Award Number:
W81XWH-10-1-0942

TITLE: Pharmacogenomic Strategies to Refine Cisplatin Therapy in Lung Cancer

PRINCIPAL INVESTIGATOR:
Marvaretta Stevenson, MD

CONTRACTING ORGANIZATION:
Duke University
Durham, NC 27705-4677

REPORT DATE:
October 2010

TYPE OF REPORT:
Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:
Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Pharmacogenomic Strategies to Refine Cisplatin Therapy in Lung Cancer

Marvaretta Stevenson, MD
marvaretta.stevenson@duke.edu

Duke University
2200 W. Main St. Ste 710
Durham, NC 27705-4677

US Army Medical Research Acquisition Act
Fort Detrick, MD 21702

Approved for public release; distribution unlimited

Gene expression signatures can predict in vitro and in vivo response to chemotherapy, including cisplatin, allowing patients to be matched with chemotherapy their tumor has been predicted to be sensitive to, in order to maximize response to the drug and potentially improve survival. A gene expression signature of cisplatin sensitivity is currently being validated in an ongoing prospective phase II trial of stage IIIib/IV NSCLC, expected to complete accrual by mid-2010. Patients predicted to be sensitive to cisplatin will receive cisplatin/gemcitabine, and those predicted to be resistant to cisplatin will receive gemcitabine/pemetrexed. This provides opportunity for refinement of this chemotherapy sensitivity predictor. We will pursue broadening the development of chemosensitivity predictors to a formalin-fixed paraffin-embedded (FFPE) based assay. This will allow FFPE tissues samples, which are more readily available for prospective clinical trials than traditionally required fresh frozen tissue samples, to be used to identify patients more likely to respond to a specific chemotherapeutic agent. Lastly, since the ERCC1 (excision repair cross-complementing) gene family decreases DNA damage by nucleotide excision and repair, potentially affecting platinum-based therapy, we plan to evaluate if ERCC1 status is complementary and can be integrated with a genomic predictor of cisplatin sensitivity in our study patients. This grant was terminated prior to any work being started or completed towards its goals.

lung cancer, genomics, chemotherapy
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>4</td>
</tr>
<tr>
<td>Conclusion</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>Appendices</td>
<td>4</td>
</tr>
</tbody>
</table>
Introduction

Gene expression signatures can predict in vitro and in vivo response to chemotherapy, including cisplatin, allowing patients to be matched with chemotherapy their tumor has been predicted to be sensitive to, in order to maximize response to the drug and potentially improve survival. A gene expression signature of cisplatin sensitivity is currently being validated in an ongoing prospective phase II trial of stage IIIb/IV NSCLC, expected to complete accrual by mid-2010. Patients predicted to be sensitive to cisplatin will receive cisplatin/gemcitabine, and those predicted to be resistant to cisplatin will receive gemcitabine/pemetrexed. This provides opportunity for refinement of this chemotherapy sensitivity predictor. We will pursue broadening the development of chemosensitivity predictors to a formalin-fixed paraffin-embedded (FFPE) based assay. This will allow FFPE tissues samples, which are more readily available for prospective clinical trials than traditionally required fresh frozen tissue samples, to be used to identify patients more likely to respond to a specific chemotherapeutic agent. Lastly, since the ERCC1 (excision repair cross-complementing) gene family decreases DNA damage by nucleotide excision and repair, potentially affecting platinum-based therapy, we plan to evaluate if ERCC1 status is complementary and can be integrated with a genomic predictor of cisplatin sensitivity in our study patients.

This grant was terminated prior to any work being started or completed towards its goals.

Body
NA

Key Research Accomplishments
NA

Reportable Outcomes
NA

Conclusion
NA

References
NA

Appendices
NA