
Using Mitrion-C to Implement Floating-Point Arithmetic on a Cray XD1 
Supercomputer 

 
 

Kevin K. Liu, Charles B. Cameron, and Antal A. Sarkady 
Department of Electrical & Computer Engineering, US Naval Academy (USNA), Annapolis, MD 

liu.kevin.k@gmail.com and {cameronc, sarkady}@usna.edu 
 
 

Abstract 
 

 Field-Programmable Gate Arrays (FPGAs) are of 
interest to the high performance computing (HPC) 
computing community because they offer lower power 
consumption and higher throughput compared to 
traditional processors.  Recently, the implementation of 
floating-point operations on FPGAs has become possible 
as the amount of memory available on FGPAs has 
increased.  Unfortunately, advances in technology have 
also increased the complexity of creating hardware 
designs for FPGAs.  In this project, we describe our 
experiences using the Mitrion-C high-level language to 
implement floating-point calculations on a Cray XD1.  
We report resource consumption, throughput, and power 
consumption and conclude that Mitrion simplifies the 
hardware design process while successfully harnessing 
the computational power of FPGAs at little additional 
cost to power consumption.   
 
1.  Introduction  
 
 The scientific community is interested in using field-
programmable gate arrays for scientific computations 
because Field-Programmable Gate Arrays (FPGAs) can 
be targeted for specific applications and achieve greater 
throughput at a lower power cost.[1–3]  However, these 
gains can usually only be achieved by a user with expert 
knowledge of hardware design.  Therefore, despite 
improvements in FPGA technology that have allowed 
their use to become attractive for a wider range of 
applications, inexperience with hardware design remains 
a barrier for many.   
 High-level languages use a variety of approaches to 
reduce the complexity of hardware design.  We chose to 
use Mitrion-C for this project because it was readily 
available at the Naval Research Laboratory, where this 
work was done, and because it is a commercial product 
with fast and effective support services.  Mitrion-C makes 
hardware design more accessible in two ways.  First, 

algorithms are described in the Mitrion-C programming 
language, which uses “C-like” syntax and structures, such 
as functions and loops.  Second, the Mitrion Integrated 
Development Environment (IDE) packages together a 
user interface, compiler, and simulator.  Figure 1 shows 
the necessary steps of hardware and highlights the steps 
that Mitrion IDE executes.   

 
Figure 1. Hardware design flow 

 
 In hardware design using a traditional hardware 
description language (HDL) such as Very High Speed 
Integrated Circuit HDL (VHDL), both simulation and 
synthesis are time consuming and synthesis can often fail, 
requiring modification of the code.  The Mitrion IDE 
simulates and generates VHDL in one step and also 
estimates whether a design will fit, based on the target 
hardware’s limitations.  Therefore, as long as there are no 
syntax errors in the Mitrion code, the VHDL synthesis 
will most likely be successful, with the exception of cases 
where resource consumption exceeds the resources of the 
FPGA by a very small margin.   
 One downside of using a high-level language is that 
the hardware designer loses a level of control.  Although 
Mitrion-C offers explicit options for pipelining, how it 
achieves its optimizations is opaque to the user.  We 
sought, therefore, to not only measure the performance of 
designs using Mitrion-C, but also to predict future 
performance based on our results.  
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2.  Methodology  
 
 The simulation of the interaction of a ray of light 
with an optical element—assuming that the element is a 
conic surface—requires several calculations.  We chose to 
look at two in particular: the intersection point of a ray 
with an element, and the vector normal to the element’s 
surface at the point of intersection.  These two 
calculations are illustrated in Figure 2.   

 
Figure 2. Interaction of a ray of light with an optical 

element 
 
 For our purposes, the two calculations can be reduced 
to a system of arithmetic operations, as described by 
Spencer and Murty.[4]  For the ray-intersection problem, 
they are:  

 ( )( )0 0 01.0g N c x L y M k z N= − + + +   (1a) 

 ( )( )2 2 2
0 0 0 01.0 2h c x y k z z= + + + −   (1b) 

 ( )21f c kN= +   (1c) 
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 1 0x uL x= +   (1e) 

 1 0y uM y= +   (1f) 

 1 0z uN z= +   (1g) 

The ray-intersection calculation requires 11 floating-point 
additions, 3 subtractions, 19 multiplications, 1 division, 
and 1 square root.   
 The system of equations for the normal-vector 
calculation is presented next.   

 ( )2 2v u x y= +   (2a) 

 1a v= −   (2b) 

 1p a= +   (2c) 

 q ap=   (2d) 

 r pq=   (2e) 
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 In this calculation, the term u is defined as u=(1+k)c2.  
The normal-vector calculation requires 5 additions, 1 
subtraction, 13 multiplications, 2 divisions, and 2 square 
roots.  The result is given as the three components of the 
normal vector, âN , as shown in Figure 2.   
 One might observe that in the ray-intersection 
calculation, the term k+1.0 is used twice—once in Eq. 1a 
and again in Eq. 1b.  It would be expected, then, that 
Mitrion would simply use the same result twice rather 
than perform two identical calculations.  However, the 
number of floating-point units reported reflects the output 
of the Mitrion simulator.  We also wrote a separate 
program to isolate this issue and found that separate 
additions were in fact implemented.  Therefore, the count 
of 11 additions for the ray-intersection calculation is 
accurate.   
 
3.  Implementation  
 
 We used Mitrion-C version 1.4 to implement the two 
calculations.  Figure 3 shows the data flow between the 
Mitrion-C and host programs.  Each of the Quad-Data 
Rate (QDR) memories directly available to the Virtex-II 
Pro contains 4 MB of space for input/output, for a total of 
16 MB of input and output.  Since many scientific 
applications require more than 16 MB of input and output, 
a host program is needed to mar-shall data between the 
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FPGA’s memory and host memory present on the same 
compute node.   

Figure 3. Data flow between host and FPGA programs 
 
 We wrote the host program using the American 
National Standards Institute’s standard for C (ANSI-C) 
and ran it on one of the Advanced Micro Devices (AMD) 
Opteron 275 processors on the same compute node as the 
FPGA.  The Cray XD1 uses an interconnect system that 
allows data transfer between the FPGA and host RAM at 
a rate of 3.2 GB/s.[5]  Mitrion-C uses the full bandwidth 
provided by Cray.   
 In the host program, each of the FPGA’s QDR 
memories is treated as an array.  The host program loads 
values into the arrays, sends the FPGA a start signal using 
a function provided by Mitrionics, and reads the results 
after it receives a done signal back from the FPGA.   
 The Mitrion-C program was split into three functions 
that: 1) read the inputs from QDR memory, 2) performed 
floating-point calculations, and 3) wrote the results to a 
different QDR memory.  We stored our data in a list 
data structure and ran the program in a foreach loop.  
This combination explicitly instructs the Mitrion compiler 
to automatically pipeline the design, as stated in the 
Mitrion-C documentation[6].   
 
4.  Results  
 
 As a benchmark we compared the performance of the 
Mitrion-C implementations of the ray-intersection 
calculation and normal-vector calculation to ANSI-C 
programs.  The power and throughput measurements 
isolated the calculation-intensive portions of each of the 
programs.   

4.1. Throughput  
 
 Each of the 4 MB memories available to the the 
Virtex-II Pro has a bit-width of 64 bits.  We implemented 
our calculations using the 32-bit width IEEE single-
precision floating-point representation.  This means that 
each memory can hold 220 or 1 048 576 floating-point 
numbers.  We initially used two QDR memories for input 
and two for output.  In the case of the normal-vector 
calculation, which requires four inputs, one set of four 
inputs could be read each clock cycle.  However, in the 
case of ray-intersection calculation, using only two 
memories for input required two clock cycles to read each 
set of eight inputs.  Therefore, we wrote a second version 
of the ray-intersection calculation that used four 
memories for input and observed a doubling in 
throughput, as shown in Table 1.   
 

Table 1. Throughput measurements 

 Operton 275 Virtex-II Pro 
Rays traced 1 073 741 824 

Ray-intersection calculation 

Time (s) 219.54 21.49 
Throughput (rays/s) 4.891 × 106 4.996 × 107 

Ray-intersection, using 4 inputs 

Time (s) — 10.75 
Throughput (rays/s) — 9.988 × 107 

Normal-vector calculation 

Time (s) 114.79 10.75 
Throughput (rays/s) 9.354 × 106 9.988 × 107 

 
 Although all four of the FPGA’s memories were used 
for input, two of the memories had to be used for output 
as well.  Mitrion-C provides memory synchronization 
commands that enable bidirectional use of the FPGA’s 
memories with no effect on throughput.  We also checked 
a representative set of data to ensure no data corruption or 
overlapping had occurred.   
 
4.2. Resource Consumption  
 
 The resource consumption reported in Table 2 was 
taken from the report generated by the Xilinx Integrated 
Synthesis Environment (ISE) after the place-and-route 
step.  The amount of resources consumed by each design 
gives insight into how much additional optimization is 
possible.   
 In the case of the normal-vector calculation, the 
measured throughput was 99.88×106 rays/s, which 
corresponds to approximately one ray calculated for every 
clock cycle, given a 100MHz clock.  Since the QDR 
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memories had a bit-width of 64 bits, or 8 bytes, the 
throughput of each memory was about 

( )6bytes/ray rays MB/s
8 99.88 10 799.04

memory s memory
× × = .  This 

result indicates that the memory was used at very near its 
maximum theoretical bandwidth of 3.2 GB/s, or 800 
MB/s per memory.  Therefore, the only way to improve 
throughput would have been to use additional QDR 
memories as both inputs and outputs.   
 The normal-vector calculation consumed over 70% 
of slices, the term Xilinx uses to refer to the basic 
reconfigurable logic unit within an FPGA.  Had we used 
additional QDR memories, requiring additional floating-
point logic, we would likely have exceeded the resources 
of the FPGA.  Low-level customization beyond the 
capabilities of Mitrion-C would have been required to 
implement more floating-point calculations without 
making the design too large.   
 In contrast, the floating-point logic implemented in 
the ray-intersection calculation was capable of producing 
one calculation per clock cycle because it was 
implemented within a foreach loop and so throughput 
was only limited by the fact that the input memories could 
provide one set of inputs every two clock cycles.  Using 
four memories for input instead of two did not affect the 
resources needed to implement the floating-point logic, 
but removed the bottelneck imposed by the input 
memories.  Table 2 shows that using four memories for 
input instead of two cost a small amount of resources and 
did not exceed the resources of the FPGA.   
 

Table 2. Resource consumption comparison 

Resource (Total) Implemented (Percent) 

Ray-intersection calculation 

Slices (23616) 19 044 (81%) 
Flip Flops (47 232) 26 508 (56%)
4-input LUTs (47 232) 26 250 (56%)
Block RAMs (232) 25 (11%)
Multipliers (232 18×18) 72 (31%)

Ray-intersection, using 4 inputs 

Slices (23616) 20 593 (87%) 
Flip Flops (47 232) 26 688 (56%)
4-input LUTs (47 232) 26 579 (56%)
Block RAMs (232) 25 (11%)
Multipliers (232 18×18) 72 (31%)

Normal-vector calculation 

Slices (23616) 16 571 (70%) 
Flip Flops (47 232) 21 670 (46%)
4-input LUTs (47 232) 20 466 (43%)
Block RAMs (232) 23 (11%)
Multipliers (232 18×18) 72 (31%)

4.3. Power Consumption  
 
 We measured power with Cray’s Hardware 
Supervisory Subsystem (HSS), software that runs on the 
management processor of each chassis within the Cray 
XD1 and monitors the health of the system.  Table 3 
reports our results.  Our measurements showed that a 
node with an FPGA will consume 
130.94 102.65

27.56%
102.65

−
=  more power than a node without 

an FPGA consumes while idling.  However, we also 
found that in the case of a node with an FPGA present, 
using the FPGA for processing requires at most 
143.66 139.84

2.73%
139.84

−
=  more power than implementing 

an equivalent calculation on the Opteron 275 processor 
alone.   
 

Table 3. Power measurements 

Node Type Implementation 
Total Power 

(watts) 
No FPGA Idle 102.65 
FPGA Idle 130.94 

Ray-intersection calculation 

No FPGA Sequential Only 110.87 
FPGA Sequential Only 139.57 
FPGA FPGA 141.13 

Normal-vector calculation 

No FPGA Sequential Only 111.84 
FPGA Sequential Only 139.84 
FPGA FPGA 143.66 

 
 We only measured the power consumed when 
running the version of the ray-intersection calculation that 
used two memories for input.  However, the version that 
used four memories is unlikely to draw significantly more 
power, judging by the similarity in resources consumed.   
 
5.  Discussion  
 
 As mentioned before, the maximum bandwidth of the 
interconnect, between the FPGA’s QDR memories and 
the host memories, is 3.2 GB/s.  This means that each of 
the four QDR memories makes up 800 MB/s of that total.  
Since each FPGA memory can read or write 64 bits (8 
bytes) every clock cycle, the 100 MHz clock used by 
Mitrion makes use of the maximum 800 MB/s bandwidth 
of the memories.   
 Our measurements confirmed that a throughput very 
near the limit of the memories—799.04MB/s in the case 
of the normal-vector calculation—could be maintained 
over a large sample of data.  We conclude that Mitrion-C 
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is a straightforward way to achieve the maximum 
throughput allowed by the memory bandwidth, given that 
the intended design fits on the target FPGA.   
 
6.  Conclusion  
 
 In this paper, we explored the ability of the high-level 
language Mitrion-C to simplify the implementation of 
floating-point operations on FPGAs.  We found that 
Mitrion-C was different enough from ANSI-C to require a 
significant investment of time to be able to use it 
effectively, but that Mitrion-C significantly reduces the 
time spent in the hardware design cycle.  In terms of 
throughput, we found that Mitrion-C could achieve the 
maximum theoretical throughput allowed by memory 
bandwidth in cases where the design easily fit on the 
FPGA and memory operations could be completed in one 
clock cycle.  However, we observed that low-level 
programming would still be needed to make small 
tradeoffs between throughput and resource consumption.  
Finally, we found that maintaining FPGAs requires 
roughly a constant 30% increase in power consumption, 
but that in cases where FPGAs are present on a compute 
node, using them for processing requires roughly only 3% 
additional power over using a sequential processor alone.  
We recommend Mitrion-C as a tool to exploit the 
processing power of FPGAs, given that the intended 
application does not exceed the resource limits of the 
target hardware.   
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