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Abstract: This focus of this research was to determine if reliable goal-based semi-

autonomous algorithms are able to improve remote operator performance or not.  

Two semi-autonomous algorithms were looked at: visual servoing and visual dead 

reckoning.  Visual servoing uses computer vision techniques to generate 

movement commands while uses internal properties of the camera combined with 

sensor data that tell the robot its current position based on its previous position.  

This research proved that the semi-autonomous algorithms developed increased 

performance in a measurable way.  An analysis of tracking algorithms for visual 

servoing was conducted and tracking algorithms were enhanced to make them as 

robust as possible.  The developed algorithms were implemented on a currently 

fielded military robot and a human-in-the-loop experiment was conducted to 

measure performance. 
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1. Introduction 

Mobile robots, or Unmanned Ground Vehicles (UGVs), play an increasing role in 

both the defense and security of our nation and in the ability to respond to 

emergency situations.  Robots have been used in Iraq and Afghanistan for bomb 

disposal.  They also played a key role in searching for victims of the World Trade 

Center attack.  They were created to keep our soldiers, or warfighters, out of 

harm’s way. 

  

The current method of UGV control is rate control teleoperation – is burdensome 

[1].  Figure 1 depicts the current way the robots are controlled.  There is a high 

workload that requires constant attention and limits situational awareness.  A 
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dedicated operator is not able to perform multiple tasks and control of the UGV 

can be difficult when the terrain is rough or communications are degraded.   

 
Figure 1: The current method to control a UGV is with a laptop using rate-controlled teleoperation. 

 

These robots are currently being used in countries where there is an ongoing war.  

Those who have attempted to view a laptop’s display while out on a sunny day 

can attest to how difficult it can be to view the contents of the screen.  Add to that 

scenario a stressful situation of using the laptop trying to find a bomb buried in 

the soil and that paints a vivid portrait of why this research is needed and 

important to the Army.  If all the warfighter has to do is designate a point for the 

robot to go to and they know that it will go to that point reliably, then their job 

becomes easier. 

 

Robots have been in the news in recent months due to the BP oil spill in the Gulf 

of Mexico [2].  The robots were remotely controlled by BP personnel to try to cap 

the damaged oil well.  BP ran into a setback to their containment efforts when a 

saw blade the robot was using became stuck [3]. 
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The motivation behind this work was to provide a level of autonomy to existing 

robots used in the field so that operating a robot does not require constant 

supervision.  The costs associated with developing fully autonomous system may 

potentially outweigh the benefits [4].  The recent series of DARPA Grand 

Challenges prove that fully autonomous robotic systems is indeed possible but 

technology that creates autonomous systems has at the same time also created 

unwelcome “automation surprises” [5].  DARPA is the military’s research 

organization.  It stands for Defense Advanced Research Projects Agency.   

 

The Three Mile Island disaster in 1979 was caused by a system functioning on its 

own, attempting to compensate for a stuck valve.   The operators of the nuclear 

power plant did not have sufficient time to act before the automated system 

transferred control to them in order to avert the disaster.  The same problem 

occurs in the auto-pilot control in airplanes.  If there are any problems with the 

system, they are often not communicated to their human operators in sufficient 

time to take proper action prior to system failure. 

 

Situational awareness (SA) is also an important area of study, and although it isn’t 

studied in-depth in this research, the work developed here provides a framework 

to study the effects that the semi-autonomous algorithms described in this thesis 

have on situational awareness.  In [6, 7], Endsley broke SA into three levels, 

stating that it is being able to perceive elements in the environment, understand 

what all of the elements mean, and be able to project their status in the future. 

The two semi-autonomous algorithms that are the focus of this paper are visual 

servoing and visual dead reckoning. 

 

The military has been embracing the use of robotics in recent years to keep 

warfighters out of harm’s way.  In 2007, the Department of Defense released a 

roadmap [8] for the next 25 years, detailing its paradigm shift in fighting wars 

with robots.  The roadmap also elaborated on a series of goals that the Department 

of Defense wants to achieve for its unmanned systems.  These goals include: 

• Improving the overall effectiveness of the unmanned systems through 

collaboration 
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• Achieving greater commonality and interoperability of unmanned systems 

• Developing standards that support the safe operation and integration with 

the manned systems 

• Using rapid prototyping and deployment to get the technology out to the 

warfighters as quickly as possible. 

Although the roadmap was published several years ago, teleoperation remains the 

main method of control for fielded robots.  This research added supervised 

autonomy to a military robot that is current used in missions.  It is also important 

to note that the focus of this research is solely on unmanned ground vehicles 

(UGVs).  Although there are natural extensions to underwater robots, that is not 

the focus of this paper. 

 

Beyond the research questions of this work, in order for this to have wide 

acceptance by warfighters in the field, the system has to be easy to use and easy to 

learn.  It should require less mental workload with it than without it.  It should not 

require constant attention.  It should be able to be given a destination and the 

operator knows that it will go there without fail.  If it is burdensome to use, it will 

not be an acceptable form of control. 

 

2. Implemented Algorithms 

There were two algorithms that were implemented for this work: visual servoing 

and visual dead reckoning.  Visual servoing [9] is simply the name given for using 

data captured from a camera to control the motion of a robot using computer 

vision techniques.  The first papers published on visual servoing date back to the 

1970s [10].  This has grown into a very large field of study [11] with many papers 

published.  The papers have traditionally fallen into two broad categories: 2D, or 

image based (IB) [12], and 3D, or position based (PB) [13]. 

 

In position based control, image features are extracted and a model of the scene 

image features is used to estimate the pose of the target with respect to the camera 

using a geometric model of the target [14].  This approach is typically referred to 
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as 3D visual servoing in literature. This method requires precise calibration of the 

camera for it to be accurate.   

 

Camera calibration [13] is the process of finding the camera parameters that affect 

the imaging process.  Intrinsic camera parameters do not change for a particular 

camera-lens combination.  Intrinsic camera parameters include the exact center of 

the image, the focal length, the lens distortion, and the scaling factors that are 

used for row and column pixels.  The extrinsic camera parameters describe the 

camera’s pose, or its position and orientation, in the world coordinate system.  In 

[15], a methodology was published for autonomously calibrating a camera.  Once 

the intrinsic and extrinsic camera parameters have been found, the pose of the 

camera in the workspace is able to be computed. 

 

The second class of visual servoing algorithms is image-based [16].  In image-

based visual servoing, the pose estimate is omitted [17] and the motion control is 

done solely in image space.  There has also been work published on “2-1/2D” 

visual servoing [18] that bridges the two groups by trying to minimize the errors 

in the image and pose space.   

 

The two visual servoing algorithms that were implemented for this system were a 

correlation-based tracker and an affine-based KLT tracker.  Both algorithms 

belong to the image-based class of visual servoing algorithms. 

  

Dead reckoning [19] has its roots outside the realm of robotics but it is basically 

estimating one’s current position based on a previously determined position and 

advancing that position based on known speeds over time.  Dead reckoning has 

been shown to be used in nature [20].  Dead reckoning has also been shown to be 

used in marine, air, and automotive navigation and it has even been proven to be 

successful in predicting latency and reducing its impact on networked games [21]. 

 

Visual servoing to control a robot has been an active area of research for many 

years.  Purely relying on visual features can fail when the robot is operating in an 

environment with no features (e.g. a concrete floor with white walls).  Visual dead 
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reckoning is a novel approach that was developed in this research.  It uses 

odometry (as calculated by the Inertial Measurement Unit) along with kinematics 

of the arm.  Visual dead reckoning first rotates then translates to the goal point. 

 

First, for rotation, if the initial goal point is defined as C0, and Cm denotes the 

middle of the image, then the pixel distance to rotate is given in (1).  Next, if s is 

the horizontal IFOV, then how far the robot has to translate is given by (2). 

 

 CmC −0  (1) 

 )0(* CmCs −  (2) 

 

Once the robot has finished rotating, it begins translating to the goal.  The angle 

between vertical and the bottom of the image is given as Ab and may be calculated 

by (3), where s is the vertical IFOV (Instantaneous Field of View).  Next, if the 

row position of the initial goal point is given as R0, then the stopping row is given 

as Rm, and H equals the height of the camera as determined by the forward 

kinemtatics, then the initial distance is given by (4).  Once this value has been 

found, the odometry is used to determine when the goal point has been reached. 

 

 

 
2

* rowss  (3) 

 ))*tan()0*tan((* RmsAbRsAbH +−+  (4) 

 

3. Human-in-the-Loop Test 

The goal of the human-in-the-loop test was to see how the supervisory control 

algorithms performed relative to teleoperation at different levels of dropout.  The 

test used the robot shown in Figure 2. 
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Figure 2: The robot that was the focus of this research. 

Participants 

There were six participants that were all university students.  All of the 

participants had normal/corrected vision.  No subject had any cognitive 

impairment.  All subjects had prior experience using a computer and playing 

video games. 

Course Design 

Three courses were constructed that looked similar to what is shown in Figure 3.  

The first course was made out of masking tape applied to the floor.  The second 

course was designed to simulate small bumps and was made out of 1x2s as the 

bumps, with 2x4 as the rails.  The third course simulated large bumps and was 

made out of 2x4s as the bumps 

 
Figure 3: The layout of the courses with the five inspection targets. 
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The course was designed to have the robot traverse and come back.  There were 

four stops on the down portion of the track.  The four stops on the down portion of 

the track were approximately 22, 11, 5, and 2 feet apart.  The fifth stop, going 

back to the starting position, had a distance of 45 feet.  Figure 4 shows an 

overhead view of the three courses that were created in the laboratory.  Figure 

5Figure 5 is another view of the robot going over the 2x4 course. 

 
Figure 4: The overhead view of the three courses: flat (with tape), 1x2s, and 2x4s. 

 
Figure 5: The robot going over the 2x4 course during subject testing. 
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Inspection Tasks 

Each participant was asked to move the robot to each of the five targets using 

each of the different control methods while keeping the robot inside the rails.  

Once the participant felt that the robot was positioned correctly, they were 

instructed to take a snapshot.  A running count of how many snapshots had been 

taken was shown in the upper-left corner of the screen.  This was done in order to 

provide an easy method of analyzing the data after the experiments were done.  

The post-processing process looked at the timestamp of when the subject took the 

picture to break each run up into the different segments.  There were several 

occasions in the data files where this did not happen and the subject took too 

many snapshots by accident.  In these cases, the odometry data were used to 

determine when the robot started to move, indicating a new goal point was issued. 

For the supervisory control algorithms, the participant was told that they could 

issue an emergency stop to the robot at any time by pressing the space bar on the 

keyboard but that the goal was not to rely on it because ideally, both visual 

servoing and visual dead reckoning should go exactly where the subject clicked.  

If the subject had to press the emergency stop many times, that indicated that the 

semi-autonomous algorithms were not performing well.   

Dropout Rates 

Simulated degraded communications were introduced by corrupting data packets.  

A corrupted data packet is one that cannot be decoded.  The data containing 

control messages from the OCU to the robot and data packets containing the video 

feed from the robot to the OCU were both artificially corrupted.  In the current 

fielded system, when a corrupted video packet is received, a black frame is 

shown.  In this implementation, the last good frame was displayed.  The data 

corruption was modeled as a Bernoulli process, i.e. all of the packets had an equal 

probability of being corrupted.  There were four levels of communication 

degradation that were implemented: 0, 3/8, 9/16, and 3/4 seconds. 

Trial Procedure 

Prior to beginning, each subject was given the same presentation that detailed the 

objectives of the study.  A graphic of the course was first used to explain where 
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the target locations were and the course was also walked with the subject to show 

where each target was located.  The subject was given ample time to use each 

control method before the actual test and indicated to the test proctor when they 

were comfortable enough to proceed. 

 

The subject was positioned in an area that had no direct line of sight to the robot, 

as shown in Figure 6. Each subject was instructed not to turn around and look at 

the robot  while they were controlling it.  At the end of a course run, each subject 

was asked to enter a difficulty rating on a one to ten scale, when one meant easy 

and ten meant difficult.  This provided the examiner with a difficulty rating for 

each control method, dropout rate, and course roughness.   

 
Figure 6: Another view of the experiment in the laboratory.  Each participant was positioned in such a 

way that the robot could not be seen. 

There were times when the robot would become unresponsive due to 

communication interference or it would stop because of discharged batteries.  If 

this occurred during a trial run, the trial was repeated. 

 

The subjects were asked to complete a task, namely to drive to a target on the 

ground and stop the robot when the target is still visible in the display and is 

within reach of the robot arm.  This position was chosen because the target was in 

reach of the grippers on the robot arm.  In a realistic setting, this would be similar 

to driving up to something buried in the ground that a warfighter wants to 

examine with the robot. 
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Experimental Design 

The experiment was run with six subjects.  For each subject, the test was blocked 

by control method: teleoperation, visual dead reckoning, visual servoing using the 

correlation tracker, and visual servoing using the KLT tracker.  Each of these 

blocks was then subdivided into four blocks by the dropout rate.  Each of these 

blocks consisted of runs on each of the three sources.  Each subject ran a total of 

48 courses for a total of 288 course runs over each of the six subjects.  Each 

subject took between 4 and 6 hours to complete all runs and each subject 

completed the test in a single block of time, i.e. no one came back at a later date to 

complete the test. 

Data Validation 

The first pass of the data occurred before the subject left.  This test made sure that 

the data files had all been properly recorded.  The data parsing program used the 

timestamps of when the operator took the picture when the operator felt they were 

positioned correctly.  The operator would sometimes accidentally press the button 

too many times.  If the data reduction program ran into this scenario, it would 

automatically try to combine the timestamps based on movement of the robot.  

There was a field in the reduced file that indicated when this happened so that the 

result could be manually verified to make sure nothing was lost. 

 

The difficulty scores from of each of the runs were stored separately from data 

collected from the robot.  These had to be combined at data reduction time.  An 

inspection was made of each record to make sure that the difficulty ratings from 

the database were brought over correctly in the final file.  The reduced file was 

also visually inspected to make sure all of the fields were within the normal range 

(i.e. the angles from the IMU readings were all between 0 and 360 degrees).   

Testbed Limitations 

The testbed described does have limitations.  The environment tested was 

relatively benign because there were no obstacles that the operator had to navigate 

around other than the simulated rough terrain.  The next step would to add 
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obstacles in the robot’s path, followed by creating a test plan for a relevant 

outdoor environment. 

 

4. Results 

This was a within-subject design with subjects used as replicates.  The values for 

the course roughness in the supplemental figures and tables are: 0 = flat, 1 = 1x2 

course, and 2 = 2x4 course.  The values for control method are: 0 = teleoperation, 

4 = visual dead reckoning, 5 = correlation and 6 = KLT.  The values for the 

dropout rate are: 0 = no delay, 1 = 3/8, 2 = 9/16, and 3 = 3/4. 

 

After each run, the participant was asked to rank the difficulty on a scale from 1 to 

10, where 1 meant easy and 10 meant difficult.  Table 1 shows the results of a 

two-way ANOVA of difficulty rating as a function of dropout and course 

roughness (F2,1716 = 24.73, p=0.0000).  The difficulty rating increased as the 

roughness of the terrain increased.  The difficulty rating increased as the dropout 

rate increased as well.  There was no significance in the interaction between 

dropout rate and course roughness. Figure 7 shows the box plot of the two-way 

ANOVA results.  Figure 8 shows the mean values of the difficulty ratings by 

dropout rate and course roughness.  The 3/4 dropout rate had the highest average 

difficulty rating at 5.229 and the 2x4 course had the highest average difficulty 

rating at 5.339. 

 
Table 1: Two-way ANOVA results of difficulty rating as a function of course roughness and dropout 

rate. 
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Figure 7: Box plot of difficulty rating as a function of dropout rate and course roughness. 

 

 

 
Figure 8: The mean difficulty ratings for course roughness and dropout rates. 

Table 2 shows the results of a two-way ANOVA of difficulty rating as a function 

of course roughness and control method (F2,1716 = 26.46, p=0.0000).    There was 

significance in the interaction between control method and course roughness.  The 

mean difficulty rating for visual dead reckoning was the lowest of all of the 

control methods at 4.03.  Figure 9 shows the box plot of the two-way ANOVA 
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results.   Figure 10 shows the mean values of the difficulty ratings by course 

roughness and control method.  The mean value of the difficulty rating increased 

as the course became rougher.   

 

 
Table 2: Two-way ANOVA results of difficulty rating as a function of course roughness and control 

method. 
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Figure 9: Box plot of difficulty rating as a function of control method and course roughness. 
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Figure 10: The mean difficulty ratings for course roughness and control method. 

Table 3 shows the results of a two-way ANOVA of difficulty rating as a function 

of control method and dropout rate (F3,1712 = 39.04, p=0.0000).  The difficulty 

rating for visual dead reckoning was the lowest across all courses and control 

methods.  There was significance in the interaction between control method and 

dropout rate.  Figure 11 shows the box plot of the two-way ANOVA results.  

Figure 12 shows the mean values of the difficulty ratings by control method and 

dropout rate.   

 
Table 3: Two-way ANOVA results of difficulty rating as a function of dropout rate and control 

method. 
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Figure 11: Box plot of difficulty rating as a function of dropout rate and control method. 

 

 

 
Figure 12: The mean difficulty ratings for control method and dropout rate. 

5. Conclusions 

The most significant factor found was the difficulty rating.  The mean difficulty 

rating for visual dead reckoning was less than every other control method, which 

indicates that the subjects found it to be easier than teleoperation.  The visual 
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servoing methods were close and teleoperation was last, especially as the 

difficulty of terrain and dropout rates increased. 

 

The subject testing took an average of four to five hours to complete.  All 

participants were able to complete the test in one block of time.  Generally 

speaking, the r2 values were all low.  This indicated that there was noise that was 

not accounted for.  This may be due to the fact that participants served as 

replicates.  This could also be due to the operators not feeling comfortable with 

the control methods.  The lighting in the laboratory could not be controlled and it 

could have caused the visual servoing algorithms to not perform as well as they 

could.   

 

The sound of the robot when it is operating was very loud in the laboratory setup.  

Although the subject was positioned in such a way that the robot was not visible 

at any time during the test, it would be a different experience if the subject was 

operating the robot in another room where the robot could not be heard as readily. 

 

This did prove that visual dead reckoning was the preferred and most robust of the 

semi-autonomous algorithms.  This also proved that the visual servoing 

algorithms, as implemented in this research, may not be robust enough for 

adoption by the Army.  The laboratory setting was a benign environment 

compared to the missions that these robots are required to operate in.  If they do 

not perform well in this setting, it is logical to conclude they won’t perform well 

in Iraq and Afghanistan.  
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