# University of Utah Electromagnetic Modeling in Support of Undersea Sensor Systems

## 1. REPORT DATE
1998

## 2. REPORT TYPE

## 3. DATES COVERED
00-00-1998 to 00-00-1998

## 4. TITLE AND SUBTITLE
University of Utah Electromagnetic Modeling in Support of Undersea Sensor Systems

## 6. AUTHOR(S)

## 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory, Code 7442, Stennis Space Center, MS, 39529-5004

## 12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

## 13. SUPPLEMENTARY NOTES
See also ADM002252.

## 14. ABSTRACT

## 15. SUBJECT TERMS

## 16. SECURITY CLASSIFICATION OF:
- a. REPORT unclassified
- b. ABSTRACT unclassified
- c. THIS PAGE unclassified

## 17. LIMITATION OF ABSTRACT
Same as Report (SAR)

## 18. NUMBER OF PAGES
2

## 19a. NAME OF RESPONSIBLE PERSON

---

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
LONG-TERM GOAL
The long term goal is to develop low frequency electromagnetic models for a) frequency domain and
time domain 3-D forward prediction capabilities that include conductivity anisotropy, magnetic
susceptibility, and geometric effects, b) fast imaging of surface, airborne, and borehole electromagnetic
data, c) multidimensional electromagnetic inversion for airborne, surface, sea bottom and borehole EM
observations.

OBJECTIVES
The objective is to improve the Navy's EM forward modeling and data interpretation capability in a cost
effective manner using academic resources and leveraging industry and other agency development
efforts.

APPROACH
Participate in the newly re-initiated University of Utah consortium on EM modeling and Inversion under
the direction of Dr. Zhdanov. Selected algorithms and software modules will be installed, tested and
integrated into NRL's EM modeling effort using a sun workstation network. The models will become
part of the Navy low frequency EM modeling capability. NRL will manage project and select
algorithms for integration.

WORK COMPLETED
The University of Utah consortium has made a number of accomplishments during the previous year. A
group of nine graduate students and four professors have produced eighteen papers detailing the results
of new methods in EM model development. New model developments have included:
- A fast imaging code for time domain electromagnetic interpretation
- A 2-D forward modeling and regularized weighting inversion for MT and CSMT data
- An improved accuracy 3-D EM forward modeling capability based on the quasi-linear approximation
- A 3-D EM inversion capability based on the quasi-linear approximation technique
- A 3-D visualization package for forward and inverse modeling solutions
Mississippi State University has developed a multi-parameter EM inversion technique to
interpret sub-bottom electrical structure utilizing a multi-computer platform computational procedure to
speed up calculations. The capability links several remote CPU processors to solve the inversion
problem simultaneously. The inversion technique is based on a layered forward solution technique.
RESULTS
The University of Utah consortium has made a number of accomplishments during the previous year. A group of nine graduate students and four professors have produced eighteen papers detailing the results of new methods in EM model development.

IMPACT/APPLICATION
This work is focused on improving the Navy's EM forward modeling and data interpretation capability in a cost effective manner using academic resources and leveraging industry and other agency development efforts. Application of these numerical techniques have been used to relate the sea bottom electrical properties to the local sediment distributions and the influence these factors have on MCM operations. The connection between the sediment properties and the resulting MCM environmental parameters is poorly understood. Also these models are being used in work to determine the effects of multiple influence systems for ASW applications.

TRANSITIONS
Models from this work have been transitioned to the NRL Multiple-Influence Detection task and in the ONR sponsored work in Environmental Characterization For EM Techniques in MCM.

RELATED PROJECTS
Related projects include the NRL Multiple-Influence Detection task, which has investigated the effects of the environment on data fusion of different sensor types for ASW applications.

PUBLICATIONS