers 

produced by each source to the different warfare communities, based upon community 

requirements (Bres, Burns, Charnes, & Cooper, 1980). 

Zanakis and Maret (1981) developed a Markov Chain and linear goal 

programming model to solve manpower problems under various restrictions and 

conflicting objectives during one specific time period at the marco level.  Maret and 

Zanakis felt it was natural to combine a Markovian approach with mathematical goal 

programming to solve manpower related problems due to the versatility it provided.  The 

model created referenced a large company needing to meet manpower goals for the next 

year for specific workers in a specific department.  The model had accessions coming 

from four sources and attritions happening in seven ways.  In addition, the transition 

matrix that was created was created based off historical annual transitions of the 

personnel.   Finally, Maret and Zanakis felt that the extension of time periods would be 

very useful for long-range manpower planning (Maret & Zanakis, 1981). 

Gibson (2007) developed a linear program to help manage the Army Competitive 

Category within the officer corps of the Army, specifically in the O-4 rank looking at 

Time in Grade (TIG) and the promotion rates.  He developed a model called the Total 

Army Competitive Category Optimization Model (TACCOM) to decrease the gap rates 

within the O-4 rank by looking to minimize the weighted deviation from the force 

requirements over the planning horizon of 40 years.  The Army had a similar model that 

managed Army officers over a seven year time frame called the Officer Personnel 

Management System (OPMS) XXI.  He compared his TACCOM model to the OPMS 

XXI model that the Army developed to see whether better results were possible.  Gibson 

found that improvements could be made in the rank of Major in the ten-year horizon time 

frame (Gibson, 2007). 

Additional related sources are found in Corbett (1995) for more specific 

manpower modeling approaches.  The three works that were discussed use a similar 

mathematical modeling approach to manpower issues as this thesis.  This thesis takes a 

similar approach to previous work but with a specific focus on the SEAL officer 
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community.  This thesis uses goal programming and Markov chain analysis in an Excel 

spreadsheet-based approach in order to determine the optimal number of new accessions 

needed to enter the BUD/S training program to meet target end-strength goals at the rank 

LTJG and LT. 
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II. OPTIMIZING ACCESSIONS FOR THE SEAL COMMUNITY 

A. MODEL PROCESSES 

In this thesis, we use a Markov chain and goal programming optimization model 

to solve an aspect of the manpower problem that the SEAL community is currently 

facing.  Markov chains are useful for studying manpower problems because they are 

useful for modeling the flow of people through a particular system; here, we model the 

BUD/S candidates from accession through graduation to a qualified SEAL.  The 

optimization model uses the BUD/S Accession Calculator (BAC) to determine both the 

optimal allocation of officers accessed and the number of accessions needed, based on 

meeting target end-strength goals for FY17. 

B. MARKOV CHAIN 

Our Markov chain model has 13 states specified by a (rank/commissioning source 

pair) and by the vacancy state indicating a vacancy caused by attrition.  Vacancy is an 

absorbing state in our model and we will account for it in our calculations.  Each entity 

(an individual) can only be in one state during any given time period.  We model time in 

equal intervals, or periods, of twenty-four months (two years) each; ENSs and LTJGs 

promote to the next rank every two years, and the average time a BUD/S candidate stays 

in the BUD/S training program is around 19 months.  By 24 months, all candidates who 

complete BUD/S move to the SEAL ranks.  A portion of the Markov chain states and 

transitions is shown in Figure 2. 



 8

 

Figure 2.   Generic Markov Chain Diagram 

In Figure 2, every state (also known as a node) represents a specific rank and 

commissioning source.  On the right-hand side of Figure 2, there are four additional states 

that are used to show attrition and completion of the BUD/S training program.  Those 
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states are: ENS SEAL, LTJG SEAL, and LT SEAL.  Movement occurs from one state to 

another state in one time period.  An example of this would be an ENS entering the 

BUD/S training program from a given commissioning source.  In 24 months, an ENS can 

perform one of four movements in one time period: stay in the system, which is 

illustrated as ENS Source to ENS Source, promote to a LTJG Source while staying in the 

BUD/S system, promote to ENS SEAL, or promote to LTJG SEAL. Again, this can be 

done for any rank/commissioning source combination. 

The transition matrix, P , contains nine states, which are a combination of rank 

and commissioning sources, three commissioned SEAL ranks and one vacancy node.  

There are four commissioning sources:  Lateral Transfer (LATXFER), Officer 

Commissioning Source (OCS), Naval Reserve Officers Training Corps (NROTC), and 

United States Naval Academy (USNA).  The three ranks are: ENS, LTJG, and LT each 

with an associated commissioning source.  Finally, there are three states of actual 

commissioned SEALs based on rank; ENS, LTJG, and LT.  We note that individuals 

cannot enter the system as a LTJG or LT from the OCS, NROTC, and USNA 

commissioning sources.  Therefore, there are no LT OCS, LT NROTC, and LT USNA 

states in our model.  We can define individual moves from one state to another by using 

the notation , , ', 'r s r sP .  For example, , , ,ENS ROTC LTJG SEALP is the probability an ENS ROTC 

graduates BUD/S and becomes a LTJG SEAL. 

The transition matrix, P , was produced using both empirical and theoretical 

methods.  Historical data that was collected from the NSW community during the time 

period of October 2002 to October 2009.  This historical data is used to empirically 

calculate elements in the transition matrix P  dealing with accession sources.  Transition 

probabilities are calculated empirically by taking the number of individuals who 

transitioned from state ,r s  to ', 'r s  and dividing by the number who started in ,r s .  The 

data that was collected was of individual accessions into the BUD/S training pipeline.  In 

addition to the individual accession data, the NSW community provided historical data of 

the SEAL inventories for the ranks of ENS, LTJG, and LT for the past nine years.  

Finally, the OPA requirements for FY09 and FY17 are provided.  
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Figure 3 illustrates the historical data of SEAL accessions based on 

commissioning source, not taking rank into account.  The graph depicts the source of 

accession from 2005 to 2010.  Over the past six years, accessions have increased for each 

of the four accession sources: LATXFER, OCS, NROTC, and USNA.  Currently, the 

NSW community is bringing in approximately 100 new accessions per year. 

 

Figure 3.   Historical Accession Sources 

Figure 4 illustrates the historical SEAL inventory for the past nine years.  The 

ranks that are being displayed are ENS, LTJG, and LT.  The inventory for those three 

ranks has been relatively constant, with a slight decrease over the past four years. 



 11

 

Figure 4.   Historical SEAL Inventory 

Figure 5 illustrates the OPA requirements for the SEAL officer community and 

authorized number of SEALs for the ranks of LTJG, LT, and LCDR.  All of the inventory 

levels are below authorization with exception of ENS, CAPT and ADM.  
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Figure 5.   OPA Requirements 

The transition probabilities of the three actual commissioned SEAL officer states 

were calculated based on Time in Grade (TIG), promotion, and attrition information 

provided from the NSW community.  We used the geometric distribution to calculate 

, , ', 'r s r sP  where ', 'r s  is ENS SEAL, LTJG SEAL, and LT SEAL.  The geometric 

distribution models time until first success out of n  Bernoulli trials.  This is appropriate 

here because success is considered a promotion, so the P elements are calculated based 

on time until first promotion.  The expected value of the geometric random variable, X, is 

[ ] 1/E X p , where p is the probability to promote (e.g., Ross, 2007).  Thus, the 

transition probability for promotion in SEAL ranks can be calculated as 1/ [ ]p E X , 

where [ ]E X  is expected TIG.  Note this number must take into account the two-year 

time step.  For example, 
  
P

LTJG ,SEAL,LT ,SEAL
is equal to 0.917 as seen in Figure 6. 

The transition matrix, P , is used to advance individuals in the system through the 

movement equation given by:   

N
t1

 P ' N
t
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where  N t
is a vector that contains the number of individuals in each node during time 

step t .  If all rows in P sum to one, then the number of individuals in the system is 

preserved and steady state can be calculated.  However, if the vacancy node is removed, 

the number of states is reduced by one and row sums in P are less than one, then the 

number of individuals in the system will go to zero as time increases.  One way to 

account for new individuals in the system is by expanding the movement equation to the 

following:  

, , 1 ', ', , ', ', ,
', '

r s t r s r s r s t r s
r s

N P N G    

where ,r sG  is a vector of number of accessions by rank and commissioning source.  For 

,r sG  we can calculate a fraction of new accessions assigned to rank r , source s , ,r sR , as 

, , /r s r sR G  .  Figure 6 shows the complete transition matrix with the removed vacancy 

state (note: the row sums are less than one). 

 

Figure 6.   Transition Matrix 
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The rows in Figure 6 represent the “from” state and the columns the “to” state.  

An example would be that a LTJG LATXFER goes from the LTJG LATXFER state to 

the LT SEAL state with a probability 0.4032.  If 100 LTJG LATXFER individuals 

entered the BUD/S training pipeline, then approximately 40 would be LT SEALS after 

two years.   

Using the movement matrix, we can illustrate how individuals move through this 

Markov chain.  Assume at time 0t   there are x  individuals in the system.    N0
 is: 

 

Table 1.   N(0) Vector 

  is equal to 200, and  R (Table 2) and ,r sG  is: 

 

Table 2.   R and ,r sG  Vectors 
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Using the movement matrix we can see how individuals move.  N
1
 represents one time 

step and is: 

 

Table 3.   N(1) Vector 

These displays show how individuals move through our system and advance. 

C. GOAL PROGRAMMING OPTIMIZATION MODEL 

The purpose of the research in this thesis is to determine the optimal accession 

allocation by rank and commissioning source in order to meet target end-strength goals 

for FY17.  The Markov chain portion of the model depicts the movement of SEAL 

candidates and SEAL operators through the accession, BUD/S, and finally SEAL 

company grade ranks.  Given any current population for each of the available states in the 

system, we can use the Markov chain to predict the population for each state at any point 

in the future.  In order to determine the optimal allocation of recruits, to these states in the 

current period, we develop a goal program that determines the allocation while 

minimizing penalties for deviating from desired target population levels.   
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1. NPS Formulation 

Indices 

r      rank {ENS, LTJG, LT} 

t      time periods 

s  source {LATXFER, OCS, NROTC, USNA, 

SEAL} 

  

Data 

, , ', 'r s r sP  probability that officer of rank r  from source s  

transitions to rank 'r , source 's  in one time 

period 

rts      target end-strength for SEAL rank r   

,r sgMin  lower bound on accession by rank and 

commissioning source 

,r sgMax  upper bound on accession by rank and 

commissioning source 

,r tavail  fraction of total accessions that are of rank r 

 

Decision Variables 

 Or
     overage for SEAL of rank r   

 Ur
     underage for SEAL of rank r  

,r sG      growth in rank r , source s , in each time period 

  
N

r ,s,t
 number of officers in rank r , from source s , in 

time period t   

      total number of accessions in each time period 
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Formulation 

min ( 3 )r r
r

O U        (2.1) 

, ,4r SEAL r r rN O U ts     r     (2.2) 

, , 1 ', ', , ', ', ,
', '

r s t r s r s r s t r s
r s

N P N G     , ,r s t     (2.3) 

, , 0r s r tG avail      , ,r s LATXFER t    (2.4) 

,
,

r s
r s

G          (2.5) 

, , ,r s r s r sgMin G gMax    ,r s     (2.6) 

  Or
 0      r     (2.7) 

  Ur
 0      r     (2.8) 

2. Explanation of the Model 

The optimization model developed in this thesis solves initially for the allocation 

of recruits to BUD/S then subsequently for the number of BUD/S accessions.  This is 

done by manipulating several decision variables. The overage and underage values 

determine how far the predicted inventory of SEAL operators is off compared to the 

target end-strength numbers for FY17 (t=4). The values of ,r sG  can be used to determine 

what percentage of new accessions should enter BUD/S by rank and commissioning 

source, using the relationship , /r sgVector G  .  Where gVector is same as R  which was 

introduced in Chapter II Section B.  We refer to gVector vice R  throughout the rest of this 

thesis.  Note that initially,   is a variable not data representing the total number of new 

accessions that enter BUD/S during a 24-month time period. After the initial 

optimization, which is referred to as the base scenario, where  is 200,   becomes a 

decision variable.  
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The objective function (2.1) seeks to minimize the total sum of the overages and 

underages for the ranks of ENS, LTJG, and LT for the source of SEAL.  The overages 

represent the number of current inventory, for each rank, that exceeds the goal end 

strength for FY17.  The underages represent the number of current inventory, for each 

rank, that falls short of the end strength for FY17.  A weight factor of three is applied to 

the underages, which ensures there is a higher priority on meeting or exceeding the target 

goals. 

The constraints are listed in equations (2.2)–(2.8).  The constraint set (2.2) 

matches the inventory with the target end-strength. The constraint (2.3) provides the 

updating equation for the Markov chain portion of the model. Note that this equation was 

previously presented as: 1 ,'t t r sN P N G   . The differences between the equations are 

subtle.  The optimization portion of the model occurs after 2010. At 2010, we consider t 

= 0 for the optimization. For the future time steps, the equation, , , 1 , ,'r s t r s t r sN P N G    , 

uses  ,r sG  to update the number of individuals in each rank and source for each time step. 

Constraint set (2.4) is used to manipulate the number of LTs and LTJGs in the total 

number of new accessions for all scenarios in this thesis.  The percentages chosen were 

based off of NSW requirements and by doing so this constraint is forcing the majority of 

the new accessions to be ENSs, which is in keeping with SEAL recruiting practice.  

Constraint (2.5) ensures that the total number of officers added in each period is exactly 

 .  Constraint set (2.6) makes sure that the category minimums are met and the upper 

bound on the accessions is not exceeded.  Constraints (2.7) and (2.8) are making sure the 

overage and underage values are positive. 

D. MODEL VALIDATION 

We validated our model using historical data from the NSW community from 

October 2002 to October 2009. Note that because the time steps were chosen to be 24 

months, ENS SEALs are not counted against inventory.  ENS TIG is equal to two years; 

thus, in this model, there are no ENS SEALs, only LTJG and LT SEALS.  In reality, an 

ENS who enters the BUD/S training program and completes prior to two years will be an 

ENS SEAL for a short time, prior to promotion to LTJG.  
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Historical ' s  were calculated by looking at each 24-month time block and 

determining how many accessions entered into the BUD/S training pipeline during that 

time period.  The vector R was calculated by computing the average number of 

accessions for each category then dividing the individual average by the sum total of all 

the individual averages.  These two calculated pieces,   and R , allowed for an estimated 

representation of where the accessions where coming from and at what rate they were 

coming from during the validation years.   

NSW historical data, seen in Figure 4, shows the FY09-FY10 inventory for 

LTJGs was approximately 76 and 164 for LTs.  The ranges for these ranks were 61 to 78 

for LTJGs and 159 to 194 for LTs.  The model calculated FY09 inventories for these two 

ranks as 58 and 168, respectively.  These calculated inventory numbers are acceptable 

because the range of the inventory for this model is from October 2008 to September 

2010, which is FY09–FY10.  During this time period, the calculated inventory numbers 

match closely to the inventory numbers from the NSW historical data. 
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III. MODEL ANALYSIS 

This chapter presents the optimal allocation of BUD/S recruits.  This chapter also 

explores how the deviation from predicted inventory and target end-strength fluctuates 

depending on the size of  .  For the remainder of this thesis, gVector is used instead of 

,r sG .  Recall ,r sG  can be calculated by multiplying by  .  This chapter examines three 

specific scenarios dealing with  .  The first scenario optimizes gVector for a fixed   of 

200, the second optimizes for both   and gVector , and the third optimizes for   and 

gVector while keeping the underage values equal to zero.  These three scenarios provide 

a deeper insight into how target end-strength is affected by the total number of accessions 

brought in during a two-year time period.  

A. BASE SCENARIO 

The main goal of this thesis is to determine the distribution of junior officer 

accessions by commissioning source that need to enter into the BUD/S training program 

in a 24-month time period in order for target end-strength goals to be met.   

Recall that different commissioning sources have different BUD/S success rates 

and there are caps on certain sources.  Therefore optimization is needed to determine how 

the SEAL community should focus recruiting efforts to best meet target goals.  The 

optimization is performed using a  = 200, which is a recruiting number determined by 

analysts in the NSW community.  For this base scenario,   is data but for the next 

scenarios that deal with a changing  ,   is treated as a decision variable.  Using this 

value which represents the number of SEAL candidates entering BUD/S every two years, 

the optimal allocation of recruits can be determined. The target end-strength goals seen in 

Table 4 are the values that the NSW community is trying to achieve for FY17.   
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Table 4.   Target End-Strength Goals for FY17 

The optimal solutions for gVector  are shown in Table 5.  Table 5 displays the 

allocation distribution and the approximate number of accessions by source.  The 

approximate number of accessions is calculated by multiplying   by the optimal 

percentage of accession.  The solution suggests that the most recruits (74) came from 

OCS as an ENS and the least came from LATXFER as a LTJG.  A point worth 

mentioning is that no more than 1.5 percent of the total accessions will be LTs and no 

more than nine percent will be LTJGs.  In addition, there are restrictions on the number 

of accessions that can come from a particular accession source.  Those restrictions are 48 

ENS LATXFER, 54 ENS USNA, 4 LTJG LATXFER, and 2 LT LATXFER and will be 

seen throughout this thesis.    

 

Table 5.   BAC Output for Fixed   Scenario 
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Table 5 displays the output from the BAC, but the optimal output also includes 

deviations from target end-strength ( gVector is the percentage of accessions and ,r sG  is 

the approximate number of accessions).  Using the target end-strength goals for FY17 

(shown in Table 4), the BAC reports an underage of eight LTJGs and one LT.  These 

optimal outputs are 6.3 percent and 0.35 percent from goal for LTJGs and LTs, 

respectively.   

The next section looks at the two alternative scenarios that optimize   as well as 

gVector .  The purpose of the changing   analysis is to see how the distribution of 

accessions is affected along with the degree of deviation from target end-strength.   

B. ALTERNATIVE SCENARIOS 

The two alternative scenarios deal with optimizing for   as well as gVector .  The 

first scenario has a   that changes while letting underages fluctuate accordingly.  For the 

second scenario the   changes in addition to keeping the underages equal to zero.  The 

purpose of having these two scenarios with a changing   is to determine what the 

accession distribution and deviations from target end-strength will be.  While the SEAL 

senior leaders have stated that recruits to BUD/S should be 100 per year (  = 200 per 24-

month time period), the optimization model can be used to see how deviations from this 

number can be used to meet target end-strength for FY17.  The results of these two 

scenarios are compared to the base scenario to see the effect of changing the   value 

from 200. 

We see the output from scenarios in which we change   in Table 6.  Table 6 

illustrates the percentage of accession and the approximate number of accessions based 

on accession source for both changing   scenarios.  In addition, the optimal   for each 

of the scenarios is displayed at the top of the table. 
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Table 6.   BAC Output for Changing   Scenario 

1. Changing  and gVector  

The first of the two scenarios deals with a changing  and gVector .  The 

optimized  and gVector  for this scenario is presented in Table 6.  The optimal output 

shows that the distribution of accessions did change compared to the base scenario with a 

fixed  .  One key observation that needs to be noted is the size of  .  The   for this 

scenario is 203, compared to the fixed  of 200 in the base scenario.  This is minute, 

which suggests the goal for FY17 can possibly be reached with current SEAL strategy 

assuming transition rates remain relatively constant.  

For this scenario, when   increased the percentage of accessions had to adjust 

optimally to meet target end-strength, while adhering to the BAC’s restrictions and 

constraints.  This is evident in the ENS LATXFER and ENS USNA accession sources.  

  increased for this scenario compared to the base scenario but the approximate number 

of accessions remains the same for these two accession sources.  This happens because 

both these accession sources have the highest success rates for BUD/S completion 

compared to the other sources of accession.  The BAC maximizes the number of 
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accessions for sources with higher success rates.  By maximizing the number of 

accessions with the highest success rates, target end-strength is more likely to be 

achieved.   

The BAC reports an underage of five for LTJGs while meeting target end-strength 

for LTs.  These optimal outputs are 3.9 percent and 0 percent from goal for LTJGs and 

LT, respectively.  This is an overall improvement when compared to the base scenario 

dealing with a fixed   of 200.   

2. Changing  and gVector  (Underages = 0) 

The second scenario in this section deals with a changing  and gVector  while 

keeping the underages equal to zero.  The output for this scenario is shown in Table 6.  

The size of   increased once again compared to the base scenario.  The size of   

increased from 200 to 214 and the sources that have the highest success rates at BUD/S 

are maxed out again for optimality. 

The BAC reports an underage of zero for LTJGs while having an overage of 8 

LTs.  These optimal outputs are 0.0 percent and 2.8 percent from goal for LTJGs and 

LTs, respectively. This again is an overall improvement when compared to the base 

scenario dealing with a fixed   of 200.  However, the increased size of   from 200 to 

214 is a large increase.  This increase in   is approximately a 7.0 percent increase in the 

total number of new accessions required to meet target end-strength optimally.  

C. MODEL RESULTS 

The results illustrate the effect of the   on the deviation from target end-strength 

and changes the percentage of accession for the different accession sources.  When the 

size of   increases, target end-strength goals are more closely matched.  
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IV. SENSITIVITY ANALYSIS 

This chapter presents a sensitivity analysis of the three scenarios that were 

examined in Chapter III.  The specific sensitivity analysis that is conducted deals with the 

manipulation of the attrition rate.  Specifically, the sensitivity analysis is used to study 

how the optimal value for recruiting total ( ) and percent allocation ( gVector ) changes 

when attrition rate is increased or decreased. 

There are four attrition rate manipulations:  increasing attrition by 10 percent, 

increasing attrition by 5 percent, decreasing attrition by 10 percent and decreasing 

attrition by 5 percent.  Each case is applied to the three scenarios presented in Chapter III: 

optimizing gVector for fixed  , optimizing   and gVector , and optimizing and 

gVector  while keeping the underage values equal to zero.  These manipulation cases 

were chosen because covering a range of attrition from plus 10 percent to minus 

10 percent was seen as practical and would display the true affect of attrition rate on the 

total number of accessions needed to enter BUD/S to meet target end-strength goals.  The 

graduation rates for BUD/S remains consistent in this chapter, but the total percent of 

graduation increases or decreases based on attrition.  The transition matrix was developed 

based on historical data but fluctuations can occur.  The fluctuation of plus or minus 

5 percent can be expected while plus or minus 10 percent is seen as worst- and best-case 

scenarios. 

A. DIFFERENCE FROM TARGET END-STRENGTH 

In this section, we describe the results of the sensitivity analysis by discussing the 

difference between the target end-strength goal and current optimized inventory for the 

ranks of LTJG and LT.  This sensitivity analysis explores how the attrition rate 

manipulation cases change the difference between target end-strength and the optimized 

inventory produced by the BAC.   
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1. Comparison of Accessions Into BUD/S Program 

This section discusses how the   value changes when the attrition rate 

manipulation cases are put into effect on the three previously discussed scenarios.  The 

total number of new accession into the BUD/S training program every two years is 

defined as  .  Currently, the NSW community brings in 200 new accessions on a two 

year cycle.  Figure 7 displays the size of  for the attrition rate manipulation cases for the 

three scenarios.  For the fixed   scenario, a value of 200 is seen for all attrition cases.    

is shown to increase as attrition increases and decreases as attrition decreases.  This 

makes sense intuitively. 

 

Figure 7.   Optimized   Values 
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Table 7 presents the results of the optimizations in tabular form.  Table 7 shows 

the three different   scenarios and how   is affected when the attrition rate is increased 

or decreased.  In addition, the current attrition rate is based off of historical data and the 

size of   can be seen as well for comparison. 

 

Table 7.   Optimized   Values 

Figure 7 and Table 7 shows that when attrition increases there are more dramatic 

changes in   than seen with decreasing attrition.  The size of   increases when the 

attrition rate is higher because as more accessions attrite out of the BUD/S system more 

accessions are required to enter the system in order to meet target end-strength goals.  On 

the other hand, the size of   decreases when the attrition rate is lower because more 

accessions are successfully completing the BUD/S training program and therefore a 

smaller   is needed to meet target end-strength.  The following sections discuss how the 

deviation from target end-strength goals is affected for LTJGs and LTs when the attrition 

rate is manipulated. 

2. Comparison of LTJG 

The FY17 target end-strength goal for LTJGs is 127.  Figure 8 shows the 

deviation from target end-strength for the three scenarios each with the various attrition 

rate manipulation cases.  The deviation from target end-strength is presented numerically 

beneath the graphical display.  These values are the deviation from target end-strength 

numbers that display an overage or an underage from the goal of 127 LTJGs. 
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Figure 8.   Difference from Target End-Strength for LTJGs 

As we discussed in Chapter III, the optimal solutions for the three scenarios with 

no attrition rate manipulation were 6.3 percent, 3.9 percent, and 0.0 percent from goal for 

a fixed   and the changing   scenarios, respectively.  When the attrition rate 

manipulation cases are taken into effect it can be see that the deviation from target end-

strength changes significantly. Table 8 displays the percent from goal values for LTJG 

for the three scenarios dealing with attrition rate manipulation. 
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Table 8.   Percent from Goal Values for LTJGs 

By increasing the attrition rate by 10 percent while keeping  fixed at 200, we see 

that the optimal solution becomes 21.3 percent from goal compared to the 6.3 percent 

from goal with no increase in the attrition rate.  This is a drastic increase, but this increase 

happens because the value of   remained at 200 while dealing with a 10 percent attrition 

rate increase.  On the other hand, when   is allowed to change with a 10 percent increase 

in the attrition rate, the optimal solution becomes 0.8 percent from goal compared to the 

3.9 percent optimal solution for no increase in attrition.  However, (as seen in Figure 7) 

the size of  increases from 203 to 282 to meet the target end-strength optimally.   

As the attrition rate decreases by 10 percent, the optimal solution for a fixed   

value of 200 is 0.8 percent from goal, compared to the 6.3 percent from goal for no 

change in the attrition rate.  The optimal solution with a 10 percent attrition rate decrease 

becomes 11.6 percent from goal compared to the 3.9 percent optimal solution for no 

attrition change, when allowing  to change.  However the value of   changes from 203 

with no attrition rate manipulation to 175 when decreasing the attrition rate by 10 

percent. This decrease in   happens because target end-strength can be met optimally 

with less accessions.  

Figure 8 illustrates that the deviation from target end-strength is much lower for 

an increase in the attrition rate than deviation for a decrease, when allowing  to change.  

This is because more accessions are needed to offset the high attrition rate.  In addition, 

as the attrition rate decreases, the deviation from target end-strength increases but the size 

of   decreases because fewer accessions are required to meet the target end-strength goal 

of 127 LTJGs. 
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3. Comparison of LT 

The FY17 target end-strength goal for LTs is 285.  Figure 9 shows the deviation 

from target end-strength for the three scenarios each with the various attrition rate 

manipulation cases.  The deviation from target end-strength is presented numerically 

beneath the graphical display in Figure 9.  These values are the deviation from target end-

strength numbers that display an overage or an underage from the goal of 285 LTs. 

 

Figure 9.   Difference from Target End-Strength for LTs 

The optimal solutions for the three scenarios with no attrition rate manipulation 

were 0.35 percent, 0.0 percent, and 2.8 percent from goal for a fixed   and the changing 

  scenarios, respectively (see leftmost column in Figure 9, which represents the initial 

results).  As with LTJGs, it is seen from Figure 9 that as the attrition rate is manipulated, 

the deviation from target end-strength changes.  Table 9 displays the percent from goal 

values for LT for the three scenarios dealing with attrition rate manipulation. 
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Table 9.   Percent from Goal Values for LT 

A fixed  of 200 with a 10 percent attrition rate increase has an optimal solution 

of 16.5 percent from goal compared to the 0.35 percent from goal with no increase in the 

attrition rate.  This is a large increase, however this increase happens because the value of 

  remained at 200 while dealing with a 10 percent attrition rate increase.  On the other 

hand, when   is allowed to change (along with the underages) with a 10 percent increase 

in the attrition rate, the optimal solution remains at 0.0 percent from goal or meeting 

target end-strength.  However (as seen in Figure 7),  increases from 203 to 282 for this 

goal to be met.  The increase in   but lack of change in the optimal solution is expected 

because the increase in   can offset the 10 percent attrition rate and therefore meet target 

end-strength.  When   is allowed to change (while keeping the underages equal to zero) 

with a 10 percent attrition increase, the optimal solution becomes 0.0 percent compared 

to 2.8 percent with no change in the attrition rate.  For this case,   changes from 214 to 

282.  This improvement in the optimal solution but increase in   happens again because 

 can increase as necessary to offset the high attrition rate. 

By decreasing the attrition rate by 10 percent, we see that the optimal solution for 

a fixed   value of 200 is 7.7 percent from goal compared to the 0.35 percent from goal 

for no change in the attrition rate.  This increase from goal happens because with a 

decrease in attrition more accessions are successfully completing BUD/S.  In addition, 

when the attrition rate is decreased by 10 percent there is an overage of 22 LTs for a fixed 

 compared to an underage of 1 LT for no change in the attrition rate.  Target end-

strength is being met but just surpassing the goal compared to target end-strength not 

being met.   
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Allowing  to change (along with the underages); the optimal solution with a 

10 percent decrease in attrition becomes 0.0 percent from goal which is equal to the 

optimal solution for no change in the attrition rate.  However the value of   changes 

from 203 with no attrition rate manipulation to 175 when decreasing the attrition rate by 

10 percent.  This decrease in   while keeping the optimal solutions equal happens 

because as attrition decreases more accessions successfully complete BUD/S and 

therefore less accessions are needed to meet target end-strength.   

We see the optimal solution becomes 7.7 percent when decreasing the attrition 

rate by 10 percent, compared to 2.8 percent when no change in the attrition rate occurs 

for the scenario dealing with a changing   (while keeping the underages equal to zero).  

For this attrition rate case,   changes from 214 to 199.  This non-improvement in the 

optimal solution but decrease in   happens due to the fact there is an overage of 22 LTs 

when a decrease of 10 percent occurs compared to an underage of 8 LTs when no 

manipulation of the attrition rate occurs.  

By increasing and decreasing attrition by 5 percent we see that the optimal 

solutions improve when increasing the attrition rate and worsen when decreasing the 

attrition rate.  In addition, the   values increase as the attrition rate is increased and 

decrease when the attrition rate is decreased. 

B. ACCESSION SOURCE PERCENTAGE ANALYSIS 

We will focus on allocation of accessions based on commissioning source and 

rank in this section.  The results in this section present optimal gVector  values for each 

of the three scenarios in Chapter III, while manipulating the attrition rates.   

1. Optimal gVector , Fixed  ( =200) 

In this section, we look at how the accession source percentages change as the 

attrition rate is manipulated for a fixed  .  Figure 10 shows the percentage of accessions 

for each of the attrition rate manipulation cases for a fixed  .  
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Figure 10.   Accession Source Percentage Breakdown for Fixed   

Table 10 presents the approximate number of accessions for the source of 

accession. Table 10 is calculated by multiplying the accession source percentage by the 

fixed   of 200. 
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Table 10.   Approximate Number of Accessions 

Figure 10 and Table 10 demonstrate that as the attrition rate is increased the 

accession sources that have the highest completion rate are larger.  An example is the 

ENS LATXFER, ENS USNA, and LTJG LATXFER accession sources.  The maximum 

allowed for these three accession sources are 48, 54, and 4, respectively.  Table 10 shows 

that these three accession sources max out when attrition is high.  This happens because 

the BAC is optimizing to meet target end-strength and uses the sources of accession with 

the highest success rate first.  In addition, ENS OCS has a larger number of accessions 

than ENS NROTC because ENS OCS has a higher success rate at BUD/S.  Conversely, 

as the attrition rate is decreased, the accession sources that had the highest success rate no 

longer max out but meet the minimum number of accessions required, while the 

accession sources that had the lowest success rate increases drastically.  This happens 

because as attrition is decreased more accessions are completing and, therefore, the BAC 

wants the accession sources that have the fastest completion time. 

2. Optimal   and gVector  

We examine how the accession source percentages change as the attrition rate is 

manipulated for a changing  in this section.  Figure 11 shows the percentage of 

accessions for each of the attrition rate manipulation cases for a changing  .   
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Figure 11.   Accession Source Breakdown for Changing   

Table 11 is the approximate number of accessions for the source of accession. 

Table 11 is calculated by multiplying the accession source percentage by the   value for 

the given attrition rate manipulation case.  Recall the   values for this scenario across 

the different attrition rate manipulation case are 203, 282, 245, 175, and 193, 

respectively. 

Figure 11 and Table 11 reveal that when the attrition rate decreases, the sources of 

accession that have the highest completion rate are no longer being maxed out to capacity 

and the maximization switches to the sources that have the fastest completion time.  This 

is because when attrition is high it is important to maximize every accession from 

successful sources in order to meet target end-strength optimally.  On the other hand, as 

attrition is decreased and the   value is less than 200, the sources with the highest 

success rates are no longer as important because the decrease in the attrition rates 
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neutralized the differences and time is of the essence.  Additionally, when the attrition 

rate is decreased by 5 percent, there is a balance in the distribution of accession sources.  

This happens because  is close to 200.   

 

Table 11.   Approximate Number of Accessions With Changing   

3. Optimal gVector  and   with (Underages = 0) 

We explore how the accession source percentages change as the attrition rate is 

manipulated for a changing  while the underages equal zero in this section.  Figure 12 

shows the percentage of accessions for each of the attrition rate manipulation cases for a 

changing   while underages equal zero. 
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Figure 12.   Accession Source Percentages for Changing   While Underages Equal 
Zero 

Table 12 is the approximate number of accessions for the each source of 

accession. Table 12 is calculated by multiplying the accession source percentage by the 

  value for the given attrition rate manipulation case.  Recall the   values for this 

scenario across the different attrition rate manipulation case are 214, 282, 252, 199, and 

200, respectively.  

Figure 12 and Table 12 show similar events that happen as the previous two 

sections.  However, one striking difference is that when the attrition rate decreases by 

5 percent, there is a true maximized balance between the sources of accessions.  This is 

because the   size is 200 and is matching the current two year accession number that the 

NSW community is bringing in while decreasing the attrition rate by 5 percent.  

Essentially, it is distributing among the sources of accessions finding the balance between 

the most successful completion rates and quickest completion time of BUD/S. 
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Table 12.   Approximate Number of Accessions With Changing   While Underages 
Equal Zero 
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V. CONCLUSIONS AND FUTURE RESEARCH 

This thesis uses a mathematical approach to determine the number of junior 

officer accessions and distribution of those accessions by rank and commissioning source 

that are needed to enter the BUD/S training program to meet target end-strength.  The 

mathematical approach is a combination of goal programming and Markov chain 

analysis.   

Currently, the NSW community plans to recruit 100 accessions every year to the 

BUD/S training program to meet target end-strength goals of 127 and 285 for the ranks of 

LTJG and LT, respectively, for FY17.  These 100 accessions come from various sources 

with various distributions.  Using historical data to drive the model and optimizing 

allocation of recruits, target end-strength goals can be met within 6 percent for LTJGs 

and approximately 0 percent for LTs.  The optimal allocation by rank and commissioning 

source is shown in Figure 13. 

 

Figure 13.   BAC Optimal Allocation by Rank and Commissioning Source 

Manipulating the attrition rate directly affect the percent of deviation from target 

end-strength for the ranks of LTJG and LT (seen in Table 13).  The higher the attrition 

rate, the higher the percent deviation from target end-strength.  However, when attrition 

rate is lowered to 5 and 10 percent target end-strength is met or exceeded.  When the 
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attrition rate is decreased, the percent from deviation is a positive deviation in some 

cases, which demonstrates that target end-strength is surpassing the goal versus being 

undermanned. 

 

Table 13.   Percent Deviation From Target End-Strength for LTJG and LT for Fixed   

Sensitivity analysis results found that on average target end-strength goals can be 

met within 1 percent of goal compared to the 6 percent from goal with accessions equal 

to 100.  However, this improvement in meeting target end-strength requires  to change.  

Table 14 shows the changes in   and it can be seen that as attrition rate increases, the 

size of   increases.  Conversely, as the attrition rate decreases, the value of   decreases.  

Target end-strength goals can be met or closely met at the 1 percent deviation level but 

the downside of that is that the number of accessions needed fluctuates. 

 

Table 14.    Values for Attrition Rate Manipulation Cases 

There are several areas for future work that may improve the BAC and this thesis.  

One area is that the BAC only evaluates target end-strength goals for LTJGs and LTs.  

An improvement may be to add the LCDR rank as well.  Allowing the BAC to optimize 

to meet target end-strength goals for LTJG, LT, and LCDR would be a great tool for the 
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NSW community.  The second area that could be addressed would be to allow   to 

change for each time period.  Currently, the BAC uses the same size   for each of the 

time periods up to the goal year of FY17.  By adjusting the size of  , the BAC would be 

addressing the logical growth of the NSW community on a yearly basis.  Additionally, 

time series and/or regression modeling can be used to create forecasted attrition and 

retention rates rather than using historical averages. 
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