
AFRL-AFOSR-UK-TR-2011-0005

PrOtocols for WatERmarking (POWER)

Christina Kraetzer
Jana Dittmann

 Otto-von-Guericke University of Magdeburg

 Advanced Multimedia and Security Lab (AMSL)
 Universitätsplatz 2

 Magdeburg, Germany 39106

EOARD GRANT 093061

March 2011

Final Report for 01 October 2009 to 01 March 2011

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-03-2011
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

1 October 2009 – 01 March 2011
4. TITLE AND SUBTITLE

PrOtocols for WatERmarking (POWER)

5a. CONTRACT NUMBER

FA8655-09-1-3061
5b. GRANT NUMBER

Grant 09-3061
5c. PROGRAM ELEMENT NUMBER

61102F

6. AUTHOR(S)

Christian Kraetzer
Jana Dittmann

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Otto-von-Guericke University of Magdeburg
Advanced Multimedia and Security Lab (AMSL)
Universitätsplatz 2
Magdeburg, Germany 39106

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/RSW (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2011-0005

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report results from a contract tasking Otto-von-Guericke University of Magdeburg as follows: Within the work on the POWER project the overall
problems of realizing information assurance (trustworthiness in the sense of integrity and confidentiality) and information provenance (specifically
authentication of digital data objects and their origin) with digital watermarking as an alternative or complement to cryptography for several application
scenarios is addressed. The current problem in the application of watermarking techniques is that, while hundreds of different digital watermarking
algorithms (as primitives or building blocks) exist, watermarking protocols (the rules for combining the building blocks into a working data communication
system) are still a rather immature research field. But exactly such protocols would be required for the implementation of multi-user multiaccess /
hierarchical-access scenarios as they are envisioned within POWER. The main goal for the POWER project has therefore been the introduction of a
generalized theoretical framework for watermarking protocol generation and (security) verification based on a protocol life-cycle model. The applicability
of the introduced generalized, theoretical framework is shown with an exemplarily selected realization / implementation. The technical solution as
exemplary realization for POWER includes three different major blocks: First, for the development of the context model XML (extensible markup
language) is used, to achieve a machine interpretable description of: the application scenario with its communication tasks, the communication network
considered in the application scenario as well as the algorithm characteristics of the involved watermarking procedures. The second major component
covered is the protocol generation mechanism. It takes the context model and transfers it into a protocol in the CASPER (abridgment for: Complier for
the Analysis of Security PRotocols) formalization language. This largely automated process allows for manual modifications of certain parts, e.g. the
description of application scenario specific attacker assumptions to produce application specific formal communication protocol descriptions. The third,
and for the project outcome most significant, part covered is the evaluation procedure performing (semi-) automated syntactic and semantic evaluations
of the formulated protocols using the CASPER / CSP (Communicating Sequential Processes) compiler and the model checker FDR (Failures-
Divergences Refinement). This evaluation procedure performs the required security evaluations on the protocols and selects the most suitable protocol
in case alternatives exist. Besides the syntactic and semantic evaluations, a security evaluation of the used primitives has to be performed in the
POWER realization of the aforementioned theoretical framework, which is still an important topic for further research work.

15. SUBJECT TERMS
EOARD, Digital Watermarking, Information Fusion

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

96

19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS 19b. TELEPHONE NUMBER (Include area code)

+44 (0)1895 616187
 Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39-18

Page 1 of 94

PrOtocols for WatERmarking (POWER)

“Final Report – Protocol Descriptions, Simulation and
Evaluation Results”

Date Submitted: 28.02.2011 (Project M17)
Name of Organization: Otto-von-Guericke University of Magdeburg, Germany

Main author: Christian Kraetzer
Contributors: Prof. Dr.-Ing. Jana Dittmann, Maik Schott, Ronny Merkel, Robert
Altschaffel, Eric Clausing

This document (which replaces all previous POWER reports) is structured as follows:
On page 3, an executive summary gives a brief overview over the motivations, goals
and results of the POWER project.
Chapter 1 of the report introduces basics on existing approaches for communication
protocol modeling, security aspects addressable by watermarking protocols, an
approach for channel modeling for watermarking protocols, some considerations on
watermarking data and/or object suitability and existing strategies for multiple
watermarking.
In chapter 2 the main contribution of the research work within POWER is found. This
contribution consists, on one hand, of a theoretical framework for context modeling
as well as (semi-)automated protocol generation and verification for watermarking-
based secure communication protocols, and on the other hand, a practical realization
of this theoretical framework based on the CASPER modeling language.
Chapter 3 focuses on the application of the practical realization of our framework
onto selected watermarking application scenarios.
In chapter 4 a very brief overview over efforts on dissemination and public result
verification are described, followed in chapter 5 by a summary of the achieved results
and a clear identification of limitations of our framework.

Page 2 of 94

Table of contents:
1. State-of-the-art regarding secure communication protocol modeling,
watermarking data and/or object suitability and related topics.................................... 5

1.1. Approaches to secure communication protocol modeling 5

1.2. Security aspects addressable by watermarking protocols............................ 6

1.3. Channel modeling for watermarking protocols ... 8

1.4. Watermarking data and/or object suitability.. 9

1.5. Multiple watermarking for multi-access scenarios 10

2. Concept and design work for the POWER framework....................................... 11

2.1. Concept for a theoretical framework... 11

2.2. A CASPER-based practical realization of the theoretical framework.......... 15

2.2.1. The processing chain - modeling and verification steps in the protocol
framework.. 16

2.2.2. Basic functions for the POWER framework... 23

3. Application and Evaluation Work for POWER ... 25

3.1. Processing chain demonstrators .. 25

3.1.1. Demonstrator for context modeling and solution determination 25

3.1.2. Translator for protocol generation ... 27

3.1.3. Protocol adaptation and verification (CASPER/CSP/FDR) 27

3.2. Illustration of the application of the framework using a basic scenario 29

3.3. Illustration of the application of the framework using the complex scenarios
CDSC, HAAI and HDSR ... 38

3.3.1. CDSC - Scenario implementation ... 39

3.3.2. HAAI - Scenario implementation ... 56

3.3.3. HDSR - Scenario implementation ... 68

4. Dissemination and public result verification... 70

5. Summary of the results for POWER and indications for future work 71

5.1. Summary of the achieved project results ... 71

5.2. Limitations of the methodology and the theoretical framework................... 71

5.3. Additional limitations imposed by our CASPER-based realization 73

5.4. Indications for possible future work .. 75

6. Literature ... 76

Appendix A: Basic CASPER constructs – a introduction with a focus on watermarking
protocols ... 78

Basic concepts in CASPER models.. 78

Simulating a watermark message and watermarking algorithms in CASPER....... 80

Watermarking infrastructure modeling in CASPER... 81

Watermarking protocol security modeling in CASPER.. 81

Appendix B: Translation rules... 83

#Free variables ... 83

#Processes ... 88

#Protocol description... 91

#Specification.. 94

#Actual variables... 94

#Functions .. 94

#System .. 94

#Intruder information... 94

Page 3 of 94

Executive Summary – Goals and Results of the POWER
research project

Within the work on the POWER project the overall problems of realizing information
assurance (trustworthiness in the sense of integrity and confidentiality) and
information provenance (specifically authentication of digital data objects and their
origin) with digital watermarking as an alternative or complement to cryptography for
several application scenarios is addressed.

For the illustration of the motivation for this research on alternatives or
complementary mechanisms for cryptography we use the following example
scenario:
A sensor unit (e.g. a reconnaissance UAV) is taking digital images. These images are
combined with metadata (geo-location, timestamp, the UAVs ID, etc) and send to a
control unit which automatically segments people in the images and adds the
segmentation results as further metadata to the image. An operator receives the
image and the accumulated metadata and performs further operations, e.g.
identifying some of the persons on the images before he forwards everything to the
next processor.
During these processing steps, the amount of information stored or communicated
together with the original data (digital signatures, timestamps, annotations, etc.)
increases significantly. Encryption can be used to protect the confidentiality of the
contents, but it does not prevent an observer to notice the amount of data
communicated – an information that might easily reveal e.g. that especially significant
data objects are transmitted if they are significantly larger than normal data objects
originating from a source system.
In a centralized data storage with system-wide access control mechanisms such
information leakage can be easily prevented by assuring that a potential attacker can
not observe the communication channels in question. But in ad-hoc or dynamic
scenarios such observability can hardly be prevented by cryptographic means.

An easy solution for this problem is data hiding, in particular digital watermarking.
Here the accumulating metadata is directly embedded as watermarking message into
the digital source data (or cover). By this targeted modification of the cover (which
can be designed in a way that it is imperceptible by a human being and can be
completely inverted if necessary) the addition of metadata does not increase the size
of the data objects to be transmitted and realizes by this an un-observability with
regard to the added metadata. Additionally, other security aspects, like integrity
verification or object authentication, can also be realized using digital watermarking.

The current problem in the application of watermarking techniques is that, while
hundreds of different digital watermarking algorithms (as primitives or building blocks)
exist, watermarking protocols (the rules for combining the building blocks into a
working data communication system) are still a rather immature research field. But
exactly such protocols would be required for the implementation of multi-user multi-
access / hierarchical-access scenarios as they are envisioned within POWER.

The main goal for the POWER project is therefore the introduction of a generalized
theoretical framework for watermarking protocol generation and (security) verification
based on a protocol life-cycle model. The applicability of the introduced generalized,
theoretical framework is shown with an exemplarily selected realization /
implementation.

Page 4 of 94

The technical solution as exemplary realization for POWER includes three different
major blocks: First, for the development of the context model XML (extensible
markup language) is used, to achieve a machine interpretable description of: the
application scenario with its communication tasks, the communication network
considered in the application scenario as well as the algorithm characteristics of the
involved watermarking procedures.
The second major component covered is the protocol generation mechanism. It takes
the context model and transfers it into a protocol in the CASPER (abridgment for:
Complier for the Analysis of Security PRotocols) formalization language. This largely
automatized process allows for manual modifications of certain parts, e.g. the
description of application scenario specific attacker assumptions to produce
application specific formal communication protocol descriptions.
The third, and for the project outcome most significant, part covered is the evaluation
procedure performing (semi-)automatized syntactic and semantic evaluations of the
formulated protocols using the CASPER / CSP (Communicating Sequential
Processes) compiler and the model checker FDR (Failures-Divergences
Refinement). This evaluation procedure performs the required security evaluations on
the protocols and selects the most suitable protocol in case alternatives exist.
Besides the syntactic and semantic evaluations, a security evaluation of the used
primitives has to be performed in the POWER realization of the aforementioned
theoretical framework, which is still an important topic for further research work.

In addition to the work on modeling and realization of the framework, its application to
selected, relevant application scenarios is illustrated, including the aforementioned
multi-user multi-access / hierarchical-access scenarios.

Page 5 of 94

1. State-of-the-art regarding secure communication
protocol modeling, watermarking data and/or object
suitability and related topics

In this chapter some required basic definitions and explanations are presented within
the POWER context. They include, first, a working definition on the concept of secure
communication protocols and corresponding security verification approaches,
second, some working definitions on security aspects and security requirements,
third, considerations on the integration or watermarking channels into communication
protocols, fourth, a brief investigation on which kinds of data objects can be
watermarked in general and which cannot, and last, a summary on existing strategies
for multiple watermarking.

1.1. Approaches to secure communication protocol modeling

It has to be stated first, that considerations on watermarking protocols are much less
common in current literature than considerations on watermarking algorithms and
their characteristics.
In contrast to previous work on watermarking protocols (e.g. Dittmann,
Katzenbeisser, Schallhart and Veith [Dittmann05]), where manual mathematic proofs
are employed to ensure security in watermarking based schemes, in the POWER
project we transfer the idea of machine-based verification of the security of
communication protocols from cryptography to the domain of digital watermarking
based media security protocols.

A protocol, or more precisely a secure communication protocol, in the sense of the
POWER project is defined here as follows:

A secure communication protocol is a sequence of interactions or
transactions between entities in a specific communications network with
the aim of exchanging data under the assertion of pre-selected security aspects.

According to Pimentel et al. [Pimentel08], two general approaches to the security
verification of communication protocols exist in the domain of cryptography,
which very well represents the research field of security protocols. The
computational complexity approach validates the used primitives (a.k.a building
blocks or components) themselves by proving that there is no
(computational/complexity-acceptable) way to obtain a given secret without the
correct key1. The alternative, the formal methods approach, evaluates the whole
protocol by examining flaws in the protocol run, while the primitives are often
considered as 'secure' (for this reason it is sometimes also called perfect
cryptography approach). Since the work in the POWER project aims at analyzing
communication protocols and not the underlying functions/primitives, the formal
methods approach is chosen here. One inherent problem of this approach to
modeling is, that it generally assumes that the used primitives cannot be broken (the

1
 The computational complexity approach claims that primitives are simply functions on strings of bits.

A protocol is considered good in this approach if an oracle cannot guess the (crypto) key, or while
consuming the computational power at hand the probability of finding the key is slow-growing under a
determined threshold. Although providing strong security guarantees, proofs under this approach are
in general hard and difficult to automate.

Page 6 of 94

perfect cryptography assumption mentioned above) and that an attack on the
protocol must therefore lie in the protocol itself, where an attacker gains the
knowledge (e.g. keys) to achieve his intended result. Even with modifications for this
approach proposed in literature (e.g. “After 10 transmitted messages, encrypted with
the same key, the attacker has broken this key.”), it cannot overcome the fact that the
formalization must rely on external evaluation regarding the primitives2.
Nevertheless, this basic approach is chosen for the work done within POWER.

The formal verification methods introduced above can furthermore be divided into
manual security verification using mathematic proofs (e.g. the media
authentication scheme of Dittmann et al. [Dittmann05], presenting a reversible
watermarking scheme using cryptographic signatures and hashes) and automated
verification using tools such as model-checkers. While examples / tools / languages
for the security verification of communication protocols using cryptographic
mechanisms are common, such examples for the field of watermarking protocols are
rare.

Some selected languages that should be mentioned in this context, which are
focused on for security evaluations in cryptographic protocols, are:

• CASPER [Lowe98] (which uses CSP (Communicating Sequential Processes))

• CSP [Roscoe94]

• AVISPA (Automated Validation of Internet Security Protocols and Applications;
[Vigano05]) – including formalization and verification mechanisms

• REBECA (Reactive Objects Language; http://ece.ut.ac.ir/FML/rebeca.htm)

Also some stand-alone verification tools for such an approach exist, like the model
checker FDR (Failures-Divergences Refinement; [FDR]) for machine-based security
verification of CSP files.

1.2. Security aspects addressable by watermarking protocols

In IT-security literature, different definitions/classifications for security aspects are
found. In the context of POWER we use the following definitions:

• Confidentiality (including privacy) signifies the concealment of information or
resources. Amongst other mechanisms, access control mechanisms support
confidentiality in systems. In the context3 of POWER we distinguish here between
two different aspects regarding confidentiality: the concealment of the contents of a
message (classical cryptographic confidentiality) and the un-observability of
metadata embedded in watermarking schemes (as a distinguishing feature for
watermarking-based approaches that can not generally be achieved by usage of
cryptographic mechanisms).

• Integrity in computer science and telecommunications normally refers to the
quality or condition of data to be consistent, complete and unaltered.

• Authenticity can be divided into two different aspects: data-origin-
authenticity is the proof or verification of the data’s origin, genuineness, originality,

2
 This external evaluation, in combination with well defined interfaces, also allows for exchangeability

of components used in the composition of a system (i.e. the exchange of an hash algorithm
considered no longer secure).
3
 Pimentel et al. [Pimentel08]: “Authentication and secrecy [confidentiality] are the most common

examples of protocol security requirements. These properties have no universal interpretation and are
formalized according to the context.”

Page 7 of 94

truth, accuracy and/or correctness. The second aspect, entity-authenticity aims for
the proof that an entity, e.g. a specific person or a specific node in a network, has
been correctly identified as originator, sender, forwarder or receiver of information. By
enforcing entity-authenticity it is ensured that an entity is the one it claims to be.

• Non-repudiation is building on the notions of integrity and authenticity and
aims at proving to a third party a proof that a transaction or data transmission has
happened in a protocol exactly as it is claimed by the participants of the protocol run.
It often involves time-stamping alongside the integrity- and authenticity-focused
security mechanisms.

Not covered in POWER are considerations on the security aspect of availability, i.e.
the ability of using an information or resource as desired. Even though availability is
an important aspect of reliability of systems, it can not be addressed by cryptographic
means or by watermarking, neither by primitives nor by protocols.

Security requirements describe how a security aspect has to be covered in regard
to an incident. Three different possibilities exist how this relation can be defined.
Security requirements either: describe how a certain security aspect can be ensured
for a system (prevention), or address the reporting if a security mechanism identifies
a violation of a security aspect in an incident (detection), or describe how the
system/resource/information can be recovered into a consistent state after the
handling of an incident (recovery).

In general, digital watermarking algorithms address security requirements by means
of detection mechanisms. For example, in case of a fragile watermark for integrity
verification mechanisms, the violation of the integrity is not prevented but it can be
detected afterwards.
With watermarking protocols and the framework introduced for POWER we move
from detection into prevention strategies as well. This is done by transfer of a method
for communication protocol simulation for security verification from research on
cryptographic protocols to watermarking protocols. By this means, flaws in secure
communication protocols can be identified and fixed in design, prior to the roll-out into
products or systems.

The exemplary realization for the POWER framework described in section 2.2 is
limited by our choice of CASPER as protocol description and verification language to
the security aspects of confidentiality and entity-authenticity. In general this could be
extended also to integrity, data-origin-authenticity and non-repudiation but there
exists to our knowledge no language/tool that supports the modeling and verification
of those security aspects.
Since our approach is a formal methods approach, we assume here that the
underlying cryptographic and watermarking primitives are secure (see section 1.1).
In the complex application examples for the POWER framework presented in section
 3.3, we show how our prevention-focused work on watermarking protocols interacts
with detection-focused watermarking-based security mechanisms that cover the
security aspects that can not be addressed by the current framework realization (e.g.
integrity protection).

Page 8 of 94

1.3. Channel modeling for watermarking protocols

We define for this report the following terminology: a watermark cover is transmitted
between the communication partners in a watermark communication scenario via
logical channels. These covers can be either files (e.g. digital image files), packets
in data streams (e.g. TCP packets) or any other digital data object that allows the
embedding of a watermark (see section 1.4). Into the cover the watermark message
is embedded, which consists either of the payload or a combination of payload and
overhead (e.g. headers or data structures that allow for a hierarchical payload
access). The following figure 1 visualizes those four different channel types
considered here.

Figure 1: Layers in the channel modeling for watermarking protocols

Logical channels are established between two or more nodes in the underlying
communication network. We consider each direction of a communication as a single
logical channel (so we need two logical channels to model a bi-directional TCP-
connection).
In most cases the communication partners can choose between different potential
logical and cover channels, which are assumed to have an associated cost function.
Therefore cover channels should be considered as exchangeable or combinable
during operation. Nevertheless the actual choice of cover channel influences/limits
the possible watermarking algorithms applicable for the construction of the
watermarking channel.

In this report we consider the construction of a watermarking channel as a task for a
communicating network of nodes or agents (e.g. „Establish a payload channel from
Alice to Bob with a capacity of at least 5 kb/hour“). This is a static network, where all
existing agents with their characteristics (e.g. access to infrastructure like PKI, known
watermarking algorithms, etc.) are known and where the task imposes fixed
requirements. Therefore the task can be re-formulated as the following (network
graph related) question: Does a path exist in the communication network from Alice
to Bob which fulfills the task requirements?
Depending on the answer to this graph theory problem different alternative solution
strategies have to follow, either aiming at enabling the construction of a path or on
finding the optimal existing path(s) or on optimizing existing paths. What shall be
mentioned here is that all solution strategies require a specification/description of the
network in machine-readable form, a description of the task in machine-readable
form and a method for splitting the task into sub-tasks for processing. What is not

Cover channel
channel

Watermark channel

Payload channel

Logical channel

Page 9 of 94

strictly required but would be an interesting feature are quality function(s) for
nodes/edges in this graph theory problem.
In section 2.2.1.1 we show how this path search is realized within our work for
POWER.

1.4. Watermarking data and/or object suitability

An important question, to be answered prior to addressing further conceptual work to
be done in POWER, is the question: “What can be watermarked?” Or, to be more
precise, the determination which data can be watermarked and which data cannot
(e.g. “Can we watermark everything in a networked communication environment?”).

There is no definitive answer to these questions, yet, but our observations on these
matters within POWER can be summarized as follows:

• Some plain-text data objects can not be watermarked. This is mostly true for
protocol data and files/ data streams with an integrity verification mechanism (like a
checksum or integrated hash function). If the integrity verification mechanism cannot
be updated after watermark embedding then those can obviously not be
watermarked.

• For non-plain-text (i.e. encrypted data) different cases have to be distinguished:
– If algorithms/protocols are used that employ homomorphic encryption then

signal processing in the encrypted domain might be used for the watermarking
of the considered data objects.

– If algorithms/protocols are used that work in locally constricted modes (e.g.
XOR or block-based ciphers in non-feedback modes like ECB) and have no
integrity verification mechanism, watermarking could be applied (e.g. by code-
book substitution) but the result of this embedding should be assumed to be
visible because the manipulations are performed blindly on the ciphertext
without any possibility for transparency preservation for the corresponding
plaintext modification.

– If algorithms/protocols are used that do not work in locally constricted modes
(CBC, CFB, OFB, etc) and/or have an integrity verification mechanism (e.g.
CBC-MAC) watermarking cannot be applied.

• For non-encrypted data and data without non-modifiable integrity verification
checks (which should be everything besides the two points above) the basic
assumption so far is that technically everything can be watermarked, again
distinguishing between different cases (structured by watermarking algorithm
characteristics):

– Non-blind: everything can be watermarked (e.g. by using code-book
substitution) – the question here is the transparency, but that can be optimized
e.g. by choosing the code-book entry with the minimum required changes

– Blind & Invertible: requires enough capacity (white Gaussian noise could not
be watermarked in this case since the entropy is already optimal),
transparency of the marked object remains a question for further
considerations

– Blind & Non-invertible: trade-of (mainly) between capacity, transparency and
robustness

All these observations can be summarized in the fact that the initial question (“What
can be watermarked?”) has to be extended to: “What can be usefully watermarked?”
The answer to this question has to be given cover and application scenario
dependent and therefore requires context and task (=application scenario) modeling,

Page 10 of 94

as it is applied within the framework presented for POWER. An example of an
extreme cover influence is optimally coded data, which by definition would provide an
extremely low capacity (if any) and therefore render it unsuitable for most multi-bit
watermarking application scenarios. Related investigations found in literature,
especially for the question of required capacities in data hiding, are e.g. [Boehme09]
and [Comesana07] which perform such observations for steganography.

As mentioned above, the application scenario directly specifies the target
watermarking requirements (transparency, robustness, capacity, invertibility, etc). A
different approach to address the problem might be the application of the verifier
tuple form [Schott10]. By using this approach the requirements for data embedding
could be specified for the different syntactic (physical-, Bit- and interpretatory level)
and semantic (structural-, functional- and perception) levels of an information object.

1.5. Multiple watermarking for multi-access scenarios

According to Sheppard [Sheppard01] there are three basic approaches to multiple
watermarking, which represent the basis for the multi-level access protocols desired
for POWER: The first and most simple approach to this problem is re-watermarking,
i.e. there is one watermark for each level and every watermark is simply embedded
over all previously embedded watermarks into the same cover. This technique suffers
from quite a lot of problems like partial overwriting or mutual elimination of the
watermarks. The approach of segmented watermarking performs a segmentation of
the cover's capacity so that each watermark (and in this case access level) has its
own separate embedding area. The problems of re-watermarking therefore do not
apply to this scheme, although a certain inflexibility is introduced when segmenting
into static partitions. The third (and least likely realized) multiple watermarking
approach, according to [Sheppard01] is composite watermarking. This technique
aims for a composition of all watermarks which are to be embedded into a single
watermark. Although this approach does not have to handle any segmentation or
overwriting problems, the watermark is embedded here as a whole and therefore also
needs to be extracted and re-embedded as a whole, which is not desirable for a
multi-level access scenario.

Page 11 of 94

2. Concept and design work for the POWER framework
In this chapter the main contribution of the POWER research project, the
methodology and concept of our theoretical framework for watermarking protocol
generation and (security) verification based on a protocol life-cycle model, is
presented.
The applicability of the introduced generalized, theoretical framework is shown with
an exemplarily realization / implementation of the framework.

The applied methodology for the framework for POWER is a formal methods
approach based implementation of the design phase in a general protocol life-cycle.
The realization concept used by us within the project has the following
characteristics:

• It allows for machine-supported context- and task modeling for watermarking
protocols,

• It introduces methods for automated solution determination within the context-
and task models for communication networks by path search,

• It performs (semi-)automated protocol generation/deviation from the solutions
identified,

• It performs a machine-based verification of the security of communication
protocols (an approach transferred to the domain of digital watermarking
based media security protocols from cryptography).

In the following sub-sections, first the concept for the theoretical framework is
presented in section 2.1 and then an example realization, based on the CASPER
language and an own context modeling approach, is introduced in detail in section
 2.2.

2.1. Concept for a theoretical framework

This document focuses on the design phase in the life-cycle4 of communication
protocols. This perspective is rare in the watermarking domain because most
publications in this field focus either on the realization phase, which mainly consists
of algorithm development and testing, or the operation phase, which incorporates
attacks against deployed watermarking schemes.
The following exemplary life-cycle for communication protocols is introduced
here, to act as a basis for developing our concept, which is then further précised into
the POWER framework for watermarking-based context modeling, protocol
generation and -verification.

4
 Here the life-cycle of protocols is derived from the general software development life-cycle model.

This concept, with its well known initial waterfall-model ([Royce1970], later succeeded by a spiral-
model [Boehm88]), is a general description of software process models and the issues they address.

Page 12 of 94

Figure 2: Exemplary software life-cycle for communication protocols

The exemplary protocol life-cycle for communication protocols, shown in figure 2,
consists of three main phases: design, realization and operation.
In the design phase the application goal is specified (conceptualization), specific
tasks are derived from the goals, and the communication setup as well as available
primitives/ algorithms are modeled. Based on all these modeling operations a
protocol generation is invoked and the result undergoes formal verification. We
assume here that the modeling, protocol generation and verification directly influence
each other, i.e. that problems or certain results in a later step can also result in the
necessity to move back into a previous one.
In the realization phase the primitives and protocol components are implemented
and undergo a functional evaluation before the result is rolled out as a product.
The last phase, the operation phase, consists of the initialization of the protocol in
the application environment followed by the normal operation or intended usage of
the protocol. At some point every protocol implementation will reach the end of its
usefulness and will be either terminated or replaced by a successor protocol (which is
assumed to undergo its design and realization phases during the normal operation of
its predecessor).

Realization

Design
Conceptualization

Modeling

Verification

Implementation

Functional evaluation

Operation
Initialization

Normal operation

Termination / replacement

Protocol generation

Page 13 of 94

The work within POWER is mainly concerned with the design phase in this protocol
life-cycle, but this design phase has to provide hookups to later phases (e.g. with a
counterpart in the realization phase, if the functional evaluation fails and the
developers have to move back to the drawing board, or the operation phase if the
initialization fails).

The design phase of this exemplary life-cycle for communication protocols is now
précised into the theoretical framework context modeling, protocol generation
and -verification for POWER. The concept used to do so is loosely based on an
observation made in [Pimentel08]: “In the application of formal methods to software
verification, both the system and its specification are first expressed as formulas of
some (but not necessarily the same) logic. Then, mathematical reasoning is used to
prove that the system and the specification are related somehow, for example by
logical implication. A state-of-the-art verification tool is capable of yielding either of
two outputs: i) OK, indicating that the system is error-free, at least with respect to the
coverage analysis of the corresponding tool; and ii) a counterexample, indicating how
a system execution violates the specification.
In the context of security protocol verification, the system is the security protocol
under analysis, the specification a protocol security requirement and the
counterexample actually is an attack. Authentication and secrecy are the most
common examples of protocol security requirements. These properties have no
universal interpretation and are formalized according to the context.”

The first major point in this statement (“both the system and its specification are first
expressed as formulas of some (but not necessarily the same) logic”) is an equivalent
to our conceptualization (definition of a systems specification) and the context and
task modeling (summarized here as step 1 in the theoretical framework, called
context modeling).
Prior to the next point in the statement from Pimentel et al. (which already focuses on
verification), we insert here a protocol generation block since the protocols for
POWER will not be expressed as formulas that can be created and verified at the
same point of time. We assume here for POWER that the best way of describing the
task (the “systems specification” in the statement from Pimentel et al.) as well as the
network and algorithms (i.e. the system) is graph-based. In such an approach we can
easily describe the network by taking the communicating entities as nodes and the
defined connections as links between those nodes. The knowledge about algorithms
is described as a characteristic of the nodes. The network task5 for the application
scenario is a superposition of all individual tasks6 or desired information flows within
the network. Each of those tasks is defined by giving a start and an end node (sender
and receiver in the application scenario) and a set of requirements that have to be
fulfilled (transmission capacities, complexity constraints, etc.).
If the system and its specification are described in this way, then a path search (step
2 in our theoretical framework) from graph theory can be used to determine a set7 of
solutions (i.e. paths in the network graph that fulfill the requirements) for each task.

5
 Network task: The superposition of all tasks (i.e. the expression of all goals of the application

scenario) within one network is called network task.
6
 Task: One complete communication pipeline from an information source to its destination. By the

path search a task is translated into a set of alternative solutions.
7
 This set can also be empty if absolutely no solution can be found.

Page 14 of 94

As a consequence of this modeling approach, there exists for each application
scenario exactly one network task, but the path search can generate a set of
alternative network solutions (as superposition of all solutions) which all fulfill this
network task.
From all alternative network solutions, which fulfill the goals of the application
scenario, one is chosen in the step 3 of our theoretical framework (the path
selection) to act as the basis for a translation into a protocol (also called protocol
generation - step 4 in our theoretical framework). This choice should be made based
on a cost or quality scheme for the solutions.

This whole process of protocol generation (the generation of a sequence of
interactions or transactions between entities in a specific communications network
with the aim of exchanging data; see our protocol definition in section 1.1) is then
followed by the protocol verification. State-space exploration by model checking (as
it is implemented by FDR) is the only applicable approach found in literature to
address this problem. There exist some publications on optimizations for this basic
approach, mainly by limiting the number of choices explored in the search space, but
these hardly found their way into applications8.
The model checking process consists of different steps: first, the model generation
(step 5 in our theoretical framework), then the model verification9 by the model
checker (step 6) and last, as step 7 in the theoretical framework, a model selection
(in case multiple models were generated for the verification of different evaluation
goals or to compare different alternative protocol solutions).
The output of the verification operation should be what Pimentel et al. [Pimentel08]
specify as: “OK, indicating that the system is error-free, at least with respect to the
coverage analysis of the corresponding tool” […, or] “a counterexample, indicating
how a system execution violates the specification” for the selected protocol.

The relations between all the mentioned steps in the described theoretical framework
for context modeling, protocol generation and -verification for POWER are illustrated
in figure 3.

8
 One exception to be mentioned here might be the four model checkers integrated in AVISPA which

are focused on specific tasks and granularities and therefore perform such an limitation of the search
space.
9
 In case the verification identifies flaws in the generated protocol then the whole procedure moves

back into step 3 (path selection) or step 4 (path selection) to try to eliminate that flaw.

Page 15 of 94

Figure 3: Theoretic framework for context modeling, protocol generation and –verification (derived
from the protocol life-cycle shown in figure 2)

2.2. A CASPER-based practical realization of the theoretical
framework

Based on the theoretical framework introduced in section 2.1 for context modeling,
protocol generation and -verification, here a prototypical realization implemented for
POWER is described. This prototypical realization is then used for the application
focused investigations in chapter 3.

Early on in our work on POWER we decided to base our practical realization for the
project upon the CASPER language ([Lowe98], see section 1.1). CASPER is a
simplified version of CSP and in contrast to this more complex language still rather
good readable by humans.
Nevertheless, the choice of CASPER imposes some rather severe constraints upon
our realization:

• CASPER constructs agent-based communication security models. This
implies that the number of communicating entities is limited to a well defined
set which allows for no dynamic changes of the communication network.

• All communication protocols in CASPER are strictly sequential.

Design

Verification

Protocol generation

Modeling

Step 2: Path search Exit: No path exists

Step 3: Path selection

Step 4: Protocol generation

Step 5: Model generation

Step 6: Model verification

protocol

Result of the design phase:
Protocol and security statement

Step 1: Context modeling

context model

Step 7: Model selection

Realization

Operation

Conceptualization

Page 16 of 94

• The CASPER notation offers a limited number of constructs, which allow only
a certain amount of mechanisms to be modeled. Digital watermarking
algorithms need to be simulated by the use of similar constructs since they
were not directly foreseen by the authors of CASPER.

• The FDR model checker, used in the security evaluation of CASPER
protocols, further limits the number of communicating entities in the protocol.

Even though our CASPER (and FDR) based approach faces the aforementioned
limitations, CASPER is chosen here for the protocol modeling because the
alternatives (e.g. CSP or AVISPA) face similar restrictions and are in contrast to
CASPER less human readable.

2.2.1. The processing chain - modeling and verification steps in the
protocol framework

Figure 4 compares our prototypical realization in direct contrast to the theoretical
framework.

Design Design

Verification

Protocol generation

Modeling

Step 2: Path search

Step 3: Path selection

Step 4: Protocol generation

Step 5: Model generation

Step 6: Model verification

protocol

Result of the design
phase: Protocol and
security statement

Step 1: Context modeling

context model

Step 7: Model selection

Conceptualization

Verification

Protocol generation

Modeling

Step 2: Path search

Step 3: Path selection

Step 4a: CASPER protocol generation

Step 5: CASPER compiler

Step 6: FDR model check

Result of the design phase:
Protocol description (CSP-file)
and security statement (FDR
syntax)

Step 1: Network and task modeling

xml files

Step 7: Model selection

Conceptualization

list of solutions (xml)

best solution (xml)

Step 4b: CASPER protocol adjustment

spl-file

spl-file

CSP-file

FDR statement

exemplary
practical
realization

Page 17 of 94

Figure 4: The practical realization of the theoretic framework used in POWER
10

Besides the detailed definition of the steps in the theoretic framework, our practical
realization for POWER has to split the fourth step (the protocol generation) into two
parts (see section 2.2.1.2). The following sections describe in detail the steps in our
practical realization.

2.2.1.1. Network and task modeling, path search and -selection (steps 1, 2
and 3 in the framework)

The first step in the practical realization of the framework is the context modeling for
the application scenario11. This is done in our exemplary realization by graph based
descriptions of the network task and the network in XML structures12. The knowledge
about existing algorithms / primitives is specified individually for each node
(communicating entity in the graph). Furthermore the infrastructure requirements for
the used protocol components (e.g. access to PKI for asymmetric watermarking
schemes) need to be included into the modeling for the purpose of automatic
evaluation.

An example for the XML network task description used by us looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<network_task>

<task>

<src>CR</src>

<dst>A</dst>

<required>

<pki>n</pki>

<ts>n</ts>

<hierarchy>1</hierarchy>

<cap>32</cap>

</required>

</task>

<task>

…

</task>

</network_task>

To improve the path search described in section 2.2 above, each task is split into
sequences with identical requirements (called sub-tasks) which can be handled as
one unit in the search.
The main reason for this division into subtasks is that this allows us to change on
processing agents between cover channels and watermarking algorithms13. After the

10
 Note: The exit after unsuccessful path-search and hook-ups for input from realization and operation

phases (see figure 3) remain. They are just skipped in figure 4 for the sake of readability of the figure.
11

 We assume here that the goals fort he application scenario are predefined, so that the
conceptualization is already finished prior to the application of our framework.
12

 This XML-based context modeling allows for an easy adaptation to a wide range of different
application scenarios, it is easily processed by computers and at the same point of time it is still
human readable.
13

 A brief example can illustrate when to split into subtasks and when not: In a simple watermark
signature chain where each station either simply forwards the media file or adds its own ID to the
watermark already embedded into a media file, a new subtask is generated each time the channel
characteristics change (e.g. the capacity required increases by the adding of an additional ID). In this

Page 18 of 94

path search the (sub-)solution for such a sub-task has the form: A path to transmit
data from a starting node to a end node, over a connection of nodes with identical or
better characteristics than start and end (i.e. on this sub-task and the corresponding
sub-solution the watermark algorithm, its characteristics and the used cover channel
do not change). The (sub-)solutions for one task are then combined into the
solutions.
The shown sub-task with source CR and destination A requires no access to any of

the defined infrastructure components, has no hierarchy constraints (the parameter is
set to “1” for one embedding level which is identical to a non-hierarchical embedding)
but requires a capacity of 32 (Bit/s).

Our corresponding XML network description looks like:

<?xml version="1.0" encoding="UTF-8"?>

<network>

<nodes>

<node>

<id>CR</id>

<cover>

<cc>

<type>data stream</type>

<channel-capacity>1000</channel-capacity>

<ctype>bps</ctype>

</cc>

</cover>

<dwm>Alg1</dwm>

<node-capacity>5000</node-capacity>

…

</node>

<node>

 …

</node>

</nodes>

<lc>

<connection>

<src>CR</src>

<dst>A</dst>

</connection>

<connection>

…

</connection>

</lc>

</network>

Each of the nodes/agents in this structure is specified with an ID (e.g.
<id>CR</id>), the cover channels it has access to, the watermarking algorithms
(and the corresponding embedding keys) known to the node (e.g.
<dwm>Alg1</dwm>) and the node communication throughput in Bit/s (<node-

capacity>). For the accessible cover channels (<cc>) the type (in this example a

data stream), the cover channel capacity and the unit it is measured in (here

Bit/s). After these required blocks the infrastructure component accessibility would be
specified for each node.

example no new subtask would be generated if an agent just forwards the marked cover without any
modifications.

Page 19 of 94

Additionally to the nodes in this XML-structure the connections (logical channels)
between the existing nodes are specified as unidirectional source/ destination pairs.

A different XML structure describes the characteristics of the watermark
algorithms available. The following form is used:

<?xml version="1.0" encoding="UTF-8"?>

<dwms>

<dwm>

<id>Alg1</id>

<cover>data stream</cover>

<dwm-capacity>12.5</dwm-capacity>

<robustness>low</robustness>

<transparency>high</transparency>

<key>symmetric</key>

<hierarchy>1</hierarchy>

</dwm>

<dwm>

 …

</dwm>

</dwms>

Each watermarking algorithm (<dwm>) is specified by an ID, the cover type it can

embed into, the embedding capacity offered (in percent of the cover size), robustness
and transparency characteristics (for this example simplified to “low”, “medium” and
“high” respectively), as well as a key scenario and hierarchy requirements (set to “1”
= no hierarchy; embedding on one level only in this example).

The second step in our practical realization of the framework is a classical path
search that determines all paths in the network that fulfill the requirements specified
in all tasks (e.g. capacity, transparency, etc. requirements or the connectivity to
required infrastructure like a PKI).
The path-finding process implemented here for POWER is using a simple Depth-
First-Search algorithm ([Cormen01]) applied to the complete network with all its
logical connections to determine all physical paths from the source to the destination
node of the network task. Subsequently the nodes directly involved in each subtask
are checked for a common watermarking scheme, i.e. they are checked for whether
they have access to at least one common embedding and extracting algorithm plus
the corresponding keys. When a common watermarking scheme is found the search
for an adequate cover channel can be initiated. So every node on every found path is
checked for available cover channels with the cover type defined by the chosen
watermarking scheme. A path that satisfies the subtasks requirements (taken from
the XML task description) is considered for usage when all nodes on a specific path
have knowledge of a matching cover channel with sufficient capacity. Finally it is
checked whether the connections between the subtasks and their composition also
fulfil the overall task requirements (e.g. the overall channel capacity of a node is not
exceeded).
The procedure stops at this point with an error message if the path search can not
determine at least one suitable path.

The initialization of the task processing in the path search starts with the starting
network, which is the modeled network without any influence of preceding
processing. A possible path for a sub-task is therefore a path that fulfills the given
sub-task if this would be the only sub-task in the network.

Page 20 of 94

Figure 5: Task processing

Understanding the path search requires familiarity with our approach to channel
modeling for watermarking channels as it is described in section 1.3.
The initial processing of a task (see figure 5) involves the following operations: First,
check if it is possible to find at least one path for any given sub-task using the starting
network. If the answer is “No” (Exit condition 1): give information about which sub-
task failed at which stage. The reasons could be: No logical channel, no cover
channel, no access to required infrastructure components (like a PKI), no common
watermarking algorithms, etc.
If the answer of this first stage is “Yes”: identify all cover-channel-paths for which
DWM channels are possible to the next stage.
Second, we check if there is at least one combination of the given cover-channels for
each sub-task that does not exceed any capacity or complexity constraint. If the
answer to this check is “No” (Exit condition 2): we give information about where the
problem occurs (reasons might mainly be capacity or complexity). If the answer is
“Yes” (Exit condition 3): we have one possible solution which could in post
processing be optimized.

Table 1 shows the sequence which is performed for the path search, i.e. in the
comparison between the network/node characteristics. Stages 1 to 3 are performed
for each sub-task, stage 4 is the final check performed after all sub-tasks have been
evaluated.

Level Stage Operations

1.a) Check for paths from source src to destination dst

1.b) Check infrastructure requirements src

Logical connection

1.c) Check infrastructure requirements dst

Cover-channels 2.a) Check source and destination node for common cover channels:
 <type>…</type>

Watermark-channels 3.a) Check source and destination node for common watermarking
algorithms:

Does a possible path exist
on the starting network for

each sub-task?

yes no

start

Find all possible paths
for all sub-task

Does at least one possible
combination of paths for all

sub-tasks exist?

yes no

Exit condition 3
“success” –

return solution

Exit condition 1
“logical link error”

Exit condition 2
“higher level error”

Page 21 of 94

 <dwm>…</dwm>

3.b) Check the watermarking channel capacity:
<channel-capacity>*<dwm-capacity> must be larger or equal

than <cap>

3.c) Check further watermarking characteristics as required by the
scenario, e.g.:

• hierarchical access,

• transparency,

• robustness,

• etc.

The result so far is a list of possible paths solving the problems for the defined sub-tasks

4.a) Check for all sub-tasks the sums of the required capacities per cover
channel

4.b) Check for all sub-tasks the sums of the required capacities per node

Final checks

4.c) Check for all sub-tasks the sums of secondary restrains if those exist
(e.g. complexity per node)

If the result is a list of paths which solve the task, and if weights are assigned to the individual paths
then a ranking has to be performed

Table 1: Path search – operations sequence

The output of the path search is returned in form of a list of (network) solutions in
XML. The following XML structure combines the relevant information from network-,
task- and algorithm descriptions:

<?xml version="1.0" encoding="UTF-8" ?>

<solutions>

<alternative>

<task>

 <id>TaskA</id>

<subtask>

<src>NodeA</src>

<dst>NodeB</dst>

<meta>

<cover>

<id>CoverA</id>

<type>image</type>

</cover>

<message>

 <id>message</id>

<level>1</level>

<content>

<data>DataA</data>

</content>

</message>

</meta>

<dwm>

<id>dwm1</id>

<cover>image</cover>

<robustness>low</robustness>

<hierarchy>1</hierarchy>

<key>symmetric</key>

</dwm>

<required>

<pki>n</pki>

<ts>n</ts>

<hierarchy>1</hierarchy>

</required>

</subtask>

<subtask>

Page 22 of 94

…

 </subtask>

 </task>

</alternative>

<alternative>

 …

</alternative>

 </solutions>

If there is no <alternative> block for a computed <solutions> there is no path
in the network fulfilling the given task requirements and therefore no watermarking
protocol can be developed. In any other case a separate CASPER protocol
representation can automatically be designed for each alternative and different
security aspects can be verified.
Each alternative consists of several <task> and <subtask> blocks representing

the tasks and subtasks. For each subtask a message <message> is transferred from

a node <src> to a node <dst> using a cover <cover> and the watermarking

algorithm <dwm> under the requirements <required>, being routed over the nodes

<fwd> (which do noting else but passing the marked cover on and in no way change

it).
At least one <task> needs to be present for each alternative.

The third step (the path selection) is then used to select one (network) solution for
the given network task. This operation, which we did not implement in detail for
demonstrators for POWER, should be quality- or cost-function based and would
require the definition of those evaluation functions.

2.2.1.2. CASPER protocol generation and -adjustment (steps 4a and 4b)

The fourth step receives the selected solution as a XML structure and translates it
into CASPER notation (for an introduction to CASPER focusing on the concepts and
constructs required for POWER see Appendix A). Here, first an automatic
translation is used to generate everything that can be done automatically. For this
task an own compiler demonstrator is written by us (see section 3.1.2) to perform a
rule based compilation of the XML context model into CASPER. The complete set of
translation rules used in this process is described in detail in Appendix B of this
document.

Then certain aspects have to be modeled/adjusted manually (e.g. the attacker
knowledge, which could be initialized with defaults like Kerckhoffs-compliance or be
modeled specific to the application scenario).
In this manual adaptation (step 4b in our framework realization example) a normal
text editor is used by us to modify mainly the #Specification and #Intruder

Information blocs of the CASPER descriptions.

Page 23 of 94

2.2.1.3. CASPER compilation, FDR model checking and model selection
(steps 5, 6, and 7)

After the CASPER14 protocol description was generated and adjusted, it undergoes a
syntactic evaluation while being compiled into CSP (the fifth step of our framework
realization example), followed by a (semi-)automated model-checking based security
evaluation using the FDR model checker (step 6). FDR returns as a result a
statement on the security of the protocol. If the model checker finds no possible
attacks against the security aspects required in the application scenario then the
procedure finishes at this point with a CASPER protocol and a positive security
statement. If the model checker finds possible attacks then either the protocol has to
be adjusted (back to step 4) or the selected path has to be discarded and the next
possible solution has to be evaluated (back to step 3). If necessary this has to be
repeated until all identified solutions have been checked.
In case different models (e.g. for different solutions) are verified, in a final step the
one to be implemented in the realization phase of the protocol life-cycle has to be
selected.

2.2.2. Basic functions for the POWER framework

To ease alternative implementations to our framework realization example, in this
section the basic functions for the framework, which are described in detail in section
 2.2.1) are summarized in a compact version. The basic functions (or methods), for
protocol development in the design phase of the protocol life-cycle, with their
corresponding input variables and outputs are:

• Step 1) Network and task modeling (context modeling):
o model_the_network(): returns a description of the underlying

communication network with infrastructure connections in XML (output:
network description nd as XML-file)

o model_the_watermarking_algorithms(): returns a XML description of
watermarking algorithms (output: algorithm descriptions ad as XML-file)

o model_the_network_task(): returns a XML description of the network
task (output: network task nt as XML-file)

• Step 2) Path search:
o derive_solutions(nd, nt, ad): performs a path search on the graph

described in the network model and identifies with the set of network
solutions all alternatives for solving the given network task (output:
alternatives alts as XML-file)

• Step 3) Path selection:
o select_solution(alts): cost / quality based selection of solutions to find

the optimal network solution (output: network solution nets as XML-file)
o if necessary network_adaptation_steps(nd, nt, ad, weights): if no

solution matches the requirements and if adaptation steps are allowed,
then this method gives recommendations on how to modify the network
to implement required changes to enable an solution at minimal cost
(output: solution nets as XML-file)

• Step 4) CASPER Protocol generation and adaptation:

14
 Even though CASPER (and FDR) based approaches face strong practical limitations on the

computational complexity required to verify larger systems/protocols, CASPER is chosen here for the
protocol modelling because the alternatives for implementing the steps 4 to 6 of our framework (e.g.
CSP or AVISPA) face similar restrictions and are in contrast to CASPER less human.

Page 24 of 94

o protocol_derivation(nets): derive a protocol from the selected network
solution using a translation template into CASPER (output: nets_spl spl-
file)

o protocol_adjustment(nets_spl): (manually) adjust the protocol to
implement application scenario specific modifications (output: spl-file
nets_spl)

• Step 5) CASPER compilation:
o protocol_verification(nets_spl): perform a syntactical evaluation of the

protocol by using the CASPER compiler (output: CSP-file, nets_csp)

• Step 6) FDR model checking:
o security_evaluation(nets_csp): evaluation on the protocol by FDR

(output: FDR security statement secs)

• Step 7) Protocol/Model selection:
o protocol_selection(secs): in case different alternatives have been

evaluated (output: CSP-file nets_csp of the chosen protocol and the
corresponding FDR security statement secs)

The other two phases of the protocol life-cycle (protocol realization and operation)
are not covered by the research work for POWER (and are therefore out of the scope
of this document), but we have to acknowledge again that they can have influence on
the processes in the design phase. There exist feedback functions from these two
protocol life-cycle phases into the design phase covered here (e.g. when the
implementation or initialization show flaws in the design, see section 2.1).

Page 25 of 94

3. Application and Evaluation Work for POWER
This chapter is dedicated to the practical work done on application and evaluation of
the introduced framework within POWER. It contains in section 3.1 descriptions of
the demonstration tools as well as in sections 3.2 and 3.3 application examples that
show how the framework (in form of its exemplary realization) can be applied in
practice and which problems arise during this application.

3.1. Processing chain demonstrators

For the realization of the steps 1, 2, 3 and 4a of our framework, there exist right now
no suitable tools which might be applied within POWER. Therefore, we decided to
write our own demonstrators that can be used instead of text editors to solve these
tasks faster and less error-prone.
Important notice: our software demonstrators are no stable, tested software
products! They are distributed in the hope that they will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
For step 4b of our framework we use text editors, for the realization of steps 5 to 7
the established tools CASPER and FDR (see section 1.1) are used.

3.1.1. Demonstrator for context modeling and solution determination

A Java-based demonstrator is developed to address step 1, 2 and 3 in the framework
for watermark protocol generation and verification introduced in section 2.2.1.1. The
main goals of the demonstrator are to act as an authoring tool to make the process of
context modeling less error-prone and to allow for a visualization of the solution
alternatives after successful path search.
Currently the demonstrator is still in a pre-alpha state, but already the following
functionality is provided:

• GUI-supported generation of network descriptions

• Generation of watermarking algorithm descriptions

• GUI-supported generation of network tasks

• Saving and loading projects as XML-files

• Path search as described in section 2.2.1.1

• Visualization of the alternative path search results

• Generation of suggestions for required changes in the specification when no
suitable path could be found

The figures 6 and 7 below show screenshots of the demonstrator GUI.

Page 26 of 94

Figure 6: GUI showing the dialog for task descriptions

Figure 7: GUI showing the selected solution after successful path search

The most complex of the menus in the tools is the task description, because here we
describe a hierarchical construct (the task, consisting of subtasks – see section
 2.2.1.1, all with specified requirements and message format information). In our

Page 27 of 94

demonstrator software we try to solve this problem for the defined application
examples, nevertheless our solution is still far from being optimal.
The task description consists of three parts, which form together a hierarchical
construct of tasks with their corresponding subtasks and the messages which are to
be embedded. First, there is a task ID to be specified. After the set of subtasks for
this specific task is created by adding one subtask after another, the second part of
the task description, the subtask description includes all vital information for the path
search, i.e. source, destination and all specified requirements. The third part is the
specification of all information which is needed for the later translation into CASPER.
Those include the cover properties as well as the structure and content (both editable
and visualized in form of a tree) of every message to be embedded on each access
level. Detailed examples for the usages of this demonstrator are given in sections
 3.2.1.1, 3.3.1.1 and 3.3.2.1.
The source code of this authoring tool demonstrator as an Eclipse15 project as wall
as the resulting JAR-file are found on the CD accompanying this report.

3.1.2. Translator for protocol generation

The translation demonstrator generating CASPER csp-files from the XML output of
the authoring / context modeling demonstrator is also implemented in JAVA. In
contrast to authoring demonstrator it does not require a GUI, therefore it is
implemented as a command-line tool. Essentially, this tool is a compiler, which
performs a form of chart parsing16 of the well structured XML descriptions into the
less-well structured csp-file, with its rigid 8-block structure; the translation rules
described in Appendix B are applied.
It expects two parameters: the solution-file from the context modeling and a name for
the output file of the translation.
An example call of this tool looks as follows:
$ java –jar Translator.jar solutions.xml outfile.spl

The source code of this demonstrator as an Eclipse project and the executable JAR-
file are found on the CD accompanying this report.

3.1.3. Protocol adaptation and verification (CASPER/CSP/FDR)

For our prototypical framework realization within POWER we used for step 5 and 6
unmodified versions of CASPER and FDR. These tools are available at:

• CASPER (version 2.0) installation repository downloadable from:
http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/casper-2.0-release.tar.gz
documentation:http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/manual.pdf

• FDR (version 2.91): http://web.comlab.ox.ac.uk/projects/concurrency-tools/
With documentation available at:
http://web.comlab.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.91.pdf

The easiest way to use these two tools is by running the GUI-based casperFDR
interface supplied with the CASPER package. Figure 8 shows the normal operation
of this tool with an CASPER input-file being successfully compiled into CSP.

15
 Eclipse Java IDE: http://www.eclipse.org/

16
 Using the dynamic programming approach - partial hypothesized results are stored in a structure

called a chart and can be re-used. This eliminates backtracking and prevents a combinatorial
explosion.

Page 28 of 94

Figure 8: The CasperFDR GUI has compiled an input-file successful

Figure 9 shows an example where the compiler detects an error and fails in the
compilation form CASPER to CSP.

Figure 9: CasperFDR detects an error while compiling an input-file

Figure 10 shows an example where an input file is first successfully compiled from
CASPER into CSP and then successfully verified by FDR.

Page 29 of 94

Figure 10: CasperFDR checks assertions (specifications) for an input-file and finds no attack

3.2. Illustration of the application of the framework using a basic
scenario

Prior to the application of our practical framework realization to the complex
application scenario in section 3.3, here a very simple or basic scenario is processed
with detailed descriptions of all processing steps.
This simple example mimics the usage of a watermarking algorithm by two
communicating users (e.g. in an integrity verification watermarking scenario).

3.2.1.1. Network and Task description (step 1)

In step 1 of the introduced realization framework, we perform the network and task
description for this application scenario (see section 2.2.1.1). This is done by using
the authoring demonstrator tool to describe the network (see figures 11 and 12),
specifying the characteristics and knowledge of the nodes and describing the task
(figure 13).

• Network description:
The GUI-based authoring tool demonstrator allows for a very simple definition of the
network. Alternatively these descriptions could be also generated in XML using any
text editor (which would be slower and more error-prone). Figures 11 and 12 show
the definition of nodes (which require a preceding definition of a watermarking
algorithm, which is then assigned as required knowledge to the nodes) and the
connections between those nodes.

Page 30 of 94

Figure 11: Algorithm definition and node specification for the basic application scenario in the POWER
authoring demonstrator tool

Figure 12: Network representation for the basic application scenario in the POWER authoring
demonstrator tool

The XML description as output of the authoring demonstrator looks as follows:
<?xml version="1.0" encoding="UTF-8"?>

<network>

 <nodes>

 <node>

 <id>A</id>

 <cover>

Page 31 of 94

 <cc>

 <type>image</type>

 <chancap>70</chancap>

 </cc>

 </cover>

 <dwm>dwm1</dwm>

 <nodecap>100</nodecap>

 <pki>n</pki>

 <ts>n</ts>

 </node>

 <node>

 <id>B</id>

 <cover>

 <cc>

 <type>image</type>

 <chancap>80</chancap>

 </cc>

 </cover>

 <dwm>dwm1</dwm>

 <nodecap>90</nodecap>

 <pki>n</pki>

 <ts>n</ts>

 </node>

 </nodes>

 <lc>

 <connection>

<src>A</src>

<dst>B</dst>

</connection>

 </lc>

</network>

Both users in this scenario (A and B) are connected by a unidirectional connection

from A to B. Both know the same watermarking algorithm (<dwm>dwm1</dwm>) and
can process image covers of the same type.

• Algorithm description:
Like the network description for this example, the algorithm description required here
is rather simple and looks in XML as follows:

<?xml version="1.0" encoding="UTF-8"?>

<dwms>

 <dwm>

 <id>dwm1</id>

 <cover>image</cover>

 <dwmcap>70</dwmcap>

 <robustness>low</robustness>

 <hierarchy>1</hierarchy>

 <key>symmetric</key>

 </dwm>

</dwms>

This exemplary algorithm works on covers of the type image, shows a low
robustness (fitting a integrity verification watermarking example), does not allow for
hierarchical data embedding and is a symmetric watermarking approach.

Page 32 of 94

• Task description:
The most complex of the processes in the context modeling is the task description
shown in figure 13, because here we describe a hierarchical construct (the task,
consisting of subtasks – see section 2.2.1.1, all with specified requirements and
message format information). In our demonstrator software we try to solve this
problem for the defined application examples, nevertheless our solution is still far
from being optimal.
The task description consists of three parts, which form together a hierarchical
construct of tasks with their corresponding subtasks and the messages which are to
be embedded. First, there is a task ID to be specified. After the set of subtasks for
this specific task is created by adding one subtask after another, the second part of
the task description, the subtask description includes all vital information for the path
search, i.e. source, destination and all specified requirements. The third part is the
specification of all information which is needed for the later translation into CASPER.
Those include the cover properties as well as the structure and content (both editable
and visualized in form of a tree) of every message to be embedded on each access
level.

Figure 13: Task specification for the basic application scenario in the POWER authoring demonstrator
tool

The corresponding XML representation of the task description looks like:
<?xml version="1.0" encoding="UTF-8"?>

<network_task>

 <task>

 <id>taskA</id>

 <subtask>

 <src>A</src>

 <dst>B</dst>

Page 33 of 94

 <meta>

 <cover>

 <id>coverA</id>

 <type>image</type>

 </cover>

 <message>

 <id>message</id>

 <level>0</level>

 <content>

 <data>data</data>

 </content>

 </message>

 </meta>

 <required>

 <pki>n</pki>

 <ts>n</ts>

 <cap>20</cap>

 <hierarchy>1</hierarchy>

 </required>

 </subtask>

 </task>

</network_task>

The network task in this simple example consists of only one task, which itself
consists of only one sub-task in turn. This sub-task requires that a message
consisting of the element 'data' should be send on hierarchy level 0 (which means

without any hierarchy) from node A to B using a cover object coverA which is an

image. Furthermore the capacity of this message is 20, so any path needs at least

that much capacity. It is stated that no PKI or access to a timeserver is needed for
this task.

3.2.1.2. Path search (step 2)

In the second step of our framework, the path search described in section 2.2.1.1 is
invoked within the authoring tool. The result of this path search looks for this basic
application scenario as shown in figure 14. The corresponding project file for this
example is found on the CD accompanying this report. Normally, the user would be
able to browse the different alternative solutions identified by the authoring tool
demonstrator, but this first small application scenario allows results in only one
alternative solution.

Page 34 of 94

Figure 14: Output of the task search for the basic application scenario in the POWER authoring
demonstrator tool

The corresponding XML representation of the solution looks as follows:
<?xml version="1.0" encoding="UTF-8"?>

<solutions>

 <alternative>

 <task>

 <id>taskA</id>

 <subtask>

 <src>A</src>

 <dst>B</dst>

 <meta>

 <cover>

 <id>coverA</id>

 <type>image</type>

 </cover>

 <message>

 <id>message</id>

 <level>0</level>

 <content>

 <data>data</data>

 </content>

 </message>

 </meta>

 <dwm>

 <id>dwm1</id>

 <cover>image</cover>

 <robustness>low</robustness>

Page 35 of 94

 <hierarchy>1</hierarchy>

 <key>symmetric</key>

 </dwm>

 <required>

 <pki>n</pki>

 <ts>n</ts>

 <hierarchy>1</hierarchy>

 </required>

 </subtask>

 </task>

 </alternative>

</solutions>

The XML-structure <solutions> for this application scenario contains only one

alternative (<alternative>) and therefore only one possible path in the given

network which satisfy the network task requirements.
The message in this small example is directly transferred from the source of the only
task in the scenario A to its destination B by using images as cover (cover channel

cover1) and the watermarking algorithm dwm1 (symmetric, low robustness and no

multi-level access). For this simple scenario no PKI or time-server access are
required and the messages (and therefore the whole scenario do not require multi-
level access).

3.2.1.3. Path selection (step 3)

The path selection step (as the third step in the framework) identifies from all found
solutions the one which is the most suitable based on a cost function. How to define
suitable cost functions has to be derived from the given application scenario and is
considered here a topic for future research.
In this example only one <alternative> exists so this one is chosen automatically.

3.2.1.4. Automated CASPER modeling using XML-input (step 4a)

The XML to CASPER translator described in section 3.1.2 is now applied to the
output solution alternatives from section 3.2.1.3. Hereby the corresponding
translation rules (2.2.1.2 and Appendix B) are invoked. The output of the translation
tool looks as follows:

#Free variables

A, B : Agent

coverA : Cover

data : Data

keydwm1 : sharedKey

InverseKeys = (keydwm1, keydwm1)

#Processes

SENDER(A, keydwm1, coverA, data)

RECEIVER(B, keydwm1)

#Protocol description

0. -> A : B

1. A -> B : {data}{keydwm1}

#Specification

#Actual variables

AVA, AVB, Mallory : Agent

AVcoverA : Cover

Page 36 of 94

AVdata : Data

AVkeydwm1 : sharedKey

InverseKeys = (AVkeydwm1, AVkeydwm1)

#Functions

#System

SENDER(AVA, AVkeydwm1, AVcoverA, AVdata)

RECEIVER(AVB, AVkeydwm1)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {AVA, AVB}

At this step also the #Intruder Information can be automatically created
giving the intruder a standard set of knowledge. This could be - according to
Kerckhoffs’ law - all the information which is not explicitly specified as secret or a key
not supposed to be known by the intruder.

3.2.1.5. CASPER model adjustment (step 4b)

In this simple example no further adjustment to the model itself is needed. However a
#Specification representing the security properties which should be checked

needs to be defined. There exist two main constructs for defining specification blocks:
The first is a secret-specification, stating that some piece of data is only known to
certain nodes after completion of the run. This one is used for evaluations on
confidentiality in the protocol run. The second is an agreement which states, that two
nodes are authenticated correctly and agree about a certain value. This statement is
used for evaluations on authenticity.

In this example it should be checked if the message data is only known to nodes A

and B after a complete run. As data is the element that should stay secret, this

would show that the required confidentiality is preserved during the protocol
transmissions. This yields the following specification:
#Specification

Secret (A, data, [B])

Checking the data-entity-authenticity between nodes A and B is realised by an
agreement-statement:
Agreement (A,B,[data])

Which states that A and B are sure of each others identity and agree about the

current value of the element data.

For ease of demonstration, these two specifications are verified separately using
FDR (see files bs_secret.spl, bs_auth.spl on the accompanying CD)

Another adjustment made here would be an altering of the #Intruder

Information representing other possible scenarios. This could be i.e. the intruder

learning a secret key by means of social engineering (which is be shown as example
is this scenario during Step 6)

Page 37 of 94

3.2.1.6. Compilation into CSP (step 5), checking with FDR (step 6) and
protocol selection (step 7)

After compiling the CASPER source code into CSP it can be checked using FDR. In
our example (bs_secret.spl) the confidentiality is to be checked using the secret-
statement:
Secret (A, mes, [B])

In case there are no flaws in the protocol concerning the confidentiality of the
message transmission, FDR answers “No attacks found”. In this case we can
assume that no attack is possible in the given system under the given assumptions.
As mentioned already depending on the application scenario it might be of
importance to test several different attacker scenarios which could occur as well as
different security aspects.
To show a possible attack on our example protocol we change the intruder
knowledge. In this attacker scenario the intruder has learned the secret key, i.e. by
social engineering:

IntruderKnowledge = { ... ,Avkeydwm1}

FDR now reports a possible attack on the protocol (known secret key):
Starting FDR

Checking /home/bs_secretattack.csp

Checking assertion SECRET_M::SECRET_SPEC [T= SECRET_M::SYSTEM_S

Attack found:

Top level trace:

 AVA believes AVdata is a secret shared with AVB

 The intruder knows AVdata

System level:

Casper> 0. -> AVA : AVB

1. AVA -> I_AVB : {AVdata}{AVkeydwm1}

 The intruder knows AVdata

Checking assertion SECRET_M::SEQ_SECRET_SPEC [T= SECRET_M::SYSTEM_S_SEQ

Attack found:

Top level trace:

Casper> The intruder knows AVdata

System level:

Casper> 0. -> AVA : AVB

1. AVA -> I_AVB : {AVdata}{AVkeydwm1}

 The intruder knows AVdata

Done

The output shows that a possible intruder Mallory can intercept the message from

A to B by claiming to be B (represented by the term I_AVB) and with the knowledge
of the secret key is now able to retrieve the content of the message. This would be a
breach of confidentiality.

Page 38 of 94

Also the data-origin authenticity of our example can be checked with the
corresponding agreement statement (Mallory being between A and B, but not

knowing the key):
Agreement (A,B,[data])

Example FDR output in case of a possible attack (man-in-the-middle):
Checking assertion AUTH1_M::AuthenticateSENDERToRECEIVERAgreement_data

[T= AUTH1_M::SYSTEM_1

Attack found:

Top level trace:

 AVB believes (s)he has completed a run of the protocol, taking role

RECEIVER, with AVA, using data items AVdata

System level:

Casper> 0. -> AVA : Mallory

1. AVA -> I_Mallory : {AVdata}{AVkeydwm1}

1. I_AVA -> AVB : {AVdata}{AVkeydwm1}

Done

The error message of FDR shows a typical “Man-In-The-Middle” attack on a possible
watermarking protocol. Even if the attacker (Mallory) cannot change the watermark

itself (as the data-origin authenticity has been verified before) Mallory can still try to
conduct a replay attack by delaying or resending the watermarked cover.

While all examples given here represent the evaluation of only one solution block
from the XML model, it is possible to translate different solutions into protocols,
evaluate them and then choose the one that fulfills all given specifications best. As
for the path selection in step 3 the specification of the corresponding cost or quality
functions for this protocol selection is considered to be outside the scope of our
research.

3.3. Illustration of the application of the framework using the
complex scenarios CDSC, HAAI and HDSR

Three different abstract, complex application scenarios have been introduced in the
first (M6) POWER project report document. These old descriptions of the complex
application scenarios have been:

• Certificate/Digital signature chain in watermarking domain (CDSC): A
card reader or sensor device is recognized by the computer A, to which it is attached,
by the watermark it embeds into the data stream, which it sends. This device ID of
the reader is forwarded (again as watermark) together with the ID of computer A (as
watermark) and the input from the device to further stations in the network for
processing.

• Hierarchical Access, Authentication & Integrity (HAAI): Section A has to
send report material to a section B. The report material shall be send without any
encryption so that every relay between A and B can observe its content. The
complete section B will be able to verify section A as origin, the timestamp of
watermarking and the integrity of the report from a first level of watermarking. A
second level of watermarking will give the section chief of B additional info (e.g.
which person in A was responsible for the generation of the report etc).

Page 39 of 94

• Hierarchical Digital Signatures for Reproduction of Original (HDSR) The
scenario III enhances the protocol by enabling the reconstruction of the original data
stream sent by the card reader to allow access to clear cover data. Here also
hierarchical access alternatives motivated from scenario II are further investigated to
evaluate and summarize pros and cons. Furthermore the impact of an erroneous
communication channel (error due to transmission errors) will be elaborated and
protocol mechanisms suggested.

The first two of these abstract, complex application scenarios are substituted in this
document by real-world application scenarios, which implement the same basic
concepts, but are more realistic and therefore better suited to identify the problems
that are encountered when designing watermarking based protocols.

The new Certificate/Digital signature chain in watermarking domain (CDSC)
application description is taken from a forensics application scenario, where
confidentiality (in form of privacy protection), entity-authenticity, data-origin-
authenticity and integrity have to be ensured in the watermarking-based protocol.

The new design of a Hierarchical Access, Authentication & Integrity (HAAI)
watermarking protocol used here combines a multi-level access structure and the
assurance of the security aspects of confidentiality, authenticity and integrity. It
extends the initial HAAI concept by considerations on data transfer via untrusted
communication partners.

3.3.1. CDSC - Scenario implementation

The FRT-MicroProf sensor ([Fries03]) is a high-resolution17 fingerprint scanner using
a chromatic white light (CWL) sensor which can be used to capture biometric
fingerprint images on a crime scene. For such high-quality biometric fingerprint data
several legal requirements have to be fulfilled in a forensic investigation to be
accepted as evidence in a law suit. First, the data privacy of person related biometric
data captured at a crime scene (which often includes biometric data of uninvolved
people) must be protected to respect data privacy laws. Second, according to
[Newman07], for the data to be accepted as evidence in a law suit, all data needs to
be protected and documented for the complete path from the generation until the
final disposition, which is called the ‘chain of custody’. It has to be proven without any
doubts that the data is authentic (meaning it is original) and integer (no unauthorized
modification has taken place). Third, all changes made to the data need to be
reproducible if requested by a judge.

Designing a protocol to be used in a real life, forensic application scenario using
biometric data therefore requires these three prerequisites to be fulfilled. These legal
requirements have to be mapped to measurable security aspects which need to be
included into the design of a proposed protocol. The data privacy (protection against
unauthorized revealing of person related data) can be assured by including
confidentiality mechanisms, but still it has to be verified in the protocol. Authenticity
and integrity are stated in [Newman07] to be the essential requirements to preserve

17
 The sensor can be used to contactlessly scan latent fingerprint traces, e.g. at crime scenes. The

CWL sensor head has maximum resolution of about 2µm in the x/y-plane and a resolution of about
6nm in the z-plane.

Page 40 of 94

the chain of custody. For the reproducibility requirement a secure way of
documenting data-modifications needs to be implemented.
As a result the three mentioned legal requirements needed for a protocol to be
accepted as evidence in a forensic application scenario can be mapped to the
measurable security aspects of confidentiality, data-origin-authenticity, entity-
authenticity, integrity and the need to enable reproducibility.

Here, we propose a Certificate/Digital signature chain in watermarking domain
(CDSC) solution for this complex and real-world relevant application scenario, i.e. we
propose to use a watermarking protocol as an alternative to present purely
cryptographic approaches. This new approach has several advantages. As an
example, if an optical scan of a crime scene is made and only the biometric
fingerprint area of the image is obfuscated by substitution with a visual watermark to
protect the privacy of the biometric data, the surroundings of the fingerprint can still
be seen and analyzed by personnel investigating other aspects of the crime. Without
having access to the necessary secret key and therefore to the fingerprint area the
privacy protection of the data is enhanced (which would not be possible in a purely
cryptographic protocol). Furthermore, meta-information about the capture of the
fingerprint (such as time, capturing officer or resolution) or changes applied to the
image (such as the application of filters, binarization of fingerprints, etc.) as well as
additional security measures (such as signatures or hashes) can be easily stored as
watermark payload binding the meta-data to the object without the need to create
additional objects and implementing the un-observability that distinguished
watermarking from encryption.
The overall setup using the FRT CWL sensor suits our CDSC scenario very well
because of the following characteristics:

• It enables us to evaluate the CDSC scenario in the context of a real project
involving highly sensitive person related data.

• Several nodes exist in the processing chain which are changing the data in
different ways (some may only sign the data; some may alter the cover or
extract/embed data).

• Due to the assumed application scenario in forensics the chain-of-custody
needs to be assured, requiring:

• direct watermarking of the sensor data at the sensor
• authenticity and integrity verification for each processing and transfer

step
• Mechanisms enabling reproducibility of changes made to the data

• The intended usage in forensic applications requires a second layer of access
restrictions for reasons of data privacy protection. The first layer (or hierarchy
level; here called “public data”) allows every legitimate user of the system to
retrieve metadata (like e.g. a case number) form a public watermarking part,
while only case-specific access to the second hierarchy level, containing
“private data”, i.e. the potential evidence (here the fingerprint) and information
about its processing, together with the required signatures of the processors,
can be allowed. Different multi watermarking / hierarchical watermarking
approaches introduced by Sheppard (see section 1.5) might be used here to
implement these two required hierarchy levels for the watermarking scheme
used.

Regarding the watermarking message generation, the watermarking approach
developed to implement the CDSC scenario is based on an blind, invertible, non-

Page 41 of 94

transparent, fragile secure medial authentication scheme introduced by Dittmann and
Katzenbeisser in 2004 / 2005 ([Dit04], [Dittmann05]), which can provably assure the
authenticity and integrity of the cover. The scheme is applied to biometric fingerprint
data from the FRT CWL sensor and extended to assure data privacy as well as to be
suitable for a digital signature chain scenario and hierarchical watermarking. Also the
developed approach enables us to distinguish between private and public
watermarking data where the former one needs case specific access protection and
the latter one can be freely accessed by any legitimate user of the system.
The concept of the scheme is to divide a cover image O into an unchangeable area
AO and an embedding area BO, as shown in figure 15.

Figure 15: Selection of the embedding area BO of the cover image which is substituted by the
watermark including the compressed original pixel values and payload (taken from [Dittmann05])

The original pixel values of the embedding area BO are substituted by a compressed
and encrypted version of BO concatenated with the watermark payload which assures
the obfuscation of the original embedding area values but which at the same time
contains the original pixel values, payload and signature/hash data in form of a
watermark (see figure 16).

Figure 16: Structure of the cover image: Unchanged pixel area AO and embedding area BO which is
comprised of two parts for private and public data

The location information of the embedding area BO is later stored in form of a location
map in a second watermarking process. This procedure uses a transparent
difference expansion annotation watermark approach introduced by Coltuc et. al
([Col07]) to embed the location map without visual artifacts in the watermarked
image.
The extended approach can assures the following security aspects:

• Authenticity
• Integrity
• Confidentiality
• Privacy protection (for the person-related Biometric fingerprint data it is

designed for)

Unchanged pixel Private data
(Compressed original pixel values of
part BO, hash over original picture,
private data - everything encrypted)

Public data
(Signatures, public data)

BO – changed pixel AO - unchanged
pixel

Image Sensor Data

Page 42 of 94

• Reproducibility (if trusted nodes store changes they made in the private data
area)

In the Digital Signature Chain of the CDSC – Scenario each node has the option to
apply an arbitrary combination of the following actions to the watermarking object:

• Verifying/adding signatures

• Accessing/writing public data

• Accessing/writing private data (private key required)

• Reconstruction of original image (private key required)

• Selection of new embedding area

With the help of these options also different types of multiple watermarking or
hierarchical watermarking described by Sheppard ([Sheppard01]; see section 1.5)
could be realized. With the selection of a new embedding area the image can be re-
watermarked. By extracting the private data and reconstructing the original image a
watermark-decomposition approach can be used. If only the forwarding of a
watermarked object is to be logged a forwarding node can sign the object and store
the signature in the public area. Each node can then independently check each
embedded signature of previous forwarding nodes.

Regarding the embedding process used in the watermarking algorithm (or primitive)
for our CDSC demonstrator, we employ the following concept: First we context based
divide the cover image O into the unchanged area AO and the embedding area BO.
For this purpose we use the Segmenter module shown in figure 17. We can select BO
either by manually drawing a polygon in a graphical user interface or automatically by
content identification with the help of Gabor and median filters. The location
information of BO is stored in the location map LM.

Figure 17: The Structure of the developed watermarking scheme – embedding process

Page 43 of 94

In the Watermark Embedder module the original pixel values of the area BO are
concatenated with the private data Dpriv and then compressed:

c = C(BO || Dpriv)

A hash value h of the original image is computed using SHA512:

h=H(O).

The compressed data c and the hash value h are then concatenated and encrypted
using DES56:

e = DES56sk(c || h)

A signature s is computed over the unchanged pixels AO and the encrypted data e:

 s=S(AO || e)

The final watermark w is then generated by concatenation of the encrypted data e,
the signature s and the public data Dpub as well as padding (up to full capacity):

w = e || s || Dpub || padd

The created watermark w is then inserted into the image O by substitution of the area
BO with the watermark, the location information is provided by LM:

O‘=Substitute(LM,w)

The Location Map Embedder module then inserts the location map LM together with
additional meta information into the watermarked object O’. This is done by an
invertible difference expansion approach introduced by Coltuc ([Col07]) using a
known seed (which acts like a system-wide secret):

O‘‘=Embseed(O‘,LM)

Since the developed approach is fragile and visible by design, the most important
watermarking characteristic to analyze is the capacity. The compression rates of the
embedding area BO and the location map LM are the major influence factors to the
achievable capacity.
Since compression rate of BO is completely unpredictable also the capacity can vary
largely from very low to extremely high embedding rates. For most cases BO can be
compressed to at least some extent. Since the signature and hash sizes to be stored
in this CDSC scenario are comparably low, it should be possible in most cases to
assure the space needed for integrity and authenticity information.
If the capacity is almost completely used and the fingerprint occupies quite a large
area of the image, some bytes of the capacity may be needed for the embedding of
the location map.

3.3.1.1. CDSC - Scenario – Network and Task description (step 1)

In step 1 of the introduced realization framework, we perform the network and task
description for this application scenario (see section 2.2.1.1). For this purpose we

Page 44 of 94

have to give a more specific description of the application scenario at hand. Here the
general forensics setup introduced above is limited in the conceptualization to the
following data flow protocol:
Our high-resolution fingerprint-scanner is exemplary capturing and watermarking the
biometric data at a crime scene, representing the sensor S. The traces are then sent
to a forensic expert FE1: S�FE1. The expert processes the data (e.g. enhances the
quality of the image) and sends it on to another forensic expert FE2 who further
processes the image or extracts in-formation from it (such as fingerprint verification):
FE1�FE2. Finally the image is taken to a court hearing C where it can be used as
evidence: FE2�C. This modeled scenario can easily be extended for other forensic
application scenarios according to the number of sensors, forensic experts or court-
hearings needed.
All four nodes of the proposed scenario need to have access to the biometric data for
capturing, processing or reviewing it. They are considered trustworthy therefore
having knowledge of the secret key needed to extract the confidential payload and to
reconstruct the original biometric image. Therefore, while S is creating the image,
FE1, FE2 and C can reconstruct it, alter the payload and/or the cover image and re-
embed data. Additionally, all parties have to check the signatures of sources they
received an image from and embed their own signature before sending an image to
the next destination. All this information is modeled in the first step by specifying the
knowledge of the nodes and the watermarking scheme dwm with the help of XML.

The XML context modeling of this contextualization is done by using the authoring
demonstrator tool to describe the network (see figure 18), the algorithm (figure 19),
the messages required for the two defined access levels and the network task
(described here as three tasks each containing one sub-task, for sub-task description
S�FE1 see figure 20).

• Network description:
Figure 18 shows the network description of our CDSC application scenario realization
in the authoring tool demonstrator.

Page 45 of 94

Figure 18: Contextualizing the information flow in our CDSC-based forensics application scenario
using the authoring demonstrator tool

The XML description of the network generated by the authoring tool looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<network>

<nodes>

<node>

<id>S</id>

<cover>

<cc>

<type>image</type>

<chancap>3000</chancap>

</cc>

</cover>

<dwm>Alg01</dwm>

<nodecap>3000</nodecap>

<pki>y</pki>

<ts>n</ts>

</node>

<node>

<id>FE1</id>

<cover>

<cc>

<type>image</type>

<chancap>3000</chancap>

</cc>

</cover>

<dwm>Alg01</dwm>

<nodecap>3000</nodecap>

<pki>y</pki>

Page 46 of 94

<ts>n</ts>

</node>

...

</nodes>

<lc>

<connection>

<src>S</src>

<dst>FE1</dst>

</connection>

<connection>

<src>FE1</src>

<dst>FE2</dst>

</connection>

<connection>

<src>FE2</src>

<dst>C</dst>

</connection>

</lc>

</network>

In the network description the node descriptions for FE2 and C are identical (except

for the node identifiers) to the ones for S and FE1, therefore they are omitted here. All

nodes in this example possess knowledge of the same cover channels (an image)
and the same watermarking algorithm (<dwm>Alg01</dwm>). All four nodes have

access to the PKI for the scenario (required for the signatures).

• Algorithm description:
The algorithm description shown in figure 19 and the corresponding XML structure is
defining the two hierarchy levels required in this application scenario to model the two
access-levels.

Figure 19: Algorithm description for the watermarking algorithm used in the CDSC application example

The authoring tool demonstrator generates the following output algorithm description:

<?xml version="1.0" encoding="UTF-8"?>

<dwms>

<dwm>

<id>Alg01</id>

<cover>image</cover>

<dwmcap>50</dwmcap>

<robustness>low</robustness>

<hierarchy>2</hierarchy>

<key>symmetric</key>

</dwm>

</dwms>

Page 47 of 94

This is a simple algorithm description used for the demonstration of our framework
within this report. A more detailed description of algorithms would be necessary in the
generation of any commercial- or field-applicable software. A more detailed picture of
the information required for close-to-marked prototypes might be the following
attempt at algorithm description for our CDSC scenario in pseudo-XML:
<?xml version="1.0" encoding="UTF-8"?>

<dwm>

 <id>MediaAuthScheme</id>

 <cover>image/FTR/16Bit</cover>

 <technique>compression</technique>

 <embedding area determination>

 <context based>yes</context based>

 <manual>yes</manual>

 </embedding area determination>

 <overhead>

 <location-map>yes</location-map>

 <add. overhead>few Bytes</add. overhead>

 <overhead embedding>

 <technique>diff. expansion</technique>

 <addFeatures>histogram shifting</addFeatures>

 </overhead embedding>

 </overhead>

 <data security properties>

 <confidential data>yes</confidential data>

 <public data>yes</public data>

 <integrity>

 <ensured>yes</ensured>
 <technique>hash</technique>

 <technique>signature</technique>

 </integrity>

 <authenticity>

 <ensured>yes</ensured>

 <technique>signature</technique>

 </authenticity>

 <reproducibility>

 <reproducible>optional</reproducible>

 <technique>operation_log</technique>

 </reproducibility>

 </data security properties>

 <watermark properties>

 <dwm-capacity>

 <value>100*(1-K)%</value>

 <metric>byte</metric>

 </dwm-capacity>

 <invertible>yes</invertible>

 <blind>yes</blind>

 <robustness>low</robustness>

 <transparency>none, obfuscation of embedded area</transparency>

 <key>symmetric and asymmetric</key>

 </watermark properties>

</dwm>

• Message description:

The watermarking message in this application scenario is modeled as two different
messages parts - one for each of the two hierarchy levels. Level 0 in this example
contains the case-related private data (i.e. the compressed and encrypted fingerprint
data required for the inversion of the watermark, the signature chain as well as the

Page 48 of 94

secret payload). Due to the complex nature of the message, which changes during
the transmission along the processing pipeline by the addition of further processing-
related data and signatures, it is not modeled completely here, but the corresponding
elements are identified by the flag complex (followed by an indicator for the last

modifying node, e.g. complexS for the private data send by S) This flag is used to

signal that after the translation into CASPER a manual adaptation of the message in
the CASPER code has to be performed here for each data transmission.

• Task description:

The network task for this application scenario is described here as three tasks (each
containing one sub-task). In figure 20 the GUI-based description of one of these
three nearly identical sub-tasks is shown.

Figure 20: Description of one of the sub-tasks in the CDSC application example

Task description in XML is generated by the authoring tool demonstrator (the tasks
FE1�FE2 and FE2�C are omitted here because they are identical to the presented

task S�FE1):
<?xml version="1.0" encoding="UTF-8"?>

<network_task>

<task>

<id>Task1</id>

<subtask>

<src>S</src>

<dst>FE1</dst>

Page 49 of 94

<meta>

<cover>

<id>cover1</id>

<type>image</type>

</cover>

<message>

<id>msg1</id>

<level>0</level>

<content>

 <signed>

 complexS

</signed>

</content>

</message>

<message>

<id>msg2</id>

<level>1</level>

<content>

 <data>

 PublS

 </data>

</content>

</message>

</meta>

<required>

<pki>y</pki>

<ts>n</ts>

<cap>1500</cap>

<hierarchy>2</hierarchy>

</required>

</subtask>

</task>

<task>

 ...

</task>

</network_task>

The network task description automatically integrates the message descriptions
described above.

3.3.1.2. CDSC - Scenario – Path search (step 2)

In the second step of our framework, the path search described in section 2.2.1.1 is
invoked within the authoring tool. The result of this path search looks for this CDSC
scenario as shown in figure 21. The corresponding project file for this example is
found on the accompanying CD. Normally, the user would be able to browse the
different alternative solutions identified by the authoring tool demonstrator, but our
realization of the CDSC scenario results in only one alternative solution due to the
sequential setup of the communion flow.

Page 50 of 94

Figure 21: Output of the task search for the CDSC application scenario in the POWER authoring
demonstrator tool

The corresponding XML representation of the solution looks as follows (again, the
descriptions for the FE1�FE2 and FE2�C tasks are omitted):
<?xml version="1.0" encoding="UTF-8"?>

<solutions>

<alternative>

<task>

<id>Task1</id>

<subtask>

<src>S</src>

<dst>FE1</dst>

<meta>

<cover>

<id>cover1</id>

<type>image</type>

</cover>

<message>

<id>msg1</id>

<level>0</level>

<content>

 <signed>

 complexS

 </signed>

 <data>

 As

 </data>

</content>

</message>

<message>

<id>msg2</id>

<level>1</level>

<content>

 <data>

 PublS

Page 51 of 94

 </data>

</content>

</message>

</meta>

<dwm>

<id>Alg01</id>

<cover>image</cover>

<robustness>low</robustness>

<hierarchy>2</hierarchy>

<key>symmetric</key>

</dwm>

<required>

<pki>y</pki>

<ts>n</ts>

<hierarchy>2</hierarchy>

</required>

</subtask>

</task>

...

</alternative>

</solutions>

In our scenario the <solution> block offers only one <alternative>,

representing one possible path through the network. Using the image cover1 as

cover for the first task (S�FE1) the source node S transmits the watermarked cover

to the destination node FE1.

The core functionality of the watermarking scheme is coded in the structure of the
watermarking messages (<message>) msg1 and msg2 which are used by the

watermarking algorithm (<dwm>) Alg01. According to our specification of the

watermarking scheme an instance of the <message> msg1 holds signed content

flagged with the complex content indicator. As described above in the message

composition in section 3.3.1.1, this indicator will result in manual adaptations in the
CASPER protocol adjustment (step 4b of the framework).
The <message> msg2 contains the public content (Publ followed by an indicator for

the last modifying node, e.g. PublS for the public data send by S) which is neither
signed or hashed nor encrypted.

3.3.1.3. CDSC - Scenario – Path selection (step 3)

In the third step of the framework found paths are analyzed using a cost-function and
the best path is chosen. Again, for our scenario only one path is possible for each
task (the single <alternative> described in section 3.3.1.2) and we assume that

the capacity (in this case representing the cost) is sufficient.

3.3.1.4. CDSC - Scenario – Automated CASPER modeling using XML-input
(step 4a)

Here, the chosen <alternative> from the generated <solutions> block is

translated into a protocol of the CASPER formalization language. The XML to
CASPER translator described in section 3.1.2 is now applied to the output solution
alternatives from section 3.2.1.3. Hereby the corresponding translation rules (2.2.1.2)
are invoked. For this application scenario special translation rules need to be invoked
to be able to also translate the generation and verification of signatures and hash-
values.

Page 52 of 94

Modeling the CDSC application scenario in CASPER looks as follows (the
#Intruder Information and #Specifications blocks required to verify the

security aspects of entity-authenticity and confidentiality as well as the resolution of
the complex flag are manually specified in step 4b – see section 3.3.1.5):

#Free variables

S, FE1, FE2, C : Agent

cover1 : Cover

complexS, PublS, complexFE1, PublFE1, complexFE2, PublFE2 : Data

H : HashFunction

keyLevel0, keyLevel1, keyAlg01 : SharedKey

pubS, pubFE1, pubFE2, pubC : PublicKey

secS, secFE1, secFE2, secC : SecretKey

InverseKeys = (keyAlg01, keyAlg01), (keyLevel0, keyLevel0), (keyLevel1,

keyLevel1), (pubS, secS), (pubFE1, secFE1), (pubFE2, secFE2), (pubC, secC)

#Processes

SENDER(S, keyAlg01, cover1, complexS, PublS, secS, keyLevel0, keyLevel1)

FORWARDER(FE1, keyAlg01, complexFE1, PublFE1, secFE1)

FORWARDER(FE2, keyAlg01, complexFE2, PublFE2, secFE2)

RECEIVER(C, keyAlg01, secC, keyLevel0, keyLevel1)

#Protocol description

0. -> S : secS, keyLevel0, keyLevel1

1. -> FE1 : secFE1, keyLevel0, keyLevel1

2. -> FE2 : secFE2, keyLevel0, keyLevel1

3. -> C : secC, keyLevel0, keyLevel1

4. -> S : FE1

5. -> FE1 : FE2

6. -> FE2 : C

7. S -> FE1 : {PublS, {complexS}{secS}}{keyAlg01}

8. FE1 -> FE2 : {PublFE1, {complexFE1}{secFE1}}{keyAlg01}

9. FE2 -> C : {PublFE2, {complexFE2}{secFE2}}{keyAlg01}

#Specification

#Actual variables

AVS, AVFE1, AVFE2, AVC, Mallory : Agent

AVcover1 : Cover

AVcomplexS, AVPublS, AVcomplexFE1, AVPublFE1, AVcomplexFE2, AVPublFE2 :

Data

AVkeyLevel0, AVkeyLevel1, AVkeyAlg01 : SharedKey

AVpubS, AVpubFE1, AVpubFE2, AVpubC : PublicKey

AVsecS, AVsecFE1, AVsecFE2, AVsecC : SecretKey

InverseKeys = (AVkeyAlg01, AVkeyAlg01), (AVkeyLevel0, AVkeyLevel0),

(AVkeyLevel1, AVkeyLevel1), (AVpubS, AVsecS), (AVpubFE1, AVsecFE1),

(AVpubFE2, AVsecFE2), (AVpubC, AVsecC)

#Functions

#System

SENDER(AVS, AVkeyAlg01, AVcover1, AVcomplexS, AVPublS, AVsecS, AVkeyLevel0,

AVkeyLevel1)

FORWARDER(AVFE1, AVkeyAlg01, AVcomplexFE1, AVPublFE1, AVsecFE1)

FORWARDER(AVFE2, AVkeyAlg01, AVcomplexFE2, AVPublFE2, AVsecFE2)

RECEIVER(AVC, AVkeyAlg01, AVsecC, AVkeyLevel0, AVkeyLevel1)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {AVS, AVFE1, AVFE2, AVC}

Page 53 of 94

3.3.1.5. CDSC - Scenario – CASPER model adjustment (step 4b)

For our CDSC application scenario in the protocol adjustment step multiple manual
adaptations have to be performed. First, the public keys of all users are distributed.

#Free Variables

#Processes

#Protocol Description

�replace:

0. -> S : secS, keyLevel0, keyLevel1

1. -> FE1 : secFE1, keyLevel0, keyLevel1

2. -> FE2 : secFE2, keyLevel0, keyLevel1

3. -> C : secC, keyLevel0, keyLevel1

by:

0. -> S : secS, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC

1. -> FE1 : secFE1, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC

2. -> FE2 : secFE2, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC

3. -> C : secC, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC

#Specification

#Actual variables

#Functions

#System

#Intruder Information

As a second adaptation block the complex flags (representing a complex data

structure containing amongst others the signature chain, the compressed original
image part (original biometric data B) as well as the secret payload PrivS) have to

be substituted by the real message contents for the corresponding step. For a
consistent notation we append the identifier of each node in our scenario to the data
items where needed, i.e. changing the private data Priv embedded by the sensor S

to PrivS, PrivFE1 for the first forensic expert FE1 and PrivFE2 for the second

forensic expert FE2, etc.

#Free Variables

�replace:

complexS, PublS, complexFE1, PublFE1, complexFE2, PublFE2 : Data

by:

PublS, PublFE1, PublFE2, PrivS, PrivFE1, PrivFE2, BS, BFE1, BFE2 : Data

#Processes

�replace:

SENDER(S, keyAlg01, cover1, complexS, PublS, secS, keyLevel0, keyLevel1)

FORWARDER(FE1, keyAlg01, complexFE1, PublFE1, secFE1)

FORWARDER(FE2, keyAlg01, complexFE2, PublFE2, secFE2)

by:

SENDER(S, keyAlg01, cover1, PrivS, BS, PublS, secS, keyLevel0, keyLevel1)

FORWARDERA(FE1, keyAlg01, PrivFE1, BFE1, PublFE1, secFE1, keyLevel0,

keyLevel1)

FORWARDERB(FE2, keyAlg01, PrivFE2, BFE2, PublFE2, secFE2, keyLevel0,

keyLevel1)

#Protocol Description

Page 54 of 94

�replace:

7. S -> FE1 : {PublS, {complexS}{secS}}{keyAlg01}

8. FE1 -> FE2 : {PublFE1, {complexFE1}{secFE1}}{keyAlg01}

9. FE2 -> C : {PublFE2, {complexFE2}{secFE2}}{keyAlg01}

by:

7. S -> FE1 : {{PublS,

{BS,PrivS,H(BS),H(PublS)}{keyLevel0}}{secS}}{keyAlg01}

8. FE1 -> FE2 :{{PublFE1,

{BFE1,PrivFE1,H(BFE1),H(PublFE1)}{keyLevel0}}{secFE1}}{keyAlg01}

9. FE2 -> C : {{PublFE2,

{BFE2,PrivFE2,H(BFE2),H(PublFE2)}{keyLevel0}}{secFE2}}{keyAlg01}

#Specification

#Actual variables

�replace:

AVcomplexS, AVPublS, AVcomplexFE1, AVPublFE1, AVcomplexFE2, AVPublFE2 :

Data

by:

AVPublS, AVPublFE1, AVPublFE2, AVPrivS, AVPrivFE1, AVPrivFE2, AVBS,

AVBFE1, AVBFE2 : Data

#Functions

#System

�replace:

SENDER(AVS, AVkeyAlg01, AVcover1, AVcomplexS, AVPublS, AVsecS,

AVkeyLevel0, AVkeyLevel1)

FORWARDER(AVFE1, AVkeyAlg01, AVcomplexFE1, AVPublFE1, AVsecFE1)

FORWARDER(AVFE2, AVkeyAlg01, AVcomplexFE2, AVPublFE2, AVsecFE2)

by:

SENDER(AVS, AVkeyAlg01, AVcover1, AVPrivS, AVBS, AVPublS, AVsecS,

AVkeyLevel0, AVkeyLevel1)

FORWARDERA(AVFE1, AVkeyAlg01, AVPrivFE1, AVBFE1, AVPublFE1, AVsecFE1,

AVkeyLevel0, AVkeyLevel1)

FORWARDERB(AVFE2, AVkeyAlg01, AVPrivFE2, AVBFE2, AVPublFE2, AVsecFE2,

AVkeyLevel0, AVkeyLevel1)

#Intruder Information

In a third manual adaptation step the security aspects (in the #Specifications

block) to be verified as well as the intruder knowledge (#Intruder Information

block) must be manually specified. For the confidentiality we specify the original
biometric data as well as the private payload as a secret between the sensor S and

the forensic expert FE1 as: Secret(S, PrivS, [FE1,FE2,C])

For the entity-authenticity verification we include the agreement of S and FE1 on the

original image (original biometric data B) as well as the secret payload PrivS stored

in the image:

Agreement(S,FE1,[BS,PrivS])

The intruder knowledge is specified according to Kerckhoffs’ law giving the intruder
access to all information which is not explicitly stated as being secret, i.e. everything
except the secret keys. Therefore in this example nothing has to be changed for the
intruder information, since it is already specified by the translation demonstrator in
this way.

Page 55 of 94

3.3.1.6. CDSC - Scenario – Compilation into CSP (step 5), checking with
FDR (step 6) and protocol selection (step 7)

The generated CASPER-code is compiled into CSP in step 5 and checked with FDR
in step 6.
For being usable in a forensic application scenario our proposed watermarking
protocol needs to ensure the privacy protection, preserve the chain of custody and
enable reproducibility. For achieving these goals we need to verify the data-origin
authenticity, entity-authenticity, integrity and confidentiality of the data and enable
reproducibility. Since the data-origin-authenticity and integrity of the underlying
watermarking scheme of Dittmann et al. was mathematically proven in [Dit04] and the
reproducibility is enabled by storing the applied changes in the private payload area
Dpriv (as described in the beginning of section 3.3.1), the goal of this section is to
check the entity-authenticity and confidentiality of the protocol to complete the
verification of all needed requirements.
Checking the modeled watermarking protocol quickly shows the limitations of
CASPER/FDR concerning the complexity of the networks to be verified. Verifying the
CASPER model of our scenario including all three tasks (S�FE1, FE1�FE2,
FE2�C) fails with a physical memory size of 3GB not being sufficient main memory.
This shows the huge amount of resources needed for the verification of only
moderate-sized protocols. We avoid this problem by checking the three tasks
separately.
The results of the model-checking for the first task (S�FE1) can be seen below:

Checking assertion SECRET_M::SECRET_SPEC [T= SECRET_M::SYSTEM_S

No attack found

Checking assertion SECRET_M::SEQ_SECRET_SPEC [T=SECRET_M::SYSTEM_S_SEQ

No attack found

Checking assertion

AUTH1_M::AuthenticateSENDERToPROCESSOR1Agreement_AVBS_AVPrivS

[T=AUTH1_M::SYSTEM_1

Attack found:

Top level trace:

FEone believes (s)he has completed a run of the protocol, taking role

PROCESSOR1, with Scanner, using data items AVBS, AVPrivS

The model-checking of our proposed protocol shows no possible attacks on the
confidentiality, neither for the original biometric fingerprint data nor for the private
payload. For the entity-authenticity a man-in-the-middle attack is found with an
intruder claiming to the sensor S to be the forensic expert FE1 forwarding the image

to the real FE1 claiming to him to be S. With such an attack a possible intruder could

obtain the cover image as a whole and delete, delay or later replay it. However, since
the data-origin-authenticity as well as the integrity of the data can be assured as was
manually shown in [Dit04], an intruder is unable to secretly change any part of the
data which may eventually reach the intended receiver in the correct form.

For our fingerprint forensics application CDSC scenario this would mean that an
attacker could still intercept an image of biometric fingerprints captured at a crime
scene and replay it later in another, different investigation. In order to prevent such
kind of attack a timestamp can be integrated into the private data section of the
watermark, telling the receiver if the image is delayed for a substantial amount of

Page 56 of 94

time. In such a scenario a man-in-the-middle-attack is of no concern as long as the
data is not delayed longer then a certain amount of time (analog to the transfer of
data over an insecure channel). Unfortunately, at the moment CASPER does not
offer the possibility to model such kind of scenario.

3.3.1.7. CDSC - Scenario – Summary

Within our work on the CDSC we extended the theoretical, reversible watermarking
scheme from [Dit04] to be usable in a forensic application scenario, exemplary using
high resolution biometric fingerprint data. We modeled a watermarking protocol
based on this scheme to assure privacy protection and chain of custody preservation
of the biometric data by verifying data-origin-authenticity, entity-authenticity, integrity
and confidentiality of the protocol in a hybrid approach using manual as well as semi-
automated verification techniques. We furthermore proposed a way to enable
reproducibility and hierarchical two-level access to the data to enable case specific
access restrictions to potential evidence in this forensics oriented application
scenario.
During the realization of this example we noticed that there are severe restrictions to
the semi-automated verification approach using CASPER and FDR, from a resource
point of view, regarding the message modeling, as well as considering the syntax
provided by CASPER (which in its original focus was only designed for the
verification of cryptographic protocols and therefore naturally performs not perfectly in
the watermarking protocol domain).

3.3.2. HAAI - Scenario implementation

The goal of this second complex watermarking-based application scenario is the
design of a Hierarchical Access, Authentication & Integrity (HAAI) watermarking
protocol that combines a multi-level access structure and the assurance of the
security aspects of confidentiality, authenticity and integrity.

The communication setup for the HAAI application scenario foresees three core
communication entities: the users/clients u, a central delivery infrastructure D and a
management component M.
The roles of these entities are the following: the users u perform watermarking-based
multi-level data access and modifications to a cover object o. The central delivery
infrastructure D stores o and performs integrity verification. All data communication in
the application scenario is performed via communication with D, i.e. no direct end-
user to end-user communication is allowed. The management component M handles
the key management and user-to-group (access level Li) binding for the multi-level
access.

Due to the problems mentioned in section 1.5 for the re-watermarking and composite
watermarking approaches, we chose here the segmented watermarking approach for
the implementation of our watermarking protocol. The corresponding message
layout for the watermarking message is shown in figure 22.

Page 57 of 94

Figure 22: Exemplary watermark structure incl. the structure of the embedded ToC

The segmented watermarking approach for our proposed watermarking protocol
works with a segmentation of the cover into separate embedding segments S1 – Sn
and Stoc. Each of the segments S1 – Sn represents one of n access levels and is
further divided into j blocks of random size and with a randomly distributed address
addressSLji somewhere within the cover. The addresses addressSLji belonging to the
different access levels Li are stored in a table of contents (ToC) entry, along with the
sequence number seqSLi of the addressed block and a hash h over the group key
Group.key.Li of this certain access level Li. Such an entry is then encrypted using the
group key Group.key.Li and finally stored into a global table of contents data structure
for the considered cover, which is then embedded into the ToC-segment Stoc.

Several assumptions have to be made before describing the actual functions of the
presented system: First, the actual functions described here may be more complex
than presented, but are simplified to their core functionality. Second, all primitives
which provide a secure network communication in general are considered to be
present, i.e. a mutual authentication between both communication partners has to be
performed at every step and a secure protocol for the key exchange is used prior to
every other action.
The application scenario consists of four primary system functions: init(),
requestinit(), requestObject() and returnObject(). These primary functions are
described below.

Function Description

init(o, n) Initialization of an object o with n predefined access levels by the
delivery infrastructure D.

Internal operations:
1. D: register(o) returns the unique identifier IDo of o
2. D: segment(IDo, n) returns a sequence of n+1 segments SL1, …, SLn, Stoc

3. D: generateToC(IDo, SL1, …, SLn, Stoc) returns the data object IDo.ToC
4. D: initialization of the table of contents: for every block blockSLi,j in each of the n segments SL1, …,
SLn the function IDo.ToC.init(encrypt().id, decrypt().id, hash().id, Init.key.Li) writes the initialization
value encryptInit.key.Li(addressSLi,j || hash(Init.key.Li) || random) with random.size() = seq.size()
5. D: IDo.updateHashes() returns IDo.Hashes = hSL1, …, hSLn + htocSL1, …, htocSLn, + pho with hSLi =
hash(&SSLi) , htocSLi = hash(&tocSLi) and pho = perceptual hash of o
6. D: store(IDo, o, IDo.Hashes, u)

Page 58 of 94

With the initialization function init(o,n) the delivery infrastructure D in the first
operation registers a new object o to its repository. In the second operation of the
initialization the object is segmented into n+1 segments (n segments for the
embedding areas for the n access levels and one segment for the embedding of the
table of contents object IDo.ToC). The third operation generates the ToC object
IDo.ToC. The fourth operation performs the ToC initialization in which the basic
structure of the ToC and thereby the complete watermark message structure which
was presented in figure 2 is created. In the fifth operation, the hash values which
ensure the integrity of the ToC (addressed for each access level by &tocSLi) and the
embedded data on all segments (addressed for each access level by &SSLi) and a
perceptual hash pho of o are calculated. Finally, in the sixth operation, the cover
object with the ToC embedded is stored along with the corresponding hash values
from operation 5.

Function Description

requestInit(o) Initialization request by a client for a previously unregistered object o by user u
with level Li.

Internal operations:
1. u: sendToD(request.Init, o)
2. D: init(o, n)
3. D: if access.policy = single_access_only then o.accessAllowed(false)
4. D: sendToUser(IDo, o, u)

With the requestInit(o) function an user u with level Li requests the registration of an
object o into the repository of the delivery infrastructure D. After an authentication of
u at D and the transmission of o from u together with an initialization request, D
invokes internally the init(o, n) function. Depending on the access policy an access
semaphore (or access counter; managed by o.accessAllowed()) can be set (or
increased) to limit the number of the concurrent accesses to one object. Finally, the
registered o together with its assigned system-wide object-ID IDo is returned to u.

Function c Description

requestObject(IDo) Client request for an object with the identifier IDo.

Internal operations:
1. u: sendToD(IDo)
2. D: retrieve o belonging to IDo from internal repository
3. D: if access.policy = single_access_only then check o.accessAllowed(). If o.accessAllowed() = true
then o.accessAllowed(false) and sendToUser(IDo, o, u), else inform u that o can not be accessed
right now due to an access-lock

The request for a registered object o from a user u uses the system-wide object-ID
IDo which is generated by D for each object upon registration. Depending on the
access policy an access semaphore can prevent the access if the object is currently
processed by another user.

Function Description

returnObject(onew,
IDo)

Client commit of an (updated) object onew

1. u: sendToD(IDo, onew)
2. D: performs an authenticity verification of the committed object onew against its stored version o
using isAlteredVersion(onew, o) if the result is false:

• committed object is no instance of object o → authenticity violation
if the result is true:

• checkHashes(onew, Li) if the result is false:
o integrity verification failed � integrity violation

Page 59 of 94

• if the result is true:
o IDo.updateHashes()
o store(IDo, onew, IDo.Hashes, u)
o o.accessAllowed(true)

If a user u returns an object o after processing it to the delivery infrastructure D, an
integrity verification (checkHashes()) and an authenticity verification
(isAlteredVersion()) of the new version of the object onew are performed if the object
was modified (in case the object was just requested by u for reading information
without any modifying access, o and onew are identical and the integrity therefore
does not have to be verified further). The function isAlteredVersion() simply
calculates a perceptual hash of onew and compares it to the perceptual hash pho of o,
which is stored in IDo.Hashes at D. Based on the concept of the application scenario,
D only verifies whether u has performed modifying access in the segments which
belong to u’s access level Li. If u modified any other part of onew, D signals an
integrity violation for that part. If u, as intended by the scheme, just modified the
segments belonging to its access level Li, D updates the hashes stored for the object
and stores onew into its repository as the new version of o. Depending on the access
policy a set access semaphore has to be unset.

The four primary system functions are accompanied by a set of secondary system
functions. The two most important of these secondary functions are: checkHashes()
and updateHashes().

Function Description

checkHashes(one

w, Li)
Hash verification for one level of the object-version onew submitted to D from a
user u with access level Li.

1. D: Verification of the hashes htocSLi:
• For all ToC segments tocSL1 ,..., tocSLn: computation of the hash value hi over the complete ToC
segment tocSLi

• Comparison of the computed hi with htocSLi retrieved from IDo.Hashes
• if hi ≠ htocSLi and i ≠ Li of u, then u modified table-of-content entries which do not belong to his access
level  integrity of o is violated
2. D: Verification of the hashes hSLi:
• For all segments SL1, …, SLn: computation of the hash value hi over the complete contents of the
segment (&SLi)
• Comparison of the computed hi with hSLi retrieved from IDo.Hashes
• if hi ≠ hSLi and i ≠ Li of u, then u wrote into segments which do not belong to his access level 
integrity of o is violated
3. D: checkViolation(): if one of the two hash verifications implies an integrity violation, then:
• the at D stored version of o is not replaced by onew; onew is discarded
• otherwise: IDo.updateHashes()

The application scenario foresees two integrity verification mechanisms to be used by
the delivery infrastructure D. They are: a set of hashes htocSLi protecting the table of
contents entries for each hierarchy level Li, a set of hashes hSLi protecting the data
segments for each hierarchy level Li and a perceptual Hash pho, for later authenticity
checks of instances of o. Both sets of hashes (htocSLi and hSLi) along with pho are
stored in IDo.Hashes at the storage space D.

Function Description

updateHashe
s()

Hash update for object o by delivery infrastructure D (e.g. after commit of a modified
version of the object by a user).

1. D: write hashes htocSLi to IDo.Hashes:
• for all segments tocSL1, …, tocSLn: computation of htocSLi for the complete ToC entries for the segment
SLi

Page 60 of 94

2. D: write hashes hSLi to IDo.Hashes:
• for all segments SL1, …, SLn: computation of hSli over &SLi , i.e. the content of segment SLi

This function, which is integral part of the returnObject() function described above
assumes that a integrity verification has been performed already by D using
checkHashes(). Additional secondary system functions are: sendToD(),
sendToUser(), getEmbeddingPositions(), requestUserLevel() etc. which essentially
perform what their identifiers indicate. Further explanation of their functionality is not
necessary for the purpose of our application scenario example.

To show how all these protocol functions interact, an end-user object access
example is presented in the following. It assumes that a user u with access level Li
requests object o known to him by the corresponding object identifier IDo. This
example assumes that: the required key exchanges for setup of the application
scenario have been performed, that there exists a way (e.g. a central look-up
directory) for u to learn IDo, that u knows how to address D and that u knows the ToC
embedding address or is capable of determining or receiving it. Furthermore it is
assumed, from the operational point of view, that each communication operation is
preceded by mutual authentication of the communicating entities.

Operation 1: u: requestObject(IDo)
Operation 2: u: getEmbeddingPositions(IDo, o, key):
 • this might require two runs of getEmbeddingPositions():

◦ first, with key = Init.key.Li ; if this run fails (i.e. h = hash(Init.key.Li) cannot be found in any
entry) because an other user with the same access level Li (and therefore group key) has
already embed data on Li and therefore encrypted all entries with UserGroup.key.Li then:
◦ second, with key = UserGroup.key.Li

 • Identification of the segment Stoc using IDo.ToC.address
• entry-wise processing of the ToC and decryption of each entry, the result of this decryption has
the form: address || h || seq

 • if h = hash(key) then address is a legitimate embedding address for access level Li
 • return: meta = indexes of all ToC-lines and all embedding addresses for Li

Operation 3: u: embed(o, data, meta, UserGroup.key.Li):
 • enc_data = encryptUserGroup.key.Li(data || hash(data))

•the encrypted data enc_data is then split into blocks, which are embedded into the segments
identified by the addresses addressSLi1, …, addressSLij

Operation 4: u: returnObject(onew, IDo)
Operation 5: D: authenticity and integrity verification and updating of the hashes hSLi und htocSLi:
 • isAlteredVersion(onew , o)
 • checkHashes(onew ,Li)

The user u requests an object and waits for D to send the designated object. After
determining all ToC entries for the user’s level, the embedding positions for the
level's segment are known to u. Before using the found addresses, the data to be
embedded has to be preprocessed in two operations. In the first operation a hash is
calculated over the data, which is then concatenated with this hash and encrypted
with UserGroup.key.Li. The second operation is a segmentation of the encrypted data
into blocks which fit the block-size of the embedding segment. The last action
performed on the object is the embedding itself - the changed ToC and the encrypted
data are embedded to the assigned segments. After the changed version of o has
been returned to D, it performs all necessary authenticity and integrity checks,
including the check of the perceptual hash pho in isAlteredVersion() and the check of
the segment and ToC hash values in checkHashes().

Page 61 of 94

Summarizing the addressed security aspects, the end-user object access example
given above shows very well the integrity verification mechanisms applied by the
central delivery infrastructure D and the end-user u. Each of them embeds its own
hash values in places where they are protected from access by others. The delivery
infrastructure D uses its storage space for copies of its encrypted hashes htocSLi and
hSLi, the original ToC and the original (or last integer instance of the) object. The user
appends its hash to the plaintext he wishes to embed and encrypts both. As long as
the keys of the other parties are unknown, no participating entity can modify the
object outside its allowed embedding areas without violating the integrity of the
object, which will at the next access be automatically detected by the other entities.
The important point here is therefore the separation of the central delivery
infrastructure D, whose sole purpose is the data storage, from the management
component M, which performs the key management and user-to-group (access level
Li) binding. The only point where this separation of duty principle seems to be
violated is the initialization of o at D, where all ToC entries (and with that all potential
embedding addresses for all levels) are generated and encrypted using the Init.key.Li

generated by D. This problem is solved when a user first embeds data to his access
segment and in this process changes the key used for encryption and optionally also
the sequence of their own ToC entries to UserGroup.key.Li.
The second security aspect covered inherently by the introduced scheme is the data
confidentiality - D does not gain access to user data and the different user access
levels are also protected from each other. The third security aspect covered in the
design of the watermarking scheme is the object authenticity using the perceptual
hash pho of the cover object o to prevent e.g. watermark copy attacks.
Using with an external audit service A one further entity to the communication setup,
the security aspect of non-repudiation could be easily implemented as an extension
of the scheme by time-stamping and system-wide, secure logging.
What is still missing in this application scenario so far is an evaluation of the
security aspects of communication confidentiality (no attacker is able to get
access to the protected data communicated by the protocol) and entity-authenticity
in the protocol design. These evaluations are given in the following sections using the
methodology and framework summarized in section 2.2.

3.3.2.1. HAAI - Scenario – Network and Task description (step 1)

The first step in the application of our framework is again the modeling of the involved
network entities, watermarking algorithms and the task to fulfill. For the application
example in this paper we choose a network with three users, of whom two have the
same access level. As CASPER doesn't support numbers as identifiers, these users
are labeled as UAA, UAB and UB of which UAA and UAB share the same access level.

The task is modeled as that the cover is transferred to UAA first, who edits it, then to

UB, who edits it and finally to UAB. As mentioned above, all those transfers are

performed through the central delivery infrastructure D.

The XML context modeling of this contextualization is done by using the authoring
demonstrator tool. Screenshots illustrating the usage of this tool in this application
scenario as well as the resulting XML files are presented below.

• Network description:

Page 62 of 94

Figure 23: Network description for our HAAI scenario implementation

The network consists of the four defined nodes D, UAA, UAB and UB. Between D and
all other three nodes exists a bi-directional connection modeled as two uni-directional
connections. In the context of this scenario direct connections between UAA, UAB and

UB are not allowed. All nodes have access to an image cover-channel and a

corresponding watermarking algorithm Alg01.

<?xml version="1.0" encoding="UTF-8"?>

<network>

<nodes>

<node>

<id>UAA</id>

<cover>

<cc>

<type>image</type>

<chancap>10000</chancap>

</cc>

</cover>

<dwm>Alg01</dwm>

<nodecap>10000</nodecap>

<pki>y</pki>

<ts>n</ts>

</node>

<node>

<id>D</id>

<cover>

<cc>

<type>image</type>

<chancap>10000</chancap>

</cc>

</cover>

<dwm>Alg01</dwm>

<nodecap>10000</nodecap>

<pki>y</pki>

<ts>n</ts>

Page 63 of 94

</node>

 ...

</nodes>

<lc>

<connection>

<src>D</src>

<dst>UAA</dst>

</connection>

<connection>

<src>UAA</src>

<dst>D</dst>

</connection>

 ...

</lc>

</network>

• Algorithm description:
For the watermarking algorithm description a symmetric scheme with two hierarchy
levels is defined.

Figure 24: Algorithm description in the context modeling demonstrator

<?xml version="1.0" encoding="UTF-8"?>

<dwms>

<dwm>

<id>Alg01</id>

<cover>image</cover>

<dwmcap>50</dwmcap>

<robustness>low</robustness>

<hierarchy>2</hierarchy>

<key>symmetric</key>

</dwm>

</dwms>

• Task description:
In the task description a data transfer along the node sequence
D�UAA�D�UB�D�UAB is defined, with D being the source in the network task

and UAB being the destination. For the whole path two hierarchy levels are required

(one labeled “A” for UAA and UAB and the second labeled “B” for UB). To simulate the

initialization performed by D another two hierarchy levels are added.

Page 64 of 94

Figure 25: Task description in the context modeling demonstrator

3.3.2.2. HAAI - Scenario – Path search (step 2)

In the second step of our framework, the path search described in section 2.2.1.1 is
invoked within the authoring tool. The result of this path search looks for this basic
application scenario as shown in figure 26. The corresponding project file for this
example is found on the CD. Normally, the user would be able to browse the different
alternative solutions identified by the authoring tool demonstrator, but this first small
application scenario allows results in only one alternative solution.

Page 65 of 94

Figure 26: Output of the task search for the HAAI application scenario in the POWER authoring
demonstrator tool

3.3.2.3. HAAI - Scenario – Path selection (step 3)

As for the CDSC application scenario here the path selection is trivial, because only
one alternative path exists.

3.3.2.4. HAAI - Scenario – Automated CASPER modeling using XML-input
(step 4a)

The chosen solution block from section 3.3.2.3 is used to generate a CASPER
protocol for further verification of desired security aspects in step 4 of the framework.
These translations are applied here to the solution block of the HAAI application
scenario and yield the following CASPER-code:

#Free variables

D, UAA, UB, UAB : Agent

cover1 : Cover

ToCA, OA, ToCB, OB : Data

keyLevel0, keyLevel1, keyLevel2, keyLevel3, keyAlg01 : SharedKey

InverseKeys = (keyAlg01, keyAlg01), (keyLevel0, keyLevel0), (keyLevel1,

keyLevel1), (keyLevel2, keyLevel2), (keyLevel3, keyLevel3)

#Processes

SENDER(D, keyAlg01, cover1, ToCA, OA, ToCB, OB, keyLevel0, keyLevel2)

FORWARDERA(UAA, keyAlg01, keyLevel0, keyLevel1)

FORWARDERB(UB, keyAlg01, keyLevel2, keyLevel3)

RECEIVER(UAB, keyAlg01, keyLevel0, keyLevel1)
#Protocol description

0. -> D : UAA

Page 66 of 94

1. -> UAA : D

2. -> D : UB

3. -> UB : D

4. -> D : UAB

5. D -> UAA : {{ToCA}{keyLevel0}, {OA}{keyLevel0},

{ToCB}{keyLevel2}%vTocB, {OB}{keyLevel2}%vOB}{keyAlg01}

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA,

vTocB%{ToCB}{keyLevel2}, vOB%{OB}{keyLevel2}}{keyAlg01}

7. D -> UB : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA,

{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01}

8. UB -> D : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA},

{ToCB}{keyLevel3}%vToCB, {OB}{keyLevel3}%vOB}{keyAlg01}

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1},

vToCB%{ToCB}{keyLevel1}, vOB%{OB}{keyLevel1}}{keyAlg01}
#Specification

#Actual variables

AVD, AVUAA, AVUB, AVUAB, Mallory : Agent

AVcover1 : Cover

AVToCA, AVOA, AVToCB, AVOB : Data

AVkeyLevel0, AVkeyLevel1, AVkeyLevel2, AVkeyLevel3, AVkeyAlg01 : SharedKey

InverseKeys = (AVkeyAlg01, AVkeyAlg01), (AVkeyLevel0, AVkeyLevel0),

(AVkeyLevel1, AVkeyLevel1), (AVkeyLevel2, AVkeyLevel2), (AVkeyLevel3,

AVkeyLevel3)
#Functions

#System

SENDER(AVD, AVkeyAlg01, AVcover1, AVToCA, AVOA, AVToCB, AVOB, AVkeyLevel0,

AVkeyLevel2)

FORWARDERA(AVUAA, AVkeyAlg01, AVkeyLevel0, AVkeyLevel1)

FORWARDERB(AVUB, AVkeyAlg01, AVkeyLevel2, AVkeyLevel3)

RECEIVER(AVUAB, AVkeyAlg01, AVkeyLevel0, AVkeyLevel1)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {AVD, AVUAA, AVUB, AVUAB}

This protocol, automatically generated from a XML context model, represents the
solution for the task at hand. In the #Free variables section the CASPER

Agents are directly taken from the nodes in the XML solutions block, while the

Objects represent the data stored in each access level. The Toc objects represent

the corresponding ToC entries for the access levels (A and B). Also, the keys used in

the protocol and their linkage are specified. The #Processes section represents the

actors and their inherent knowledge. It is assumed here that the communicating
nodes already possess all the keys they should have access to in this application
scenario.
Representing the data exchange, the #Protocol description section forms the

core of the model. Here can be seen that first all nodes are initialized with the
knowledge about which nodes they should be communicating with. The data transfer
between the delivery infrastructure D, and the users UAA, UAB, UB is simple, as

everyone receives all ToCs and data objects encrypted with the corresponding keys
(every first user on an access level re-encrypts the data exchanging the initialization
key with the key used in the further communications on this level – hereby D is
excluded from these confidential communications).
The #Actual variables, #Functions and #System sections can be directly

created from the precedent blocks. Finally, an #Intruder Information is

automatically generated, which here is provided with the knowledge of all nodes in
the network.

Page 67 of 94

This result shows the systematic translation of the solution into CASPER-code but
cannot be used in CASPER directly, as CASPER is unable to handle18 the construct
vToCA%{ToCA}{keyLevel1}%vToCA.

3.3.2.5. HAAI - Scenario – CASPER model adjustment (step 4b)

A manual adjustment in step 4b of the framework has to take place here due to the
forwarding problem identified at the end of the previous section.
Here in this application scenario we found an easy workaround to solve this problem:
The idea here is to not include this relayed message after it has been transferred
once. This doesn't influence the knowledge of a malicious attacker since it doesn't
matter if he obtains this message in the fifth protocol step, where it is initially send or
in the sixth protocol step. So each block is only send when the receiver is a User able
to alter the block or when the block has not been send since it has changed the last
time.
The required adaptation looks as follows:
#Free variables
#Processes
#Protocol description

�Replace :

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA,

vTocB%{ToCB}{keyLevel2}, vOB%{OB}{keyLevel2}}{keyAlg01}

7. D -> UB : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA,

{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01}

8. UB -> D : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA},

{ToCB}{keyLevel3}%vToCB, {OB}{keyLevel3}%vOB}{keyAlg01}

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1},

vToCB%{ToCB}{keyLevel1}, vOB%{OB}{keyLevel1}}{keyAlg01}

by :

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA}{keyAlg01}

7. D -> UB : {{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01}

8. UB -> D : {{ToCB}{keyLevel3}%vTocB, {OB}{keyLevel3}%vOB}{keyAlg01}

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1}}{keyAlg01}

#Actual variables
#Functions

#System

#Intruder Information

To verify the desired security aspects of confidentiality and entity-authenticity an own
CASPER #Specification block must be formulated for each of the two security
aspects. As we plan to verify confidentiality with this protocol we need to check that
only certain nodes have knowledge of certain messages. In this case both clients
(UAA and UAB) of access level A, which share the key keyLevel1, should have

18
 A scenario including more than one agent in a row forwarding encrypted data without decryption

cannot be modeled (the term “var1%expression%var2” cannot be compiled in CASPER, preventing

the modeling of data which is only forwarded and not processed for more than one step in a row in our
example protocol). Here we would need this construct to model the part of the application scenario
where a node is relaying a message, which he cannot decrypt himself to another node who is also

unable to decrypt this message. See communication step 6 in the initial CASPER #Protocol

description block given in the example, where D is forwarding the ToC and the data object of

access level A, which he is unable to decrypt to user UB who is also unable to decrypt it. However, as

shown for this example, sometimes workarounds are possible, depending on the application scenario
at hand.

Page 68 of 94

knowledge about the data of their access level (A). Only UB should have knowledge

of the corresponding data OB. The #Specification for confidentiality therefore

contains:
Secret(UAA, OA,[UAA,UAB]) and Secret(UB, OB,[UB])

For the entity-authenticity an set of agreements is defined covering all tuples of
directly communicating Agents and a data object they have to agree upon (here we

use the initialization keys known to D and all users:

Agreement(D,UAA,[keyLevel0]), Agreement(D,UAB,[keyLevel0]) and

Agreement(D,UB,[keyLevel2]).

3.3.2.6. HAAI - Scenario – Compilation into CSP (step 5), checking with
FDR (step 6) and protocol selection (step 7)

The CASPER compiler is used in step 5 to compile the .spl protocol description files
from CASPER syntax into CSP. During step 6 of the framework the assertions
specified in the #Specification block (see section 3.3.1.5 above) are checked by
FDR to yield information about the security aspects of confidentiality and entity-
authenticity. In case of a more complex description of an application example, where
multiple ways of modeling are compared, the step 7 of the framework then selects
the best model for the protocol, based on the security statements made by FDR and
the model complexity.

3.3.2.7. HAAI - Scenario – Summary

We here use a complex watermark-based communication application scenario that
combines a multi-level access structure and the assurance of the security aspects of
confidentiality, authenticity and integrity and non-repudiation. The application
scenario aims at providing a watermarking-based secure central data storage and
decentralized data access with full traceability of transactions and modifications as
well as the requirement that data embedded by users must remain confidential for the
central data storage.
Selected security aspects, namely data confidentiality, integrity and data-origin-
authenticity are addressed/solved directly in the watermarking scheme. Others,
namely communication confidentiality and entity-authenticity are verified for the
resulting protocol using our framework for (semi-)automated protocol verification.
The non-repudiation, as a further security aspect to be covered, could easily added
to this list by the inclusion of an external audit service A as an additional
communication entity to the scenario. This step would allow us to achieve full
traceability of transactions and modifications on protocol level, but not all required
mechanisms19 can be modeled in CASPER. .

3.3.3. HDSR - Scenario implementation

The description of this Hierarchical Digital Signatures for Reproduction of
Original (HDSR) application scenario was initially given as follows: The HDSR
scenario enhances the protocol by enabling the reconstruction of the original data
stream sent by the card reader to allow access to clear cover data. Here also
hierarchical access alternatives motivated from the HAAI scenario are further
investigated to evaluate and summarize pros and cons. Furthermore the impact of an

19
 The most problematic mechanisms here would be protocol-level time-stamping and integrity

verification, which can not be realized with the set of constructs provided by CASPER.

Page 69 of 94

erroneous communication channel (error due to transmission errors) will be
elaborated and protocol mechanisms suggested.
The intention behind the proposal of this third application scenario have been, on one
hand, the core functionalities of the other two scenarios (hierarchical access and
signature chains) and on the other hand the consideration of erroneous
communication channels.

During our work on the first two application scenarios we noticed, that for a practical
application of the CDSC scenario we already had to combine the signature chain with
hierarchical access. For the second expected innovation in the HDSR scenario – the
consideration of erroneous communication channels – we noticed that this can not be
done in the protocol generation and verification of a formal methods based approach.
Our approach would be capable of handling this question to some extend in the
context modeling by defining a robustness specific quality parameter for each cover
channel and watermarking algorithm as well as corresponding requirements in the
network task description. Nevertheless, it would require some form of probabilistic
simulation instead of model checking to solve this on protocol level, but there exists
to our best knowledge no tools in IT-security (neither for CASPER nor any other
language we looked into) to realize such probabilistic simulation.
Based on these two observations we decided to discontinue our considerations
regarding this HDSR scenario.

Page 70 of 94

4. Dissemination and public result verification
In [Kraetzer10ACM] a first version of the exemplarily implemented practical
realization of the framework was introduced on the renown ACM Multimedia and
Security Workshop in September 2010 to a watermarking- and media security
audience and discussed with experts on this field. The results of these discussions
were, next to recommended improvements, the suggestion to submit a paper on
additional findings in this context to Information Hiding 2011 (Prague) and to contact
Gavin Lowe (developer of CASPER at University of Oxford, UK) and send him a copy
of the paper.
Our submission to Information Hiding 2011 is right now in the review process of this
conference. Regarding the discussion with Gavin Lowe, it was agreed upon that
Chad Heitzenrater will approach Mr. Lowe on the subject of our research work in
POWER.
Additionally to the paper submission to Information Hiding 2011 we are right now also
preparing a submission for the Communications and Multimedia Security (CMS 2011)
conference.

Page 71 of 94

5. Summary of the results for POWER and indications for
future work

In the final chapter of this report we summarize briefly our achieved project results (in
section 5.1), give a summary and explanations on the limitations we encountered for
our methodology, theoretical framework as well as our exemplary CASPER-based
practical realization (sections 5.2 and 5.3), and give some indications how future
work might extend the research effort described here.

5.1. Summary of the achieved project results

The scientific contribution of our research work can be summarized in the
encompassing considerations on the protocol life cycle (which are new in the
context of secure communication protocols) and the comprehensive considerations
on the design of communication protocols (here summarized by the design phase
of the protocol life cycle). Such a concept for integrated context modeling,
protocol generation and -verification as it is described here, would be new even
for the domain of cryptographic communication protocols20, but for watermarking
research we are significantly extending the current state-of-the-art.

With the exemplary realization of our framework using our own context modeling
and protocol generation demonstrators, together with CASPER and FDR we
implement a very first realization of the complete design process for these protocols.

The practical prospects of the introduced approach of (semi-)automated protocol
modeling, generation and security verification can be summarized in its cost-
effectiveness. In contrast to its alternative, the manual security verification of
protocols, it is assumed to be faster and easier adaptable to specific application
scenario requirements.

Another important outcome is the identification of the limitations our
methodology and our theoretical framework as well as our exemplary practical
realization of the framework face right now. These limitations are summarized in the
following sections.

5.2. Limitations of the methodology and the theoretical framework

Following the basic idea of the formal methods approach (see section 1.1), an
approach like the one considered here for POWER relies on external (security)
evaluation regarding the primitives. This basically means that a model for the
security of the used watermarking components is required. Such a model is so far
mostly neglected in literature on watermarking evaluation which is in general rather
focused on selected robustness attacks than the security of the algorithm.
Additionally, we need definitions for watermarking characteristics which make those
characteristics directly comparable (e.g. robustness of algorithm A1 vs. robustness of
algorithm A2) for the automated solution determination (in step 3 of our framework).
One possible set of definitions that could be used as a basis for such a scheme is

20
 It has to be mentioned here that there exist some tools which solve part of the overall task, e.g. the

COSPJ compiler that produces Java implementations of protocols from CASPER-like descriptions
(see: http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/COSPJ/index.html).

Page 72 of 94

found in the profile based watermarking benchmarking approach introduced by
Lang in [Lang07]. Nevertheless, it has to be mentioned here that this task is hard for
watermarking techniques, especially when there exists right now no agreed upon way
to satisfactorily model important watermarking properties like robustness.

A general limitation to automated approaches for protocol verification, whether they
are computational complexity-based or based on formal methods, is of course the
computational complexity required to verify larger systems/protocols and the
resulting state space.
For formal method based approaches model checking is the only well established
solution method we encountered in literature. This approach has strong problems
coping with the concept of erroneous communication channels. To address these
(as was intended in the HDSR application scenario in section 3.3.3) would rather
require a simulation-based solution instead of model checking. But simulation is a
technique rather uncommon in security evaluations21 because it can not prove
security.

The work on the practical application work in sections 3.2 and 3.3 made us aware of
the following three major problems in our concept:

• Conceptualization: In our framework description we assume that we are
given neat network and task descriptions on which we can then work. In
practice this is a rather unlikely situation. More often the overall task will be
formulated rather fuzzy (e.g. “we want to implement a watermarking-based
forensic tracking protocol for the movie industry”) and the network on which
this has to be implemented will be either unknown or simply be identified as
“the internet”. There is no way this setting can be completely modeled for
protocol generation and -verification. Instead the overall task has to be broken
down into use-cases which have to be modeled and evaluated separately.
Right now no procedure is known to us to perform this task in an automatable
manner.

• Message modeling: Especially in our CDSC application scenario we noticed
that the modeling of the protocol messages is a rather problematic task, due to
the fact that these messages tend to change over time (e.g. signatures of
processing nodes are added). To model this changing behavior an own
description language for the messages would be required and the context
modeling as well as in the XML to CASPER compilation would require
evaluations of the message descriptions.

• Translation rules for the compiler: The translation rules for the XML to
CASPER compiler presented in Appendix B have been generated specifically
for the three examples used within this document. So far we found no solution
how to generate a universally applicable set of these translation rules which
would also be applicable for more complex application scenarios. Every
translator tool that is based on use-cases will be over-trained for general
purpose application. This translation problem is closely related to the message
modeling problem, which would have to be solved before a general purpose
compiler could be implemented.

21
 Except for availability evaluations, which are much closer to the domain of safety investigations than

any other security aspect.

Page 73 of 94

5.3. Additional limitations imposed by our CASPER-based
realization

The CASPER syntax is limited to a very small set of primitives which are mostly
restricted to the area of cryptography and very difficult to adapt/convert to the domain
of watermarking (for more details see Appendix A). Some examples for restrictions
introduced by the CASPER syntax:

• A situation where an agent stores a hash value (or timestamp) to compare it
with another hash value computed a few steps later in the protocol run can not
be modeled using CASPER.

• A scenario including more than one agent in a row forwarding encrypted data
without decryption cannot be modeled (the term “var1%expression%var2”

cannot be compiled in CASPER, preventing the modeling of data which is only
forwarded and not processed for more than one step in a row in our example
protocol). An example for this restriction is found in section 3.3.2, where we
would have needed this construct to model the part of the HAAI application
scenario where a node is relaying a message, which he cannot decrypt
himself to another node who is also unable to decrypt this message. However,
as shown for this example, sometimes workarounds are possible, depending
on the application scenario at hand.

The most important modifications to CASPER would be from our point of view:

• the introduction of a register set where values like hashes could be stored
outside the sequential processing

• a possibility for the definition of data structures for the messages to be
transmitted (to avoid problems like the “var1%expression%var2” example

stated above)

• a step-independent time-stamping (maybe this can also be realized via the
register set)

• a function/mechanism realizing digital signatures

Additionally, our approach would benefit from new watermarking specific
primitives in CASPER, which would allow us to model specific characteristics like
e.g. non-blind or non-invertible watermarking schemes.
Currently, only the security aspects of entity-authenticity and confidentiality can be
modeled/verified using CASPER/FDR on static networks a limited number of pre-
defined communicating entities and with strictly sequential data transmissions.
There exist language constructs and mechanisms in CASPER which also aim at
allowing for integrity verification (hashes), but these mechanisms are not working
satisfactorily. Also data-origin-authenticity can not be verified using CASPER22.

22 To provide evidence a counter-example is given here, showing that data-origin-authenticity cannot
be verified using the given approach. In the counter-example scenario an agent X sends an
unencrypted message m to an agent Y who forwards it to an Agent Z. Lets assume the integrity of
such an scenario could be modeled by giving the agents X and Z predefined knowledge of each other
and specifying an agreement between X and Z on the message m. In this case trivially an attack
should be found by the model-checker FDR representing a man-in-the-middle attack with an intruder
claiming to be node Y (which is unknown to X and Z before the protocol run). However, the results of
an FDR run on such an example show that no attack was found, therefore counter-proving this case.
The reason for this behavior seems to be the fact that CASPER is designed to check the authenticity
of two nodes exchanging certain messages. Once this authenticity is given, fulfillment of the

Page 74 of 94

Similar to integrity verification mechanisms, CASPER contains language constructs
for time-stamping but these language constructs can not be used satisfactory in
protocol design for our intended field of applications.
If the result of the security evaluation by FDR is negative (possible attacks have been
found) the output of the verification process can be used to harden the protocol. So
far no methods for the realization (manually or (semi-)automatic) of this process are
existing.

As a last practical restriction it has to be mentioned, that the computational
complexity for the verification of a protocol in FDR seems to be very high in
comparison to the size of the protocol23. So far no exact figures exist on how many
agents and protocol steps FDR can handle, because the state space resulting from
the processing of different context models of the same size strongly varies. Own
experiments with medium-sized protocols already required sometimes more than the
3GB of RAM available on our test machine. This problem, which is inherent to the
model checking approach, could partly be addressed by approaches for protocol
simplification or the usage of other model checking approaches like ATHENA
[Song1999].

In summary of these restrictions imposed by CASPER and FDR, we have to mention,
that so far only a strongly limited number of tools are available that can be adapted
for the modeling, generation and/or verification of watermarking-based protocols.
Most of those tools (e.g. CSP or AVISPA) have the same severe restrictions
mentioned above for the CASPER & FDR combination. Nevertheless, we would
expect more of such modeling tools to emerge in the near future for two reasons: on
one hand we see the immense advantages automatic protocol verification can have
over manual verification, and on the other hand, watermarking-based protocols can
offer interesting non-observability options in addition to all the security aspects
addressable also by cryptographic primitives and protocols.

agreement-statement is declared (which is the case from the beginning of the protocol run of the
above mentioned simple example, because the source and destination node know each other already
by predefined knowledge).
Nevertheless, data-origin-authenticity and integrity are two examples of security aspects which would
be beneficially for the automated verification in CASPER or similar languages, because the channels
in watermarking protocol scenarios are often considered insecure.

23

 The CASPER website (http://www.comlab.ox.ac.uk/gavin.lowe/Security/index.html) states on this
fact: “One weakness with the CSP/FDR approach is that it can only be applied to finite (typically small)
instances of the protocol. This means that if no attack is found, there may still be an attack upon a
larger instance. We are currently investigating under what circumstances it is enough to analyze only
small instances: more precisely, we have discovered sufficient conditions under which if there is no
attack on a particular small system, then there is no attack upon any larger system. Many commercial
protocols are rather large and complicated. This makes their direct analysis using CSP and FDR
infeasible, because of the resulting explosion in the state space and message space sizes; it also
makes any other form of analysis more difficult, because of the mass of details. We are therefore
investigating safe simplifying transformations for protocols, that is transformations on protocols such
that if there is an attack on the original protocol, then there is also an attack on the transformed
protocol. The idea is, starting from a large, complicated protocol, to apply as many such
transformations as possible, without introducing new attacks; if the resulting protocol is secure, then so
is the original.”

Page 75 of 94

5.4. Indications for possible future work

Regarding our framework realization: What is still missing in our realization is a
model for the security of the watermarking components/primitives introduced as
a requirement for all formal method approaches in section 1.1. This model could be
included into the watermarking algorithm description and contain information about
known vulnerabilities (against attacks), known or estimated security levels, etc. The
evaluation of these characteristics could be integrated into two different stages of the
framework: either in step 2 and step 3 (the path search and selection) or in step 4
and step 6 (the CASPER modeling and FDR checking). Both alternatives have their
specific advantages and drawbacks. If the evaluation of the security of the algorithms
is included into the path search, like to other watermarking characteristics, then the
number of evaluation runs for the FDR would be much lower. If this evaluation could
be included into an extended version of CASPER and be verified with FDR, then all
security evaluations (communication security as well as watermarking primitive
security) would be performed as one functional block.
A further requirement for efficient implementation of our framework would be a
specification of the cost or quality functions required in the selection steps (step
3 and 7) where a choice has to be made regarding possible alternative solutions.
Here we are still lacking a good concept on how to generalize such functions for a
large field of application scenarios.
Our framework would strongly benefit from extensions of the CASPER language
(see section 5.3). These extensions might strongly decrease the effort required in the
modeling and would allow us to include integrity (and partially also non-repudiation)
into the set of security aspects verifiable with this approach. Also alternative
realizations based on other languages (like e.g. AVISPA) might be worth some
practical investigations.

Regarding our methodology and theoretical framework: Here the three major
problems in our concept (conceptualization, message modeling and design of a
general purpose compiler – see section 5.2) would have to be solved. Furthermore,
research effort might be investigated into the investigation of probabilistic
simulation strategies that might replace or complement the model checking used in
our work for the verification of the protocols. Such a simulation-based approach
would also enable moving away from static network descriptions and allow
investigations on changing or even ad-hoc networks.

Page 76 of 94

6. Literature

[Boehm88] B. W. Boehm: A Spiral Model of Software Development and
Enhancement. IEEE Computer, vol.21, no.5, pp.61-72, doi: 10.1109/2.59, May 1988.

[Boehme09] R. Böhme: An Epistemological Approach to Steganography, in S.
Katzenbeisser and A.-R. Sadeghi (Hrsg.): Information Hiding, LNCS 5806, Springer-
Verlag, Berlin Heidelberg, 2009, S. 15–30.

[Col07] D. Coltuc, J. Chassery: Very Fast Watermarking by Reversible Contrast
Mapping. IEEE Signal Processing Letters, Vol. 14, No. 4, IEEE, APRIL 2007.

[Comesana07] P. Comesana and F. Perez-Gonzales: On the capacity of Stego
Systems. Proc. ACM MM&Sec’07. ACM, 2007.

[Cormen01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein: Introduction to
Algorithms. 2nd ed. MIT Press and McGraw-Hill, ISBN 0-262-03293-7. Section 22.3:
Depth-first search, pp. 540-549, 2001.

[Dit04] J. Dittmann, S. Katzenbeisser, C. Schallhart, H. Veith: Provably secure
authentication of digital media through invertible watermarks. Cryptology ePrint
Archive, Report 2004/293 (2004) http://eprint.iacr.org/

[Dittmann05] J. Dittmann, S. Katzenbeisser, C. Schallhart, H. Veith: Ensuring Media
Integrity on Third-Party Infrastructures. In Proc. 20th IFIP International Information
Security Conference (SEC2005), Springer Verlag, 2005, pp. 493-507.

[FDR] FDR user manual. Formal Systems (Europe) Ltd..
http://www.fsel.com/documentation/fdr2/html/

[Fries03] T. Fries: Oberflächenmesstechnik für Labor und Produktion. In: VDI-
Berichte 1806, VDI Verlag, 2003, S. 217–225.

[Hoare04] C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall
International, 2004.

[Kraetzer10ACM] Christian Kraetzer, Ronny Merkel, Robert Altschaffel, Eric
Clausing, Maik Schott, Jana Dittmann: Modelling Watermark Communication
Protocols using the CASPER Modelling Language. Proc. ACM Multimedia and
Security Workshop 2010 (MMSec’10), Rome, Italy, 09.-10.09.2010, ACM Press, New
York, NY, ISBN 978-1-450-30286-9, S. 67-72, 2010.

[Lang07] A. Lang: Audio Watermarking Benchmarking – A Profile Based Approach.
PhD Thesis. Otto-von-Guericke-University Magdeburg, Germany, Dept. of Computer
Science, ISBN: 978-3-940961-22-8, 2007.

[Lowe98] G. Lowe: CASPER: A Compiler for the Analysis of Security Protocols.
Journal of Computer Security, Society Press, 1998.

Page 77 of 94

[Lowe09] G. Lowe, P. Broadfoot, C. Dilloway, M. L. Hui: CASPER - A Compiler for
the Analysis of Security Protocols. User Manual and Tutorial, Version 1.12, Oxford
University Computing Lab, September, 2009.

[Newman07] R. Newman: Computer forensics: evidence, collection, and
management. Auerbach, 2007.

[Pimentel08] Juan Carlos López Pimentel and Raúl Monroy: Formal Support to
Security Protocol Development: A Survey. Computación y Sistemas Vol. 12 No. 1,
2008, pp 89-108, ISSN 1405-5546, 2008.

[Roscoe94] A. W. Roscoe: Model-checking CSP. In A classical mind: essays in
honour of C. A. R. Hoare, Prentice Hall International (UK) Ltd., 1994.

[Royce1970] W. Royce: Managing the Development of Large Software Systems.
Proceedings of IEEE WESCON 26, August 1st-9th, 1970.

[Ryan00] P. Ryan, S. Schneider, M. H. Goldsmith: Modelling and Analysis of Security
Protocols. Addison-Wesley Professional, ISBN-13: 978-0201674712, 2000.

[Schott10] M. Schott, C. Kraetzer, J. Dittmann, C. Vielhauer: Extending the Clark-
Wilson Security Model for Digital Long-Term Preservation Use-cases, Proceedings of
Multimedia on Mobile Devices 2010, Electronic Imaging Conference 7542,
IS&T/SPIE 22nd Annual Symposium, San José, January 18th-19th, 2010.

[Sheppard01] N.P. Sheppard, R.S. Naini, P. Ogunbona: On multiple watermarking.
Proc. ACM Multimedia and Security Workshop 2001, Ottawa, Ontario, Canada, 5
October 2001, pp 3–6, ACM, 2001.

[Song1999] D. X. Song: Athena: a new efficient automatic checker for security
protocol analysis. In Proceedings of the Twelth IEEE Computer Security Foundations
Workshop, pp. 192-202, IEEE Computer Society Press, 1999.

[Vigano05] L. Viganò: Automated Security Protocol Analysis with the AVISPA Tool.
Proc. XXI Mathematical Foundations of Programming Semantics (MFPS'05), 2005.

Page 78 of 94

Appendix A: Basic CASPER constructs – a introduction
with a focus on watermarking protocols
Since CASPER is not designed to verify watermarking-based security protocols,
some effort has to be spent on adapting this language (or more precisely its usage)
towards the requirements of POWER.
To do so, this appendix is split into four parts: the first part briefly summarizes basic
concepts in CASPER models and a gives a short protocol example, the second part
focuses on simulating a watermark message and watermarking algorithms in
CASPER, the third part is concerned with watermarking infrastructure modeling and
the last part with watermarking protocol security modeling in CASPER.

Basic concepts in CASPER models

CASPER ([Lowe98], [Lowe09], [Ryan00]) as a protocol modeling tool offers the
possibility to represent the design of a protocol in a human- and machine-readable
format, which can then be compiled into Communication Sequential Processes (CSP;
[Hoare04], [Roscoe1994], [Ryan00]) notation to be verified by the FDR (Failures-
Divergences Refinement; [FDR]) model checker. If FDR returns a negative statement
while running the verification process, a possible attack on the communication
scenario is found. With the usage of this procedure, the security aspects of
confidentiality, authenticity and integrity of messages communicated in a designed
protocol can be evaluated in an automated way.
The protocol description in CASPER is structured into eight well defined blocks.
These blocks are named #Free variables, #Processes, #Protocol

description, #Specification, #Actual variables, #Functions,

#System and #Intruder information. The right order of these blocks is needed

for the compiler but is of no importance for the understanding of the protocol
modeling process.
A very simple example of an agent A sending a message mes to an agent B using a

symmetric encryption is given in table 1.

Part Topology Attack scenario description

1 #Free variables

A,B : Agent

mes : Message

Skey : SharedKey

InverseKeys = (Skey,Skey)

2 #Processes

SENDER(A,mes) knows Skey

REICEIVER(B) knows Skey

3 #Protocol Description

0. →A : B

1. A→B : {mes}{Skey}

4 #Specification

Secret (A, mes, [B])

5 #Actual variables

AVA, AVB, Mallory : Agent

AVmes: Message

6 #Functions

Page 79 of 94

7 #System

SENDER(AVA,AVmes)

RECEIVER(AVB)

8 #Intruder Information

Intruder = Mallory

IntruderKnowledge = {AVA,AVB}

In the #Free variables section all the variables (including the agents) used in the

protocol are specified together with all functions. The given example specifies two
variables A and B which are of type Agent and a data-object mes of type Message.

A shared key Skey is also given representing a symmetric key used in this example.

A pair of inverse keys needs to be specified for this shared key to signal that a
message encrypted with Skey will become the original message after being

decrypted with Skey again. If a key is inverse to itself it is a symmetric key. If it is

inverse to any other key, it is an asymmetric key. In the current example Skey is

inverse to Skey representing a shared secret in a symmetric key scenario.

The #Processes section describes the agents participating in the protocol. Each

agent is represented by a process (i.e. SENDER, RECEIVER) including a variable of

type Agent as input and additional variables (i.e. mes). The keyword knows tells the

program which functions are known by this process in addition to the knowledge it
gains by the parameters communicated to the process. In the given example both
agents know the shared key Skey due to the assigned parameters. Agent A also

knows the Message mes.

The block #Protocol description represents the communication steps of the

protocol, each line representing one step. These steps follow a simple source →

destination : message – syntax.

In our example, agent A is told by the environment about the existence of an agent B

in an initialization step 0. He then sends its value of mes to agent B in step 1 of this

example. Before the sending he encrypts it with the shared key Skey

Security aspects to be checked are defined in the #Specification section. There

exist two main constructs for defining specification. First is a secret specification,

stating, that some piece of data is only known to certain nodes after completion of the
run. The keyword secret in our example states that the message mes is a secret

only known to agent A and is in addition only allowed to be known by agent B. If any

other agent gains access to this secret during the protocol run this is returned as a
possible attack.
Another important statement in the #Specification section is of the form

Agreement(A,B,[mes]). It can be used for verifying the entity-authenticity

regarding the communication partners. In the case of the communication partners
being directly connected to each other (with no additional node in between) FDR
checks whether A and B completed a protocol run with each other (both agreeing on
the value of the transmitted mes) concluding that they are correctly authenticated
(here entity-authenticity) to each other.

In the #Actual variables block certain values are allocated to the variables, i.e.

AVA is the specific value of the variable A. This block can be derived easily from the

Page 80 of 94

#Free variables as the only addition is another Agent in form of an Intruder,

usually named Mallory.

In the #Functions section functions can be defined. Within the context of our

work in POWER we found no functions provided by CASPER which are useful for
watermarking protocol modeling.

In the #System block the specific values of the variables given in this scenario are

handed to the agents. Similar to the #Actual variables this can be derived

directly from the #Processes block.

The block #Intruder Information defines the intruder and his knowledge. In the

given example - according to Kerckhoffs’ law - he has all the knowledge except the
secret key and the message (which is explicitly defined as being secret in the
#Specification block).

By changing the information specified in the eight CASPER blocks, different
topologies, different security aspects as well as different attacker scenarios can be
defined. #Free Variables, #System, and #Protocol Description all govern

the topology and will be changed to represent other topologies.
By changing the #Specification block, different security aspects can be checked,

while by changing the #Intruder Information, different attacker scenarios can
be modeled.

Simulating a watermark message and watermarking algorithms in
CASPER

Since CASPER currently point offers no special constructs for representing digital
watermarks and the corresponding embedding and retrieving functions, an
approximated representation needs to be developed from the given constructs. We
therefore assume that an agent embeds a message mes with an (optional) overhead

oh (which might be needed for certain watermarking schemes, i.e. in hierarchical
watermarks) into a cover cov using a given watermarking algorithm. By sending the
message, the overhead and the cover object as three different items to the receiving
agent, the transfer of the watermarked cover is emulated in CASPER. The receiver
then assumes the message overhead and the cover to be the result of (an emulated)
extraction process. This very simple approximation shows similar properties than a
real watermarking scheme: A possible intruder can only be prevented from accessing
the watermark message by the usage of a key for embedding. This can be
approximated in CASPER by the encryption of the watermark message and the
overhead by this key. An intruder now still has access to the cover object (since it is
not encrypted in our emulation) but he can not read the watermark message or the
overhead. Similarly, a non-invertible watermarking scheme can be emulated by
sending a changed cover (new cover variable) to the receiver. In this case a
reconstruction of the original cover during the detection process won't be possible.

To extend our example from the previous section from sending a simple message
from A to B to sending an invertibly watermarked cover producing an overhead we

have to add a variable oh to represent the overhead created by the embedding

algorithm and a cover cov to the model. We also change the #Protocol

description block by using the symmetric key the agents know already to encrypt

Page 81 of 94

the message and the overhead since they are embedded with a key and not
extractable without it:

A→B : {mes,oh}{Skey(A)},cov

Watermarking infrastructure modeling in CASPER

The incorporation of infrastructure mechanisms like a Public Key Infrastructure (PKI)
or a Time Server (TS) can be modeled in CASPER in two different ways. The less
complex way is to assume that an agent has acquired a timestamp or the public key
of a communication partner automatically. In this case he would only add the
timestamp as another data item to be transferred to the receiver or respectively use
the public key to embed the watermarking message. The second, more complex way,
would also allow for the acquisition process of a timestamp or a public key to be
checked for security flaws. To do so the acquisition process of a timestamp or a
public key would be modeled by using additional agents acting as time- or key-
servers. In such a scenario each request to and answer from such a server would be
modeled as a separate communication step in the #Protocol description

section.

Watermarking protocol security modeling in CASPER

The definition of the security aspects that should be validated takes place inside the
#Specification block. Casper yields several constructs for such a specification of

which a secret and an agreement are the most common.

CASPER (http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/manual.pdf page
31) defines a secret as follows:
”Secret(A, s, [B1,…,Bn]) specifies that in any completed run, A can expect the

value of the variable s to be a secret; B1 , … ,Bn are the variables representing

the roles with whom the secret is shared. More precisely, this specification fails if A

can complete a run, where none of the roles B1 , … . ,Bn is legitimately taken by

the intruder, but the intruder learns the value A gives to s.

Therefore the usage of a secret-Specification lies in the modeling of confidentiality,
as it states that the protocol is vulnerable if an intruder can obtain a certain piece of
data.”

An agreement is defined for CASPER as:
“Agreement(A, B, [v1,…,vn]) specifies that A is correctly authenticated to B,

and the agents agree upon v1 , … , vn; more precisely, if B thinks he has

successfully completed a run of the protocol with A, then A has previously been

running the protocol, apparently with B, and both agents agreed as to which roles

they took, and both agents agreed as to the values of the variables v1 , …, vn,

and there is a one-one relationship between the runs of B and the runs of A.”

This means that an agreement is fulfilled if two nodes are authenticated to each
other. This specification is used to prove entity-authenticity.

The #Intruder Information yields further possibilities for security checking as it
allows to model attackers that have gained any chosen amount of knowledge about
the system in regard. This block can be automatically created giving the intruder a
standard set of knowledge. This could be - according to Kerckhoffs’ law - all the
information which is not explicitly specified as secret or a key not supposed to be

Page 82 of 94

known by the intruder. Other possible scenarios would i.e. include a case where the
intruder learned a secret key by means of social engineering.

#Intruder Information
Intruder = Mallory
IntruderKnowledge = {AVA,AVB,Mallory}

In the given example Mallory does not know mes because he doesn’t have the

symmetric key. If the key Skey would be added to this knowledge, it would obviously
yield other results regarding the security of the protocol.

Page 83 of 94

Appendix B: Translation rules
In this appendix the translation rules required to translate XML context models into
CASPER protocols (see section 2.2.1.2) are described in detail. These rules have
been designed to translate our application scenarios presented in sections 3.2 and
 3.3 – they will not be complete for general purpose translation into CASPER. The
rules are implemented by the translator tool for CASPER protocol generation from
the XML context models described in section 3.1.2.

Note: As CASPER doesn't support numbers in variable names, each instance of “1”
in an identifier is translated to “a”, “2” to “b”, and so on. To allow for easier separation,
all XML code is given in Courier New font, all CASPER code in italic Courier

New font.

For better clarity the rules of translation are presented here in the order the resulting
instructions will appear in the resulting CASPER-Protocol. Therefore this Appendix is
structured into the eight blocks of a CASPER file: #Free variables,

#Processes, #Protocol description, #Specification, #Actual

variables, #Functions, #System, and #Intruder information.

#Free variables

Here the variables used in the protocol are declared, common types and their
counterparts in the XML context model are:

<Agents> : Agent

Agents are taken from the <src> and <dst>-Tags of the <subtasks>

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

</subtask>

Becomes in CASPER

A,B : Agent

Rule 1
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

� [NODESRC],[NODEDST] : Agent

<Covers> : Cover

Covers are identified by the <id>-Tags of different <covers> inside the
<subtasks>

Example:

Page 84 of 94

<cover>
<id>cover1</id>
<type>image</type>

</cover>

Becomes in CASPER:
cover1 : Cover

Rule 2
<cover>

 <id>[COVER]</id>

� [COVER] : Cover

<Data> : Data

Data blocks are taken from the <content>-Tag of different <messages> inside the

<subtasks>. This concerns only the raw data blocks, because encryption, hashing

or signing are handled separately.

Example:
<content>

mes

</content>

Becomes in CASPER:
mes : Data

Rule 3
<content>

 [DATA]

� [DATA] : Data

<Keys> : sharedkey

The used keys are a more complex construct, with the necessity to take required
information different tags in the XML context model. First, all different <dwm>-blocks

that are marked as using a symmetric key (i.e. which contain a
<key>symmetric</key> statement) get a key assigned.

Example:
<dwm>

<id>dwm1</id>

...

<key>symmetric</key>

</dwm>

Becomes in CASPER:
keydwma : sharedkey

Page 85 of 94

Second, keys might also be used by encryption in the <message>-blocks. If this

encryption is marked as symmetric (<encrypted-symmetric>) a key for the

corresponding level of the message must be created.

Example:
<message>

<id>message</id>

<level>0</level>

<content>

<encrypted-symmetric>

Data

</encrypted-symmetric>

</content>

</message>

Becomes in CASPER:
keylevela : sharedkey

It is also possible that asymmetric encryption is used. In this case we assume that a
message is encrypted with the public key of the recipient. So, a pair of keys must be
defined in that case.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

<encrypted-asymmetric>

Data

</encrypted-asymetric>

</content>

...

Becomes in CASPER:
SkeyB : secretkey

PkeyB: publickey

Furthermore, when using signatures asymmetric keys are also used. In this case we
assume that a message is signed with the secret key of the source. A pair of keys
has to be specified in this case.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

<signed>

Data

</signed>

</content>

Page 86 of 94

...

Becomes in CASPER:
SkeyA : secretkey

PkeyA : publickey

Rule 4
 <id>[DWM]</id>

 ...

 <key>symmetric</key>

</dwm>

�

key[DWM] : sharedkey

<level>[LEVEL]</level>

<content>

 <encrypted-symetric>

 [DATA]

 </encrypted-symetric>

</content>

�

keylevel[LEVEL] : sharedkey

<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 <encrypted-asymetric>

 [DATA]

 </encrypted-asymetric>

 </content>

�

Skey[NODEDST] : secretkey

Pkey[NODEDST] : publickey

<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 <signed>

 [DATA]

 </signed>

 </content>

�

Skey[NODESRC] : secretkey

Pkey[NODESRC] : publickey

InverseKeys = <Keylist>

Page 87 of 94

From the list of keys generated by the application of rule 4 the relation between those
must be specified. For symmetric keys the keys are inverse to themselves. For
asymmetric keys the public key is inverse to the secret key of the same node.

keydwma : sharedkey

SkeyA : secretkey

PkeyA: publickey

Is extended by:
InverseKeys = (keydwma,keydwma),(SkeyA,PkeyA)

Rule 5
[KEY[LEVEL]] : sharedkey

�

InverseKeys = ([KEY[LEVEL]],[KEY[LEVEL]])

[SKEY[NODE]] : secretkey

[PKEY[NODE]] : publickey

if [NODE] == [NODE] �

InverseKeys = ([SKEY],[PKEY])

H: HashFunction

If any part of any message is containing hashes, a hash function H has to be added

to the CASPER statements.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

<hashed>

Data

</hashed>

</content>

...

Becomes in CASPER:
H: HashFunction

Rule 6
<hashed>

 [DATA]

</hashed>

�

H: HashFunction

Page 88 of 94

#Processes

Here the knowledge of the agents partaking in the protocol is modeled. Therefore
process names are assigned to all agents, starting with the source of the first subtask
which is labeled as SENDER to the destination of the last subtask which is labeled as

RECEIVER. All nodes in between are labeled FORWARDn, where n is A, B,...

according to the fact that CASPER doesn't handle numbers in designators.

Example:
NodeA, NodeB, NodeC : Agent

Becomes:
SENDER(NodeA)

FORWARDERA(NodeB)

RECEIVER(NodeC)

The knowledge of a node consists of:

• his own identity

• the keys of the dwms he uses

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<dwm>

<id>dwm1</id>

...

Becomes in CASPER:
SENDER(NodeA, keydwma)

FORWARDER(NodeB,keydwma)

Rule 7
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <dwm>

 <id>[DWM]</id>

 ...

�

[NODEPOSITION[NODESRC]]([NODESRC],key[DWM])

[NODEPOSITION[NODEDST]]([NODEDST],key[DWM])

Cover altered by a node
A cover is altered by a node, if that node sends a cover he hasn't received at any
earlier step of the protocol.
This is the case when a node is a.) the SENDER-node of the network or b.) a

FORWARDER-node that uses a certain cover while being the source src of a

Page 89 of 94

<subtask> it hasn't acquired while being the destination dst of the preceding

<subtask>.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

<meta>

<cover>

<id>coverA</id>

<type>image</type>

</cover>

and
SENDER(NodeA)

Are extended to:
SENDER(NodeA, CoverA)

Rule 8
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 <meta>

 <cover>

 <id>[COVER]</id>

if [NODEPOSITION[NODESRC] == SENDER �

SENDER(NODESRC],[COVER])

if [NODEPOSITION[NODESRC] != SENDER

 and [COVER] != [COVER FROM LAST SUBTASK] �

[NODEPOSITION](NODESRC],[COVER])

Data altered by a node
Data is altered by a node if that node sends data he hasn't received at any earlier
step of the protocol.
This is the case when a node is a.) the SENDER-node of the network or b.) a
FORWARDER-node that send certain data while being the source src of a <subtask>

it hasn't acquired while being the destination dst of the preceding <subtask>.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

data

</content>

and

Page 90 of 94

SENDER(NodeA)

Are extended to:
SENDER(NodeA, data)

Rule 9
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 [DATA]

 </content>

if [NODEPOSITION[NODESRC] == SENDER �

SENDER(NODESRC],[DATA])

if [NODEPOSITION[NODESRC] != SENDER

 and [DATA] != [DATA FROM LAST SUBTASK] �

[NODEPOSITION](NODESRC],[DATA])

The secret key of a node was declared in the #Free variables

Example:
SkeyA: SecretKey

Results in:
SENDER(NodeA,SkeyA)

Rule 10
Skey[NODE] : secretkey

�

[NODEPOSITION](NODE,Skey[NODE])

All shared keys a node has access to
A node has access to a shared key if a node sends any message corresponding to
the used hierarchy level
This property could also be modeled more complex with a key exchange scenario but
this is outside the scope of this work. Instead we use the easier method of modeling
the keys as knowledge of the nodes.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<message>

<id>message</id>

<level>1</level>

Page 91 of 94

Becomes:
SENDER(NodeA, keylevel1)

Rule 11
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <message>

 <id>message</id>

 <level>[LEVEL]</level>

�

[NODEPOSITION[NODESRC]]([NODESRC],keylevel[LEVEL])

All public keys of all other agents in the scenario

Example:
PkeyA,PkeyB,PkeyC : PublicKey

Becomes:
SENDER(NodeA,PkeyA,PkeyB, PkeyC)

Rule 12
[PKEYS] : PublicKey

�

[NODEPOSITION](NODE,[PKEYS])

#Protocol description

Here all data transfers are declared. One step is created for each subtask.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<message>

<id>message</id>

<level>0</level>

<content>

<data>data</data>

</content>

</message>

Becomes in CASPER:
A → B : data

As the message can be more complex, the resulting step becomes more complex.
Encryption, signing and hashing are possible with different results:

Page 92 of 94

If the encryption is marked as symmetric (encrypted-symmetric) the key for

the corresponding level of the message is used to encrypt.

Example:
<message>

<id>message</id>

<level>0</level>

<content>

<encrypted-symmetric>

data

</encrypted-symmetric>

</content>

</message>

Becomes in CASPER:
A → B : {data}{keylevela}

It is also possible that asymmetric encryption is used. In this case we conclude that
a message is encrypted with the public key of the recipient.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

<encrypted-asymmetric>

data

</encrypted-asymmetric>

</content>

Becomes in CASPER:
A → B : {data}{PkeyB}

Furthermore when using signatures we conclude that a message is signed with the
secret key of the source.

Example:
<subtask>

<src>A</src>

<dst>B</dst>

...

<content>

<signed>

data

</signed>

</content>

Becomes in CASPER:
A → B : {data}{SkeyA}

The last possibility is a hashed message.

Page 93 of 94

Example:
<hashed>

data

</hashed>

Becomes in CASPER:
A → B : H(data)

Rule 13
<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 <encrypted-symmetric>

 [DATA]

 </encrypted-symmetric>

 </content>

�

[NODESRC] � [NODEDST] : {[DATA]}{keylevel[LEVEL]}

<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 <encrypted-asymmetric>

 [DATA]

 </encrypted-asymmetric>

 </content>

�

[NODESRC] � [NODEDST] : {[DATA]}{Pkey[NODEDST]}

<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <content>

 <signed>

 [DATA]

 </signed>

 </content>

�

[NODESRC] � [NODEDST] : {[DATA]}{Skey[NODESRC]}

<subtask>

 <src>[NODESRC]</src>

 <dst>[NODEDST]</dst>

 ...

 <hashed>

Page 94 of 94

 [DATA]

 </hashed>

�

[NODESRC] � [NODEDST] : H([DATA])

#Specification

A #specification represents the security properties which should be checked by

the model checker. There exist two main constructs for defining a
#specification. The first is a secret statement, stating that some piece of data

is only known to certain nodes after completion of the run. This statement is used to
model and verify confidentiality. The other statement is an agreement which states

that two nodes are authenticated correctly and agree on a certain value. This
statement is used for entity-authenticity.

#Actual variables

Copy the #Free variables block and add an AV in front of each variable and add

"Mallory" as an Agent.

#Functions
This block remains empty for our watermarking-focused modeling and verification
operations.

#System

Copy the #Processes block and add an AV in front of each variable.

#Intruder Information

This block can be automatically created giving the intruder a standard set of
knowledge. This could be - according to Kerckhoffs’ law - all the information which is
not explicitly specified as secret i.e. in the general case a key not supposed to be
known by the intruder. To model advanced attacker scenarios with different sets of
intruder knowledge, manual adaptation of this block is required.

