
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

BANDWIDTH AND DETECTION OF PACKET LENGTH
COVERT CHANNELS

by

Derek J. Dye

March 2011

Thesis Co-Advisors: George W. Dinolt
James Bret Michael

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25-03-2011 Master’s Thesis 2009-01-05—2011-03-25

Bandwidth and Detection of Packet Length Covert Channels

Derek J. Dye

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A

This thesis explores the detectability and robustness of packet length covert channels. We discovered that packet length covert
channels, where a rogue user modulates the length of a Transport Control Protocol packet, can be detected while monitoring
traffic of a large network. The bandwidth of these channels can be successfully estimated as well as the channels themselves
detected using statistical inference.
In addition, we observed that there is an inverse relationship between the volitionality in networks with respect to packet
lengths and the detectability of these channels, and between packet length and channel bandwidth. For a large network like a
college department, the bandwidth of a covert channel could be in the tens of megabytes over the course of a day.

Covert Channels, Intrusion Detection Systems, Computer Security, Computer Networks, Operating Systems

Unclassified Unclassified Unclassified UU 79

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

BANDWIDTH AND DETECTION OF PACKET LENGTH COVERT CHANNELS

Derek J. Dye
Lieutenant, United States Navy

B.S., University of Maryland Baltimore County, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2011

Author: Derek J. Dye

Approved by: George W. Dinolt
Thesis Co-Advisor

James Bret Michael
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis explores the detectability and robustness of packet length covert channels. We

discovered that packet length covert channels, where a rogue user modulates the length of a

Transport Control Protocol packet, can be detected while monitoring traffic of a large network.

The bandwidth of these channels can be successfully estimated as well as the channels

themselves detected using statistical inference.

In addition, we observed that there is an inverse relationship between the volitionality in net-

works with respect to packet lengths and the detectability of these channels, and between packet

length and channel bandwidth. For a large network like a college department, the bandwidth of

a covert channel could be in the tens of megabytes over the course of a day.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Research Questions . 1
1.2 Thesis Roadmap . 2

2 Background 3
2.1 Introduction . 3
2.2 Why Use Covert Channels? . 3
2.3 High-Assurance Systems . 4
2.4 Network-Based Covert Channels . 5
2.5 Countermeasures . 6
2.6 Packet Length-Based Covert Channels 9

3 Covert Channel Design 13
3.1 Channel Structure . 13
3.2 Implementation . 14

4 Statistical Approach to Detection and Bandwidth Analysis 21
4.1 Maximum Bandwidth . 21
4.2 Detection Threshold . 21
4.3 Defining the Threshold Function . 23
4.4 Intrusion Detection Framework. 24

5 Experiment 25
5.1 Network Architecture . 25
5.2 Collection . 25
5.3 Injection and Analysis Framework 28

6 Analysis of Results 31
6.1 Summary of Baseline Data . 31
6.2 Detecting Packet Length Covert Channels: Narrow Scope 32
6.3 Detecting Packet Length Covert Channels: Network-Wide 34

7 Conclusion and Further Work 39
7.1 Further Work . 39

vii

List of References 43

Appendices 45

A Linux Kernel Modifications 45
A.1 tcp.c . 45
A.2 tcp input.c . 48
A.3 tcp output.c . 49
A.4 reader.c . 53

B Collection Code 55
B.1 PCAP Packet Length Extractor . 55
B.2 Network Packet Reader . 56
B.3 Batch Collection Files to MySQL loader 57

C MySQL Table Definitions 59
C.1 Table Definitions . 59
C.2 Setting Standard Deviation Multiple 60

viii

List of Figures

Figure 2.1 Covert Channel Model . 4

Figure 3.1 Covert Channel Structure . 13

Figure 3.2 Example Screenshot of Program Execution 18

Figure 3.3 Sample Network Traffic Displaying Packet Number and Packet Length 19

Figure 4.1 Single Day Graph of Packet Lengths from the School Network 22

Figure 5.1 Network Diagram . 25

Figure 5.2 Transfer Process . 26

Figure 6.1 Daily Packet Totals . 31

Figure 6.2 Hourly Packet Profile . 32

Figure 6.3 Channel Bandwidth for a 20-Packet Length Covert Channel 35

Figure 6.4 Hourly Bandwidth for a 20-Channel Covert Channel 36

Figure 6.5 Bandwidth vs. Used Packet Lengths with Even Distribution 38

Figure 6.6 Bandwidth vs. Used Packet Lengths 38

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 6.1 Determining Ideal Multiple of Standard Deviation 33

Table 6.2 Detection of Covert Channel . 33

Table 6.3 Detection of Covert Channel with Higher Inject Rates 33

Table 6.4 Actual vs. Predicted Bandwidth of 10-Packet Length Channel 34

Table 6.5 Detection of Covert Channel-Network Wide 35

Table 6.6 Detection of Covert Channel with Higher Inject Rates-Network Wide . 35

Table 6.7 Actual vs. Predicted Bandwidth of 20-Packet Length Channel 35

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgements

I’d like the thank my wonderful family for their support during this. My time in Monterey was

a wonderful opportunity to spend time with them after many years apart. My love goes out to

my fianćee, Sachi, who has been immensely supportive of me and all the time I had to devote

to this paper.

I’d also like to thank the outstanding support of Jason Cullum from ITACS and ITACS man-

agement at NPS. Mr. Cullum’s invaluable support allowed for the immense amount of data

collection to go forward.

Lastly, I’d like to thank my thesis advisors, Dr. George Dinolt and Dr. Bret Michael. You both

supported my ideas and helped repeatedly with formulating them into high-quality research.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

Cryptology predates digital computing by approximately 3000years, but modern information

systems offer opportunities and pose challenges to communicating secretly. It is not uncommon

for users to want to keep even the fact that they are communicating secret. Keeping secret the

fact that you are communicating is increasingly difficult due to layered network defenses in

which traffic monitoring and analysis takes place. To avoid detection, users can employ covert

channel techniques. The covertness of such channels results from modulating characteristics of

information systems that were not intended for communications in order to transmit informa-

tion.

1.1 Research Questions
From a detection standpoint, covert channels pose a challenge. Many types of covert channels

implemented on top of Internet traffic exist but, in this thesis, we will treat only channels that

modulate the packet length in network traffic. This thesis addresses the following questions:

How can a packet length covert channel be detected?

Some research has already been conducted on detecting packet length covert channels. How-

ever, these efforts are directed at individual connections. Can these channels be detected in large

scale networks? Packet lengths in normal network traffic exhibit predictable patterns, with lots

of traffic in the short and long lengths. In this thesis, we use statistical methods to attempt to

detect packet length covert channels at a network-wide level.

What is the bandwidth of a packet length covert channel?

It is worthwhile for both the covert user and the network owner to know the bandwidth of a

potential covert channel. From the covert user’s perspective, it is good to know how much data

can be transmitted, while from the administrator’s perspective, it is important to know the data

rate at which exfiltration can occur.

1

1.2 Thesis Roadmap
To start with, we will discuss previous research on covert channels. This covers covert clas-

sifications of curent channels and methods of detecting them. We outline some of the current

research specifically related to packet length covert channels.

Next, we outline a packet length covert channel we developed by modifying the Linux kernel.

This modification allows network packets being sent by a legitimate user to be modulated for

the channel’s purposes without any knowledge of the user. This modulation does not modify

any of the data sent by the legitimate user.

Chapter 4 will describe the statistical techniques used to detect packet length covert channels.

The techniques are general statistical methods using standard deviations and averaging. The

methods are then tied together to also estimate the bandwidth of the covert channel. The next

chapter outlines the framework for the experiments and testing of the equations from Chapter

4. The experiments use collected network traffic from an entire school department of several

hundred users and use injected traffic to simulate a covert channel.

A large amount of network traffic was collected for analysis. Chapter 6 presents the analysis of

all the data to determine how accurate Chapter 3’s framework was. Lastly, we suggest future

research to include how to improve the covert channel’s robustness, as well as how to refine the

equations introduced in Chapter 4.

2

CHAPTER 2:
Background

2.1 Introduction
In 1973, Butler Lampson characterized covert channels as unintended pathways for informa-

tion transfer [1]. These channels typically use storage and timing characteristics of the sys-

tem to bypass security measures and transmit information covertly. Although they tend to be

low-bandwidth, covert channels provide adequate communication resources for exploiting and

attacking computing systems, as evidenced by their use in rootkits and botnets [2].

2.2 Why Use Covert Channels?
Covert channels offer users methods to communicate and transmit information that is not often

monitored by current Intrusion Detection Systems(IDS) or that is very difficult to detect. Users

in need of this kind of secrecy include both State and non-State actors. These users need the

confidentiality that encryption offers, but they also need something more. Their central need is

to maintain the fact that they are communicating. It is easy to detect if a user is communicating

even if the user is using encryption, especially if the detector is an administrator or has direct

access to the communications medium.

A covert channel scenario can be illustrated by the Prisoner’s Dilemma Problem introduced by

Simmons in 1983 [3]. There are two prisoners in separate cells who want to talk to each other

and have already agreed on the protocol of their covert communications. All messages must

first be screened by the warden who either drops the message, forwards the message, or makes

a modification before forwarding. The two prisoners then communicate by sending seemingly

harmless messages on an overt channel that have hidden content encoded in them [3], [4]. For

instance, the signaling could consist of varying the days that the prisoner sends a message or

the number of words that he puts on a single page. One major factor in these scenarios is that

the covert channel is dependent on an overt channel. The covert channel cannot exist otherwise,

and its bandwidth is directly tied to the bandwidth of the overt channel. Figure 2.1 shows a

model covert channel in which Alice is the sender and Bob is the receiver [5]. Alice modulates

the overt message with the covert message and sends it. Bob then receives the message and

extracts the covert message from the overt message. Figure 2.1 also shows how someone in the

middle(Wendy)could modify the overt channel.

3

Figure 2.1: Covert Channel Model

2.3 High-Assurance Systems
Covert channels are of concern in high-assurance systems. Developers of such systems should

attempt to identify and limit the bandwidth of such channels. In these systems, a covert channel

is classified as either a:

Storage Channel: One process, the sender, directly or indirectly writes to a storage location

while the second process directly or indirectly reads from the same location

Timing Channel: The sender modulates the timing of a system resource in a way that affects

the response time as viewed by a second process

The Trusted Computer Security Evaluation Criteria (TCSEC) required analysis for storage

channels and timing channels in order to meet B2 and above certifications [6].

An example of each type of channel is illustrated in the following scenario. Assume two pro-

cesses are operating on a multilevel security(MLS) system with one at a high security level

and the other operating at a low level. If the high process could modulate the intensity of its

execution in such a way as to deny the processor to the low-level process, the high process

could modulate the denial of the processor to transmit information to the low process. This

assumes the system does not give equal time slots to each process or that the system does not

give priority to the low process.

For storage channels, assume both processes have access to the same memory partition. First,

the low process will try to write to the partition at regular intervals and will get an error from

4

the system if the disk is full. Second, the high process fills upthe partition and deletes from it.

The low partition will get an error message when the high partition fills up the partition.

Three major methods exist to detect covert channels in high-assurance systems [7]:

Noninterference: The user analyzes process interactions to see if one process can interact or

interfere with another process. If one process can interfere with another, then a covert

channel exists. This is used to uncover primarily storage covert channels.

Shared Resource Matrix(SRM): Develop a matrix of all resources on one side and on the

other all the processes. Then, determine which process uses which resource and whether it

writes, reads, or modifies the resource. A covert channel can develop where two processes

share certain properties on the same resource. This method can be used for identifying

both timing and storage channels [8].

Information Flow Analysis: Analyze kernel system calls and variables that are accessible by

users. The user must determine if two processes can view or alter any of these variables

using exceptions or the system calls. This method is similar to that of the SRM.

Covert channels have also been created by modulating packet timing, data and headers of net-

work traffic. With the proliferation of network protocols and network traffic since Lampson first

defined covert channel, this is an area ripe for research. Gigabit LANs and broadband connec-

tions are becoming widespread. If a major server were to be compromised, an attacker would

only need one bit per packet to covertly transmit upwards of 26GB of data per year [9].

2.4 Network-Based Covert Channels
A broader definition of covert channel has also emerged with network traffic. This broader

definition includes any attempt to hide information in network protocols and refers to that infor-

mation as hidden or covert information. This contrasts with methods like steganography, which

refers to hiding information in content [4]. In this thesis, we use the broader definition of covert

channel to refer to any manipulation of network timing or protocols to transmit information.

One of the simpler methods of creating such a covert channel relies on using unused header

fields in network protocols like TCP/IP or ICMP. There are several fields in these protocols that

do not have standardized default values, or that are not normally checked by network devices.

For example, several covert channels use the Type of Service(TOS)field or several flag values

5

in the TCP header [4], [10]. Both IPv4 and IPv6 have options fieldsthat can be used if needed.

It has been identified that an attacker could use the IPv6 Hop-by-Hop, routing, fragment, au-

thentication and encapsulating security payload extension headers to embed covert information

[4].

In addition to unused fields, commonly used fields can also be used. Two methods modulate the

initial sequence number field of TCP. One takes one covert byte, multiples it by 256, and uses

that for the TCP’s Initial Sequence Number(ISN). Another method encrypts the covert data and

uses that as the ISN. The second method results in uniformly distributed ISNs [4], [11].

Another common field to manipulate is the checksum field. The checksum field of an IP packet

can be encoded with a secret message and an extra header extension can be added to ensure the

IP’s checksum matches the covert channel checksum. In UDP, the checksum is optional. In this

case, an attacker could turn the checksum on or off to encode one bit of a covert message per

packet [4].

A method similar to traditional timing attacks using shared processors is to modulate the time

between sent packets. This works when the sender uses discrete time intervals between each

packet sent. The number and length of discrete time values can vary from two to however

many the receiver can distinguish one value from another. For a two-value system, each packet

sent conveys one bit of the covert message. For multi-rate channels, the system can transmit

log
2
r covert bits per packet, wherer is the number of discrete timing values. This method does

require some means to establish and maintain time synchronization [4], [12].

2.5 Countermeasures

2.5.1 Identification
Covert channels are meant to be difficult to detect, so detecting and eliminating them can be

challenging. Because of the complex nature of computers and networks, in most cases it is not

even possible to completely eliminate the potential for covert channels or to prove their non-

existence. But, there is a set of methods that can be employed to lessen the potential or degrade

their possible bandwidth [4]. With these methods, the user has to balance the danger of loss

of information due to covert channels against the impact these methods have on performance

and usability. In [4], Zander outlined a two-step process to develop countermeasures, with

6

the first step being to identify the covert channel being used.The second step is to apply

countermeasures, which he grouped into four broad areas as follows:

1. Eliminate the channel

2. Limit the bandwidth of the channel

3. Audit the channel

4. Document the channel

In traditional high-assurance systems, identification takes the form of semi-formal methods.

Some of the methods include information flow analysis, noninterference analysis, SRM method,

and the covert flow tree method [4]. These methods can be used during the design phase of a

system.

Less work has been done on the formal analysis needed to identify and measure the capacity

of covert channels in network protocols. Donaldson suggested that the SRM could be applied

for this purpose by splitting the host-to-host channels from the intra-host channels on a single

computer [4], [13]. Helouet proposed a requirements-level analysis for covert channels on

distributed systems [4].

Countermeasures can be applied once a covert channel has been identified. In some cases, the

channel is available due to a mistake made in building the system and can usually be fixed with a

patch or similar fix. More complex methods need to be applied if the channel is due to systemic

aspects of the system or due to unwillingness to reduce functionality [4].

Zander and others believe that in real-world situations it is impossible to eliminate all covert

channels. Hence, we should eliminate the ones we can and apply the remediation methods to

the ones that remain [4].

2.5.2 Eliminating Channels
The first line of defense is to have secure systems. This could include running hardened kernels,

regularly installing software and firmware updates, and ensuring services are properly config-

ured. This will help mitigate the spread of viruses, Trojan horses, rootkits and other software

that could insert and exploit a covert channel. A secure system should also limit the number of

7

services to only the ones that are required. For example, if a web server is not needed, do not

allow it to run. Also, ICMP is not needed by most users and can be disabled [4].

Many of the network headers manipulating covert channels can be eliminated by normalizing

header fields. This can take the form of strictly enforcing protocol specifications or where

they are not well defined, setting the values to zero. Zander gives an example with the Don’t

Fragment(DF) bit. If the DF bit is not set, a normal system probably would not check the IP

Identification number, which would be needed if an IP packet was fragmented. Setting the IP

ID number to zero every time the DF bit was zero would eliminate use of the IP ID number

as a covert channel [4]. Secure systems should also apply this technique to optional header

fields that should be all zeros if not in use. Handley outlines a broad collection of methods to

normalize network header fields [14]. These methods add some extra overhead, which would

have to be balanced with existing requirements.

2.5.3 Limiting Capacity
Information about a channel’s bandwidth is useful for applying remediation methods. With

some channels, it is easy to determine the bits-per-packet capacity. For example, if a covert

channel is modulating a single bit, the per-packet capacity is one bit. The bits-per-second rate

is harder to determine, since it is dependent on the overt traffic on which the covert channel

depends.

If a channel is sensitive to noise, such as timing channels, a server could intermittently send

dummy packets to other systems to try and add some noise to the channel [4].

Packet-length-based covert channels can be limited by reducing the possible lengths a packet

could have thereby limiting the number of states a packet-length covert channel could use. If

a packet is too small, the packet could be padded with extra zeros. The disadvantage to this

approach is the wasted bandwidth. If bandwidth were not a concern, a user could completely

remove this type of channel by allowing only one possible packet length on the network [15].

Limiting timing channels by varying the time between packets can limit the capacity of a chan-

nel. For example, one high-assurance system uses a store-and-forward router to transfer infor-

mation from low to high. In this system, the low sends data to the high while the high sends

acknowledgments to the low. To prevent the high system from using the acknowledgments as a

timing covert channel, the router could store the acknowledgments and only transmit them after

a small random amount of time. This does not completely eliminate this timing channel, but it

does reduce its bandwidth [4], [15].

8

2.5.4 Detection Methods

In real-world situations, it is going to be too expensive or technically impractical to secure every

system on a network. As a result, methods have been developed to test for covert channels. Most

of these methods rely on the fact that the behavior of the covert channel differs measurably from

normal traffic. An example is the header-based channels like initial IP ID and TCP ISN covert

channels that result in random values. Normal IP ID and TCP ISN numbers actually follow a

fairly predictable distribution, with the actual pattern tied to the operating system. It is possible

to detect changes from the anticipated patterns with a high degree of certainty. The probability

of detection drops significantly once the covert channel has a distribution close to that of normal

traffic [4], [16].

A similar method can be used for timing based covert channels. Venkatramn proposed measur-

ing the average time between packets for a given network. If the rate increased or decreased for

a host by a certain trigger amount, this would indicate a covert channel [17]. This method can

produce an increasing rate of false alarms and missed detections the further the normal traffic

deviates from the average.

2.6 Packet Length-Based Covert Channels
From this point forward in the thesis, we treat only packet length covert channels. There have

been several reported research investigations into packet length-based covert channels. Two

papers highlighted in this section, Liping [5] and Nair [18], look at covert channels over a UDP

packet network. The papers are narrow in scope and do not address detection of covert channels

from a network-wide perspective.

2.6.1 Implementation of Packet Length-Based Covert Channels

This subsection provides an overview of Liping’s paper, entitled “A Novel Covert Channel

Based on Length of Messages” [5].

This paper builds on earlier work by attempting to make a packet length covert channel have

a distribution of packet lengths similar to normal traffic. The authors claim that their approach

is protocol-independent and flexible enough to markedly lower the probability of detection.

9

Their method uses samples of network traffic to build what theycall a reference. This reference

is used to determine what length to use and adjusts future packet lengths to ensure a normal

distribution. The steps of transmission are as follows:

1. Sender and receiver communicate normally. Both record the packet lengths sent and

record the numbers in the reference.

2. Sender and receiver select a lengthl from the reference using the same agreed upon

algorithm.

3. Using an agreed-upon packet number, the sender sends a message of lengthl plus a num-

ber based on the contents of the packet. The reference is then updated with the new

length.

4. Receiver determines the message by subtracting the number based on the contents of the

packet from the packet length.

5. Steps 2 to 4 are repeated until the entire message is sent.

The paper then outlines their experimental results and how they compare to other covert channel

schemes that have random distributions. From their results, it appears that their method matches

a normal distribution more closely than the other methods.

The Liping paper does not provide any detail on how the reference is constructed from normal

traffic nor does it detail how it is supposed to allow the covert channel to mimic normal traffic.

This would make it difficult to replicate the results or to rely on the findings of the study. While

the research shows promise at normalizing covert channel traffic, the paper lacked enough sup-

porting information to make a convincing case that their method avoids detection by mimicking

normal traffic.

10

2.6.2 Possible Method to Detect Packet Length Covert Channel
This subsection gives an overview of Nair’s paper, entitled “Detection of Packet Length Based

Network Steganograpy” [18].

Nair investigated how to detect the covert channel introduced by Liping. The author developed

a mathematical detection mechanism. The claim is that the mechanism can detect Liping’s

channel in addition to detecting their varient of Liping’s covert channel.

The author developed a testbed centered around a UDP protocol chat program implemented in

Java. Nair then ran the program using chat data to determine what the normal distribution looks

like. For their detection method, Nair introduced a function they call a packet-length vector.

It is a first-order statistic using the number of packets for each of the valid packet lengths

representing the relative frequency of a particular packet length in the series of packets.

Nair then used a technique that has been applied in steganography of images to compare the

normal packet length vector to a covert channel vector. Nair found that changes in packet

lengths will result in changes in the packet length vector that make the graphed vector less

smooth. This change can be quantified by first performing a discrete Fourier transfom(DFT)on

both vectors. Then calculate the center of mass(COM)of the vector according to the following:

COM =

∑N−1

i=0
iXdfti

∑N−1

i=0
Xdfti

(2.1)

HereX is the packet length vector, whileXdft is the DFT performed onX. The summation

adds each element in the DFT vector. Nair observed thatCOM(Covert) is usually greater than

COM(Normal), where covert is the covert channel DFT and Normal is the normal traffic DFT.

Nair’s implementation of Liping’s covert channel is susceptible to detection simply by analyz-

ing the graph of packet length relative to time. Nair modified Liping’s algorithm to be less

susceptible to detection, but did not specify what was changed.

Nair’s results are promising, providing for detecting covert channels especially their application

of DFT’s to network-based covert channels. However, Nair’s data was limited to a simple

standalone UDP-based chat program. It is unknown whether Nair’s method could detect other

types of packet length-based channels on other protocols or services and whether that traffic

could be detected when mixed with other traffic.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

CHAPTER 3:
Covert Channel Design

This chapter describes a packet length-based covert channel. We will refer back to this type

of channel later in the thesis. The channel might be part of a rootkit covert-communications

capability. Once installed, the channel could be used to communicate between two hosts, but

only if a sufficient level of overt traffic is going between the two systems to minimize the

probability of detection of the channel’s transmissions.

3.1 Channel Structure
The covert channel relies on assigning a series of symbols or values to separate packet lengths,

which we call the reference. The reference is shared by the sender and receiver by some channel

separate from the covert channel. This could be distributed by any number of means, which

might include hard-coded in the rootkit, embedded in an image on a well-known website, or

embedded in an e-mail. The channel can use as many or as few packet lengths as desired,

depending on the needs of the participants. If viewed in terms of information theory, the packet

lengths are the symbols of the channel and, as long as the symbol transmission remains constant,

one can increase the bandwidth of the channel by increasing the number of packet lengths used

[19].

Figure 3.1: Covert Channel Structure

13

In our case, we assign a packet length to each character in the ASCII table. We use consecutive

packet lengths between 400 and 527, but this is an arbitrary range since the channel can be in

non-consecutive packet lengths of any length spread across the possible packet lengths of the

overt channel. Figure 3.1 shows the possible packet lengths of an Ethernet 1500 bit frame.

To simplify implementation, we assume that any packets arriving from a known covert channel

peer that have a packet length between 400 and 527 are a part of the covert channel. If no covert

channel traffic is to be sent, no packets would have a length within that range. Lastly, the user

manually sets the address of the remote user they wish to communicate with. This could also

be hard-coded for ease of use.

3.2 Implementation
We decided to implement the channel in Linux(kernel 2.6.31)since the system is open source

and allows for easy modifications. One assumption is that the overt users have no idea that their

traffic is being modified for use in a covert channel. To accomplish this, the easiest way is to

modify the kernel itself instead of relying on modifying applications like the browser Firefox.

In order to do this, we modified the network stack of the kernel. This allowed us access to

any traffic being sent out, regardless of what application was generating it. We modified the

kernel’s network stack code directly. This could also be accomplished in a kernel module that

can be separately installed. This would allow a kernel module rootkit to easily modify a running

unmodified kernel.

The overall structure of the channel is a modified TCP stack inside the kernel. The modified

code maintains send and receive buffers inside kernel-space. All users interact with the channel

via new system calls. This allows a program to be written in user-space to use the channel

without having to modify the kernel.

Linux’s network stack is highly modularized with separate function definitions for each pro-

tocol. We chose to implement the channel with TCP, so we concentrated on those functions.

We modified tcp.c, tcpoutput.c, and tcpinput.c found in the net/ipv4 directory. The kernel

source code location depends on the distribution, but usually can be found in the /usr/src/linux

directory. See Appendix A for a complete listing of the source code.

In tcp.c, we set up the infrastructure to allow a user to communicate using the covert channel.

New send and receive buffers were set up inside the kernel along with buffer index variables.

New variables were also set up to save the IP address of the covert channel peer. In the case

14

where there are multiple TCP connections between two peers, the covert channel only uses one

of those connections. This simplification removes the problem of having the covert channel

reassemble the covert message spread across multiple connections. This is enforced within the

kernel using a Boolean int variable(is cov channel)added to struct sockcommon found in

sock.h and another Boolean int variable in the kernel(cov channellocked).

To change the packet length, the Maximum Segment Size(MSS) is modulated. This forces the

rest of the kernel code to shorten the packet to the desired packet length, creating the desired

effect of modulating the packet length. The MSS value is set to the maximum size a packet

can be without getting fragmented. This value rarely changes, and is normally 1460 for regular

Ethernet. See Appendix A.3, starting at line 61, or the discussion below for details.

Three new system calls were added to allow processes to use the covert channel within user-

space. One system call allows a user to add a message to the send buffer, one allows a user to

read from the receive buffer, and another allows a user to set which peer to communicate with.

Lastly, four non-system call helper functions were added for use within the kernel. If the user

does not require user-space functionality, these functions can be removed with the result that all

interaction with the channel is restricted to kernel-space.

3.2.1 Transmitting
After a TCP connection is established in Linux, the tcpwrite xmit function in tcpoutput.c is

called every time data is sent. For the covert channel, it first must test if the channel is being used

by any other connection (Listing 3.1). The connection executing tcpwrite xmit will be used

and locked for the covert channel if the channel is not already locked by another connection

(!cov channel locked) and the destination address for the connection is equal to the covert

channel peer address(inet− > daddr == cov channel address).

Listing 3.1: Locking a TCP connection within tcp output.c

i f (! sk−> i s c o v c h a n n e l && ! c o v c h a n n e l l o c k e d

&& i n e t −>daddr == c o v c h a n n e l a d d r e s s) {

co v c h a n n e l l o c k e d =1;

sk−> i s c o v c h a n n e l =1;

}

Once the channel is locked, the user can use the connection to send data over the covert channel.

Next, the connection checks if there are any covert messages to be sent(sk− > is cov channel

15

&& packet! = −1), as well as if there are any overt messages of sufficient length(skb− >

len (400+packet)). If those two conditions are true, the packet will be processed for the covert

message (Listing 3.2). The connection reads one character from the send buffer and adds its

integer value to 400. For example, assume the character read from the buffer was “d.” The

ASCII value for “d” is 100, so the MSS value would be400 + 100 = 500. If the overt message

has a length that falls inside the covert channel, then the kernel will reduce the MSS to 399,

which is right below the covert channel. For other cases, the MSS value will be set using its

normal size.

Listing 3.2: Decision Point within tcp output.c

pa c k e t = c h a n n e lp a c k e t c h e c k () ;

i n t p a c k e t u s e d =0;

i f (sk−> i s c o v c h a n n e l && p a c k e t !=−1 && skb−>l e n > (400+ p a c k e t)) {

p a c k e t u s e d =1;

pr i n t k (KERN EMERG ” p a c k a g et o s e n d −%c −%d” , packe t , p a c k e t) ;

mss now = 400 + p a c k e t ;

}

el s e i f (skb−>l e n >= 400 && skb−>l e n <=527)

mss now =399;

el s e

mss now= r e a l m s s ;

If the message was successfully sent, the connection will remove the packet from the covert

buffer by calling channelget packageto send(). See Listing 3.3.

Listing 3.3: Transmitting in tcp output.c

i f (p a c k e t u s e d)

pa c k e t = c h a n n e lg e t p a c k a g e t o s e n d () ;

i f (u n l i k e l y (t c p t r a n s m i t s k b (sk , skb , 1 , g fp)))

break ;

The covert channel code adds some additional overhead as compared to unmodified Linux, but

it should be a small impact. It does add a handful of conditional statements into every packet

16

being sent, and another handful of array operations if a covert channel message is being sent.

Given that unmodified Linux has many more conditional statements associated with each packet

sent, this should be a small addition. This thesis leaves performance and quality of service issues

to future research.

3.2.2 Receiving
Receiving requires much less redesign to implement. The only modification was made to

tcp eventdatarecv function found in tcpinput.c, which is called every time an TCP packet

is received. The function begins by first checking whether the TCP packet originated from the

address of a covert channel peer and also if the packet length is in range of the covert chan-

nel. See Listing 3.4. If those cases are true, the connection subtracts 400 from the packet

length to derive the original covert packet. It then adds it to the receive buffer by calling chan-

nel put packagereceived().

Listing 3.4: Receiving tcp input.c

i f (i n e t s k (sk)−>daddr == c o v c h a n n e l a d d r e s s

&& skb−>l e n >= 400 && skb−>l e n <=527)

c h a n n e l p u t p a c k a g e r e c e i v e d (skb−>l en−400);

3.2.3 Code Demonstration
The user interacts with the covert channel using three new system calls. These calls maintain

the send and receive buffers, which are simply statically defined integer arrays of size 1000.

The send buffer is a circular buffer, while the receive buffer is a first-in-first-out(FIFO)buffer.

We wrote a C program that used the system calls to demonstrate the channel (Appendix A.4).

The program has three wrapper functions that directly use the system calls by putting strings

into the send buffer and by reading from the receive buffer.

The testing was conducted on a local area network with Internet access that had a web server

on one computer and the example program on a client machine. The website was a series

of pictures hosted on an Apache server running Linux. The kernels on both machines were

modified with the covert channel. The test program was run on the website server and inserted

the text “Hidden in plain sight” onto the send buffer. A user on the other machine downloaded a

picture from the website and then ran the test program to read from the buffer. Figure 3.2 shows

the image that was downloaded and the print output of the test program showing the covert

channel message.

17

Later testing had the user view multiple websites on other machines before and after down-

loading an image from the covert channel website. During the testing, a network dump was

conducted using wireshark. Figure 3.3 gives a visual snapshot of packet lengths from 300 to

1425 from the network dump. The horizontal axis is the packet number, which roughly cor-

responds with time while the vertical axis is packet length. The covert channel can easily be

spotted as the compact groupings of packets between 400 and 600 packet lengths in the bot-

tom left of the image. Most of the remaining packets are legitimate traffic such as HTTP page

requests.

Figure 3.2: Example Screenshot of Program Execution

18

Figure 3.3: Sample Network Traffic Displaying Packet Number and Packet Length

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

CHAPTER 4:
Statistical Approach to Detection and Bandwidth

Analysis

Both references [5] and [18] treat the detection of a packet-based covert channel in the context

of a single connection. In this thesis, we are interested in how an IDS can be used to detect a

packet length-based covert channel and what bandwidth that channel could attain while escap-

ing detection. The IDS would be used to monitor an intranet or on a network gateway. This

chapter outlines the framework that can be used to estimate the bandwidth of the channel, as

well as a system that can be used by the IDS.

4.1 Maximum Bandwidth
Covert channels always require overt information to transmit data, so the bandwidth of the

covert channel will be tied to the bandwidth of the overt channel. In the case of the covert

channel from Chapter 3, the covert packet is dependent on the size of the overt channel packet.

This packet size or segment size is normally 1460 bytes for Ethernet. So, for every segment

size section of overt channel bandwidth, the covert channel can encode some information. The

amount of information depends on how many packet-lengths or channels are being used for the

covert channel.

Converting the number of packet-lengths into bits can be done by taking the log base 2 of the

number of packet-lengths in the covert channel orlog2(channels). Therefore, each packet of

the overt channel can encodelog2(channels) of covert channel bits. The maximum bandwidth

the covert channel can attain then becomes:

bandwidthcovert =
log

2
(channels) bandwidthovert

segment size
(4.1)

4.2 Detection Threshold
If a user used the maximum covert bandwidth, this should greatly alter the distribution of packet-

lengths for the network. On the other hand, if there is a lot of traffic on the network and the user

21

only sends a small amount of covert data, the change in the packet-length distribution would

go undetected. Between these extremes is a threshold at which the covert channel becomes

detectable.

Detection of the channel will depend on the characteristics of the overt channel. The distri-

bution of packet lengths on a normal network has some predictable characteristics. There is

a significant amount of traffic from 52 to 300 bytes, with much of this being TCP acknowl-

edgment packets. There is also a large amount of traffic between 1300 and 1500 bytes. This

is where much of the data is being transmitted. In between 300 and 1300 is much less data,

but activity remains, with much of the HTTP page requests occurring here. The frequency and

number of packet-lengths of the network will fluctuate, depending on many factors, such as the

network applications being used, time of day, and day of week. Figure 4.1 shows a graph of

a network’s packet lengths over the course of a day. The hour scale goes from 0 to 24 hours,

while the packet length goes from 50 to 1500. The Frequency axis depicts the number of times

a given packet length occurred during each hour. The method for collecting this data is outlined

in Chapter 5.

Figure 4.1: Single Day Graph of Packet Lengths from the School Network

22

We can construct a functionT (l) that will be called the threshold function. The function returns

the minimum number of packets that can be sent with packet-lengthl that will be considered

abnormal. Here we use statistical analysis for this function. Another approach could use DFTs.

In order for a covert channel to escape detection, it will have to transmit below the threshold set

in T (l). This will depend on the size of the covert message being sent and the frequency of the

bytes(symbols)associated with lengthl. Let M be the covert message being sent in a given

time frame and letqi be the probability of symboli appearing inM . Then, avoiding detection

can be represented as:

Mqi < T (li) (4.2)

Several observations can be seen right away. For the channel to remain undetected, the trans-

mitted data must remain in the noise by doing one of three things:

• Reduce the signal by reducing the size ofM

• Spread the signal out by reducing the probabilityqi. If the channel is encrypted, creating

an evenly distributed cipher stream,qi simply becomes 1

channels
. In this case, increasing

the number of channels will decrease the probability.

• Pick a packet length with a greater threshold.

Summing all the thresholds for each packet length in the covert channel and subtracting normal

traffic (Ni) should result in the total symbols of the channel. To convert it to bits, one can

multiply by log2(channels) to get the maximum undetected bandwidth:

bandwidthcovert = log2(channels)
channels
∑

i=1

(T (li)−Ni) (4.3)

4.3 Defining the Threshold Function
The threshold function can use any method that can distinguish the covert channel traffic from

normal traffic. The goal is a function that extracts the covert channel signal from the noise

23

of regular traffic. We will use statistical inference to compare new traffic with an historical

average. The average data will be broken down by packet length and a user-defined unit of time

such as hour of the day.

The function is:

T (l) = Csl + Al (4.4)

wherel is the packet length of interest andsl is the standard deviation of occurrences forl. Al

represents the average occurrences ofl. C is a constant and can be used to adjust the number of

standard of deviations one wishes to use.

4.4 Intrusion Detection Framework
In addition to using this framework to estimate the bandwidth of the covert channel, one can

also use it to build a framework for intrusion detection. One can define a function that tracks

the number of packet lengths that exceed the threshold function and then flag the traffic if it

exceeds a threshold. This can be represented as follows:

E(l) =







1 iff l ≥ T (l)

0 else
(4.5)

segment size
∑

i=1

E(i) >= alert (4.6)

Here,E(l) returns 1 if the sampled frequency (fl) for packet lengthl exceeded the threshold

funciton,T (l). A 1 represents a single alert. All other cases will return 0. The next equation

states an intrusion has occurred if the sum of all alerts over the span of possible packet lengths

has exceeded the user-defined cutoffalert.

This system will allow for estimating a covert channel’s bandwidth, as well as for a system to

detect these channels. Much of this follows signals theory and the cat and mouse game between

detecting a signal among the noise and trying to hide that signal in the noise [20].

24

CHAPTER 5:
Experiment

To test the system of equations outlined in Chapter 4, we devised a testbed that includes data

obtained by sampling network traffic and injecting test traffic. Our network of choice was live

traffic from the Naval Postgraduate School’s Glasgow Hall, home of the NPS Computer Science

Department.

5.1 Network Architecture
The school network is partitioned into several subnets. The Computer Science Department is

part of the Graduate School of Operational and Information Sciences, which resides in Glasgow

Hall East Wing. We conducted all our collection using a collector that sniffed traffic near the

gateway to the Internet. See Figure 5.1 for a network diagram. We restricted all analysis to

traffic coming and going from Glasgow Hall to the Internet and saved just the time the packet

was received and the packet length.

Figure 5.1: Network Diagram

5.2 Collection
The equations found in Chapter 4 require a baseline dataset to compare live traffic. One could

use a dataset from an outside source, or the better option would be to sample one’s own network.

25

To sample traffic on the school’s network required several steps to get the collected data into a

form we could analyze. The steps are shown in Figure 5.2.

1. Save network data in a standard form, conduct data reduction, and transfer to the comput-

ing platform upon which analysis will be conducted

2. Import data reduced files into database

3. Summarize raw data into units of time to be used for analysis(rawdata to count)

4. Conduct steps 1–3 until desired level of sampling has been attained

5. Calculate average and standard deviation on data set(count to ave)

Figure 5.2: Transfer Process

Step 1 began by having the collector save the data in a standard way. The collector we used was

a regular part of the network, and it saved all the packets that traversed the school network to

the Internet. Entire packets in pcap format were saved in 650-megabyte files. Pcap format is a

standard format for saving raw network packet information, and it is used by programs such as

tcpdump and Wireshark [21].

Given the large amount of data generated by the collector, the files had to be reduced before

sending them to the analyzer. The code outlined in Appendix B.1 was used to read the pcap

files, strip off the Unix timestamp and the IP packet length, and save them to a separate file.

To minimize the file sizes, only IP packets of sizes between 56 and 1499 were saved. The

program also checked each packet to ensure it was part of the Glasgow Hall subnet. It did this

by conducting a bit-wise “and” between the destination and source addresses and comparing it

with the netmask of Glasgow Hall. Using a bit-wise “and” simply ands the bits of the address,

26

which is a fast and simple operation. If either source or destination addresses matched the

netmask, the packet information was saved. Another method used for step 1 was a custom

program that read network traffic directly using the libpcap library and only wrote the UNIX

timestamp and packet length to a separate file. The code for this program can be found in

Appendix B.2.

Once each pcap file was reduced to the timestamp and packet length, the files were compressed

and transfered to the computer upon which the data was analyzed. The files were then inserted

into a MySQL database(MySQL v5.1.52 on Linux)using a bash script(Appendix B.3). The

database was broken into three tables:rawdata, count, andave. See Appendix C for the full

SQL table definitions.Rawdata simply saves all the data from each of the filtered pcap files

into the database. Tablecount sums the packet lengths fromrawdata for a unit of time that

corresponds with the units used for the equations found in Chapter 4. The SQL code to compute

count is as follows:

Listing 5.1: Populating Table count using Table rawdata

i n s e r t i n t o count s e l e c t (t imestamp>>10)<<10 as time , len , 1

from rawda ta on d u p l i c a t e key update c o u n t e r = c o u n t e r +1

This command first takes everything from the tablerawtable using the select command. It then

strips off the first 10 bits of the timestamp using bit-wise shift command to convert the time

to 17-minute intervals. Unix timestamps are measured in seconds, with 10 bits approximately

equaling 17 minutes. One can use another value instead of 10 to increase or decrease the unit of

time, or one could use a modulo command to use a base other than 2. The bit-wise method was

used since it performs faster than the modulo command. Lastly, the analyzer uses the duplicate

key update command to sum the traffic.

Hourly averages are also computed, since there is a large variation in traffic based from hour to

hour. For example, using the time interval of 17 minutes, a 17-minute average is computed for

each hour of the day. The tableave is used to store the averages, which stores the hour, packet

length, average, and standard deviation. The full definition can be found in Appendix C. To

compute it, the following code was run:

Listing 5.2: Populating Table ave using Table count

i n s e r t i n t o ave s e l e c t len , avg(c o u n t e r) , s t d d e vp o p (c o u n t e r) ,

hour (f r om un i x t ime (t imestamp)) from t o t c o u n t

group by len , hour (f r om un i x t ime (t imestamp))

27

5.3 Injection and Analysis Framework
Once the baseline dataset is obtained, one can begin sampling and analyzing the data. The anal-

ysis was done by comparing new collection against the tableaverage established previously.

We conducted the analysis on an entire day’s worth of sampled data, since it was easier on the

collector to forward data on a daily basis. Further work could be done to increase the frequency

with which analyses are run. This would speed up detection of a potential covert channel.

5.3.1 Analysis
The steps for analysis followed the same steps 1 through 3 of collection. We created a table for

each of the analysis days with the same table properties ascount andrawdata. We did this to

maintain all the data collected, but one does not need to do this. One could simply reuse the

tablesrawdata andcount and simply delete the old data.

The following SQL command is used to compare the new data with the average using the

equations from Chapter 4:

Listing 5.3: Comparing new data with baseline

s e l e c t timestamp, hour (f r om un i x t ime (t imestamp)) ,

count (c . l e n) from count as c , ave

where hour (f r om un i x t ime (t imestamp)) = hour and

c . l e n =ave . l e n and c . c o u n t e r > (s t d e v∗6+ ave)

group by timestamp

order by hour (f r om un i x t ime (t imestamp)) ;

First, the command computes which packet lengths within a single timestamp block (17-minute

block) have exceededstdev ∗ 6 + ave (Equation 4.4). In this example, we use 6 standard

deviations. Next, the command counts the number of packet lengths that have exceeded the

threshold for a given timestamp as outlined in Equations 4.5 and 4.6. This is done by using the

count SQL operation in conjunction with the group by timestamp.

Another analysis tool graphs the traffic visually. This can be done using a SQL output like this:

Listing 5.4: Outputting count table for display in gnuplot

s e l e c t hour(f r om un i x t ime (t imestamp)) , len ,

sum(c o u n t e r) from c o u n t j a n 0 6 group by hour (

f r om un i x t ime (t imestamp)) , l e n

order by hour (f r om un i x t ime (t imestamp)) , l e n

28

The output of this can then be displayed using a three-dimensional rendering program such

as gnuplot [22]. This will create images similar to Figure 4.1. This form of analysis made it

visually possible to determine if there was unusual traffic over the course of the day. Often,

it could be determined quickly, using this method, that automated applications were running

during the night because they generated large spikes throughout the night.

5.3.2 Injection
For the injection, it was decided to use arbitrary packet injection instead of using the actual

covert channel code outlined in Chapter 3. This provided increased flexibility in choosing the

packet length and frequency of injection. Injection was provided using a program called hping

[23]. This program extends the capabilities of the basic ping program to include the creation on

arbitrary packets of variable size using several networking protocols such as IP, UDP, and TCP.

For the experiments, we used a machine within the Glasgow subnet to send packets of specific

lengths to arbitrary sites on the Internet.

Testing followed these steps:

1. Inject a packet with specific length as many times as desired and log transmission.

2. Repeat step 1 with different packet lengths until desired.

3. Wait until unit of time as defined in Section 4.3 has elapsed. In this case, this was 17

minutes.

4. Repeat 1–3 until testing complete.

5. Process and analyze collected data.

Steps 1 and 2 were done in parallel using bash scripting.

The system of collection, analysis, and injection outlined in this chapter allowed for accurate

testing of the equations and framework outlined in Chapter 4.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 6:
Analysis of Results

Several questions have been proposed on whether it is possible to detect packet length covert

channels from a network wide perspective. To test this, three weeks worth of collection was

performed on the school network, to include over a week of baseline collection. The baseline

data provided the information to calculate the threshold functions in Chapter 3.

6.1 Summary of Baseline Data
The baseline data consisted of over 400 million packets collected over the course of several

weeks during the work week (i.e., Monday-Friday).

The school’s network traffic was found to be variable depending on time of day and day of the

week. Figure 6.1 shows the daily packet totals for each day. Saturday and Sunday are also

shown for reference. Figure 6.2 shows a graph of hourly traffic averages. The large spike in the

late morning corresponded to when most of the computer science classes are taught.

Figure 6.1: Daily Packet Totals

31

Figure 6.2: Hourly Packet Profile

It was also noticed that several applications ran over the course of days or ran during off-hour

times. This had the effect of creating noticeable traffic during the middle of the night. This

adversely affected detection by creating false positives if the baseline data had not seen the

application run.

6.2 Detecting Packet Length Covert Channels: Narrow Scope
Before we could detect a covert channel, we needed to determine a good multiple for the stan-

dard deviation for Equation 4.4. We concentrated on packet lengths between 1181 and 1190.

This area had low variability and low enough packet counts to make testing easier. Using the

baseline data, it was determined that a multiple of 6 removed all false positives from normal

traffic. Table 6.1 shows the false positives for each multiple. The predicted number of pack-

ets at which the covert channel would become visible fell between 200 and 410, depending on

the hour and packet length. This was calculated using Equation 4.4, the multiple of 6 and the

baseline standard deviations for the packet lengths during regular working hours. All injections

were conducted during regular working hours.

With the number of packets set, the test consisted of using the steps outlined in Chapter 5 to

inject 300 to 1000 packets on each packet length between 1181 and 1190. This was considered

32

an injection set with one injection set conducted every 18 minutes. This allowed for only one

injection set for each 17-minute unit of time set in Chapter 5. In total, 19 injection sets were

conducted with the results shown in Table 6.2. The high number of false negatives was due

to trying to send packets at rates for the 6 standard deviation multiple. Several times the overt

traffic would be lower than normal and the channel would not be detected. It was also observed

that the collector would drop between 0 to 0.75 percent of packets. These factors made it

difficult to inject exactly 6 standard deviations worth of data and required about 30 additional

injection sets worth of testing before testable inject values were found. If the inject rate was

raised above the 6 standard deviation multiple, all the injected traffic was detected (Table 6.3).

Using Equation 4.4, Table 6.4 shows the predicted bandwidth for a 10 packet length channel

between 1181 and 1190 and the actual bandwidth from the testing. The data used the higher

data-rate injects used in Table 6.3.

Table 6.1: Determining Ideal Multiple of Standard Deviation

Multiple False Positives
1 439
2 150
3 47
4 12
5 1
6 0

Table 6.2: Detection of Covert Channel

Channels Injected Channel Detections False Positives False Negatives
110 59 9 29

Table 6.3: Detection of Covert Channel with Higher Inject Rates

Channels Injected Channel Detections False Positives False Negatives
80 80 4 0

33

Table 6.4: Actual vs. Predicted Bandwidth of 10-Packet Length Channel

Bandwidth
Predicted 15.550 bps
Actual 17.520 bps

6.3 Detecting Packet Length Covert Channels: Network-Wide

Problems arose once we scaled the narrow testing to all packet lengths. Many of the packet

lengths proved extremely volatile making it difficult to compute the standard deviation multiple.

When we say volatile here, we refer to packets that have large packet length standard deviation.

Some packet lengths required very large multiples in order to remove false positives while

others only required small multiples. To fix this, we used different standard deviation multiples

depending on the packet length, average packet count and the standard deviation for a given

packet. This had the effect of allowing for more variability in volatile packet length regions

while maintaining narrow variability in regions with little volatility. Appendix C.2 outlines

specific SQL commands used. The multiples varied from 5 to 50 with the most volatile packet

lengths getting larger multiples.

Using Equation 4.4, we were able to calculate the maximum undetectable bandwidth for all the

packet lengths throughout the day. Figure 6.3 shows the possible channel bandwidths in bits

per second for a 20 packet length covert channel.

Even with the variable standard deviation multiples, some false positives remained. However,

these false positives rarely exceeded 10 to 20 packet lengths for a 17-minute time interval.

Therefore, a value between 10 and 20 was found to be a good number for the alerts variable in

Equation 4.6. This would mean a covert channel would need to exceed the threshold function for

10-20 packet lengths in order for it to be flagged as abnormal using our measurement techniques.

Experiments were then conducted by injecting a 20-packet length covert channel using the same

methods outlined in the narrow scope section (Section 6.2), but with the standard deviation

multiples found in Appendix C.2. Table 6.5 shows the detection statistics for these tests, the

actual versus predicted bandwidths.

34

Figure 6.3: Channel Bandwidth for a 20-Packet Length Covert Channel

Table 6.5: Detection of Covert Channel-Network Wide

Channels Injected Channel Detections False Positives/Time Unit False Negatives
160 93 5 67

Table 6.6: Detection of Covert Channel with Higher Inject Rates-Network Wide

Channels Injected Channel Detections False Positives/Time Unit False Negatives
120 118 4 2

Table 6.7: Actual vs. Predicted Bandwidth of 20-Packet Length Channel

Bandwidth
Predicted 79.986 bps
Actual 86.105 bps

35

Figure 6.4: Hourly Bandwidth for a 20-Channel Covert Channel

With these numbers, one can now predict possible bandwidths for an undetectable packet based

covert channel on this network. Figure 6.4 shows the hourly maximum predicted undetectable

bandwidth of a 20 packet length covert channel. This assumes the channel uses the highest

bandwidth channels based on Equation 4.4 and the baseline data. It also assumes the messages

being sent are evenly distributed, which would cause the user to use the least variable packet

length transfer rate for the rest of the packet lengths. Otherwise, the channel would transmit at

rates higher than the least variable packet length and would cause detection. The figures would

be even higher if the user had a message distribution that perfectly matched the distribution

of the traffic. Under these assumptions, some packet lengths such as lengths between 50 and

70 used for TCP acks or packets over 1400 bits, had as high as several kilobits per second

bandwidth.

As indicated by Figure 6.4, the channel’s peak bandwidth happened during the middle of the

day, with a bandwidth of around 13,000 bits per second. This does not seem to be a lot, espe-

cially when compared to the large amount of legitimate data that is getting transmitted. But, if

one assumes the channel continuously transmits data at rates consistent with Figure 6.4 for an

entire day, a total of nearly 600 Mb of data will be transmitted. This is a significant amount of

36

data. Even if one assumes the threshold function could be mademore exact, with a resulting

reduction in the bandwidth of the channel, its bandwidth would probably still be in the hundreds

of megabits per day.

Figure 6.5 shows the bandwidth in megabits per day for channels using between 2 to 1400

packet lengths. This assumes an even distribution for any covert message being sent, which

would cause the use of the least variable packet length transfer rate as discussed before. One

can immediately see the bandwidth peaks at 800 Mb before gradually dropping down as the

number of packet lengths increase. This can be explained by analyzing the variability of the

packet lengths. There are only about 100 packet lengths that have a high degree of variability,

but after that there is a marked decrease into the lesser-used packet lengths. As the channel

becomes wider and wider, it must transmit at slower and slower rates in order to avoid detection

on the lesser-used lengths.

If a user had a covert message with the exact distribution of the network or had a method to

map the message to the distribution of the network, one could then take advantage of the high

variability of the often-used lengths. The bandwidth of this scheme can been seen in Figure 6.6.

Here, the bandwidth continues to increase, but the increase slows as the channel uses more and

more of the lesser used packet lengths.

These figures illustrate how much data could be exfiltrated without being detected. While these

numbers may be high due to the simple threshold function being used, the figure may still be in

the several hundred magabits of data per day.

37

Figure 6.5: Bandwidth vs. Used Packet Lengths with Even Distribution

Figure 6.6: Bandwidth vs. Used Packet Lengths

38

CHAPTER 7:
Conclusion and Further Work

This thesis has shown that it is possible to detect packet length covert channels while monitoring

large-scale networks. It has also shown how variable network traffic can be and how it affects

the detectability of covert channels. In this thesis, we also demonstrated that it is possible to

accurately predict the bandwidth of packet length covert channels and showed that, even at low

bandwidths, a covert channel could transmit large amounts of data over the course of a day. The

following section outlines some further work that could improve the detectability and robustness

of the covert channel.

7.1 Further Work
7.1.1 Better Threshold Function
The threshold function used here relies on basic statistical analysis. Another function that uses

more sophisticated mathematical tools could possibly better identify what is considered normal

traffic and separate it from unusual traffic. Initial research for this thesis focused on using a

DFT calculated for each packet over the course of time. The function proved to be promising,

but was only able to detect channels that used packet lengths grouped together or ones that

transmitted large amounts of data using a small number of packet lengths. A possible area of

research would be to continue investigating the use of DFTs in a threshold function. One idea

would be to use the function outlined in reference [18] on a network level instead of simply on

a per-connection basis.

The unit of time for the threshold function could also be adjusted. We used 17 minutes due to its

speed and efficiency of using bit-wise operations. It would be interesting to test the effectiveness

of shortening the time interval or lengthening it. Also, the location of the collector could be

adjusted. We placed it fairly high in the network and collected data on an entire department.

Further research could test the effectiveness of moving the collection down in the network, even

down to a single computer.

7.1.2 Covert Channel Refinement
The channel we defined offers a basic covert channel. We did not need a more robust channel

for testing purposes, but several steps can be done if this is needed. First, a better reference can

39

be used. For example, instead of grouping the channel in a single band as in our channel, one

could distribute it across the range of packet lengths. One could also use the methods already

discussed in [18].

The channel can also be made more robust by expanding the channel into multiple connections

to the same peer. This would likely increase the bandwidth of the channel, but would require

adding packet tracking and reassembly at the covert channel level.

Interaction between kernel and user-space could also be improved with more robust function

calls. Right now, a simple array of buffers is passed between the two. This could be modified to

include reading single characters or only part of the receive buffers. Also, a completely kernel-

space channel could be developed. Lastly, a fully user-space channel is possible. A user could

modify a popular application like Firefox and manually fragment data to desired sizes before

passing them down the TCP stack of an unmodified kernel. Further research could be done in

this area.

The kernel code could also be better implemented. Currently, the code sometimes introduces

artifact packets because of changing the MSS value. They are small packets of less than 400

bytes created from left-over packet data used for the covert channel. Having these artifacts

could potentially increase detection by creating possible patterns between packet lengths, or by

increasing the occurrence of certain packet lengths. This could be fixed by adding functionality

that would remove the small packets and add their data back into the connection’s send buffer.

The covert channel code could be implemented in a kernel module. Currently, the channel is

hard-coded into the kernel, resulting in an immobile system. An improvement would be to

create a kernel module that encompasses the covert channel. This kernel module could then be

tied into an existing rootkit.

Lastly, one could try and implement the channel on non-TCP protocols, like UDP. TCP was

easy to modify in the kernel and, due to TCP’s stateful nature, we did not have to worry about

the ordering of the packets as they arrive. UDP may be easier to modify in the kernel, but one

would have to build some mechanism into the cover channel to account for packets arriving out

of order. This is necessary, since UDP does not track ordering of packets. It also may be worth

researching the use of this channel at the IP level. This would be difficult, since the channel

would have to be mindful of the protocols higher in the network stack. The channel would have

to modify the size of the packet within the TCP or UDP header in addition to crafting a custom

40

IP packet size. Alternatively, the channel could use IP fragmentation to break up the IP packet

without needing to adjust higher level protocols. IP fragmentation allows a sender to break up

a message that is too big for the network it wants to send on. This method would probably be

easily detectable, however, since IP fragmentation is probably not very common.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

REFERENCES

[1] B. W. Lampson, “A note on the confinement problem,”Commun. ACM, vol. 16, pp.

613–615, October 1973.

[2] J. Butler,Rootkits: Subverting the Windows Kernel. Upper Saddle River: Pearson

Education, 2005.

[3] G. J. Simmons, “The prisoners’ problem and the subliminal channel,” inProc.

CRYPTO’83, 1983, pp. 51–67.

[4] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels and

countermeasures in computer network protocols,”Communications Surveys Tutorials,

IEEE, vol. 9, no. 3, pp. 44–57, 2007.

[5] J. Liping, J. Wenhao, D. Benyang, and N. Xiamu, “A novel covert channel based on

length of messages,” inInformation Engineering and Electronic Commerce, 2009. IEEC

’09. International Symposium, May 2009, pp. 551–554.

[6] Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, Department of

Defense, December 1985.

[7] M. Bishop,Computer Security: Art and Science. Westford: Pearson Education, 2003.

[8] R. A. Kemmerer, “Shared resource matrix methodology: an approach to identifying

storage and timing channels,”ACM Trans. Comput. Syst., vol. 1, pp. 256–277, August

1983.

[9] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, “Eliminating steganography in internet

traffic with active wardens,” inInformation Hiding, ser. Lecture Notes in Computer

Science, 2003, vol. 2578, pp. 18–35.

[10] T. Handel and M. Sandford, “Hiding data in the OSI network model,” inLecture Notes in

Computer Science, 1996, vol. 1174, pp. 23–38.

[11] J. Rutkowska, “The implementation of passive covert channels in the linux kernel,” in

Chaos Communication Congress, December 2004.

43

[12] L. Xiapu, E. Chan, and R. Chang, “TCP covert timing channels: Design and detection,”

in Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE

International Conference on, 2008, pp. 420–429.

[13] A. Donaldson, J. McHugh, and K. Nyberg, “Covert channels in trusted LANs,” inProc.

11th NBS/NCSC National Computer Security Conf, 1988, pp. 226–232.

[14] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection: evasion, traffic

normalization, and end-to-end protocol semantics,” inProceedings of the 10th conference

on USENIX Security Symposium - Volume 10, vol. 10, 2001, pp. 9–9.

[15] M. Padlipsky, D. Snow, and P. Karger, “Limitations of end-to-end encryption in secure

computer networks,” Mitre Corp., Tech. Rep. ESD-TR-78-158, 1978.

[16] T. Sohn, J. Seo, and J. Moon, “A study on the covert channel detection of TCP/IP header

using support vector machine,” inInformation and Communications Security, ser.

Lecture Notes in Computer Science, 2003, vol. 2836, pp. 313–324.

[17] B. Venkatraman and R. Newman-Wolfe, “Capacity estimation and auditability of network

covert channels,” inIEEE Proceedings on Security and Privacy, May 1995, pp. 186–198.

[18] A. S. Nair, A. Sur, and S. Nandi, “Detection of packet length based network

steganography,” inInternational Conference on Multimedia Information Networking and

Security, 2010, pp. 574–578.

[19] C. Shannon, “A mathematical theory of communication,”The Bell System Technical

Journal, pp. 379–423, 1948.

[20] A. Hero, “Secure space-time communication,”Information Theory, IEEE Transactions

on, vol. 49, no. 12, pp. 3235–3249, 2003.

[21] (2004) Pcap next generation dump file format. http://www.tcpdump.org/pcap/pcap.html.

[Online; accessed 18-January-2011].

[22] (2010) Gnuplot. http://www.gnuplot.info/. [Online; accessed 18-January-2011].

[23] (2006) Hping-active network security tool. http://www.hping.org/. [Online; accessed

18-January-2011].

44

http://www.tcpdump.org/pcap/pcap.html
http://www.gnuplot.info/
http://www.hping.org/

APPENDIX A:
Linux Kernel Modifications

A.1 tcp.c
1

2 st a t i c i n t c o v c h a n n e l r e c i n d e x s t a r t =0;

3 EXPORTSYMBOL(c o v c h a n n e l r e c i n d e x s t a r t) ;

4 st a t i c i n t c o v c h a n n e l r e c i n d e x l e n =0;

5 EXPORTSYMBOL(c o v c h a n n e l r e c i n d e x l e n) ;

6

7 st a t i c i n t c o v c h a n n e l s e n d i n d e x s t a r t =0;

8 EXPORTSYMBOL(c o v c h a n n e l s e n d i n d e x s t a r t) ;

9 st a t i c i n t c o v c h a n n e l s e n d i n d e x e n d =0;

10 EXPORTSYMBOL(c o v c h a n n e l s e n d i n d e x e n d) ;

11

12 s t a t i c i n t c o v c h a n n e l r e c e i v e b u f [1 0 0 0] ;

13 EXPORTSYMBOL(c o v c h a n n e l r e c e i v e b u f) ;

14 s t a t i c i n t c o v c h a n n e l s e n d b u f [1 0 0 0] ;

15 EXPORTSYMBOL(c o v c h a n n e l s e n d b u f) ;

16 s t a t i c i n t c h a n n e l h a s c o n t e n t s =0;

17

18 i n t c o v c h a n n e l l o c k e d =0;

19 EXPORTSYMBOL(c o v c h a n n e l l o c k e d) ;

20

21 u i n t 3 2 t c o v c h a n n e l a d d r e s s = h t o n l (INADDRLOOPBACK) ;

22 EXPORTSYMBOL(c o v c h a n n e l a d d r e s s) ;

23

24 asml inkage long s y s c o v c h a n n e l r e a d (char ∗ b u f f e r , i n t ∗ l e n)

25 {

26 p r i n t k (KERNEMERG ” s y s c o v c h a n n e l r e a d l e n g t h −%d” ,

c o v c h a n n e l r e c i n d e x l e n) ;

27

28 i f (c o v c h a n n e l r e c i n d e x l e n ==0)

29 re turn −1;

30

31 long e r r =0;

32

33 long t emp bu f f [1 0 0 0] ;

45

34 i n t x =0;

35 f o r (x =0; x<c o v c h a n n e l r e c i n d e x l e n ; x++)

36 {

37 temp bu f f [x]= c o v c h a n n e l r e c e i v e b u f [x] ;

38 c o v c h a n n e l r e c e i v e b u f [x]= ’ \0 ’ ;

39 }

40

41 temp bu f f [x]= ’ \0 ’ ;

42 x =0;

43 whi le (x<c o v c h a n n e l r e c i n d e x l e n)

44 {

45 b u f f e r [x]= temp bu f f [x] ;

46 x ++;

47 }

48 b u f f e r [x]= ’ \0 ’ ;

49 ∗ l e n = c o v c h a n n e l r e c i n d e x l e n ;

50 e r r = p u t u s e r (c o v c h a n n e l r e c i n d e x l e n , l e n) ;

51

52 c o v c h a n n e l r e c i n d e x l e n =0;

53 c o v c h a n n e l r e c i n d e x s t a r t =0;

54

55 p r i n t k (KERNEMERG ” h e l l o wor ld !%s ” , b u f f e r) ;

56 re turn e r r ;

57 }

58

59 asml inkage long s y s c o v c h a n n e l w r i t e (char ∗ b u f f e r)

60 {

61 long e r r =0;

62 i f ((s t r l e n (b u f f e r) >= ((c o v c h a n n e l s e n d i n d e x s t a r t −

co v c h a n n e l s e n d i n d e x e n d + 1000) % 1000)) &&

ch a n n e l h a s c o n t e n t s)

63 re turn −1;

64

65 i n t x =0;

66 i n t b u f f e r x = c o v c h a n n e l s e n d i n d e x e n d ;

67 f o r (x =0; x< s t r l e n (b u f f e r) ; x++)

68 {

69 c o v c h a n n e l s e n d b u f [b u f f e r x]= b u f f e r [x] ;

70 i f (b u f f e r x +1==1000)

71 b u f f e r x =0;

72 e l s e

46

73 b u f f e r x ++;

74 }

75

76 c o v c h a n n e l s e n d i n d e x e n d = (c o v c h a n n e l s e n d i n d e x e n d + s t r l e n (

bu f f e r)) % 1000 ;

77 c h a n n e l h a s c o n t e n t s =1;

78

79 p r i n t k (KERNEMERG ” The wor ld h e l l o ”) ;

80

81 re turn e r r ;

82 }

83

84 asml inkage void s y s c o v c h a n n e l p e e r (l ong add)

85 {

86 c o v c h a n n e l a d d r e s s =add ;

87 }

88 void c h a n n e l p u t p a c k a g e r e c e i v e d (i n t package)

89 {

90 p r i n t k (KERNEMERG ” c h a n n e l p u t p a c k a g e r e v e i v e d −%d” , package) ;

91

92 i f (c o v c h a n n e l r e c i n d e x l e n ==1000)

93 re turn ;

94 c o v c h a n n e l r e c e i v e b u f [c o v c h a n n e l r e c i n d e x l e n]= package ;

95 c o v c h a n n e l r e c i n d e x l e n ++;

96 }

97

98 i n t c h a n n e l g e t p a c k a g e t o s e n d (void)

99 {

100 i f (! c h a n n e l h a s c o n t e n t s)

101 re turn −1;

102 i n t p a c k e t = c o v c h a n n e l s e n d b u f [c o v c h a n n e l s e n d i n d e x s t a r t] ;

103

104 c o v c h a n n e l s e n d b u f [c o v c h a n n e l s e n d i n d e x s t a r t] = 0 ;

105 c o v c h a n n e l s e n d i n d e x s t a r t =(c o v c h a n n e l s e n d i n d e x s t a r t +1) %

1000;

106 i f (c o v c h a n n e l s e n d i n d e x s t a r t == c o v c h a n n e l s e n d i n d e x e n d)

107 c h a n n e l h a s c o n t e n t s =0;

108

109 re turn p a c k e t ;

110 }

111

47

112 i n t c h a n n e l p a c k e t c h e c k ()

113 {

114 i f (! c h a n n e l h a s c o n t e n t s)

115 re turn −1;

116 re turn c o v c h a n n e l s e n d b u f [c o v c h a n n e l s e n d i n d e x s t a r t] ;

117 }

118

119 EXPORTSYMBOL(c h a n n e l p u t p a c k a g e r e c e i v e d) ;

120 EXPORTSYMBOL(c h a n n e l g e t p a c k a g e t o s e n d) ;

121 EXPORTSYMBOL(c h a n n e l p a c k e t c h e c k) ;

A.2 tcp input.c
1 ex te rn vo id c h a n n e l p u t p a c k a g e r e c e i v e d (i n t package) ;

2 ex te rn i n t c o v c h a n n e l a d d r e s s ;

3

4 st a t i c vo id t c p e v e n t d a t a r e c v (st r u c t sock ∗sk , s t r u c t s k b u f f ∗ skb)

5 {

6 /∗ check i f t h e p a c k e t i s coming from t h e cov h o s t and i f i t ’ s

be tween t h e p a c k e t window ∗ /

7 /∗ T h i s i s t h e o n l y mod f o r r e c e i v e ∗ /

8 i f (i n e t s k (sk)−>daddr == c o v c h a n n e l a d d r e s s && skb−>l e n >= 1202 &&

skb−>l e n <=1400)

9 c h a n n e l p u t p a c k a g e r e c e i v e d (skb−>l en−1202) ;

10

11 s t r u c t t c p s o c k ∗ t p = t c p s k (sk) ;

12 s t r u c t i n e t c o n n e c t i o n s o c k ∗ i c s k = i n e t c s k (sk) ;

13 u32 now ;

14

15 i n e t c s k s c h e d u l e a c k (sk) ;

16

17 t c p m e a s u r er c v m s s (sk , skb) ;

18

19 t c p r c v r t t m e a s u r e (t p) ;

20

21 now = t c p t i m e s t a m p ;

22

23 i f (! i csk−> i c s k a c k . a t o) {

24 /∗ The f i r s t da ta p a c k e t r e c e i v e d , i n i t i a l i z e

25 ∗ d e l a y e d ACK e n g i n e .

26 ∗ /

48

27 t c p i n c r q u i c k a c k (sk) ;

28 i csk−> i c s k a c k . a t o = TCPATO MIN ;

29 } e l s e {

30 i n t m = now − i c sk−> i c s k a c k . l r c v t i m e ;

31

32 i f (m <= TCP ATO MIN / 2) {

33 /∗ The f a s t e s t case i s t h e f i r s t . ∗ /

34 icsk−> i c s k a c k . a t o = (i csk−> i c s k a c k . a t o >> 1) +

TCP ATO MIN / 2 ;

35 } e l s e i f (m < i c sk−> i c s k a c k . a t o) {

36 icsk−> i c s k a c k . a t o = (i csk−> i c s k a c k . a t o >> 1) + m;

37 i f (i csk−> i c s k a c k . a t o > i c sk−> i c s k r t o)

38 i csk−> i c s k a c k . a t o = i csk−> i c s k r t o ;

39 } e l s e i f (m > i c sk−> i c s k r t o) {

40 /∗ Too long gap . A p p a r e n t l y s e n d e r f a i l e d t o

41 ∗ r e s t a r t window , so t h a t we send ACKs q u i c k l y .

42 ∗ /

43 t c p i n c r q u i c k a c k (sk) ;

44 sk mem rec la im (sk) ;

45 }

46 }

47 icsk−> i c s k a c k . l r c v t i m e = now ;

48

49 TCP ECN check ce (tp , skb) ;

50

51 i f (skb−>l e n >= 128)

52 tcp grow window (sk , skb) ;

53 }

A.3 tcp output.c
1

2 /∗ T h i s r o u t i n e w r i t e s p a c k e t s t o t h e ne twork . I t advances t h e

3 ∗ s e n d h e a d . T h i s happens as incoming acks open up t h e remote

4 ∗ window f o r us .

5 ∗

6 ∗ LARGESEND n o t e : ! t c p u r g m o d e i s o v e r k i l l , o n l y f r ames be tween

7 ∗ snd up −64k−mss . . snd up canno t be l a r g e . However , t a k i n g i n t o

8 ∗ a c c o u n t r a r e use o f URG, t h i s i s n o t a b i g f l a w .

9 ∗

10 ∗ R e t u r n s 1 , i f no s egmen t s are i n f l i g h t and we have queued segments , b u t

49

11 ∗ canno t send a n y t h i n g now because o f SWS or a n o t h e r problem .

12 ∗ /

13 ex te rn i n t c h a n n e l g e t p a c k a g e t o s e n d () ;

14 ex te rn i n t c h a n n e l p a c k e t c h e c k () ;

15 ex te rn i n t c o v c h a n n e l l o c k e d ;

16 ex te rn i n t c o v c h a n n e l a d d r e s s ;

17

18 s t a t i c i n t t c p w r i t e x m i t (st r u c t sock ∗sk , unsigned i n t mss now , i n t

nonagle ,

19 i n t push one , g f p t g fp)

20 {

21 s t r u c t t c p s o c k ∗ t p = t c p s k (sk) ;

22 s t r u c t s k b u f f ∗ skb ;

23 unsigned i n t t s o s e g s , s e n tp k t s ;

24 i n t cwnd quota ;

25 i n t r e s u l t ;

26

27 s t r u c t i n e t s o c k ∗ i n e t = i n e t s k (sk) ;

28

29 s e n t p k t s = 0 ;

30

31 /∗ l o c k t h e c h a n n e l i f n o t a l r e a d y l o c k e d ∗ /

32 i f (! sk−> i s c o v c h a n n e l && ! c o v c h a n n e l l o c k e d && i n e t−>daddr ==

c o v c h a n n e l a d d r e s s)

33 {

34 c o v c h a n n e l l o c k e d =1;

35 sk−> i s c o v c h a n n e l =1;

36 p r i n t k (KERN EMERG ” ### Channel l ocked ! ! ”) ;

37

38 }

39

40 i f (! push one) {

41 /∗ Do MTU p r o b i n g . ∗ /

42 r e s u l t = t c p m t u p r o b e (sk) ;

43 i f (! r e s u l t) {

44 re turn 0 ;

45 } e l s e i f (r e s u l t > 0) {

46 s e n t p k t s = 1 ;

47 }

48 }

49

50

50 i n t r e a l m s s =mssnow ;

51 i n t p a c k e t =−1;

52 i n t x =0;

53 whi le ((skb = t c p s e n d h e a d (sk))) {

54 x ++;

55 p a c k e t = c h a n n e lp a c k e t c h e c k () ;

56 i n t p a c k e t u s e d =0;

57

58 /∗ g e t a v a l u e t o send and f o r m a t t h e mss v a l u e a c c o r d i n g l y

∗ /

59 i f (sk−> i s c o v c h a n n e l && p a c k e t !=−1 && skb−>l e n > (1202+

p a c k e t))

60 {

61 p a c k e t u s e d =1;

62 p r i n t k (KERN EMERG ” p a c k a g et o s e n d −%c −%d” , packe t ,

p a c k e t) ;

63 mssnow = 1202 + p a c k e t ;

64 }

65 e l s e i f (skb−>l e n >= 1202 && skb−>l e n <=1400)

66 mss now =1200;

67 e l s e

68 mss now= r e a l m s s ;

69

70

71 unsigned i n t l i m i t ;

72

73 t s o s e g s = t c p i n i t t s o s e g s (sk , skb , mssnow) ;

74 BUG ON(! t s o s e g s) ;

75

76 cwnd quota = t c p c w n d t e s t (tp , skb) ;

77 i f (! cwnd quota)

78 break ;

79

80 i f (u n l i k e l y (! t c p s n d w n d t e s t (tp , skb , mssnow)))

81 break ;

82

83 i f (t s o s e g s == 1) {

84 i f (u n l i k e l y (! t c p n a g l e t e s t (tp , skb , mssnow ,

85 (t c p s k b i s l a s t (sk ,

skb) ?

86 nonag le :

51

TCP NAGLE PUSH))))

87 break ;

88 } e l s e {

89 i f (p a c k e t ==−1 && ! push one && t c p t s o s h o u l d d e f e r

(sk , skb))

90 break ;

91 }

92

93 l i m i t = mss now ;

94 i f (t s o s e g s > 1 && ! t cp u rg mode (t p))

95 l i m i t = t c p m s s s p l i t p o i n t (sk , skb , mssnow ,

96 cwnd quota) ;

97 i f (p a c k e t !=−1)

98 l i m i t =mss now ;

99

100 i f (skb−>l e n > l i m i t &&

101 u n l i k e l y (t s o f r a g m e n t (sk , skb , l i m i t , mssnow)))

102 break ;

103 TCP SKB CB (skb)−>when = t c p t i m e s t a m p ;

104

105 /∗ remove from b u f f e r i f t h e p a c k e t was s e n t w i t h a c o v e r t

v a l u e ∗ /

106 i f (p a c k e t u s e d)

107 p a c k e t = c h a n n e lg e t p a c k a g e t o s e n d () ;

108 i f (u n l i k e l y (t c p t r a n s m i t s k b (sk , skb , 1 , g fp)))

109 break ;

110

111 /∗ Advance t h e s e n d h e a d . T h i s one i s s e n t o u t .

112 ∗ T h i s c a l l w i l l i n c r e m e n t p a c k e t s o u t .

113 ∗ /

114 t c p e v e n t n e w d a t a s e n t (sk , skb) ;

115

116 t c p m i n s h a l l u p d a t e (tp , mssnow , skb) ;

117 s e n t p k t s ++;

118

119 i f (push one)

120 break ;

121 }

122

123 i f (l i k e l y (s e n t p k t s)) {

124 t c p c w n d v a l i d a t e (sk) ;

52

125 r e turn 0 ;

126 }

127 re turn ! tp−>p a c k e t s o u t && t c p s e n d h e a d (sk) ;

128 }

A.4 reader.c
1 # inc l ude < l i n u x / u n i s t d . h>

2 # inc l ude <sys / s y s c a l l . h>

3 # inc l ude <s t d i o . h>

4 # inc l ude <s t r i n g . h>

5

6 long c h a n n e l r e a d (char ∗ b u f f e r , i n t ∗ l e n)

7 {

8 re turn s y s c a l l (337 , b u f f e r , l e n) ;

9 }

10

11 long c h a n n e l w r i t e (char ∗ b u f f e r)

12 {

13 re turn s y s c a l l (338 , b u f f e r , s t r l e n (b u f f e r)) ;

14 }

15

16 long c h a n n e l s e t p e e r (l ong add)

17 {

18 re turn s y s c a l l (339 , add) ;

19 }

20

21 i n t main ()

22 {

23 c h a n n e l s e t p e e r (100837568) ;

24 i n t x =0;

25 char name [] = ” Hidden i n p l a i n s i g h t ” ;

26 char b u f f e r [1 0 0 0] ;

27 i n t l e n =0;

28 long package= c h a n n e lw r i t e (name) ;

29 long e r r = c h a n n e l r e a d (b u f f e r ,& l e n) ;

30 p r i n t f (” from t h e network− %s\n” , b u f f e r) ;

31

32 re turn 1 ;

33 }

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX B:
Collection Code

B.1 PCAP Packet Length Extractor
1 # inc l ude <s t d i o . h>

2 # inc l ude <pcap . h>

3 # inc l ude <s t d l i b . h>

4 # inc l ude <n e t i n e t / i p . h>

5 # inc l ude <a rpa / i n e t . h>

6

7 # d e f i n e ETHER TYPE IP (0 x0800)

8 #d e f i n e ETHER TYPE 8021Q (0 x8100)

9 #d e f i n e OFFSET (0xXXXFFF)

10 # d e f i n e NETMASK (0xXXXXX)

11

12 i n t main (i n t argc , char ∗∗ argv)

13 {

14 s t r u c t p c a p p k t h d r heade r ;

15 cons t u c h a r ∗ pa c k e t ;

16

17 i n t y =0;

18 char s r c i p [1 0 0] , d s t i p [1 0 0] ;

19

20 p c a p t ∗ hand le ;

21 char e r r o r [PCAPERRBUF SIZE] ;

22 hand le = p c a po p e n o f f l i n e (a rgv [y] , e r r o r) ;

23 i n t p a c k e t l e n g t h ;

24

25 whi le (p a c k e t = p c a pn e x t (hand le ,& header)){

26 u c h a r ∗ pa c k e t = (u c h a r ∗) p a c k e t ;

27

28 i n t e t h e r n e t t y p e = ((i n t) (p a c k e t [1 2]) << 8) | (i n t) p a c k e t [1 3] ;

29

30 i f (e t h e r n e t t y p e == ETHERTYPE IP)

31 {

32 p a c k e t += 14 ;

33 s t r u c t i p ∗ i p h d r = (st r u c t i p ∗) p a c k e t ;

34 s t r u c t i p h d r ∗ i p h e a d e r = (st r u c t i p ∗) p a c k e t ;

55

35

36 p a c k e t l e n g t h = n t o h s (i ph d r−> i p l e n) ;

37

38 i f (p a c k e t l e n g t h> 55 && p a c k e t l e n g t h < 1500 &&

39 ((i p h e a d e r−>sa d d r&OFFSET) ==NETMASK | |

40 (i p h e a d e r−>daddr&OFFSET) ==NETMASK))

41 {

42 p r i n t f (”%d %d\n” , heade r . t s . t vs e c , p a c k e tl e n g t h) ;

43 }

44 }

45 }

46 p c a p c l o s e (hand le) ;

47 re turn 0 ;

48 }

B.2 Network Packet Reader
1 # inc l ude <pcap . h>

2 # inc l ude <s t d i o . h>

3 # inc l ude <s t d l i b . h>

4 # inc l ude <e r r n o . h>

5 # inc l ude <sys / s o c k e t . h>

6 # inc l ude <n e t i n e t / i n . h>

7 # inc l ude <n e t i n e t / i p . h>

8 # inc l ude <a rpa / i n e t . h>

9 # inc l ude <n e t i n e t / i f e t h e r . h>

10 # d e f i n e ETHER TYPE IP (0 x0800)

11 # d e f i n e ETHER TYPE 8021Q (0 x8100)

12 # d e f i n e OFFSET (0 xF8FFFF)

13 / / # d e f i n e NETMASK (0 xA8C0)

14 # d e f i n e NETMASK (0 x6814AC)

15

16 void c a l l b a c k (u c h a r ∗ us e l e s s ,cons t s t r u c t p c a p p k t h d r∗ header ,cons t u c h a r

∗

17 p k t p t r)

18 {

19 i f ((((i n t) (p k t p t r [1 2]) << 8) | (i n t) p k t p t r [1 3]) == ETHER TYPE IP)

20 {

21 p k t p t r += 14 ; / / s k i p p a s t t h e E t h e r n e t I I header

22 s t r u c t i p ∗ i p h d r = (st r u c t i p ∗) p k t p t r ; / / p o i n t t o an IP header

s t r u c t u r e

56

23 st r u c t i p h d r ∗ i p h e a d e r = (st r u c t i p ∗) p k t p t r ; / / p o i n t t o an IP

header s t r u c t u r e

24

25 i n t p a c k e t l e n g t h = n t o h s (i ph d r−> i p l e n) ;

26

27 i f (p a c k e t l e n g t h> 55 && p a c k e t l e n g t h < 1500 &&

28 ((i p h e a d e r−>sa d d r&OFFSET) ==NETMASK | |

29 (i p h e a d e r−>daddr&OFFSET) ==NETMASK))

30 {

31 p r i n t f (”%d %d\n” , header−> t s . t v s e c , p a c k e tl e n g t h) ;

32 }

33 }

34 }

35

36 i n t main (i n t argc ,char ∗∗ argv)

37 {

38 char e r r [PCAPERRBUF SIZE] ;

39

40 d e s c r = p c a po p e n l i v e (” e th0 ” ,100 ,0 ,−1 , e r r b u f) ;

41 i f (d e s c r == NULL)

42 {

43 p r i n t f (” p c a p o p e n l i v e () : %s\n” , e r r) ; e x i t (1) ;

44 }

45

46 pcap loop (desc r ,−1, c a l l b a c k ,NULL) ;

47

48 re turn 0 ;

49 }

B.3 Batch Collection Files to MySQL loader
1 # ! / b i n / bash

2

3 f r o n t =” l oad d a t a i n f i l e ’ / home / de rek / Documents / NPS / t h e s i s / pcap\ d a t a / oc t20 /

”

4 back=” ’ i n t o t a b l e rawda ta FIELDS TERMINATED BY ’ ’ IGNORE 1 LINES ; ” ;

5

6 f o r X i n ∗ t x t

7 do

8 echo $f ron t$X$back

9 done

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX C:
MySQL Table Definitions

C.1 Table Definitions
1 −− MySQL dump 10 .13 D i s t r i b 5 . 1 . 5 2 , f o r pc−l i n u x −gnu (x86 64)

2 −−

3 −− Host : l o c a l h o s t Database : p a c l e n

4 −− −−

5 −− S e r v e r v e r s i o n 5.1.52 − l o g

6

7 /∗ !40101 SET @OLD CHARACTER SET CLIENT=@@CHARACTER SET CLIENT ∗ / ;

8 /∗ !40101 SET @OLD CHARACTER SET RESULTS=@@CHARACTER SET RESULTS ∗ / ;

9 /∗ !40101 SET @OLD COLLATION CONNECTION=@@COLLATION CONNECTION ∗ / ;

10 /∗ !40101 SET NAMES u t f 8 ∗ / ;

11 /∗ !40103 SET @OLD TIME ZONE=@@TIME ZONE ∗ / ;

12 /∗ !40103 SET TIME ZONE= ’+00:00 ’ ∗ / ;

13 /∗ !40014 SET @OLD UNIQUE CHECKS=@@UNIQUE CHECKS, UNIQUE CHECKS=0 ∗ / ;

14 /∗ !40014 SET @OLD FOREIGN KEY CHECKS=@@FOREIGN KEY CHECKS ,

FOREIGN KEY CHECKS=0 ∗ / ;

15 /∗ !40101 SET @OLD SQL MODE=@@SQL MODE, SQL MODE=’NO AUTO VALUE ON ZERO ’ ∗ / ;

16 /∗ !40111 SET @OLD SQL NOTES=@@SQL NOTES, SQL NOTES=0 ∗ / ;

17

18 −−

19 −− Tab le s t r u c t u r e f o r t a b l e ‘ ave ‘

20 −−

21

22 /∗ !40101 SET @ s a v e d c s c l i e n t = @ @ c h a r a c t e r s e t c l i e n t ∗ / ;

23 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = u t f 8 ∗ / ;

24 CREATE TABLE ‘ ave ‘ (

25 ‘ len ‘ i n t (1 1) NOT NULL ,

26 ‘ ave ‘ b i g i n t (2 0) uns ignedNOT NULL ,

27 ‘ s tdev ‘ b i g i n t (2 0) uns ignedNOT NULL ,

28 ‘ hour ‘ i n t (1 1) NOT NULL ,

29 PRIMARY KEY (‘ len ‘ , ‘ hour ‘)

30) ENGINE=MyISAM DEFAULT CHARSET= u t f 8 ;

31 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = @ s a v e d c s c l i e n t ∗ / ;

32

33 −−

59

34 −− Tab le s t r u c t u r e f o r t a b l e ‘ count ‘

35 −−

36

37 /∗ !40101 SET @ s a v e d c s c l i e n t = @ @ c h a r a c t e r s e t c l i e n t ∗ / ;

38 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = u t f 8 ∗ / ;

39 CREATE TABLE ‘ count ‘ (

40 ‘ t imestamp ‘ b i g i n t (2 0) uns igned NOT NULL ,

41 ‘ len ‘ i n t (1 1) NOT NULL ,

42 ‘ coun te r ‘ b i g i n t (2 0) uns ignedNOT NULL ,

43 PRIMARY KEY (‘ t imestamp ‘ , ‘ len ‘)

44) ENGINE=MyISAM DEFAULT CHARSET= u t f 8 ;

45 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = @ s a v e d c s c l i e n t ∗ / ;

46

47

48 −−

49 −− Tab le s t r u c t u r e f o r t a b l e ‘ rawdata ‘

50 −−

51

52 /∗ !40101 SET @ s a v e d c s c l i e n t = @ @ c h a r a c t e r s e t c l i e n t ∗ / ;

53 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = u t f 8 ∗ / ;

54 CREATE TABLE ‘ rawdata ‘ (

55 ‘ t imestamp ‘ b i g i n t (2 0) uns igned NOT NULL ,

56 ‘ len ‘ i n t (1 1) NOT NULL

57) ENGINE=MyISAM DEFAULT CHARSET= u t f 8 ;

58 /∗ !40101 SET c h a r a c t e r s e t c l i e n t = @ s a v e d c s c l i e n t ∗ / ;

C.2 Setting Standard Deviation Multiple
1 update ave3 s e t c s t d =1 where max > 2000000;

2 update ave3 s e t c s t d =2 where max > 400000 and c s t d =0;

3 update ave3 s e t c s t d =5 where max > 100000 and c s t d =0;

4 update ave3 s e t c s t d =8 where max > 50000 and c s t d =0;

5 update ave3 s e t c s t d =30 where s t d e v < 50 and ave < 150 and c s t d =0;

6 update ave3 s e t c s t d =25 where s t d e v > 1000 and ave > 2000 and c s t d =0;

7 update ave3 s e t c s t d =30 where (l e n < 300 or l e n > 1399) and c s t d =0;

8 update ave3 s e t c s t d =25 where ave > 200 and l e n > 600 and l e n < 900 and

c s t d =0;

9 update ave3 s e t c s t d =25 where ave > 250 and l e n > 400 and l e n < 600 and

c s t d =0;

10 update ave3 s e t c s t d =20 where ave > 500 and l e n > 1150 and l e n < 1300 and

c s t d =0;

60

11 update ave3 s e t c s t d =10 where c s t d =0;

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. George Dinolt
Naval Postgraduate School
Monterey, California

4. Bret Michael
Naval Postgraduate School
Monterey, California

5. Chris Eagle
Naval Postgraduate School
Monterey, California

6. John McEachen
Naval Postgraduate School
Monterey, California

7. Hersch Loomis
Naval Postgraduate School
Monterey, California

8. ITACS
Naval Postgraduate School
Monterey, California

63

	Introduction
	Research Questions
	Thesis Roadmap

	Background
	Introduction
	Why Use Covert Channels?
	High-Assurance Systems
	Network-Based Covert Channels
	Countermeasures
	Packet Length-Based Covert Channels

	Covert Channel Design
	Channel Structure
	Implementation

	Statistical Approach to Detection and Bandwidth Analysis
	Maximum Bandwidth
	Detection Threshold
	Defining the Threshold Function
	Intrusion Detection Framework

	Experiment
	Network Architecture
	Collection
	Injection and Analysis Framework

	Analysis of Results
	Summary of Baseline Data
	Detecting Packet Length Covert Channels: Narrow Scope
	Detecting Packet Length Covert Channels: Network-Wide

	Conclusion and Further Work
	Further Work

	List of References
	Appendices
	Linux Kernel Modifications
	tcp.c
	tcp_input.c
	tcp_output.c
	reader.c

	Collection Code
	PCAP Packet Length Extractor
	Network Packet Reader
	Batch Collection Files to MySQL loader

	MySQL Table Definitions
	Table Definitions
	Setting Standard Deviation Multiple

