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This document (which replaces all previous POWER reports) is structured as follows: 
On page 3, an executive summary gives a brief overview over the motivations, goals 
and results of the POWER project. 
Chapter 1 of the report introduces basics on existing approaches for communication 
protocol modeling, security aspects addressable by watermarking protocols, an 
approach for channel modeling for watermarking protocols, some considerations on 
watermarking data and/or object suitability and existing strategies for multiple 
watermarking. 
In chapter 2 the main contribution of the research work within POWER is found. This 
contribution consists, on one hand, of a theoretical framework for context modeling 
as well as (semi-)automated protocol generation and verification for watermarking-
based secure communication protocols, and on the other hand, a practical realization 
of this theoretical framework based on the CASPER modeling language. 
Chapter 3 focuses on the application of the practical realization of our framework 
onto selected watermarking application scenarios. 
In chapter 4 a very brief overview over efforts on dissemination and public result 
verification are described, followed in chapter 5 by a summary of the achieved results 
and a clear identification of limitations of our framework. 
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Executive Summary – Goals and Results of the POWER 
research project 

Within the work on the POWER project the overall problems of realizing information 
assurance (trustworthiness in the sense of integrity and confidentiality) and 
information provenance (specifically authentication of digital data objects and their 
origin) with digital watermarking as an alternative or complement to cryptography for 
several application scenarios is addressed. 
 
For the illustration of the motivation for this research on alternatives or 
complementary mechanisms for cryptography we use the following example 
scenario:  
A sensor unit (e.g. a reconnaissance UAV) is taking digital images. These images are 
combined with metadata (geo-location, timestamp, the UAVs ID, etc) and send to a 
control unit which automatically segments people in the images and adds the 
segmentation results as further metadata to the image. An operator receives the 
image and the accumulated metadata and performs further operations, e.g. 
identifying some of the persons on the images before he forwards everything to the 
next processor.  
During these processing steps, the amount of information stored or communicated 
together with the original data (digital signatures, timestamps, annotations, etc.) 
increases significantly. Encryption can be used to protect the confidentiality of the 
contents, but it does not prevent an observer to notice the amount of data 
communicated – an information that might easily reveal e.g. that especially significant 
data objects are transmitted if they are significantly larger than normal data objects 
originating from a source system. 
In a centralized data storage with system-wide access control mechanisms such 
information leakage can be easily prevented by assuring that a potential attacker can 
not observe the communication channels in question. But in ad-hoc or dynamic 
scenarios such observability can hardly be prevented by cryptographic means. 
 
An easy solution for this problem is data hiding, in particular digital watermarking. 
Here the accumulating metadata is directly embedded as watermarking message into 
the digital source data (or cover). By this targeted modification of the cover (which 
can be designed in a way that it is imperceptible by a human being and can be 
completely inverted if necessary) the addition of metadata does not increase the size 
of the data objects to be transmitted and realizes by this an un-observability with 
regard to the added metadata. Additionally, other security aspects, like integrity 
verification or object authentication, can also be realized using digital watermarking.  
 
The current problem in the application of watermarking techniques is that, while 
hundreds of different digital watermarking algorithms (as primitives or building blocks) 
exist, watermarking protocols (the rules for combining the building blocks into a 
working data communication system) are still a rather immature research field. But 
exactly such protocols would be required for the implementation of multi-user multi-
access / hierarchical-access scenarios as they are envisioned within POWER.  
 
The main goal for the POWER project is therefore the introduction of a generalized 
theoretical framework for watermarking protocol generation and (security) verification 
based on a protocol life-cycle model. The applicability of the introduced generalized, 
theoretical framework is shown with an exemplarily selected realization / 
implementation. 
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The technical solution as exemplary realization for POWER includes three different 
major blocks: First, for the development of the context model XML (extensible 
markup language) is used, to achieve a machine interpretable description of: the 
application scenario with its communication tasks, the communication network 
considered in the application scenario as well as the algorithm characteristics of the 
involved watermarking procedures. 
The second major component covered is the protocol generation mechanism. It takes 
the context model and transfers it into a protocol in the CASPER (abridgment for: 
Complier for the Analysis of Security PRotocols) formalization language. This largely 
automatized process allows for manual modifications of certain parts, e.g. the 
description of application scenario specific attacker assumptions to produce 
application specific formal communication protocol descriptions. 
The third, and for the project outcome most significant, part covered is the evaluation 
procedure performing (semi-)automatized syntactic and semantic evaluations of the 
formulated protocols using the CASPER / CSP (Communicating Sequential 
Processes) compiler and the model checker FDR (Failures-Divergences 
Refinement). This evaluation procedure performs the required security evaluations on 
the protocols and selects the most suitable protocol in case alternatives exist. 
Besides the syntactic and semantic evaluations, a security evaluation of the used 
primitives has to be performed in the POWER realization of the aforementioned 
theoretical framework, which is still an important topic for further research work. 
 
In addition to the work on modeling and realization of the framework, its application to 
selected, relevant application scenarios is illustrated, including the aforementioned 
multi-user multi-access / hierarchical-access scenarios. 
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1. State-of-the-art regarding secure communication 
protocol modeling, watermarking data and/or object 
suitability and related topics 

In this chapter some required basic definitions and explanations are presented within 
the POWER context. They include, first, a working definition on the concept of secure 
communication protocols and corresponding security verification approaches, 
second, some working definitions on security aspects and security requirements, 
third, considerations on the integration or watermarking channels into communication 
protocols, fourth, a brief investigation on which kinds of data objects can be 
watermarked in general and which cannot, and last, a summary on existing strategies 
for multiple watermarking. 

1.1. Approaches to secure communication protocol modeling 

It has to be stated first, that considerations on watermarking protocols are much less 
common in current literature than considerations on watermarking algorithms and 
their characteristics.  
In contrast to previous work on watermarking protocols (e.g. Dittmann, 
Katzenbeisser, Schallhart and Veith [Dittmann05]), where manual mathematic proofs 
are employed to ensure security in watermarking based schemes, in the POWER 
project we transfer the idea of machine-based verification of the security of 
communication protocols from cryptography to the domain of digital watermarking 
based media security protocols. 
 
A protocol, or more precisely a secure communication protocol, in the sense of the 
POWER project is defined here as follows:  

A secure communication protocol is a sequence of interactions or  
transactions between entities in a specific communications network with  
the aim of exchanging data under the assertion of pre-selected security aspects. 

 
According to Pimentel et al. [Pimentel08], two general approaches to the security 
verification of communication protocols exist in the domain of cryptography, 
which very well represents the research field of security protocols. The 
computational complexity approach validates the used primitives (a.k.a building 
blocks or components) themselves by proving that there is no 
(computational/complexity-acceptable) way to obtain a given secret without the 
correct key1. The alternative, the formal methods approach, evaluates the whole 
protocol by examining flaws in the protocol run, while the primitives are often 
considered as 'secure' (for this reason it is sometimes also called perfect 
cryptography approach). Since the work in the POWER project aims at analyzing 
communication protocols and not the underlying functions/primitives, the formal 
methods approach is chosen here. One inherent problem of this approach to 
modeling is, that it generally assumes that the used primitives cannot be broken (the 

                                                                 

1
 The computational complexity approach claims that primitives are simply functions on strings of bits. 

A protocol is considered good in this approach if an oracle cannot guess the (crypto) key, or while 
consuming the computational power at hand the probability of finding the key is slow-growing under a 
determined threshold. Although providing strong security guarantees, proofs under this approach are 
in general hard and difficult to automate.  
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perfect cryptography assumption mentioned above) and that an attack on the 
protocol must therefore lie in the protocol itself, where an attacker gains the 
knowledge (e.g. keys) to achieve his intended result. Even with modifications for this 
approach proposed in literature (e.g. “After 10 transmitted messages, encrypted with 
the same key, the attacker has broken this key.”), it cannot overcome the fact that the 
formalization must rely on external evaluation regarding the primitives2. 
Nevertheless, this basic approach is chosen for the work done within POWER. 
 
The formal verification methods introduced above can furthermore be divided into 
manual security verification using mathematic proofs (e.g. the media 
authentication scheme of Dittmann et al. [Dittmann05], presenting a reversible 
watermarking scheme using cryptographic signatures and hashes) and automated 
verification using tools such as model-checkers. While examples / tools / languages 
for the security verification of communication protocols using cryptographic 
mechanisms are common, such examples for the field of watermarking protocols are 
rare.  
 
Some selected languages that should be mentioned in this context, which are 
focused on for security evaluations in cryptographic protocols, are: 

• CASPER [Lowe98] (which uses CSP (Communicating Sequential Processes)) 

• CSP [Roscoe94] 

• AVISPA (Automated Validation of Internet Security Protocols and Applications; 
[Vigano05]) – including formalization and verification mechanisms  

• REBECA (Reactive Objects Language; http://ece.ut.ac.ir/FML/rebeca.htm) 
 
Also some stand-alone verification tools for such an approach exist, like the model 
checker FDR (Failures-Divergences Refinement; [FDR]) for machine-based security 
verification of CSP files. 

1.2. Security aspects addressable by watermarking protocols 

In IT-security literature, different definitions/classifications for security aspects are 
found. In the context of POWER we use the following definitions: 

• Confidentiality (including privacy) signifies the concealment of information or 
resources. Amongst other mechanisms, access control mechanisms support 
confidentiality in systems. In the context3 of POWER we distinguish here between 
two different aspects regarding confidentiality: the concealment of the contents of a 
message (classical cryptographic confidentiality) and the un-observability of 
metadata embedded in watermarking schemes (as a distinguishing feature for 
watermarking-based approaches that can not generally be achieved by usage of 
cryptographic mechanisms).  

• Integrity in computer science and telecommunications normally refers to the 
quality or condition of data to be consistent, complete and unaltered.  

• Authenticity can be divided into two different aspects: data-origin-
authenticity is the proof or verification of the data’s origin, genuineness, originality, 

                                                                 

2
 This external evaluation, in combination with well defined interfaces, also allows for exchangeability 

of components used in the composition of a system (i.e. the exchange of an hash algorithm 
considered no longer secure).  
3
 Pimentel et al. [Pimentel08]: “Authentication and secrecy [confidentiality] are the most common 

examples of protocol security requirements. These properties have no universal interpretation and are 
formalized according to the context.” 
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truth, accuracy and/or correctness. The second aspect, entity-authenticity aims for 
the proof that an entity, e.g. a specific person or a specific node in a network, has 
been correctly identified as originator, sender, forwarder or receiver of information. By 
enforcing entity-authenticity it is ensured that an entity is the one it claims to be. 

• Non-repudiation is building on the notions of integrity and authenticity and 
aims at proving to a third party a proof that a transaction or data transmission has 
happened in a protocol exactly as it is claimed by the participants of the protocol run. 
It often involves time-stamping alongside the integrity- and authenticity-focused 
security mechanisms. 
 
Not covered in POWER are considerations on the security aspect of availability, i.e. 
the ability of using an information or resource as desired. Even though availability is 
an important aspect of reliability of systems, it can not be addressed by cryptographic 
means or by watermarking, neither by primitives nor by protocols. 
 
Security requirements describe how a security aspect has to be covered in regard 
to an incident. Three different possibilities exist how this relation can be defined. 
Security requirements either: describe how a certain security aspect can be ensured 
for a system (prevention), or address the reporting if a security mechanism identifies 
a violation of a security aspect in an incident (detection), or describe how the 
system/resource/information can be recovered into a consistent state after the 
handling of an incident (recovery). 
 
In general, digital watermarking algorithms address security requirements by means 
of detection mechanisms. For example, in case of a fragile watermark for integrity 
verification mechanisms, the violation of the integrity is not prevented but it can be 
detected afterwards.  
With watermarking protocols and the framework introduced for POWER we move 
from detection into prevention strategies as well. This is done by transfer of a method 
for communication protocol simulation for security verification from research on 
cryptographic protocols to watermarking protocols. By this means, flaws in secure 
communication protocols can be identified and fixed in design, prior to the roll-out into 
products or systems. 
 
The exemplary realization for the POWER framework described in section  2.2 is 
limited by our choice of CASPER as protocol description and verification language to 
the security aspects of confidentiality and entity-authenticity. In general this could be 
extended also to integrity, data-origin-authenticity and non-repudiation but there 
exists to our knowledge no language/tool that supports the modeling and verification 
of those security aspects. 
Since our approach is a formal methods approach, we assume here that the 
underlying cryptographic and watermarking primitives are secure (see section  1.1). 
In the complex application examples for the POWER framework presented in section 
 3.3, we show how our prevention-focused work on watermarking protocols interacts 
with detection-focused watermarking-based security mechanisms that cover the 
security aspects that can not be addressed by the current framework realization (e.g. 
integrity protection).  
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1.3. Channel modeling for watermarking protocols 

We define for this report the following terminology: a watermark cover is transmitted 
between the communication partners in a watermark communication scenario via 
logical channels. These covers can be either files (e.g. digital image files), packets 
in data streams (e.g. TCP packets) or any other digital data object that allows the 
embedding of a watermark (see section  1.4). Into the cover the watermark message 
is embedded, which consists either of the payload or a combination of payload and 
overhead (e.g. headers or data structures that allow for a hierarchical payload 
access). The following figure 1 visualizes those four different channel types 
considered here. 
 

 
Figure 1: Layers in the channel modeling for watermarking protocols 

 
Logical channels are established between two or more nodes in the underlying 
communication network. We consider each direction of a communication as a single 
logical channel (so we need two logical channels to model a bi-directional TCP-
connection). 
In most cases the communication partners can choose between different potential 
logical and cover channels, which are assumed to have an associated cost function. 
Therefore cover channels should be considered as exchangeable or combinable 
during operation. Nevertheless the actual choice of cover channel influences/limits 
the possible watermarking algorithms applicable for the construction of the 
watermarking channel. 
 
In this report we consider the construction of a watermarking channel as a task for a 
communicating network of nodes or agents (e.g. „Establish a payload channel from 
Alice to Bob with a capacity of at least 5 kb/hour“). This is a static network, where all 
existing agents with their characteristics (e.g. access to infrastructure like PKI, known 
watermarking algorithms, etc.) are known and where the task imposes fixed 
requirements. Therefore the task can be re-formulated as the following (network 
graph related) question: Does a path exist in the communication network from Alice 
to Bob which fulfills the task requirements? 
Depending on the answer to this graph theory problem different alternative solution 
strategies have to follow, either aiming at enabling the construction of a path or on 
finding the optimal existing path(s) or on optimizing existing paths. What shall be 
mentioned here is that all solution strategies require a specification/description of the 
network in machine-readable form, a description of the task in machine-readable 
form and a method for splitting the task into sub-tasks for processing. What is not 

Cover channel 
channel 

Watermark channel 

Payload channel 

Logical channel 
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strictly required but would be an interesting feature are quality function(s) for 
nodes/edges in this graph theory problem. 
In section  2.2.1.1 we show how this path search is realized within our work for 
POWER. 

1.4. Watermarking data and/or object suitability 

An important question, to be answered prior to addressing further conceptual work to 
be done in POWER, is the question: “What can be watermarked?” Or, to be more 
precise, the determination which data can be watermarked and which data cannot 
(e.g. “Can we watermark everything in a networked communication environment?”).  
 
There is no definitive answer to these questions, yet, but our observations on these 
matters within POWER can be summarized as follows: 

• Some plain-text data objects can not be watermarked. This is mostly true for 
protocol data and files/ data streams with an integrity verification mechanism (like a 
checksum or integrated hash function). If the integrity verification mechanism cannot 
be updated after watermark embedding then those can obviously not be 
watermarked. 

• For non-plain-text (i.e. encrypted data) different cases have to be distinguished: 
– If algorithms/protocols are used that employ homomorphic encryption then 

signal processing in the encrypted domain might be used for the watermarking 
of the considered data objects. 

– If algorithms/protocols are used that work in locally constricted modes (e.g. 
XOR or block-based ciphers in non-feedback modes like ECB) and have no 
integrity verification mechanism, watermarking could be applied (e.g. by code-
book substitution) but the result of this embedding should be assumed to be 
visible because the manipulations are performed blindly on the ciphertext 
without any possibility for transparency preservation for the corresponding 
plaintext modification. 

– If algorithms/protocols are used that do not work in locally constricted modes 
(CBC, CFB, OFB, etc) and/or have an integrity verification mechanism (e.g. 
CBC-MAC) watermarking cannot be applied. 

• For non-encrypted data and data without non-modifiable integrity verification 
checks (which should be everything besides the two points above) the basic 
assumption so far is that technically everything can be watermarked, again 
distinguishing between different cases (structured by watermarking algorithm 
characteristics): 

– Non-blind: everything can be watermarked (e.g. by using code-book 
substitution) – the question here is the transparency, but that can be optimized 
e.g. by choosing the code-book entry with the minimum required changes 

– Blind & Invertible: requires enough capacity (white Gaussian noise could not 
be watermarked in this case since the entropy is already optimal), 
transparency of the marked object remains a question for further 
considerations 

– Blind & Non-invertible: trade-of (mainly) between capacity, transparency and 
robustness 

 
All these observations can be summarized in the fact that the initial question (“What 
can be watermarked?”) has to be extended to: “What can be usefully watermarked?” 
The answer to this question has to be given cover and application scenario 
dependent and therefore requires context and task (=application scenario) modeling, 
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as it is applied within the framework presented for POWER. An example of an 
extreme cover influence is optimally coded data, which by definition would provide an 
extremely low capacity (if any) and therefore render it unsuitable for most multi-bit 
watermarking application scenarios. Related investigations found in literature, 
especially for the question of required capacities in data hiding, are e.g. [Boehme09] 
and [Comesana07] which perform such observations for steganography. 
 
As mentioned above, the application scenario directly specifies the target 
watermarking requirements (transparency, robustness, capacity, invertibility, etc). A 
different approach to address the problem might be the application of the verifier 
tuple form [Schott10]. By using this approach the requirements for data embedding 
could be specified for the different syntactic (physical-, Bit- and interpretatory level) 
and semantic (structural-, functional- and perception) levels of an information object.  

1.5. Multiple watermarking for multi-access scenarios 

According to Sheppard [Sheppard01] there are three basic approaches to multiple 
watermarking, which represent the basis for the multi-level access protocols desired 
for POWER: The first and most simple approach to this problem is re-watermarking, 
i.e. there is one watermark for each level and every watermark is simply embedded 
over all previously embedded watermarks into the same cover. This technique suffers 
from quite a lot of problems like partial overwriting or mutual elimination of the 
watermarks. The approach of segmented watermarking performs a segmentation of 
the cover's capacity so that each watermark (and in this case access level) has its 
own separate embedding area. The problems of re-watermarking therefore do not 
apply to this scheme, although a certain inflexibility is introduced when segmenting 
into static partitions. The third (and least likely realized) multiple watermarking 
approach, according to [Sheppard01] is composite watermarking. This technique 
aims for a composition of all watermarks which are to be embedded into a single 
watermark. Although this approach does not have to handle any segmentation or 
overwriting problems, the watermark is embedded here as a whole and therefore also 
needs to be extracted and re-embedded as a whole, which is not desirable for a 
multi-level access scenario. 
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2. Concept and design work for the POWER framework 
In this chapter the main contribution of the POWER research project, the 
methodology and concept of our theoretical framework for watermarking protocol 
generation and (security) verification based on a protocol life-cycle model, is 
presented.  
The applicability of the introduced generalized, theoretical framework is shown with 
an exemplarily realization / implementation of the framework. 
 
The applied methodology for the framework for POWER is a formal methods 
approach based implementation of the design phase in a general protocol life-cycle. 
The realization concept used by us within the project has the following 
characteristics: 

• It allows for machine-supported context- and task modeling for watermarking 
protocols,  

• It introduces methods for automated solution determination within the context- 
and task models for communication networks by path search, 

• It performs (semi-)automated protocol generation/deviation from the solutions 
identified, 

• It performs a machine-based verification of the security of communication 
protocols (an approach transferred to the domain of digital watermarking 
based media security protocols from cryptography). 

 
In the following sub-sections, first the concept for the theoretical framework is 
presented in section  2.1 and then an example realization, based on the CASPER 
language and an own context modeling approach, is introduced in detail in section 
 2.2. 

2.1. Concept for a theoretical framework 

This document focuses on the design phase in the life-cycle4 of communication 
protocols. This perspective is rare in the watermarking domain because most 
publications in this field focus either on the realization phase, which mainly consists 
of algorithm development and testing, or the operation phase, which incorporates 
attacks against deployed watermarking schemes. 
The following exemplary life-cycle for communication protocols is introduced 
here, to act as a basis for developing our concept, which is then further précised into 
the POWER framework for watermarking-based context modeling, protocol 
generation and -verification.  
 

                                                                 

4
 Here the life-cycle of protocols is derived from the general software development life-cycle model. 

This concept, with its well known initial waterfall-model ([Royce1970], later succeeded by a spiral-
model [Boehm88]), is a general description of software process models and the issues they address. 
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Figure 2: Exemplary software life-cycle for communication protocols 

 
The exemplary protocol life-cycle for communication protocols, shown in figure 2, 
consists of three main phases: design, realization and operation. 
In the design phase the application goal is specified (conceptualization), specific 
tasks are derived from the goals, and the communication setup as well as available 
primitives/ algorithms are modeled. Based on all these modeling operations a 
protocol generation is invoked and the result undergoes formal verification. We 
assume here that the modeling, protocol generation and verification directly influence 
each other, i.e. that problems or certain results in a later step can also result in the 
necessity to move back into a previous one.    
In the realization phase the primitives and protocol components are implemented 
and undergo a functional evaluation before the result is rolled out as a product. 
The last phase, the operation phase, consists of the initialization of the protocol in 
the application environment followed by the normal operation or intended usage of 
the protocol. At some point every protocol implementation will reach the end of its 
usefulness and will be either terminated or replaced by a successor protocol (which is 
assumed to undergo its design and realization phases during the normal operation of 
its predecessor). 
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The work within POWER is mainly concerned with the design phase in this protocol 
life-cycle, but this design phase has to provide hookups to later phases (e.g. with a 
counterpart in the realization phase, if the functional evaluation fails and the 
developers have to move back to the drawing board, or the operation phase if the 
initialization fails). 
 
The design phase of this exemplary life-cycle for communication protocols is now 
précised into the theoretical framework context modeling, protocol generation 
and -verification for POWER. The concept used to do so is loosely based on an 
observation made in [Pimentel08]: “In the application of formal methods to software 
verification, both the system and its specification are first expressed as formulas of 
some (but not necessarily the same) logic. Then, mathematical reasoning is used to 
prove that the system and the specification are related somehow, for example by 
logical implication. A state-of-the-art verification tool is capable of yielding either of 
two outputs: i) OK, indicating that the system is error-free, at least with respect to the 
coverage analysis of the corresponding tool; and ii) a counterexample, indicating how 
a system execution violates the specification. 
In the context of security protocol verification, the system is the security protocol 
under analysis, the specification a protocol security requirement and the 
counterexample actually is an attack. Authentication and secrecy are the most 
common examples of protocol security requirements. These properties have no 
universal interpretation and are formalized according to the context.” 
 
The first major point in this statement (“both the system and its specification are first 
expressed as formulas of some (but not necessarily the same) logic”) is an equivalent 
to our conceptualization (definition of a systems specification) and the context and 
task modeling (summarized here as step 1 in the theoretical framework, called 
context modeling).  
Prior to the next point in the statement from Pimentel et al. (which already focuses on 
verification), we insert here a protocol generation block since the protocols for 
POWER will not be expressed as formulas that can be created and verified at the 
same point of time. We assume here for POWER that the best way of describing the 
task (the “systems specification” in the statement from Pimentel et al.) as well as the 
network and algorithms (i.e. the system) is graph-based. In such an approach we can 
easily describe the network by taking the communicating entities as nodes and the 
defined connections as links between those nodes. The knowledge about algorithms 
is described as a characteristic of the nodes. The network task5 for the application 
scenario is a superposition of all individual tasks6 or desired information flows within 
the network. Each of those tasks is defined by giving a start and an end node (sender 
and receiver in the application scenario) and a set of requirements that have to be 
fulfilled (transmission capacities, complexity constraints, etc.). 
If the system and its specification are described in this way, then a path search (step 
2 in our theoretical framework) from graph theory can be used to determine a set7 of 
solutions (i.e. paths in the network graph that fulfill the requirements) for each task.  

                                                                 

5
 Network task: The superposition of all tasks (i.e. the expression of all goals of the application 

scenario) within one network is called network task.  
6
 Task: One complete communication pipeline from an information source to its destination. By the 

path search a task is translated into a set of alternative solutions. 
7
 This set can also be empty if absolutely no solution can be found.   
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As a consequence of this modeling approach, there exists for each application 
scenario exactly one network task, but the path search can generate a set of 
alternative network solutions (as superposition of all solutions) which all fulfill this 
network task.  
From all alternative network solutions, which fulfill the goals of the application 
scenario, one is chosen in the step 3 of our theoretical framework (the path 
selection) to act as the basis for a translation into a protocol (also called protocol 
generation - step 4 in our theoretical framework). This choice should be made based 
on a cost or quality scheme for the solutions. 
 
This whole process of protocol generation (the generation of a sequence of 
interactions or transactions between entities in a specific communications network 
with the aim of exchanging data; see our protocol definition in section  1.1) is then 
followed by the protocol verification. State-space exploration by model checking (as 
it is implemented by FDR) is the only applicable approach found in literature to 
address this problem. There exist some publications on optimizations for this basic 
approach, mainly by limiting the number of choices explored in the search space, but 
these hardly found their way into applications8. 
The model checking process consists of different steps: first, the model generation 
(step 5 in our theoretical framework), then the model verification9 by the model 
checker (step 6) and last, as step 7 in the theoretical framework, a model selection 
(in case multiple models were generated for the verification of different evaluation 
goals or to compare different alternative protocol solutions).  
The output of the verification operation should be what Pimentel et al. [Pimentel08] 
specify as: “OK, indicating that the system is error-free, at least with respect to the 
coverage analysis of the corresponding tool” […, or] “a counterexample, indicating 
how a system execution violates the specification” for the selected protocol. 
 
The relations between all the mentioned steps in the described theoretical framework 
for context modeling, protocol generation and -verification for POWER are illustrated 
in figure 3. 

                                                                 

8
 One exception to be mentioned here might be the four model checkers integrated in AVISPA which 

are focused on specific tasks and granularities and therefore perform such an limitation of the search 
space. 
9
 In case the verification identifies flaws in the generated protocol then the whole procedure moves 

back into step 3 (path selection) or step 4 (path selection) to try to eliminate that flaw. 
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Figure 3: Theoretic framework for context modeling, protocol generation and –verification (derived 
from the protocol life-cycle shown in figure 2) 
 

2.2. A CASPER-based practical realization of the theoretical 
framework 

Based on the theoretical framework introduced in section  2.1 for context modeling, 
protocol generation and -verification, here a prototypical realization implemented for 
POWER is described. This prototypical realization is then used for the application 
focused investigations in chapter  3.  
 
Early on in our work on POWER we decided to base our practical realization for the 
project upon the CASPER language ([Lowe98], see section  1.1).  CASPER is a 
simplified version of CSP and in contrast to this more complex language still rather 
good readable by humans. 
Nevertheless, the choice of CASPER imposes some rather severe constraints upon 
our realization: 

• CASPER constructs agent-based communication security models. This 
implies that the number of communicating entities is limited to a well defined 
set which allows for no dynamic changes of the communication network. 

• All communication protocols in CASPER are strictly sequential. 
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• The CASPER notation offers a limited number of constructs, which allow only 
a certain amount of mechanisms to be modeled. Digital watermarking 
algorithms need to be simulated by the use of similar constructs since they 
were not directly foreseen by the authors of CASPER. 

• The FDR model checker, used in the security evaluation of CASPER 
protocols, further limits the number of communicating entities in the protocol. 

 
Even though our CASPER (and FDR) based approach faces the aforementioned 
limitations, CASPER is chosen here for the protocol modeling because the 
alternatives (e.g. CSP or AVISPA) face similar restrictions and are in contrast to 
CASPER less human readable. 

2.2.1. The processing chain - modeling and verification steps in the 
protocol framework 

Figure 4 compares our prototypical realization in direct contrast to the theoretical 
framework. 
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Figure 4: The practical realization of the theoretic framework used in POWER
10

  

 
Besides the detailed definition of the steps in the theoretic framework, our practical 
realization for POWER has to split the fourth step (the protocol generation) into two 
parts (see section  2.2.1.2). The following sections describe in detail the steps in our 
practical realization. 

2.2.1.1. Network and task modeling, path search and -selection (steps 1, 2 
and 3 in the framework)  

The first step in the practical realization of the framework is the context modeling for 
the application scenario11. This is done in our exemplary realization by graph based 
descriptions of the network task and the network in XML structures12. The knowledge 
about existing algorithms / primitives is specified individually for each node 
(communicating entity in the graph). Furthermore the infrastructure requirements for 
the used protocol components (e.g. access to PKI for asymmetric watermarking 
schemes) need to be included into the modeling for the purpose of automatic 
evaluation. 
 
An example for the XML network task description used by us looks as follows: 
 

<?xml version="1.0" encoding="UTF-8"?> 

<network_task> 

<task> 

<src>CR</src> 

<dst>A</dst> 

<required> 

<pki>n</pki> 

<ts>n</ts>       

<hierarchy>1</hierarchy> 

<cap>32</cap> 

</required> 

</task> 

<task> 

… 

</task> 

</network_task> 

 
To improve the path search described in section  2.2 above, each task is split into 
sequences with identical requirements (called sub-tasks) which can be handled as 
one unit in the search. 
The main reason for this division into subtasks is that this allows us to change on 
processing agents between cover channels and watermarking algorithms13. After the 

                                                                 

10
 Note: The exit after unsuccessful path-search and hook-ups for input from realization and operation 

phases (see figure 3) remain. They are just skipped in figure 4 for the sake of readability of the figure. 
11

 We assume here that the goals fort he application scenario are predefined, so that the 
conceptualization is already finished prior to the application of our framework. 
12

 This XML-based context modeling allows for an easy adaptation to a wide range of different 
application scenarios, it is easily processed by computers and at the same point of time it is still 
human readable. 
13

 A brief example can illustrate when to split into subtasks and when not: In a simple watermark 
signature chain where each station either simply forwards the media file or adds its own ID to the 
watermark already embedded into a media file, a new subtask is generated each time the channel 
characteristics change (e.g. the capacity required increases by the adding of an additional ID). In this 
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path search the (sub-)solution for such a sub-task has the form: A path to transmit 
data from a starting node to a end node, over a connection of nodes with identical or 
better characteristics than start and end (i.e. on this sub-task and the corresponding 
sub-solution the watermark algorithm, its characteristics and the used cover channel 
do not change). The (sub-)solutions for one task are then combined into the 
solutions. 
The shown sub-task with source CR and destination A requires no access to any of 

the defined infrastructure components, has no hierarchy constraints (the parameter is 
set to “1” for one embedding level which is identical to a non-hierarchical embedding) 
but requires a capacity of 32 (Bit/s). 
 
Our corresponding XML network description looks like:  
 
<?xml version="1.0" encoding="UTF-8"?> 

<network> 

<nodes> 

<node> 

<id>CR</id> 

<cover> 

<cc> 

<type>data stream</type> 

<channel-capacity>1000</channel-capacity> 

<ctype>bps</ctype>  

</cc> 

</cover> 

<dwm>Alg1</dwm> 

<node-capacity>5000</node-capacity> 

… 

</node> 

<node> 

 … 

</node> 

</nodes> 

 

<lc> 

<connection> 

<src>CR</src>                  

<dst>A</dst>                

</connection>    

<connection> 

… 

</connection> 

</lc> 

</network> 
 
Each of the nodes/agents in this structure is specified with an ID (e.g. 
<id>CR</id>), the cover channels it has access to, the watermarking algorithms 
(and the corresponding embedding keys) known to the node (e.g. 
<dwm>Alg1</dwm>) and the node communication throughput in Bit/s (<node-

capacity>).  For the accessible cover channels (<cc>) the type (in this example a 

data stream), the cover channel capacity and the unit it is measured in (here 

Bit/s). After these required blocks the infrastructure component accessibility would be 
specified for each node. 

                                                                                                                                                                                                        

example no new subtask would be generated if an agent just forwards the marked cover without any 
modifications. 



Page 19 of 94 

Additionally to the nodes in this XML-structure the connections (logical channels) 
between the existing nodes are specified as unidirectional source/ destination pairs. 
 
A different XML structure describes the characteristics of the watermark 
algorithms available. The following form is used: 
 
<?xml version="1.0" encoding="UTF-8"?> 

<dwms> 

<dwm> 

<id>Alg1</id> 

<cover>data stream</cover> 

<dwm-capacity>12.5</dwm-capacity> 

<robustness>low</robustness> 

<transparency>high</transparency> 

<key>symmetric</key> 

<hierarchy>1</hierarchy> 

</dwm> 

<dwm> 

  … 

</dwm> 

</dwms> 

 

Each watermarking algorithm (<dwm>) is specified by an ID, the cover type it can 

embed into, the embedding capacity offered (in percent of the cover size), robustness 
and transparency characteristics (for this example simplified to “low”, “medium” and 
“high” respectively), as well as a key scenario and hierarchy requirements (set to “1” 
= no hierarchy; embedding on one level only in this example). 
 
The second step in our practical realization of the framework is a classical path 
search that determines all paths in the network that fulfill the requirements specified 
in all tasks (e.g. capacity, transparency, etc. requirements or the connectivity to 
required infrastructure like a PKI).  
The path-finding process implemented here for POWER is using a simple Depth-
First-Search algorithm ([Cormen01]) applied to the complete network with all its 
logical connections to determine all physical paths from the source to the destination 
node of the network task. Subsequently the nodes directly involved in each subtask 
are checked for a common watermarking scheme, i.e. they are checked for whether 
they have access to at least one common embedding and extracting algorithm plus 
the corresponding keys. When a common watermarking scheme is found the search 
for an adequate cover channel can be initiated. So every node on every found path is 
checked for available cover channels with the cover type defined by the chosen 
watermarking scheme. A path that satisfies the subtasks requirements (taken from 
the XML task description) is considered for usage when all nodes on a specific path 
have knowledge of a matching cover channel with sufficient capacity. Finally it is 
checked whether the connections between the subtasks and their composition also 
fulfil the overall task requirements (e.g. the overall channel capacity of a node is not 
exceeded).  
The procedure stops at this point with an error message if the path search can not 
determine at least one suitable path. 
 
The initialization of the task processing in the path search starts with the starting 
network, which is the modeled network without any influence of preceding 
processing. A possible path for a sub-task is therefore a path that fulfills the given 
sub-task if this would be the only sub-task in the network. 
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Figure 5: Task processing 
 

Understanding the path search requires familiarity with our approach to channel 
modeling for watermarking channels as it is described in section  1.3.  
The initial processing of a task (see figure 5) involves the following operations: First, 
check if it is possible to find at least one path for any given sub-task using the starting 
network. If the answer is “No” (Exit condition 1): give information about which sub-
task failed at which stage. The reasons could be: No logical channel, no cover 
channel, no access to required infrastructure components (like a PKI), no common 
watermarking algorithms, etc. 
If the answer of this first stage is “Yes”: identify all cover-channel-paths for which 
DWM channels are possible to the next stage. 
Second, we check if there is at least one combination of the given cover-channels for 
each sub-task that does not exceed any capacity or complexity constraint. If the 
answer to this check is “No” (Exit condition 2): we give information about where the 
problem occurs (reasons might mainly be capacity or complexity). If the answer is 
“Yes” (Exit condition 3): we have one possible solution which could in post 
processing be optimized. 
 
Table 1 shows the sequence which is performed for the path search, i.e. in the 
comparison between the network/node characteristics. Stages 1 to 3 are performed 
for each sub-task, stage 4 is the final check performed after all sub-tasks have been 
evaluated. 
 
Level Stage Operations 

1.a) Check for paths from source src to destination dst 

1.b) Check infrastructure requirements src 

Logical connection 

1.c) Check infrastructure requirements dst 

Cover-channels 2.a) Check source and destination node for common cover channels: 
 <type>…</type> 

Watermark-channels 3.a) Check source and destination node for common watermarking 
algorithms: 

Does a possible path exist 
on the starting network for 

each sub-task? 

yes no 

start 

Find all possible paths 
for all sub-task 

Does at least one possible 
combination of paths for all 

sub-tasks exist? 

yes no 

Exit condition 3 
“success” – 

return solution 

Exit condition 1 
“logical link error” 

Exit condition 2 
“higher level error” 
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 <dwm>…</dwm> 

3.b) Check the watermarking channel capacity: 
<channel-capacity>*<dwm-capacity> must be larger or equal 

than <cap> 

3.c) Check further watermarking characteristics as required by the 
scenario, e.g.: 

• hierarchical access, 

• transparency, 

• robustness, 

• etc. 

The result so far is a list of possible paths solving the problems for the defined sub-tasks 

4.a) Check for all sub-tasks the sums of the required capacities per cover 
channel 

4.b) Check for all sub-tasks the sums of the required capacities per node 

Final checks 

4.c) Check for all sub-tasks the sums of secondary restrains if those exist 
(e.g. complexity per node)  

If the result is a list of paths which solve the task, and if weights are assigned to the individual paths 
then a ranking has to be performed 

Table 1: Path search – operations sequence 

 
The output of the path search is returned in form of a list of (network) solutions in 
XML. The following XML structure combines the relevant information from network-, 
task- and algorithm descriptions: 
 
<?xml version="1.0" encoding="UTF-8" ?>  

<solutions> 

<alternative> 

<task> 

     <id>TaskA</id>  

<subtask> 

<src>NodeA</src>  

<dst>NodeB</dst>  

<meta> 

<cover> 

<id>CoverA</id>  

<type>image</type>  

</cover> 

<message> 

        <id>message</id>  

<level>1</level>  

<content> 

<data>DataA</data> 

</content>  

</message> 

</meta> 

<dwm> 

<id>dwm1</id>  

<cover>image</cover>  

<robustness>low</robustness>  

<hierarchy>1</hierarchy>  

<key>symmetric</key>  

</dwm> 

<required> 

<pki>n</pki>  

<ts>n</ts>  

<hierarchy>1</hierarchy>  

</required> 

</subtask> 

<subtask> 
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… 

     </subtask> 

    </task> 

</alternative> 

<alternative> 

 … 

</alternative> 

  </solutions> 
 
If there is no <alternative> block for a computed <solutions> there is no path 
in the network fulfilling the given task requirements and therefore no watermarking 
protocol can be developed. In any other case a separate CASPER protocol 
representation can automatically be designed for each alternative and different 
security aspects can be verified.  
Each alternative consists of several <task> and <subtask> blocks representing 

the tasks and subtasks. For each subtask a message <message> is transferred from 

a node <src> to a node <dst> using a cover <cover> and the watermarking 

algorithm <dwm> under the requirements <required>, being routed over the nodes 

<fwd> (which do noting else but passing the marked cover on and in no way change 

it).  
At least one <task> needs to be present for each alternative. 
 
The third step (the path selection) is then used to select one (network) solution for 
the given network task. This operation, which we did not implement in detail for 
demonstrators for POWER, should be quality- or cost-function based and would 
require the definition of those evaluation functions. 

2.2.1.2. CASPER protocol generation and -adjustment (steps 4a and 4b) 

The fourth step receives the selected solution as a XML structure and translates it 
into CASPER notation (for an introduction to CASPER focusing on the concepts and 
constructs required for POWER see Appendix A). Here, first an automatic 
translation is used to generate everything that can be done automatically. For this 
task an own compiler demonstrator is written by us (see section  3.1.2) to perform a 
rule based compilation of the XML context model into CASPER. The complete set of 
translation rules used in this process is described in detail in Appendix B of this 
document.  
 
Then certain aspects have to be modeled/adjusted manually (e.g. the attacker 
knowledge, which could be initialized with defaults like Kerckhoffs-compliance or be 
modeled specific to the application scenario).  
In this manual adaptation (step 4b in our framework realization example) a normal 
text editor is used by us to modify mainly the #Specification and #Intruder 

Information blocs of the CASPER descriptions.  
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2.2.1.3. CASPER compilation, FDR model checking and model selection 
(steps 5, 6, and 7) 

After the CASPER14 protocol description was generated and adjusted, it undergoes a 
syntactic evaluation while being compiled into CSP (the fifth step of our framework 
realization example), followed by a (semi-)automated model-checking based security 
evaluation using the FDR model checker (step 6). FDR returns as a result a 
statement on the security of the protocol. If the model checker finds no possible 
attacks against the security aspects required in the application scenario then the 
procedure finishes at this point with a CASPER protocol and a positive security 
statement. If the model checker finds possible attacks then either the protocol has to 
be adjusted (back to step 4) or the selected path has to be discarded and the next 
possible solution has to be evaluated (back to step 3). If necessary this has to be 
repeated until all identified solutions have been checked. 
In case different models (e.g. for different solutions) are verified, in a final step the 
one to be implemented in the realization phase of the protocol life-cycle has to be 
selected.  

2.2.2. Basic functions for the POWER framework 

To ease alternative implementations to our framework realization example, in this 
section the basic functions for the framework, which are described in detail in section 
 2.2.1) are summarized in a compact version. The basic functions (or methods), for 
protocol development in the design phase of the protocol life-cycle, with their 
corresponding input variables and outputs are:  

• Step 1) Network and task modeling (context modeling): 
o model_the_network(): returns a description of the underlying 

communication network with infrastructure connections in XML (output: 
network description nd as XML-file) 

o model_the_watermarking_algorithms(): returns a XML description of  
watermarking algorithms (output: algorithm descriptions ad as XML-file) 

o model_the_network_task(): returns a XML description of the network 
task (output: network task nt as XML-file) 

• Step 2) Path search: 
o derive_solutions(nd, nt, ad): performs a path search on the graph 

described in the network model and identifies with the set of network 
solutions all alternatives for solving the given network task (output: 
alternatives alts as XML-file) 

• Step 3) Path selection: 
o select_solution(alts): cost / quality based selection of solutions to find 

the optimal network solution (output: network solution nets as XML-file) 
o if necessary network_adaptation_steps(nd, nt, ad, weights): if no 

solution matches the requirements and if adaptation steps are allowed, 
then this method gives recommendations on how to modify the network 
to implement required changes to enable an solution at minimal cost 
(output: solution nets as XML-file)  

• Step 4) CASPER Protocol generation and adaptation: 

                                                                 

14
 Even though CASPER (and FDR) based approaches face strong practical limitations on the 

computational complexity required to verify larger systems/protocols, CASPER is chosen here for the 
protocol modelling because the alternatives for implementing the steps 4 to 6 of our framework (e.g. 
CSP or AVISPA) face similar restrictions and are in contrast to CASPER less human. 
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o protocol_derivation(nets): derive a protocol from the selected network 
solution using a translation template into CASPER (output: nets_spl spl-
file) 

o protocol_adjustment(nets_spl): (manually) adjust the protocol to 
implement application scenario specific modifications (output: spl-file 
nets_spl) 

• Step 5) CASPER compilation: 
o protocol_verification(nets_spl): perform a syntactical evaluation of the 

protocol by using the CASPER compiler (output: CSP-file, nets_csp)  

• Step 6) FDR model checking: 
o security_evaluation(nets_csp): evaluation on the protocol by FDR 

(output: FDR security statement secs) 

• Step 7) Protocol/Model selection: 
o protocol_selection(secs): in case different alternatives have been 

evaluated (output: CSP-file nets_csp of the chosen protocol and the 
corresponding FDR security statement secs) 

 
The other two phases of the protocol life-cycle (protocol realization and operation) 
are not covered by the research work for POWER (and are therefore out of the scope 
of this document), but we have to acknowledge again that they can have influence on 
the processes in the design phase. There exist feedback functions from these two 
protocol life-cycle phases into the design phase covered here (e.g. when the 
implementation or initialization show flaws in the design, see section  2.1). 
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3. Application and Evaluation Work for POWER 
This chapter is dedicated to the practical work done on application and evaluation of 
the introduced framework within POWER. It contains in section  3.1 descriptions of 
the demonstration tools as well as in sections  3.2 and  3.3 application examples that 
show how the framework (in form of its exemplary realization) can be applied in 
practice and which problems arise during this application.  

3.1. Processing chain demonstrators 

For the realization of the steps 1, 2, 3 and 4a of our framework, there exist right now 
no suitable tools which might be applied within POWER. Therefore, we decided to 
write our own demonstrators that can be used instead of text editors to solve these 
tasks faster and less error-prone.   
Important notice: our software demonstrators are no stable, tested software 
products! They are distributed in the hope that they will be useful, but 
WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 
For step 4b of our framework we use text editors, for the realization of steps 5 to 7 
the established tools CASPER and FDR (see section  1.1) are used. 

3.1.1. Demonstrator for context modeling and solution determination 

A Java-based demonstrator is developed to address step 1, 2 and 3 in the framework 
for watermark protocol generation and verification introduced in section  2.2.1.1. The 
main goals of the demonstrator are to act as an authoring tool to make the process of 
context modeling less error-prone and to allow for a visualization of the solution 
alternatives after successful path search. 
Currently the demonstrator is still in a pre-alpha state, but already the following 
functionality is provided: 

• GUI-supported generation of network descriptions 

• Generation of watermarking algorithm descriptions 

• GUI-supported generation of network tasks  

• Saving and loading projects as XML-files 

• Path search as described in section  2.2.1.1 

• Visualization of the alternative path search results 

• Generation of suggestions for required changes in the specification when no 
suitable path could be found 

 
The figures 6 and 7 below show screenshots of the demonstrator GUI. 
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Figure 6: GUI showing the dialog for task descriptions 

 

 
Figure 7: GUI showing the selected solution after successful path search 

 
The most complex of the menus in the tools is the task description, because here we 
describe a hierarchical construct (the task, consisting of subtasks – see section 
 2.2.1.1, all with specified requirements and message format information). In our 
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demonstrator software we try to solve this problem for the defined application 
examples, nevertheless our solution is still far from being optimal. 
The task description consists of three parts, which form together a hierarchical 
construct of tasks with their corresponding subtasks and the messages which are to 
be embedded. First, there is a task ID to be specified. After the set of subtasks for 
this specific task is created by adding one subtask after another, the second part of 
the task description, the subtask description includes all vital information for the path 
search, i.e. source, destination and all specified requirements. The third part is the 
specification of all information which is needed for the later translation into CASPER. 
Those include the cover properties as well as the structure and content (both editable 
and visualized in form of a tree) of every message to be embedded on each access 
level. Detailed examples for the usages of this demonstrator are given in sections 
 3.2.1.1,  3.3.1.1 and  3.3.2.1. 
The source code of this authoring tool demonstrator as an Eclipse15 project as wall 
as the resulting JAR-file are found on the CD accompanying this report. 

3.1.2. Translator for protocol generation 

The translation demonstrator generating CASPER csp-files from the XML output of 
the authoring / context modeling demonstrator is also implemented in JAVA. In 
contrast to authoring demonstrator it does not require a GUI, therefore it is 
implemented as a command-line tool. Essentially, this tool is a compiler, which 
performs a form of chart parsing16 of the well structured XML descriptions into the 
less-well structured csp-file, with its rigid 8-block structure; the translation rules 
described in Appendix B are applied. 
It expects two parameters: the solution-file from the context modeling and a name for 
the output file of the translation.  
An example call of this tool looks as follows: 
$ java –jar Translator.jar solutions.xml outfile.spl 

 
The source code of this demonstrator as an Eclipse project and the executable JAR-
file are found on the CD accompanying this report.  

3.1.3. Protocol adaptation and verification (CASPER/CSP/FDR) 

For our prototypical framework realization within POWER we used for step 5 and 6 
unmodified versions of CASPER and FDR. These tools are available at: 

• CASPER (version 2.0) installation repository downloadable from: 
http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/casper-2.0-release.tar.gz 
documentation:http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/manual.pdf 

• FDR (version 2.91): http://web.comlab.ox.ac.uk/projects/concurrency-tools/ 
With documentation available at: 
http://web.comlab.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.91.pdf 
 
The easiest way to use these two tools is by running the GUI-based casperFDR 
interface supplied with the CASPER package. Figure 8 shows the normal operation 
of this tool with an CASPER input-file being successfully compiled into CSP. 
 

                                                                 

15
 Eclipse Java IDE: http://www.eclipse.org/ 

16
 Using the dynamic programming approach - partial hypothesized results are stored in a structure 

called a chart and can be re-used. This eliminates backtracking and prevents a combinatorial 
explosion. 
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Figure 8: The CasperFDR GUI has compiled an input-file successful 

 
Figure 9 shows an example where the compiler detects an error and fails in the 
compilation form CASPER to CSP. 
 

 
Figure 9: CasperFDR detects an error while compiling an input-file 

 
Figure 10 shows an example where an input file is first successfully compiled from 
CASPER into CSP and then successfully verified by FDR. 
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Figure 10: CasperFDR checks assertions (specifications) for an input-file and finds no attack 

3.2. Illustration of the application of the framework using a basic 
scenario 

Prior to the application of our practical framework realization to the complex 
application scenario in section  3.3, here a very simple or basic scenario is processed 
with detailed descriptions of all processing steps. 
This simple example mimics the usage of a watermarking algorithm by two 
communicating users (e.g. in an integrity verification watermarking scenario). 

3.2.1.1. Network and Task description (step 1) 

In step 1 of the introduced realization framework, we perform the network and task 
description for this application scenario (see section  2.2.1.1). This is done by using 
the authoring demonstrator tool to describe the network (see figures 11 and 12), 
specifying the characteristics and knowledge of the nodes and describing the task 
(figure 13).   
 

• Network description: 
The GUI-based authoring tool demonstrator allows for a very simple definition of the 
network. Alternatively these descriptions could be also generated in XML using any 
text editor (which would be slower and more error-prone). Figures 11 and 12 show 
the definition of nodes (which require a preceding definition of a watermarking 
algorithm, which is then assigned as required knowledge to the nodes) and the 
connections between those nodes. 
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Figure 11: Algorithm definition and node specification for the basic application scenario in the POWER 
authoring demonstrator tool 

 

 
Figure 12: Network representation for the basic application scenario in the POWER authoring 
demonstrator tool 

 
The XML description as output of the authoring demonstrator looks as follows:  
<?xml version="1.0" encoding="UTF-8"?> 

<network> 

 <nodes> 

  <node> 

   <id>A</id> 

   <cover> 
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    <cc> 

     <type>image</type> 

     <chancap>70</chancap> 

    </cc> 

   </cover> 

   <dwm>dwm1</dwm> 

   <nodecap>100</nodecap> 

   <pki>n</pki> 

   <ts>n</ts> 

  </node> 

  <node> 

   <id>B</id> 

   <cover> 

    <cc> 

     <type>image</type> 

     <chancap>80</chancap> 

    </cc> 

   </cover> 

   <dwm>dwm1</dwm> 

   <nodecap>90</nodecap> 

   <pki>n</pki> 

   <ts>n</ts> 

  </node> 

 </nodes> 

 <lc> 

  <connection> 

<src>A</src> 

<dst>B</dst> 

</connection> 

 </lc> 

</network> 

 
Both users in this scenario (A and B) are connected by a unidirectional connection 

from A to B. Both know the same watermarking algorithm (<dwm>dwm1</dwm>) and 
can process image covers of the same type. 
 

• Algorithm description: 
Like the network description for this example, the algorithm description required here 
is rather simple and looks in XML as follows: 
 
<?xml version="1.0" encoding="UTF-8"?> 

<dwms> 

 <dwm> 

  <id>dwm1</id> 

  <cover>image</cover> 

  <dwmcap>70</dwmcap> 

  <robustness>low</robustness> 

  <hierarchy>1</hierarchy> 

  <key>symmetric</key> 

 </dwm> 

</dwms> 

 
This exemplary algorithm works on covers of the type image, shows a low 
robustness (fitting a integrity verification watermarking example), does not allow for 
hierarchical data embedding and is a symmetric watermarking approach. 
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• Task description: 
The most complex of the processes in the context modeling is the task description 
shown in figure 13, because here we describe a hierarchical construct (the task, 
consisting of subtasks – see section  2.2.1.1, all with specified requirements and 
message format information). In our demonstrator software we try to solve this 
problem for the defined application examples, nevertheless our solution is still far 
from being optimal. 
The task description consists of three parts, which form together a hierarchical 
construct of tasks with their corresponding subtasks and the messages which are to 
be embedded. First, there is a task ID to be specified. After the set of subtasks for 
this specific task is created by adding one subtask after another, the second part of 
the task description, the subtask description includes all vital information for the path 
search, i.e. source, destination and all specified requirements. The third part is the 
specification of all information which is needed for the later translation into CASPER. 
Those include the cover properties as well as the structure and content (both editable 
and visualized in form of a tree) of every message to be embedded on each access 
level. 
 

 
Figure 13: Task specification for the basic application scenario in the POWER authoring demonstrator 
tool 

 
The corresponding XML representation of the task description looks like: 
<?xml version="1.0" encoding="UTF-8"?> 

<network_task> 

 <task> 

  <id>taskA</id> 

  <subtask> 

   <src>A</src> 

   <dst>B</dst> 
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   <meta> 

    <cover> 

     <id>coverA</id> 

     <type>image</type> 

    </cover> 

    <message> 

     <id>message</id> 

     <level>0</level> 

     <content>  

      <data>data</data>  

     </content> 

    </message> 

   </meta> 

   <required> 

    <pki>n</pki> 

    <ts>n</ts> 

    <cap>20</cap> 

    <hierarchy>1</hierarchy> 

   </required> 

  </subtask> 

 </task> 

</network_task> 

 
The network task in this simple example consists of only one task, which itself 
consists of only one sub-task in turn. This sub-task requires that a message 
consisting of the element 'data' should be send on hierarchy level 0 (which means 

without any hierarchy) from node A to B using a cover object coverA which is an 

image. Furthermore the capacity of this message is 20, so any path needs at least 

that much capacity. It is stated that no PKI or access to a timeserver is needed for 
this task. 

3.2.1.2. Path search (step 2) 

In the second step of our framework, the path search described in section  2.2.1.1 is 
invoked within the authoring tool. The result of this path search looks for this basic 
application scenario as shown in figure 14. The corresponding project file for this 
example is found on the CD accompanying this report. Normally, the user would be 
able to browse the different alternative solutions identified by the authoring tool 
demonstrator, but this first small application scenario allows results in only one 
alternative solution.  
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Figure 14: Output of the task search for the basic application scenario in the POWER authoring 
demonstrator tool 

 
The corresponding XML representation of the solution looks as follows:  
<?xml version="1.0" encoding="UTF-8"?> 

<solutions> 

 <alternative> 

  <task> 

   <id>taskA</id> 

   <subtask> 

    <src>A</src> 

    <dst>B</dst> 

    <meta> 

     <cover> 

      <id>coverA</id> 

      <type>image</type> 

     </cover> 

     <message> 

      <id>message</id> 

      <level>0</level> 

      <content>  

       <data>data</data> 

      </content> 

     </message> 

    </meta> 

    <dwm> 

     <id>dwm1</id> 

     <cover>image</cover> 

     <robustness>low</robustness> 
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     <hierarchy>1</hierarchy> 

     <key>symmetric</key> 

    </dwm> 

    <required> 

     <pki>n</pki> 

     <ts>n</ts> 

     <hierarchy>1</hierarchy> 

    </required> 

   </subtask> 

  </task> 

 </alternative> 

</solutions> 

 

 

The XML-structure <solutions> for this application scenario contains only one 

alternative (<alternative>) and therefore only one possible path in the given 

network which satisfy the network task requirements. 
The message in this small example is directly transferred from the source of the only 
task in the scenario A to its destination B by using images as cover (cover channel 

cover1) and the watermarking algorithm dwm1 (symmetric, low robustness and no 

multi-level access). For this simple scenario no PKI or time-server access are 
required and the messages (and therefore the whole scenario do not require multi-
level access). 

3.2.1.3. Path selection (step 3) 

The path selection step (as the third step in the framework) identifies from all found 
solutions the one which is the most suitable based on a cost function. How to define 
suitable cost functions has to be derived from the given application scenario and is 
considered here a topic for future research. 
In this example only one <alternative> exists so this one is chosen automatically. 

3.2.1.4. Automated CASPER modeling using XML-input (step 4a) 

The XML to CASPER translator described in section  3.1.2 is now applied to the 
output solution alternatives from section  3.2.1.3. Hereby the corresponding 
translation rules ( 2.2.1.2 and Appendix B) are invoked. The output of the translation 
tool looks as follows: 
 
#Free variables 

A, B : Agent 

coverA : Cover 

data : Data 

keydwm1 : sharedKey 

InverseKeys = (keydwm1, keydwm1) 

 

#Processes 

SENDER(A, keydwm1, coverA, data) 

RECEIVER(B, keydwm1) 

 

#Protocol description 

0. -> A : B 

1. A -> B : {data}{keydwm1} 

 

#Specification 

 

#Actual variables 

AVA, AVB, Mallory : Agent 

AVcoverA : Cover 
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AVdata : Data 

AVkeydwm1 : sharedKey 

InverseKeys = (AVkeydwm1, AVkeydwm1) 

 

#Functions 

 

#System 

SENDER(AVA, AVkeydwm1, AVcoverA, AVdata) 

RECEIVER(AVB, AVkeydwm1) 

 

#Intruder Information 

Intruder = Mallory 

IntruderKnowledge = {AVA, AVB} 

 
At this step also the #Intruder Information can be automatically created 
giving the intruder a standard set of knowledge. This could be - according to 
Kerckhoffs’ law - all the information which is not explicitly specified as secret or a key 
not supposed to be known by the intruder. 

3.2.1.5. CASPER model adjustment (step 4b) 

In this simple example no further adjustment to the model itself is needed. However a 
#Specification representing the security properties which should be checked 

needs to be defined. There exist two main constructs for defining specification blocks: 
The first is a secret-specification, stating that some piece of data is only known to 
certain nodes after completion of the run. This one is used for evaluations on 
confidentiality in the protocol run. The second is an agreement which states, that two 
nodes are authenticated correctly and agree about a certain value. This statement is 
used for evaluations on authenticity. 
 
In this example it should be checked if the message data is only known to nodes A 

and B after a complete run. As data is the element that should stay secret, this 

would show that the required confidentiality is preserved during the protocol 
transmissions. This yields the following specification: 
#Specification 

Secret (A, data, [B]) 
 

Checking the data-entity-authenticity between nodes A and B is realised by an 
agreement-statement: 
Agreement (A,B,[data])  

 

Which states that A and B are sure of each others identity and agree about the 

current value of the element data. 

For ease of demonstration, these two specifications are verified separately using 
FDR (see files bs_secret.spl, bs_auth.spl on the accompanying CD)  
 
Another adjustment made here would be an altering of the #Intruder 

Information representing other possible scenarios. This could be i.e. the intruder 

learning a secret key by means of social engineering (which is be shown as example 
is this scenario during Step 6) 
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3.2.1.6. Compilation into CSP (step 5), checking with FDR (step 6) and 
protocol selection (step 7) 

After compiling the CASPER source code into CSP it can be checked using FDR. In 
our example (bs_secret.spl) the confidentiality is to be checked using the secret-
statement: 
Secret (A, mes, [B]) 

 
In case there are no flaws in the protocol concerning the confidentiality of the 
message transmission, FDR answers “No attacks found”. In this case we can 
assume that no attack is possible in the given system under the given assumptions. 
As mentioned already depending on the application scenario it might be of 
importance to test several different attacker scenarios which could occur as well as 
different security aspects. 
To show a possible attack on our example protocol we change the intruder 
knowledge. In this attacker scenario the intruder has learned the secret key, i.e. by 
social engineering: 
 
IntruderKnowledge = { ... ,Avkeydwm1} 
 
FDR now reports a possible attack on the protocol (known secret key): 
Starting FDR 

Checking /home/bs_secretattack.csp 

 

Checking assertion SECRET_M::SECRET_SPEC [T= SECRET_M::SYSTEM_S 

Attack found: 

 

Top level trace: 

   AVA believes AVdata is a secret shared with AVB 

   The intruder knows AVdata 

 

System level: 

Casper> 0.     ->  AVA  : AVB 

1. AVA -> I_AVB : {AVdata}{AVkeydwm1} 

   The intruder knows AVdata 

 

Checking assertion SECRET_M::SEQ_SECRET_SPEC [T= SECRET_M::SYSTEM_S_SEQ 

Attack found: 

 

Top level trace: 

Casper>   The intruder knows AVdata 

 

System level: 

Casper> 0.     ->  AVA  : AVB 

1. AVA -> I_AVB : {AVdata}{AVkeydwm1} 

   The intruder knows AVdata 

 

Done 

 

 
The output shows that a possible intruder Mallory can intercept the message from 

A to B by claiming to be B (represented by the term I_AVB) and with the knowledge 
of the secret key is now able to retrieve the content of the message. This would be a 
breach of confidentiality. 
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Also the data-origin authenticity of our example can be checked with the 
corresponding agreement statement (Mallory being between A and B, but not 

knowing the key): 
Agreement (A,B,[data])  
 

Example FDR output in case of a possible attack (man-in-the-middle): 
Checking assertion AUTH1_M::AuthenticateSENDERToRECEIVERAgreement_data   

[T= AUTH1_M::SYSTEM_1 

Attack found: 

 

Top level trace: 

   AVB believes (s)he has completed a run of the protocol, taking role   

RECEIVER, with AVA, using data items AVdata 

 

System level: 

Casper> 0.       ->    AVA    : Mallory 

1.  AVA  -> I_Mallory : {AVdata}{AVkeydwm1} 

1. I_AVA ->    AVB    : {AVdata}{AVkeydwm1} 

 

Done 

 
The error message of FDR shows a typical “Man-In-The-Middle” attack on a possible 
watermarking protocol. Even if the attacker (Mallory) cannot change the watermark 

itself (as the data-origin authenticity has been verified before) Mallory can still try to 
conduct a replay attack by delaying or resending the watermarked cover. 
 
While all examples given here represent the evaluation of only one solution block 
from the XML model, it is possible to translate different solutions into protocols, 
evaluate them and then choose the one that fulfills all given specifications best. As 
for the path selection in step 3 the specification of the corresponding cost or quality 
functions for this protocol selection is considered to be outside the scope of our 
research. 

3.3. Illustration of the application of the framework using the 
complex scenarios CDSC, HAAI and HDSR 

Three different abstract, complex application scenarios have been introduced in the 
first (M6) POWER project report document. These old descriptions of the complex 
application scenarios have been: 

• Certificate/Digital signature chain in watermarking domain (CDSC): A 
card reader or sensor device is recognized by the computer A, to which it is attached, 
by the watermark it embeds into the data stream, which it sends. This device ID of 
the reader is forwarded (again as watermark) together with the ID of computer A (as 
watermark) and the input from the device to further stations in the network for 
processing. 

• Hierarchical Access, Authentication & Integrity (HAAI): Section A has to 
send report material to a section B. The report material shall be send without any 
encryption so that every relay between A and B can observe its content. The 
complete section B will be able to verify section A as origin, the timestamp of 
watermarking and the integrity of the report from a first level of watermarking. A 
second level of watermarking will give the section chief of B additional info (e.g. 
which person in A was responsible for the generation of the report etc). 
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• Hierarchical Digital Signatures for Reproduction of Original (HDSR) The 
scenario III enhances the protocol by enabling the reconstruction of the original data 
stream sent by the card reader to allow access to clear cover data. Here also 
hierarchical access alternatives motivated from scenario II are further investigated to 
evaluate and summarize pros and cons. Furthermore the impact of an erroneous 
communication channel (error due to transmission errors) will be elaborated and 
protocol mechanisms suggested. 
 
The first two of these abstract, complex application scenarios are substituted in this 
document by real-world application scenarios, which implement the same basic 
concepts, but are more realistic and therefore better suited to identify the problems 
that are encountered when designing watermarking based protocols. 
 
The new Certificate/Digital signature chain in watermarking domain (CDSC) 
application description is taken from a forensics application scenario, where 
confidentiality (in form of privacy protection), entity-authenticity, data-origin-
authenticity and integrity have to be ensured in the watermarking-based protocol.  
 
The new design of a Hierarchical Access, Authentication & Integrity (HAAI) 
watermarking protocol used here combines a multi-level access structure and the 
assurance of the security aspects of confidentiality, authenticity and integrity. It 
extends the initial HAAI concept by considerations on data transfer via untrusted 
communication partners. 

3.3.1. CDSC - Scenario implementation 

The FRT-MicroProf sensor ([Fries03]) is a high-resolution17 fingerprint scanner using 
a chromatic white light (CWL) sensor which can be used to capture biometric 
fingerprint images on a crime scene. For such high-quality biometric fingerprint data 
several legal requirements have to be fulfilled in a forensic investigation to be 
accepted as evidence in a law suit. First, the data privacy of person related biometric 
data captured at a crime scene (which often includes biometric data of uninvolved 
people) must be protected to respect data privacy laws. Second, according to 
[Newman07], for the data to be accepted as evidence in a law suit, all data needs to 
be protected and documented for the complete path from the generation until the 
final disposition, which is called the ‘chain of custody’. It has to be proven without any 
doubts that the data is authentic (meaning it is original) and integer (no unauthorized 
modification has taken place). Third, all changes made to the data need to be 
reproducible if requested by a judge. 
 
Designing a protocol to be used in a real life, forensic application scenario using 
biometric data therefore requires these three prerequisites to be fulfilled. These legal 
requirements have to be mapped to measurable security aspects which need to be 
included into the design of a proposed protocol. The data privacy (protection against 
unauthorized revealing of person related data) can be assured by including 
confidentiality mechanisms, but still it has to be verified in the protocol. Authenticity 
and integrity are stated in [Newman07] to be the essential requirements to preserve 

                                                                 

17
 The sensor can be used to contactlessly scan latent fingerprint traces, e.g. at crime scenes. The 

CWL sensor head has maximum resolution of about 2µm in the x/y-plane and a resolution of about 
6nm in the z-plane. 



Page 40 of 94 

the chain of custody. For the reproducibility requirement a secure way of 
documenting data-modifications needs to be implemented. 
As a result the three mentioned legal requirements needed for a protocol to be 
accepted as evidence in a forensic application scenario can be mapped to the 
measurable security aspects of confidentiality, data-origin-authenticity, entity-
authenticity, integrity and the need to enable reproducibility. 
 
Here, we propose a Certificate/Digital signature chain in watermarking domain 
(CDSC) solution for this complex and real-world relevant application scenario, i.e. we 
propose to use a watermarking protocol as an alternative to present purely 
cryptographic approaches. This new approach has several advantages. As an 
example, if an optical scan of a crime scene is made and only the biometric 
fingerprint area of the image is obfuscated by substitution with a visual watermark to 
protect the privacy of the biometric data, the surroundings of the fingerprint can still 
be seen and analyzed by personnel investigating other aspects of the crime. Without 
having access to the necessary secret key and therefore to the fingerprint area the 
privacy protection of the data is enhanced (which would not be possible in a purely 
cryptographic protocol). Furthermore, meta-information about the capture of the 
fingerprint (such as time, capturing officer or resolution) or changes applied to the 
image (such as the application of filters, binarization of fingerprints, etc.) as well as 
additional security measures (such as signatures or hashes) can be easily stored as 
watermark payload binding the meta-data to the object without the need to create 
additional objects and implementing the un-observability that  distinguished 
watermarking from encryption. 
The overall setup using the FRT CWL sensor suits our CDSC scenario very well 
because of the following characteristics: 

• It enables us to evaluate the CDSC scenario in the context of a real project 
involving highly sensitive person related data. 

• Several nodes exist in the processing chain which are changing the data in 
different ways (some may only sign the data; some may alter the cover or 
extract/embed data). 

• Due to the assumed application scenario in forensics the chain-of-custody 
needs to be assured, requiring: 

• direct watermarking of the sensor data at the sensor 
• authenticity and integrity verification for each processing and transfer 

step 
• Mechanisms enabling reproducibility of changes made to the data 

• The intended usage in forensic applications requires a second layer of access 
restrictions for reasons of data privacy protection. The first layer (or hierarchy 
level; here called “public data”) allows every legitimate user of the system to 
retrieve metadata (like e.g. a case number) form a public watermarking part, 
while only case-specific access to the second hierarchy level, containing 
“private data”, i.e. the potential evidence (here the fingerprint) and information 
about its processing, together with the required signatures of the processors, 
can be allowed. Different multi watermarking / hierarchical watermarking 
approaches introduced by Sheppard (see section  1.5) might be used here to 
implement these two required hierarchy levels for the watermarking scheme 
used. 

 
Regarding the watermarking message generation, the watermarking approach 
developed to implement the CDSC scenario is based on an blind, invertible, non-
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transparent, fragile secure medial authentication scheme introduced by Dittmann and 
Katzenbeisser in 2004 / 2005 ([Dit04], [Dittmann05]), which can provably assure the 
authenticity and integrity of the cover. The scheme is applied to biometric fingerprint 
data from the FRT CWL sensor and extended to assure data privacy as well as to be 
suitable for a digital signature chain scenario and hierarchical watermarking. Also the 
developed approach enables us to distinguish between private and public 
watermarking data where the former one needs case specific access protection and 
the latter one can be freely accessed by any legitimate user of the system. 
The concept of the scheme is to divide a cover image O into an unchangeable area 
AO and an embedding area BO, as shown in figure 15.  
 

 
Figure 15: Selection of the embedding area BO of the cover image which is substituted by the 
watermark including the compressed original pixel values and payload (taken from [Dittmann05]) 

 
The original pixel values of the embedding area BO are substituted by a compressed 
and encrypted version of BO concatenated with the watermark payload which assures 
the obfuscation of the original embedding area values but which at the same time 
contains the original pixel values, payload and signature/hash data in form of a 
watermark (see figure 16). 
 

 
Figure 16: Structure of the cover image: Unchanged pixel area AO and embedding area BO which is 
comprised of two parts for private and public data 

 
The location information of the embedding area BO is later stored in form of a location 
map in a second watermarking process. This procedure uses a transparent 
difference expansion annotation watermark approach introduced by Coltuc et. al 
([Col07]) to embed the location map without visual artifacts in the watermarked 
image. 
The extended approach can assures the following security aspects: 

• Authenticity 
• Integrity 
• Confidentiality 
• Privacy protection (for the person-related Biometric fingerprint data it is 

designed for) 

Unchanged pixel Private data 
(Compressed original pixel values of 
part BO, hash over original picture, 
private data - everything encrypted) 

Public data 
(Signatures, public data) 

BO – changed pixel AO - unchanged 
pixel 

Image Sensor Data 
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• Reproducibility (if trusted nodes store changes they made in the private data 
area) 
 

In the Digital Signature Chain of the CDSC – Scenario each node has the option to 
apply an arbitrary combination of the following actions to the watermarking object: 

• Verifying/adding signatures 

• Accessing/writing public data 

• Accessing/writing private data (private key required) 

• Reconstruction of original image (private key required) 

• Selection of new embedding area 
 

With the help of these options also different types of multiple watermarking or 
hierarchical watermarking described by Sheppard ([Sheppard01]; see section  1.5) 
could be realized. With the selection of a new embedding area the image can be re-
watermarked. By extracting the private data and reconstructing the original image a 
watermark-decomposition approach can be used. If only the forwarding of a 
watermarked object is to be logged a forwarding node can sign the object and store 
the signature in the public area. Each node can then independently check each 
embedded signature of previous forwarding nodes. 
 
Regarding the embedding process used in the watermarking algorithm (or primitive) 
for our CDSC demonstrator, we employ the following concept: First we context based 
divide the cover image O into the unchanged area AO and the embedding area BO. 
For this purpose we use the Segmenter module shown in figure 17. We can select BO 
either by manually drawing a polygon in a graphical user interface or automatically by 
content identification with the help of Gabor and median filters. The location 
information of BO is stored in the location map LM. 
 

 
Figure 17: The Structure of the developed watermarking scheme – embedding process 
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In the Watermark Embedder module the original pixel values of the area BO are 
concatenated with the private data Dpriv and then compressed:  
 

c = C(BO || Dpriv) 
 
A hash value h of the original image is computed using SHA512:  
 

h=H(O).  
 
The compressed data c and the hash value h are then concatenated and encrypted 
using DES56:  
 

e = DES56sk(c || h) 
 
A signature s is computed over the unchanged pixels AO and the encrypted data e: 
 

 s=S(AO || e) 
 
The final watermark w is then generated by concatenation of the encrypted data e, 
the signature s and the public data Dpub as well as padding (up to full capacity):  
 

w = e || s || Dpub || padd 
 
The created watermark w is then inserted into the image O by substitution of the area 
BO with the watermark, the location information is provided by LM: 
 

O‘=Substitute(LM,w) 
 
The Location Map Embedder module then inserts the location map LM together with 
additional meta information into the watermarked object O’. This is done by an 
invertible difference expansion approach introduced by Coltuc ([Col07]) using a 
known seed (which acts like a system-wide secret):  
 

O‘‘=Embseed(O‘,LM) 
 
Since the developed approach is fragile and visible by design, the most important 
watermarking characteristic to analyze is the capacity. The compression rates of the 
embedding area BO and the location map LM are the major influence factors to the 
achievable capacity.  
Since compression rate of BO is completely unpredictable also the capacity can vary 
largely from very low to extremely high embedding rates. For most cases BO can be 
compressed to at least some extent. Since the signature and hash sizes to be stored 
in this CDSC scenario are comparably low, it should be possible in most cases to 
assure the space needed for integrity and authenticity information. 
If the capacity is almost completely used and the fingerprint occupies quite a large 
area of the image, some bytes of the capacity may be needed for the embedding of 
the location map. 

3.3.1.1. CDSC - Scenario – Network and Task description (step 1) 

In step 1 of the introduced realization framework, we perform the network and task 
description for this application scenario (see section  2.2.1.1). For this purpose we 
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have to give a more specific description of the application scenario at hand. Here the 
general forensics setup introduced above is limited in the conceptualization to the 
following data flow protocol:  
Our high-resolution fingerprint-scanner is exemplary capturing and watermarking the 
biometric data at a crime scene, representing the sensor S. The traces are then sent 
to a forensic expert FE1: S�FE1. The expert processes the data (e.g. enhances the 
quality of the image) and sends it on to another forensic expert FE2 who further 
processes the image or extracts in-formation from it (such as fingerprint verification): 
FE1�FE2. Finally the image is taken to a court hearing C where it can be used as 
evidence: FE2�C. This modeled scenario can easily be extended for other forensic 
application scenarios according to the number of sensors, forensic experts or court-
hearings needed. 
All four nodes of the proposed scenario need to have access to the biometric data for 
capturing, processing or reviewing it. They are considered trustworthy therefore 
having knowledge of the secret key needed to extract the confidential payload and to 
reconstruct the original biometric image. Therefore, while S is creating the image, 
FE1, FE2 and C can reconstruct it, alter the payload and/or the cover image and re-
embed data. Additionally, all parties have to check the signatures of sources they 
received an image from and embed their own signature before sending an image to 
the next destination. All this information is modeled in the first step by specifying the 
knowledge of the nodes and the watermarking scheme dwm with the help of XML. 
 
The XML context modeling of this contextualization is done by using the authoring 
demonstrator tool to describe the network (see figure 18), the algorithm (figure 19), 
the messages required for the two defined access levels and the network task 
(described here as three tasks each containing one sub-task, for sub-task description 
S�FE1 see figure 20). 
 

• Network description: 
Figure 18 shows the network description of our CDSC application scenario realization 
in the authoring tool demonstrator. 

 



Page 45 of 94 

 

Figure 18: Contextualizing the information flow in our CDSC-based forensics application scenario 
using the authoring demonstrator tool 

 

The XML description of the network generated by the authoring tool looks as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<network> 

<nodes> 

<node> 

<id>S</id> 

<cover> 

<cc> 

<type>image</type> 

<chancap>3000</chancap> 

</cc> 

</cover> 

<dwm>Alg01</dwm> 

<nodecap>3000</nodecap> 

<pki>y</pki> 

<ts>n</ts> 

</node> 

<node> 

<id>FE1</id> 

<cover> 

<cc> 

<type>image</type> 

<chancap>3000</chancap> 

</cc> 

</cover> 

<dwm>Alg01</dwm> 

<nodecap>3000</nodecap> 

<pki>y</pki> 
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<ts>n</ts> 

</node> 

... 

</nodes> 

<lc> 

<connection> 

<src>S</src> 

<dst>FE1</dst> 

</connection> 

<connection> 

<src>FE1</src> 

<dst>FE2</dst> 

</connection> 

<connection> 

<src>FE2</src> 

<dst>C</dst> 

</connection> 

</lc> 

</network> 

 
In the network description the node descriptions for FE2 and C are identical (except 

for the node identifiers) to the ones for S and FE1, therefore they are omitted here. All 

nodes in this example possess knowledge of the same cover channels (an image) 
and the same watermarking algorithm (<dwm>Alg01</dwm>). All four nodes have 

access to the PKI for the scenario (required for the signatures). 
 

• Algorithm description: 
The algorithm description shown in figure 19 and the corresponding XML structure is 
defining the two hierarchy levels required in this application scenario to model the two 
access-levels. 

 

 
Figure 19: Algorithm description for the watermarking algorithm used in the CDSC application example 

 

The authoring tool demonstrator generates the following output algorithm description: 

<?xml version="1.0" encoding="UTF-8"?> 

<dwms> 

<dwm> 

<id>Alg01</id> 

<cover>image</cover> 

<dwmcap>50</dwmcap> 

<robustness>low</robustness> 

<hierarchy>2</hierarchy> 

<key>symmetric</key> 

</dwm> 

</dwms> 
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This is a simple algorithm description used for the demonstration of our framework 
within this report. A more detailed description of algorithms would be necessary in the 
generation of any commercial- or field-applicable software. A more detailed picture of 
the information required for close-to-marked prototypes might be the following 
attempt at algorithm description for our CDSC scenario in pseudo-XML: 
<?xml version="1.0" encoding="UTF-8"?> 

<dwm> 

  <id>MediaAuthScheme</id> 

  <cover>image/FTR/16Bit</cover> 

  <technique>compression</technique> 

  <embedding area determination> 

    <context based>yes</context based> 

    <manual>yes</manual> 

  </embedding area determination> 

  <overhead> 

    <location-map>yes</location-map> 

    <add. overhead>few Bytes</add. overhead> 

    <overhead embedding> 

      <technique>diff. expansion</technique> 

      <addFeatures>histogram shifting</addFeatures> 

    </overhead embedding>   

  </overhead> 

  <data security properties> 

 <confidential data>yes</confidential data> 

 <public data>yes</public data> 

 <integrity> 

   <ensured>yes</ensured> 
      <technique>hash</technique> 

      <technique>signature</technique> 

    </integrity> 

    <authenticity> 

      <ensured>yes</ensured> 

      <technique>signature</technique> 

    </authenticity> 

    <reproducibility> 

      <reproducible>optional</reproducible> 

      <technique>operation_log</technique> 

    </reproducibility> 

  </data security properties> 

  <watermark properties> 

    <dwm-capacity> 

      <value>100*(1-K)%</value> 

      <metric>byte</metric> 

    </dwm-capacity>       

    <invertible>yes</invertible> 

    <blind>yes</blind> 

    <robustness>low</robustness> 

    <transparency>none, obfuscation of embedded area</transparency> 

    <key>symmetric and asymmetric</key> 

  </watermark properties>  

</dwm> 

 

• Message description: 

The watermarking message in this application scenario is modeled as two different 
messages parts - one for each of the two hierarchy levels. Level 0 in this example 
contains the case-related private data (i.e. the compressed and encrypted fingerprint 
data required for the inversion of the watermark, the signature chain as well as the 
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secret payload). Due to the complex nature of the message, which changes during 
the transmission along the processing pipeline by the addition of further processing-
related data and signatures, it is not modeled completely here, but the corresponding 
elements are identified by the flag complex (followed by an indicator for the last 

modifying node, e.g. complexS for the private data send by S)  This flag is used to 

signal that after the translation into CASPER a manual adaptation of the message in 
the CASPER code has to be performed here for each data transmission. 

 

• Task description: 

The network task for this application scenario is described here as three tasks (each 
containing one sub-task). In figure 20 the GUI-based description of one of these 
three nearly identical sub-tasks is shown. 

 
Figure 20: Description of one of the sub-tasks in the CDSC application example 

 
Task description in XML is generated by the authoring tool demonstrator (the tasks 
FE1�FE2 and FE2�C are omitted here because they are identical to the presented 

task S�FE1): 
<?xml version="1.0" encoding="UTF-8"?> 

<network_task> 

<task> 

<id>Task1</id> 

<subtask> 

<src>S</src> 

<dst>FE1</dst> 
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<meta> 

<cover> 

<id>cover1</id> 

<type>image</type> 

</cover> 

<message> 

<id>msg1</id> 

<level>0</level> 

<content>  

 <signed>        

   complexS  

</signed>    

</content> 

</message> 

<message> 

<id>msg2</id> 

<level>1</level> 

<content> 

          <data> 

              PublS 

          </data> 

</content> 

</message> 

</meta> 

<required> 

<pki>y</pki> 

<ts>n</ts> 

<cap>1500</cap> 

<hierarchy>2</hierarchy> 

</required> 

</subtask> 

</task> 

<task> 

 ... 

</task> 

</network_task> 
 

The network task description automatically integrates the message descriptions 
described above. 

3.3.1.2. CDSC - Scenario – Path search (step 2) 

In the second step of our framework, the path search described in section  2.2.1.1 is 
invoked within the authoring tool. The result of this path search looks for this CDSC 
scenario as shown in figure 21. The corresponding project file for this example is 
found on the accompanying CD. Normally, the user would be able to browse the 
different alternative solutions identified by the authoring tool demonstrator, but our 
realization of the CDSC scenario results in only one alternative solution due to the 
sequential setup of the communion flow.  
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Figure 21: Output of the task search for the CDSC application scenario in the POWER authoring 
demonstrator tool 

 
The corresponding XML representation of the solution looks as follows (again, the 
descriptions for the FE1�FE2 and FE2�C  tasks are omitted):  
<?xml version="1.0" encoding="UTF-8"?> 

<solutions> 

<alternative> 

<task> 

<id>Task1</id> 

<subtask> 

<src>S</src> 

<dst>FE1</dst> 

<meta> 

<cover> 

<id>cover1</id> 

<type>image</type> 

</cover> 

<message> 

<id>msg1</id> 

<level>0</level> 

<content> 

           <signed> 

               complexS 

           </signed> 

           <data> 

               As 

           </data> 

</content> 

</message> 

<message> 

<id>msg2</id> 

<level>1</level> 

<content> 

           <data> 

               PublS 
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           </data> 

</content> 

</message> 

</meta> 

<dwm> 

<id>Alg01</id> 

<cover>image</cover> 

<robustness>low</robustness> 

<hierarchy>2</hierarchy> 

<key>symmetric</key> 

</dwm> 

<required> 

<pki>y</pki> 

<ts>n</ts> 

<hierarchy>2</hierarchy> 

</required> 

</subtask> 

</task> 

... 

</alternative> 

</solutions> 

 

In our scenario the <solution> block offers only one <alternative>, 

representing one possible path through the network. Using the image cover1 as 

cover for the first task (S�FE1) the source node S transmits the watermarked cover 

to the destination node FE1. 

The core functionality of the watermarking scheme is coded in the structure of the 
watermarking messages (<message>) msg1 and msg2 which are used by the 

watermarking algorithm (<dwm>) Alg01. According to our specification of the 

watermarking scheme an instance of the <message> msg1 holds signed content 

flagged with the complex content indicator. As described above in the message 

composition in section  3.3.1.1, this indicator will result in manual adaptations in the 
CASPER protocol adjustment (step 4b of the framework). 
The <message> msg2 contains the public content (Publ followed by an indicator for 

the last modifying node, e.g. PublS for the public data send by S) which is neither 
signed or hashed nor encrypted.  

3.3.1.3. CDSC - Scenario – Path selection (step 3) 

In the third step of the framework found paths are analyzed using a cost-function and 
the best path is chosen. Again, for our scenario only one path is possible for each 
task (the single <alternative> described in section  3.3.1.2) and we assume that 

the capacity (in this case representing the cost) is sufficient.  

3.3.1.4. CDSC - Scenario – Automated CASPER modeling using XML-input 
(step 4a) 

Here, the chosen <alternative> from the generated <solutions> block is 

translated into a protocol of the CASPER formalization language. The XML to 
CASPER translator described in section  3.1.2 is now applied to the output solution 
alternatives from section  3.2.1.3. Hereby the corresponding translation rules ( 2.2.1.2) 
are invoked. For this application scenario special translation rules need to be invoked 
to be able to also translate the generation and verification of signatures and hash-
values.  
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Modeling the CDSC application scenario in CASPER looks as follows (the 
#Intruder Information and #Specifications blocks required to verify the 

security aspects of entity-authenticity and confidentiality as well as the resolution of 
the complex flag are manually specified in step 4b – see section  3.3.1.5): 

 

#Free variables 

S, FE1, FE2, C : Agent 

cover1 : Cover 

complexS, PublS, complexFE1, PublFE1, complexFE2, PublFE2 : Data 

H : HashFunction 

keyLevel0, keyLevel1, keyAlg01 : SharedKey 

pubS, pubFE1, pubFE2, pubC : PublicKey 

secS, secFE1, secFE2, secC : SecretKey 

InverseKeys = (keyAlg01, keyAlg01), (keyLevel0, keyLevel0), (keyLevel1, 

keyLevel1), (pubS, secS), (pubFE1, secFE1), (pubFE2, secFE2), (pubC, secC) 

#Processes 

SENDER(S, keyAlg01, cover1, complexS, PublS, secS, keyLevel0, keyLevel1) 

FORWARDER(FE1, keyAlg01, complexFE1, PublFE1, secFE1) 

FORWARDER(FE2, keyAlg01, complexFE2, PublFE2, secFE2) 

RECEIVER(C, keyAlg01, secC, keyLevel0, keyLevel1) 

#Protocol description 

0. -> S : secS, keyLevel0, keyLevel1 

1. -> FE1 : secFE1, keyLevel0, keyLevel1 

2. -> FE2 : secFE2, keyLevel0, keyLevel1 

3. -> C : secC, keyLevel0, keyLevel1 

4. -> S : FE1 

5. -> FE1 : FE2 

6. -> FE2 : C 

7. S -> FE1 : {PublS, {complexS}{secS}}{keyAlg01} 

8. FE1 -> FE2 : {PublFE1, {complexFE1}{secFE1}}{keyAlg01} 

9. FE2 -> C : {PublFE2, {complexFE2}{secFE2}}{keyAlg01} 

#Specification 

#Actual variables 

AVS, AVFE1, AVFE2, AVC, Mallory : Agent 

AVcover1 : Cover 

AVcomplexS, AVPublS, AVcomplexFE1, AVPublFE1, AVcomplexFE2, AVPublFE2 : 

Data 

AVkeyLevel0, AVkeyLevel1, AVkeyAlg01 : SharedKey 

AVpubS, AVpubFE1, AVpubFE2, AVpubC : PublicKey 

AVsecS, AVsecFE1, AVsecFE2, AVsecC : SecretKey 

InverseKeys = (AVkeyAlg01, AVkeyAlg01), (AVkeyLevel0, AVkeyLevel0), 

(AVkeyLevel1, AVkeyLevel1), (AVpubS, AVsecS), (AVpubFE1, AVsecFE1), 

(AVpubFE2, AVsecFE2), (AVpubC, AVsecC) 

#Functions 

#System 

SENDER(AVS, AVkeyAlg01, AVcover1, AVcomplexS, AVPublS, AVsecS, AVkeyLevel0, 

AVkeyLevel1) 

FORWARDER(AVFE1, AVkeyAlg01, AVcomplexFE1, AVPublFE1, AVsecFE1) 

FORWARDER(AVFE2, AVkeyAlg01, AVcomplexFE2, AVPublFE2, AVsecFE2) 

RECEIVER(AVC, AVkeyAlg01, AVsecC, AVkeyLevel0, AVkeyLevel1) 

#Intruder Information 

Intruder = Mallory 

IntruderKnowledge = {AVS, AVFE1, AVFE2, AVC} 
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3.3.1.5. CDSC - Scenario – CASPER model adjustment (step 4b) 

For our CDSC application scenario in the protocol adjustment step multiple manual 
adaptations have to be performed. First, the public keys of all users are distributed.  

#Free Variables 

#Processes 

#Protocol Description 

�replace: 

0. -> S : secS, keyLevel0, keyLevel1 

1. -> FE1 : secFE1, keyLevel0, keyLevel1 

2. -> FE2 : secFE2, keyLevel0, keyLevel1 

3. -> C : secC, keyLevel0, keyLevel1 

 

by: 

0. -> S : secS, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC 

1. -> FE1 : secFE1, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC 

2. -> FE2 : secFE2, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC 

3. -> C : secC, keyLevel0, keyLevel1, pubS, pubFE1, pubFE2, pubC 

#Specification 

#Actual variables 

#Functions 

#System 

#Intruder Information 

 

As a second adaptation block the complex flags (representing a complex data 

structure containing amongst others the signature chain, the compressed original 
image part (original biometric data B) as well as the secret payload PrivS) have to 

be substituted by the real message contents for the corresponding step. For a 
consistent notation we append the identifier of each node in our scenario to the data 
items where needed, i.e. changing the private data Priv embedded by the sensor S 

to PrivS, PrivFE1 for the first forensic expert FE1 and PrivFE2 for the second 

forensic expert FE2, etc. 

 

#Free Variables 

�replace: 

complexS, PublS, complexFE1, PublFE1, complexFE2, PublFE2 : Data 

 

by: 

PublS, PublFE1, PublFE2, PrivS, PrivFE1, PrivFE2, BS, BFE1, BFE2 : Data 

#Processes 

�replace: 

SENDER(S, keyAlg01, cover1, complexS, PublS, secS, keyLevel0, keyLevel1) 

FORWARDER(FE1, keyAlg01, complexFE1, PublFE1, secFE1) 

FORWARDER(FE2, keyAlg01, complexFE2, PublFE2, secFE2) 

 

by: 

SENDER(S, keyAlg01, cover1, PrivS, BS, PublS, secS, keyLevel0, keyLevel1) 

FORWARDERA(FE1, keyAlg01, PrivFE1, BFE1, PublFE1, secFE1, keyLevel0, 

keyLevel1) 

FORWARDERB(FE2, keyAlg01, PrivFE2, BFE2, PublFE2, secFE2, keyLevel0, 

keyLevel1) 

#Protocol Description 
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�replace: 

7. S -> FE1 : {PublS, {complexS}{secS}}{keyAlg01} 

8. FE1 -> FE2 : {PublFE1, {complexFE1}{secFE1}}{keyAlg01} 

9. FE2 -> C : {PublFE2, {complexFE2}{secFE2}}{keyAlg01} 

 

by: 

7. S -> FE1 : {{PublS, 

{BS,PrivS,H(BS),H(PublS)}{keyLevel0}}{secS}}{keyAlg01} 

8. FE1 -> FE2 :{{PublFE1, 

{BFE1,PrivFE1,H(BFE1),H(PublFE1)}{keyLevel0}}{secFE1}}{keyAlg01} 

9. FE2 -> C : {{PublFE2, 

{BFE2,PrivFE2,H(BFE2),H(PublFE2)}{keyLevel0}}{secFE2}}{keyAlg01} 

#Specification 

#Actual variables 

�replace: 

AVcomplexS, AVPublS, AVcomplexFE1, AVPublFE1, AVcomplexFE2, AVPublFE2 : 

Data 

 

by: 

AVPublS, AVPublFE1, AVPublFE2, AVPrivS, AVPrivFE1, AVPrivFE2, AVBS, 

AVBFE1, AVBFE2 : Data 

#Functions 

#System 

�replace: 

SENDER(AVS, AVkeyAlg01, AVcover1, AVcomplexS, AVPublS, AVsecS, 

AVkeyLevel0, AVkeyLevel1) 

FORWARDER(AVFE1, AVkeyAlg01, AVcomplexFE1, AVPublFE1, AVsecFE1) 

FORWARDER(AVFE2, AVkeyAlg01, AVcomplexFE2, AVPublFE2, AVsecFE2) 

 

by: 

SENDER(AVS, AVkeyAlg01, AVcover1, AVPrivS, AVBS, AVPublS, AVsecS, 

AVkeyLevel0, AVkeyLevel1) 

FORWARDERA(AVFE1, AVkeyAlg01, AVPrivFE1, AVBFE1, AVPublFE1, AVsecFE1, 

AVkeyLevel0, AVkeyLevel1) 

FORWARDERB(AVFE2, AVkeyAlg01, AVPrivFE2, AVBFE2, AVPublFE2, AVsecFE2, 

AVkeyLevel0, AVkeyLevel1) 

#Intruder Information 

 

In a third manual adaptation step the security aspects (in the #Specifications 

block) to be verified as well as the intruder knowledge (#Intruder Information 

block) must be manually specified. For the confidentiality we specify the original 
biometric data as well as the private payload as a secret between the sensor S and 

the forensic expert FE1 as: Secret(S, PrivS, [FE1,FE2,C]) 

 

For the entity-authenticity verification we include the agreement of S and FE1 on the 

original image (original biometric data B) as well as the secret payload PrivS stored 

in the image:  

Agreement(S,FE1,[BS,PrivS]) 

The intruder knowledge is specified according to Kerckhoffs’ law giving the intruder 
access to all information which is not explicitly stated as being secret, i.e. everything 
except the secret keys. Therefore in this example nothing has to be changed for the 
intruder information, since it is already specified by the translation demonstrator in 
this way. 
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3.3.1.6. CDSC - Scenario – Compilation into CSP (step 5), checking with 
FDR (step 6) and protocol selection (step 7) 

The generated CASPER-code is compiled into CSP in step 5 and checked with FDR 
in step 6. 
For being usable in a forensic application scenario our proposed watermarking 
protocol needs to ensure the privacy protection, preserve the chain of custody and 
enable reproducibility. For achieving these goals we need to verify the data-origin 
authenticity, entity-authenticity, integrity and confidentiality of the data and enable 
reproducibility. Since the data-origin-authenticity and integrity of the underlying 
watermarking scheme of Dittmann et al. was mathematically proven in [Dit04] and the 
reproducibility is enabled by storing the applied changes in the private payload area 
Dpriv (as described in the beginning of section  3.3.1), the goal of this section is to 
check the entity-authenticity and confidentiality of the protocol to complete the 
verification of all needed requirements.  
Checking the modeled watermarking protocol quickly shows the limitations of 
CASPER/FDR concerning the complexity of the networks to be verified. Verifying the 
CASPER model of our scenario including all three tasks (S�FE1, FE1�FE2, 
FE2�C) fails with a physical memory size of 3GB not being sufficient main memory. 
This shows the huge amount of resources needed for the verification of only 
moderate-sized protocols. We avoid this problem by checking the three tasks 
separately.  
The results of the model-checking for the first task (S�FE1) can be seen below: 
 

Checking assertion SECRET_M::SECRET_SPEC [T= SECRET_M::SYSTEM_S 

No attack found 

 

Checking assertion SECRET_M::SEQ_SECRET_SPEC [T=SECRET_M::SYSTEM_S_SEQ 

No attack found 

 

Checking assertion 

AUTH1_M::AuthenticateSENDERToPROCESSOR1Agreement_AVBS_AVPrivS 

[T=AUTH1_M::SYSTEM_1 

Attack found: 

 

Top level trace: 

FEone believes (s)he has completed a run of the protocol, taking role 

PROCESSOR1, with Scanner, using data items AVBS, AVPrivS 
 

 

The model-checking of our proposed protocol shows no possible attacks on the 
confidentiality, neither for the original biometric fingerprint data nor for the private 
payload. For the entity-authenticity a man-in-the-middle attack is found with an 
intruder claiming to the sensor S to be the forensic expert FE1 forwarding the image 

to the real FE1 claiming to him to be S. With such an attack a possible intruder could 

obtain the cover image as a whole and delete, delay or later replay it. However, since 
the data-origin-authenticity as well as the integrity of the data can be assured as was 
manually shown in [Dit04], an intruder is unable to secretly change any part of the 
data which may eventually reach the intended receiver in the correct form. 

For our fingerprint forensics application CDSC scenario this would mean that an 
attacker could still intercept an image of biometric fingerprints captured at a crime 
scene and replay it later in another, different investigation. In order to prevent such 
kind of attack a timestamp can be integrated into the private data section of the 
watermark, telling the receiver if the image is delayed for a substantial amount of 
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time. In such a scenario a man-in-the-middle-attack is of no concern as long as the 
data is not delayed longer then a certain amount of time (analog to the transfer of 
data over an insecure channel). Unfortunately, at the moment CASPER does not 
offer the possibility to model such kind of scenario. 

3.3.1.7. CDSC - Scenario – Summary 

Within our work on the CDSC we extended the theoretical, reversible watermarking 
scheme from [Dit04] to be usable in a forensic application scenario, exemplary using 
high resolution biometric fingerprint data. We modeled a watermarking protocol 
based on this scheme to assure privacy protection and chain of custody preservation 
of the biometric data by verifying data-origin-authenticity, entity-authenticity, integrity 
and confidentiality of the protocol in a hybrid approach using manual as well as semi-
automated verification techniques. We furthermore proposed a way to enable 
reproducibility and hierarchical two-level access to the data to enable case specific 
access restrictions to potential evidence in this forensics oriented application 
scenario. 
During the realization of this example we noticed that there are severe restrictions to 
the semi-automated verification approach using CASPER and FDR, from a resource 
point of view, regarding the message modeling, as well as considering the syntax 
provided by CASPER (which in its original focus was only designed for the 
verification of cryptographic protocols and therefore naturally performs not perfectly in 
the watermarking protocol domain).  

3.3.2. HAAI - Scenario implementation 

The goal of this second complex watermarking-based application scenario is the 
design of a Hierarchical Access, Authentication & Integrity (HAAI) watermarking 
protocol that combines a multi-level access structure and the assurance of the 
security aspects of confidentiality, authenticity and integrity.  
 
The communication setup for the HAAI application scenario foresees three core 
communication entities: the users/clients u, a central delivery infrastructure D and a 
management component M.  
The roles of these entities are the following: the users u perform watermarking-based 
multi-level data access and modifications to a cover object o. The central delivery 
infrastructure D stores o and performs integrity verification. All data communication in 
the application scenario is performed via communication with D, i.e. no direct end-
user to end-user communication is allowed. The management component M handles 
the key management and user-to-group (access level Li) binding for the multi-level 
access. 
 
Due to the problems mentioned in section  1.5  for the re-watermarking and composite 
watermarking approaches, we chose here the segmented watermarking approach for 
the implementation of our watermarking protocol. The corresponding message 
layout for the watermarking message is shown in figure 22. 
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Figure 22: Exemplary watermark structure incl. the structure of the embedded ToC 

 
The segmented watermarking approach for our proposed watermarking protocol 
works with a segmentation of the cover into separate embedding segments S1 – Sn 
and Stoc. Each of the segments S1 – Sn represents one of n access levels and is 
further divided into j blocks of random size and with a randomly distributed address 
addressSLji somewhere within the cover. The addresses addressSLji belonging to the 
different access levels Li are stored in a table of contents (ToC) entry, along with the 
sequence number seqSLi of the addressed block and a hash h over the group key 
Group.key.Li of this certain access level Li. Such an entry is then encrypted using the 
group key Group.key.Li and finally stored into a global table of contents data structure 
for the considered cover, which is then embedded into the ToC-segment Stoc.  
 
Several assumptions have to be made before describing the actual functions of the 
presented system: First, the actual functions described here may be more complex 
than presented, but are simplified to their core functionality. Second, all primitives 
which provide a secure network communication in general are considered to be 
present, i.e. a mutual authentication between both communication partners has to be 
performed at every step and a secure protocol for the key exchange is used prior to 
every other action. 
The application scenario consists of four primary system functions: init(), 
requestinit(), requestObject() and returnObject(). These primary functions are 
described below. 
 
Function Description 

init(o, n) Initialization of an object o with n predefined access levels by the 
delivery infrastructure D. 

Internal operations: 
1. D: register(o) returns the unique identifier IDo of o 
2. D: segment(IDo, n) returns a sequence of n+1 segments SL1, …, SLn, Stoc 

3. D: generateToC(IDo, SL1, …, SLn, Stoc) returns the data object IDo.ToC 
4. D: initialization of the table of contents: for every block blockSLi,j in each of the n segments SL1, …, 
SLn the function IDo.ToC.init(encrypt().id, decrypt().id, hash().id, Init.key.Li) writes the initialization 
value encryptInit.key.Li(addressSLi,j || hash(Init.key.Li) || random) with random.size() = seq.size() 
5. D: IDo.updateHashes() returns  IDo.Hashes = hSL1, …, hSLn + htocSL1, …, htocSLn, + pho with hSLi = 
hash(&SSLi) , htocSLi = hash(&tocSLi) and pho = perceptual hash of o 
6. D: store(IDo, o, IDo.Hashes, u) 
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With the initialization function init(o,n) the delivery infrastructure D in the first 
operation registers a new object o to its repository. In the second operation of the 
initialization the object is segmented into n+1 segments (n segments for the 
embedding areas for the n access levels and one segment for the embedding of the 
table of contents object IDo.ToC). The third operation generates the ToC object 
IDo.ToC. The fourth operation performs the ToC initialization in which the basic 
structure of the ToC and thereby the complete watermark message structure which 
was presented in figure 2 is created. In the fifth operation, the hash values which 
ensure the integrity of the ToC (addressed for each access level by &tocSLi) and the 
embedded data on all segments (addressed for each access level by &SSLi) and a 
perceptual hash pho of o are calculated. Finally, in the sixth operation, the cover 
object with the ToC embedded is stored along with the corresponding hash values 
from operation 5. 
 
Function Description 

requestInit(o) Initialization request by a client for a previously unregistered object o by user u 
with level Li. 

Internal operations: 
1. u: sendToD(request.Init, o) 
2. D: init(o, n) 
3. D: if access.policy = single_access_only then o.accessAllowed(false) 
4. D: sendToUser(IDo, o, u) 

 
With the requestInit(o) function an user u with level Li requests the registration of an 
object o into the repository of the delivery infrastructure D. After an authentication of 
u at D and the transmission of o from u together with an initialization request, D 
invokes internally the init(o, n) function. Depending on the access policy an access 
semaphore (or access counter; managed by o.accessAllowed()) can be set (or 
increased) to limit the number of the concurrent accesses to one object. Finally, the 
registered o together with its assigned system-wide object-ID IDo is returned to u. 
 
Function c Description 

requestObject(IDo) Client request for an object with the identifier IDo. 

Internal operations: 
1. u: sendToD(IDo) 
2. D: retrieve o belonging to IDo from internal repository 
3. D: if access.policy = single_access_only then check o.accessAllowed(). If o.accessAllowed() = true 
then o.accessAllowed(false) and sendToUser(IDo, o, u), else inform u that o can not be accessed 
right now due to an access-lock 

 
The request for a registered object o from a user u uses the system-wide object-ID 
IDo which is generated by D for each object upon registration. Depending on the 
access policy an access semaphore can prevent the access if the object is currently 
processed by another user. 
 
Function  Description 

returnObject(onew, 
IDo) 

Client commit of an (updated) object onew 

1. u: sendToD(IDo, onew) 
2. D: performs an authenticity verification of the committed object onew against its stored version o 
using  isAlteredVersion(onew, o) if the result is false:  

• committed object is no instance of object o → authenticity violation 
if the result is true:  

• checkHashes(onew, Li) if the result is false: 
o integrity verification failed � integrity violation 
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• if the result is true: 
o IDo.updateHashes() 
o store(IDo, onew, IDo.Hashes, u) 
o o.accessAllowed(true)  

 
If a user u returns an object o after processing it to the delivery infrastructure D, an 
integrity verification (checkHashes()) and an authenticity verification 
(isAlteredVersion()) of the new version of the object onew are performed if the object 
was modified (in case the object was just requested by u for reading information 
without any modifying access, o and onew are identical and the integrity therefore 
does not have to be verified further). The function isAlteredVersion() simply 
calculates a perceptual hash of onew and compares it to the perceptual hash pho of o, 
which is stored in IDo.Hashes at D. Based on the concept of the application scenario, 
D only verifies whether u has performed modifying access in the segments which 
belong to u’s access level Li. If u modified any other part of onew, D signals an 
integrity violation for that part. If u, as intended by the scheme, just modified the 
segments belonging to its access level Li, D updates the hashes stored for the object 
and stores onew into its repository as the new version of o. Depending on the access 
policy a set access semaphore has to be unset. 
 
The four primary system functions are accompanied by a set of secondary system 
functions. The two most important of these secondary functions are: checkHashes() 
and updateHashes(). 
 
Function Description 

checkHashes(one

w, Li) 
Hash verification for one level of the object-version onew submitted to D from a 
user u with access level Li. 

1. D: Verification of the hashes htocSLi: 
• For all ToC segments tocSL1 ,..., tocSLn: computation of the hash value hi over the complete ToC 
segment tocSLi 

• Comparison of the computed hi with htocSLi retrieved from IDo.Hashes 
• if hi ≠ htocSLi and i ≠ Li of u, then u modified table-of-content entries which do not belong to his access 
level  integrity of o is violated  
2. D: Verification of the hashes hSLi: 
• For all segments SL1, …, SLn: computation of the hash value hi over the complete contents of the 
segment (&SLi) 
• Comparison of the computed hi with hSLi retrieved from IDo.Hashes 
• if hi ≠ hSLi and i ≠ Li of u, then u wrote into segments which do not belong to his access level  
integrity of o is violated  
3. D: checkViolation(): if one of the two hash verifications implies an integrity violation, then: 
• the at D stored version of o is not replaced by onew; onew is discarded  
• otherwise: IDo.updateHashes() 

 
The application scenario foresees two integrity verification mechanisms to be used by 
the delivery infrastructure D. They are: a set of hashes htocSLi protecting the table of 
contents entries for each hierarchy level Li, a set of hashes hSLi protecting the data 
segments for each hierarchy level Li and a perceptual Hash pho, for later authenticity 
checks of instances of o. Both sets of hashes (htocSLi and hSLi) along with pho are 
stored in IDo.Hashes at the storage space D. 
 
Function Description 

updateHashe
s() 

Hash update for object o by delivery infrastructure D (e.g. after commit of a modified 
version of the object by a user). 

1. D: write hashes htocSLi to IDo.Hashes: 
• for all segments tocSL1, …, tocSLn: computation of htocSLi for the complete ToC entries for the segment 
SLi 
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2. D: write hashes hSLi to IDo.Hashes: 
• for all segments SL1, …, SLn: computation of hSli over &SLi , i.e. the content of segment SLi  

 
This function, which is integral part of the returnObject() function described above 
assumes that a integrity verification has been performed already by D using 
checkHashes(). Additional secondary system functions are: sendToD(), 
sendToUser(), getEmbeddingPositions(), requestUserLevel() etc. which essentially 
perform what their identifiers indicate. Further explanation of their functionality is not 
necessary for the purpose of our application scenario example. 
 
To show how all these protocol functions interact, an end-user object access 
example is presented in the following. It assumes that a user u with access level Li 
requests object o known to him by the corresponding object identifier IDo. This 
example assumes that: the required key exchanges for setup of the application 
scenario have been performed, that there exists a way (e.g. a central look-up 
directory) for u to learn IDo, that u knows how to address D and that u knows the ToC 
embedding address or is capable of determining or receiving it. Furthermore it is 
assumed, from the operational point of view, that each communication operation is 
preceded by mutual authentication of the communicating entities. 
 
Operation 1: u: requestObject(IDo) 
Operation 2: u: getEmbeddingPositions(IDo, o, key): 
    • this might require two runs of getEmbeddingPositions(): 

◦ first, with key = Init.key.Li ; if this run fails (i.e. h = hash(Init.key.Li) cannot be found in any 
entry) because an other user with the same access level Li (and therefore group key) has 
already embed data on Li and therefore encrypted all entries with UserGroup.key.Li  then: 
◦ second, with key = UserGroup.key.Li 

    • Identification of the segment Stoc using IDo.ToC.address 
• entry-wise processing of the ToC and decryption of each entry, the result of this decryption has 
the form: address || h || seq 

    • if h = hash(key) then address is a legitimate embedding address for access level Li  
    • return: meta = indexes of all ToC-lines and all embedding addresses for Li 

Operation 3: u: embed(o, data, meta, UserGroup.key.Li): 
    • enc_data = encryptUserGroup.key.Li(data || hash(data)) 

•the encrypted data enc_data is then split into blocks, which are embedded into the segments 
identified by the addresses addressSLi1, …, addressSLij   

Operation 4: u: returnObject(onew, IDo) 
Operation 5: D: authenticity and integrity verification and updating of the hashes hSLi und htocSLi: 
     • isAlteredVersion(onew , o) 
     • checkHashes(onew ,Li) 

 
The user u requests an object and waits for D to send the designated object. After 
determining all ToC entries for the user’s level, the embedding positions for the 
level's segment are known to u. Before using the found addresses, the data to be 
embedded has to be preprocessed in two operations. In the first operation a hash is 
calculated over the data, which is then concatenated with this hash and encrypted 
with UserGroup.key.Li. The second operation is a segmentation of the encrypted data 
into blocks which fit the block-size of the embedding segment. The last action 
performed on the object is the embedding itself - the changed ToC and the encrypted 
data are embedded to the assigned segments. After the changed version of o has 
been returned to D, it performs all necessary authenticity and integrity checks, 
including the check of the perceptual hash pho in isAlteredVersion() and the check of 
the segment and ToC hash values in checkHashes(). 
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Summarizing the addressed security aspects, the end-user object access example 
given above shows very well the integrity verification mechanisms applied by the 
central delivery infrastructure D and the end-user u. Each of them embeds its own 
hash values in places where they are protected from access by others. The delivery 
infrastructure D uses its storage space for copies of its encrypted hashes htocSLi and 
hSLi, the original ToC and the original (or last integer instance of the) object. The user 
appends its hash to the plaintext he wishes to embed and encrypts both. As long as 
the keys of the other parties are unknown, no participating entity can modify the 
object outside its allowed embedding areas without violating the integrity of the 
object, which will at the next access be automatically detected by the other entities. 
The important point here is therefore the separation of the central delivery 
infrastructure D, whose sole purpose is the data storage, from the management 
component M, which performs the key management and user-to-group (access level 
Li) binding. The only point where this separation of duty principle seems to be 
violated is the initialization of o at D, where all ToC entries (and with that all potential 
embedding addresses for all levels) are generated and encrypted using the Init.key.Li 

generated by D. This problem is solved when a user first embeds data to his access 
segment and in this process changes the key used for encryption and optionally also 
the sequence of their own ToC entries to UserGroup.key.Li.  
The second security aspect covered inherently by the introduced scheme is the data 
confidentiality - D does not gain access to user data and the different user access 
levels are also protected from each other. The third security aspect covered in the 
design of the watermarking scheme is the object authenticity using the perceptual 
hash pho of the cover object o to prevent e.g. watermark copy attacks. 
Using with an external audit service A one further entity to the communication setup, 
the security aspect of non-repudiation could be easily implemented as an extension 
of the scheme by time-stamping and system-wide, secure logging. 
What is still missing in this application scenario so far is an evaluation of the 
security aspects of communication confidentiality (no attacker is able to get 
access to the protected data communicated by the protocol) and entity-authenticity 
in the protocol design. These evaluations are given in the following sections using the 
methodology and framework summarized in section  2.2. 

3.3.2.1. HAAI - Scenario – Network and Task description (step 1) 

The first step in the application of our framework is again the modeling of the involved 
network entities, watermarking algorithms and the task to fulfill. For the application 
example in this paper we choose a network with three users, of whom two have the 
same access level. As CASPER doesn't support numbers as identifiers, these users 
are labeled as UAA, UAB and UB of which UAA and UAB share the same access level.  

The task is modeled as that the cover is transferred to UAA first, who edits it, then to 

UB, who edits it and finally to UAB. As mentioned above, all those transfers are 

performed through the central delivery infrastructure D.   
 
The XML context modeling of this contextualization is done by using the authoring 
demonstrator tool. Screenshots illustrating the usage of this tool in this application 
scenario as well as the resulting XML files are presented below. 
 

• Network description: 
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Figure 23: Network description for our HAAI scenario implementation 

 
The network consists of the four defined nodes D, UAA, UAB and UB. Between D and 
all other three nodes exists a bi-directional connection modeled as two uni-directional 
connections. In the context of this scenario direct connections between UAA, UAB and 

UB are not allowed. All nodes have access to an image cover-channel and a 

corresponding watermarking algorithm Alg01. 

 
<?xml version="1.0" encoding="UTF-8"?> 

<network> 

<nodes> 

<node> 

<id>UAA</id> 

<cover> 

<cc> 

<type>image</type> 

<chancap>10000</chancap> 

</cc> 

</cover> 

<dwm>Alg01</dwm> 

<nodecap>10000</nodecap> 

<pki>y</pki> 

<ts>n</ts> 

</node> 

<node> 

<id>D</id> 

<cover> 

<cc> 

<type>image</type> 

<chancap>10000</chancap> 

</cc> 

</cover> 

<dwm>Alg01</dwm> 

<nodecap>10000</nodecap> 

<pki>y</pki> 

<ts>n</ts> 
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</node> 

  ... 

</nodes> 

<lc> 

<connection> 

<src>D</src> 

<dst>UAA</dst> 

</connection> 

<connection> 

<src>UAA</src> 

<dst>D</dst> 

</connection> 

 ... 

</lc> 

</network> 

 

• Algorithm description: 
For the watermarking algorithm description a symmetric scheme with two hierarchy 
levels is defined. 

 
Figure 24: Algorithm description in the context modeling demonstrator 

 
<?xml version="1.0" encoding="UTF-8"?> 

<dwms> 

<dwm> 

<id>Alg01</id> 

<cover>image</cover> 

<dwmcap>50</dwmcap> 

<robustness>low</robustness> 

<hierarchy>2</hierarchy> 

<key>symmetric</key> 

</dwm> 

</dwms> 

 

• Task description: 
In the task description a data transfer along the node sequence 
D�UAA�D�UB�D�UAB is defined, with D being the source in the network task 

and UAB being the destination. For the whole path two hierarchy levels are required 

(one labeled “A” for UAA and UAB and the second labeled “B” for UB). To simulate the 

initialization performed by D another two hierarchy levels are added. 
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Figure 25: Task description in the context modeling demonstrator 

 

3.3.2.2. HAAI - Scenario – Path search (step 2) 

In the second step of our framework, the path search described in section  2.2.1.1 is 
invoked within the authoring tool. The result of this path search looks for this basic 
application scenario as shown in figure 26. The corresponding project file for this 
example is found on the CD. Normally, the user would be able to browse the different 
alternative solutions identified by the authoring tool demonstrator, but this first small 
application scenario allows results in only one alternative solution.  
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Figure 26: Output of the task search for the HAAI application scenario in the POWER authoring 
demonstrator tool 

 

3.3.2.3. HAAI - Scenario – Path selection (step 3) 

As for the CDSC application scenario here the path selection is trivial, because only 
one alternative path exists. 

3.3.2.4. HAAI - Scenario – Automated CASPER modeling using XML-input 
(step 4a) 

The chosen solution block from section  3.3.2.3 is used to generate a CASPER 
protocol for further verification of desired security aspects in step 4 of the framework. 
These translations are applied here to the solution block of the HAAI application 
scenario and yield the following CASPER-code: 
 
#Free variables 

D, UAA, UB, UAB : Agent 

cover1 : Cover 

ToCA, OA, ToCB, OB : Data 

keyLevel0, keyLevel1, keyLevel2, keyLevel3, keyAlg01 : SharedKey 

InverseKeys = (keyAlg01, keyAlg01), (keyLevel0, keyLevel0), (keyLevel1, 

keyLevel1), (keyLevel2, keyLevel2), (keyLevel3, keyLevel3) 

#Processes  

SENDER(D, keyAlg01, cover1, ToCA, OA, ToCB, OB, keyLevel0, keyLevel2) 

FORWARDERA(UAA, keyAlg01, keyLevel0, keyLevel1) 

FORWARDERB(UB, keyAlg01, keyLevel2, keyLevel3) 

RECEIVER(UAB, keyAlg01, keyLevel0, keyLevel1) 
#Protocol description  

0. -> D : UAA 



Page 66 of 94 

1. -> UAA : D 

2. -> D : UB 

3. -> UB : D 

4. -> D : UAB 

5. D -> UAA : {{ToCA}{keyLevel0}, {OA}{keyLevel0}, 

{ToCB}{keyLevel2}%vTocB, {OB}{keyLevel2}%vOB}{keyAlg01} 

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA, 

vTocB%{ToCB}{keyLevel2}, vOB%{OB}{keyLevel2}}{keyAlg01} 

7. D -> UB : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA, 

{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01} 

8. UB -> D : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA}, 

{ToCB}{keyLevel3}%vToCB, {OB}{keyLevel3}%vOB}{keyAlg01} 

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1}, 

vToCB%{ToCB}{keyLevel1}, vOB%{OB}{keyLevel1}}{keyAlg01} 
#Specification 

#Actual variables  

AVD, AVUAA, AVUB, AVUAB, Mallory : Agent 

AVcover1 : Cover 

AVToCA, AVOA, AVToCB, AVOB : Data 

AVkeyLevel0, AVkeyLevel1, AVkeyLevel2, AVkeyLevel3, AVkeyAlg01 : SharedKey 

InverseKeys = (AVkeyAlg01, AVkeyAlg01), (AVkeyLevel0, AVkeyLevel0), 

(AVkeyLevel1, AVkeyLevel1), (AVkeyLevel2, AVkeyLevel2), (AVkeyLevel3, 

AVkeyLevel3) 
#Functions  

#System  

SENDER(AVD, AVkeyAlg01, AVcover1, AVToCA, AVOA, AVToCB, AVOB, AVkeyLevel0, 

AVkeyLevel2) 

FORWARDERA(AVUAA, AVkeyAlg01, AVkeyLevel0, AVkeyLevel1) 

FORWARDERB(AVUB, AVkeyAlg01, AVkeyLevel2, AVkeyLevel3) 

RECEIVER(AVUAB, AVkeyAlg01, AVkeyLevel0, AVkeyLevel1) 

#Intruder Information  

Intruder = Mallory 

IntruderKnowledge = {AVD, AVUAA, AVUB, AVUAB}  

 
This protocol, automatically generated from a XML context model, represents the 
solution for the task at hand. In the #Free variables section the CASPER 

Agents are directly taken from the nodes in the XML solutions block, while the 

Objects represent the data stored in each access level. The Toc objects represent 

the corresponding ToC entries for the access levels (A and B). Also, the keys used in 

the protocol and their linkage are specified. The #Processes section represents the 

actors and their inherent knowledge. It is assumed here that the communicating 
nodes already possess all the keys they should have access to in this application 
scenario.  
Representing the data exchange, the #Protocol description section forms the 

core of the model. Here can be seen that first all nodes are initialized with the 
knowledge about which nodes they should be communicating with. The data transfer 
between the delivery infrastructure D, and the users UAA, UAB, UB is simple, as 

everyone receives all ToCs and data objects encrypted with the corresponding keys 
(every first user on an access level re-encrypts the data exchanging the initialization 
key with the key used in the further communications on this level – hereby D is 
excluded from these confidential communications).  
The #Actual variables, #Functions and #System sections can be directly 

created from the precedent blocks. Finally, an #Intruder Information is 

automatically generated, which here is provided with the knowledge of all nodes in 
the network.  
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This result shows the systematic translation of the solution into CASPER-code but 
cannot be used in CASPER directly, as CASPER is unable to handle18 the construct 
vToCA%{ToCA}{keyLevel1}%vToCA.  

3.3.2.5. HAAI - Scenario – CASPER model adjustment (step 4b) 

A manual adjustment in step 4b of the framework has to take place here due to the 
forwarding problem identified at the end of the previous section. 
Here in this application scenario we found an easy workaround to solve this problem: 
The idea here is to not include this relayed message after it has been transferred 
once. This doesn't influence the knowledge of a malicious attacker since it doesn't 
matter if he obtains this message in the fifth protocol step, where it is initially send or 
in the sixth protocol step. So each block is only send when the receiver is a User able 
to alter the block or when the block has not been send since it has changed the last 
time.  
The required adaptation looks as follows:  
#Free variables 
#Processes   
#Protocol description  

�Replace : 

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA, 

vTocB%{ToCB}{keyLevel2}, vOB%{OB}{keyLevel2}}{keyAlg01} 

7. D -> UB : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA, 

{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01} 

8. UB -> D : {vToCA%{ToCA}{keyLevel1}%vToCA, vOA%{OA}{keyLevel1}%vOA}, 

{ToCB}{keyLevel3}%vToCB, {OB}{keyLevel3}%vOB}{keyAlg01} 

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1}, 

vToCB%{ToCB}{keyLevel1}, vOB%{OB}{keyLevel1}}{keyAlg01} 

 

by : 

6. UAA -> D : {{ToCA}{keyLevel1}%vToCA, {OA}{keyLevel1}%vOA}{keyAlg01} 

7. D -> UB : {{ToCB}{keyLevel2}, {OB}{keyLevel2}}{keyAlg01} 

8. UB -> D : {{ToCB}{keyLevel3}%vTocB, {OB}{keyLevel3}%vOB}{keyAlg01} 

9. D -> UAB : {vToCA%{ToCA}{keyLevel1}, vOA%{OA}{keyLevel1}}{keyAlg01} 

 
#Actual variables  
#Functions  

#System  

#Intruder Information  

 
To verify the desired security aspects of confidentiality and entity-authenticity an own 
CASPER #Specification block must be formulated for each of the two security 
aspects. As we plan to verify confidentiality with this protocol we need to check that 
only certain nodes have knowledge of certain messages. In this case both clients 
(UAA and UAB) of access level A, which share the key keyLevel1, should have 

                                                                 

18
 A scenario including more than one agent in a row forwarding encrypted data without decryption 

cannot be modeled (the term “var1%expression%var2” cannot be compiled in CASPER, preventing 

the modeling of data which is only forwarded and not processed for more than one step in a row in our 
example protocol). Here we would need this construct to model the part of the application scenario 
where a node is relaying a message, which he cannot decrypt himself to another node who is also 

unable to decrypt this message. See communication step 6 in the initial CASPER #Protocol 

description block given in the example, where D is forwarding the ToC and the data object of 

access level A, which he is unable to decrypt to user UB who is also unable to decrypt it. However, as 

shown for this example, sometimes workarounds are possible, depending on the application scenario 
at hand. 
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knowledge about the data of their access level (A). Only UB should have knowledge 

of the corresponding data OB. The #Specification for confidentiality therefore 

contains:  
Secret(UAA, OA,[UAA,UAB]) and Secret(UB, OB,[UB]) 
  
For the entity-authenticity an set of agreements is defined covering all tuples of 
directly communicating Agents and a data object they have to agree upon (here we 

use the initialization keys known to D and all users: 

Agreement(D,UAA,[keyLevel0]), Agreement(D,UAB,[keyLevel0]) and 

Agreement(D,UB,[keyLevel2]).  

3.3.2.6. HAAI - Scenario – Compilation into CSP (step 5), checking with 
FDR (step 6) and protocol selection (step 7) 

The CASPER compiler is used in step 5 to compile the .spl protocol description files 
from CASPER syntax into CSP. During step 6 of the framework the assertions 
specified in the #Specification block (see section  3.3.1.5 above) are checked by 
FDR to yield information about the security aspects of confidentiality and entity-
authenticity. In case of a more complex description of an application example, where 
multiple ways of modeling are compared, the step 7 of the framework then selects 
the best model for the protocol, based on the security statements made by FDR and 
the model complexity. 

3.3.2.7. HAAI - Scenario – Summary 

We here use a complex watermark-based communication application scenario that 
combines a multi-level access structure and the assurance of the security aspects of 
confidentiality, authenticity and integrity and non-repudiation. The application 
scenario aims at providing a watermarking-based secure central data storage and 
decentralized data access with full traceability of transactions and modifications as 
well as the requirement that data embedded by users must remain confidential for the 
central data storage.  
Selected security aspects, namely data confidentiality, integrity and data-origin-
authenticity are addressed/solved directly in the watermarking scheme. Others, 
namely communication confidentiality and entity-authenticity are verified for the 
resulting protocol using our framework for (semi-)automated protocol verification.  
The non-repudiation, as a further security aspect to be covered, could easily added 
to this list by the inclusion of an external audit service A as an additional 
communication entity to the scenario. This step would allow us to achieve full 
traceability of transactions and modifications on protocol level, but not all required 
mechanisms19 can be modeled in CASPER. .  

3.3.3. HDSR - Scenario implementation 

The description of this Hierarchical Digital Signatures for Reproduction of 
Original (HDSR) application scenario was initially given as follows: The HDSR 
scenario enhances the protocol by enabling the reconstruction of the original data 
stream sent by the card reader to allow access to clear cover data. Here also 
hierarchical access alternatives motivated from the HAAI scenario are further 
investigated to evaluate and summarize pros and cons. Furthermore the impact of an 

                                                                 

19
 The most problematic mechanisms here would be protocol-level time-stamping and integrity 

verification, which can not be realized with the set of constructs provided by CASPER. 
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erroneous communication channel (error due to transmission errors) will be 
elaborated and protocol mechanisms suggested. 
The intention behind the proposal of this third application scenario have been, on one 
hand, the core functionalities of the other two scenarios (hierarchical access and 
signature chains) and on the other hand the consideration of erroneous 
communication channels. 
 
During our work on the first two application scenarios we noticed, that for a practical 
application of the CDSC scenario we already had to combine the signature chain with 
hierarchical access. For the second expected innovation in the HDSR scenario – the 
consideration of erroneous communication channels – we noticed that this can not be 
done in the protocol generation and verification of a formal methods based approach.  
Our approach would be capable of handling this question to some extend in the 
context modeling by defining a robustness specific quality parameter for each cover 
channel and watermarking algorithm as well as corresponding requirements in the 
network task description. Nevertheless, it would require some form of probabilistic 
simulation instead of model checking to solve this on protocol level, but there exists 
to our best knowledge no tools in IT-security (neither for CASPER nor any other 
language we looked into) to realize such probabilistic simulation.  
Based on these two observations we decided to discontinue our considerations 
regarding this HDSR scenario. 



Page 70 of 94 

 

4. Dissemination and public result verification 
In [Kraetzer10ACM] a first version of the exemplarily implemented practical 
realization of the framework was introduced on the renown ACM Multimedia and 
Security Workshop in September 2010 to a watermarking- and media security 
audience and discussed with experts on this field. The results of these discussions 
were, next to recommended improvements, the suggestion to submit a paper on 
additional findings in this context to Information Hiding 2011 (Prague) and to contact 
Gavin Lowe (developer of CASPER at University of Oxford, UK) and send him a copy 
of the paper. 
Our submission to Information Hiding 2011 is right now in the review process of this 
conference. Regarding the discussion with Gavin Lowe, it was agreed upon that 
Chad Heitzenrater will approach Mr. Lowe on the subject of our research work in 
POWER.  
Additionally to the paper submission to Information Hiding 2011 we are right now also 
preparing a submission for the Communications and Multimedia Security (CMS 2011) 
conference. 
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5. Summary of the results for POWER and indications for 
future work 

In the final chapter of this report we summarize briefly our achieved project results (in 
section  5.1), give a summary and explanations on the limitations we encountered for 
our methodology, theoretical framework as well as our exemplary CASPER-based 
practical realization (sections  5.2 and  5.3), and give some indications how future 
work might extend the research effort described here. 

5.1. Summary of the achieved project results 

The scientific contribution of our research work can be summarized in the 
encompassing considerations on the protocol life cycle (which are new in the 
context of secure communication protocols) and the comprehensive considerations 
on the design of communication protocols (here summarized by the design phase 
of the protocol life cycle). Such a concept for integrated context modeling, 
protocol generation and -verification as it is described here, would be new even 
for the domain of cryptographic communication protocols20, but for watermarking 
research we are significantly extending the current state-of-the-art. 
 
With the exemplary realization of our framework using our own context modeling 
and protocol generation demonstrators, together with CASPER and FDR we 
implement a very first realization of the complete design process for these protocols. 
 
The practical prospects of the introduced approach of (semi-)automated protocol 
modeling, generation and security verification can be summarized in its cost-
effectiveness. In contrast to its alternative, the manual security verification of 
protocols, it is assumed to be faster and easier adaptable to specific application 
scenario requirements. 
 
Another important outcome is the identification of the limitations our 
methodology and our theoretical framework as well as our exemplary practical 
realization of the framework face right now. These limitations are summarized in the 
following sections. 

5.2. Limitations of the methodology and the theoretical framework 

Following the basic idea of the formal methods approach (see section  1.1), an 
approach like the one considered here for POWER relies on external (security) 
evaluation regarding the primitives. This basically means that a model for the 
security of the used watermarking components is required. Such a model is so far 
mostly neglected in literature on watermarking evaluation which is in general rather 
focused on selected robustness attacks than the security of the algorithm. 
Additionally, we need definitions for watermarking characteristics which make those 
characteristics directly comparable (e.g. robustness of algorithm A1 vs. robustness of 
algorithm A2) for the automated solution determination (in step 3 of our framework). 
One possible set of definitions that could be used as a basis for such a scheme is 

                                                                 

20
 It has to be mentioned here that there exist some tools which solve part of the overall task, e.g. the 

COSPJ compiler that produces Java implementations of protocols from CASPER-like descriptions 
(see: http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/COSPJ/index.html). 
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found in the profile based watermarking benchmarking approach introduced by 
Lang in [Lang07]. Nevertheless, it has to be mentioned here that this task is hard for 
watermarking techniques, especially when there exists right now no agreed upon way 
to satisfactorily model important watermarking properties like robustness.  

A general limitation to automated approaches for protocol verification, whether they 
are computational complexity-based or based on formal methods, is of course the 
computational complexity required to verify larger systems/protocols and the 
resulting state space.  
For formal method based approaches model checking is the only well established 
solution method we encountered in literature. This approach has strong problems 
coping with the concept of erroneous communication channels. To address these 
(as was intended in the HDSR application scenario in section  3.3.3) would rather 
require a simulation-based solution instead of model checking. But simulation is a 
technique rather uncommon in security evaluations21 because it can not prove 
security. 
 
The work on the practical application work in sections  3.2 and  3.3 made us aware of 
the following three major problems in our concept: 

• Conceptualization: In our framework description we assume that we are 
given neat network and task descriptions on which we can then work. In 
practice this is a rather unlikely situation. More often the overall task will be 
formulated rather fuzzy (e.g. “we want to implement a watermarking-based 
forensic tracking protocol for the movie industry”) and the network on which 
this has to be implemented will be either unknown or simply be identified as 
“the internet”. There is no way this setting can be completely modeled for 
protocol generation and -verification. Instead the overall task has to be broken 
down into use-cases which have to be modeled and evaluated separately. 
Right now no procedure is known to us to perform this task in an automatable 
manner. 

• Message modeling: Especially in our CDSC application scenario we noticed 
that the modeling of the protocol messages is a rather problematic task, due to 
the fact that these messages tend to change over time (e.g. signatures of 
processing nodes are added). To model this changing behavior an own 
description language for the messages would be required and the context 
modeling as well as in the XML to CASPER compilation would require 
evaluations of the message descriptions. 

• Translation rules for the compiler: The translation rules for the XML to 
CASPER compiler presented in Appendix B have been generated specifically 
for the three examples used within this document. So far we found no solution 
how to generate a universally applicable set of these translation rules which 
would also be applicable for more complex application scenarios. Every 
translator tool that is based on use-cases will be over-trained for general 
purpose application. This translation problem is closely related to the message 
modeling problem, which would have to be solved before a general purpose 
compiler could be implemented. 

                                                                 

21
 Except for availability evaluations, which are much closer to the domain of safety investigations than 

any other security aspect. 
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5.3. Additional limitations imposed by our CASPER-based 
realization 

The CASPER syntax is limited to a very small set of primitives which are mostly 
restricted to the area of cryptography and very difficult to adapt/convert to the domain 
of watermarking (for more details see Appendix A). Some examples for restrictions 
introduced by the CASPER syntax:  

• A situation where an agent stores a hash value (or timestamp) to compare it 
with another hash value computed a few steps later in the protocol run can not 
be modeled using CASPER.  

• A scenario including more than one agent in a row forwarding encrypted data 
without decryption cannot be modeled (the term “var1%expression%var2” 

cannot be compiled in CASPER, preventing the modeling of data which is only 
forwarded and not processed for more than one step in a row in our example 
protocol). An example for this restriction is found in section  3.3.2, where we 
would have needed this construct to model the part of the HAAI application 
scenario where a node is relaying a message, which he cannot decrypt 
himself to another node who is also unable to decrypt this message. However, 
as shown for this example, sometimes workarounds are possible, depending 
on the application scenario at hand. 

 
The most important modifications to CASPER would be from our point of view: 

• the introduction of a register set where values like hashes could be stored 
outside the sequential processing 

• a possibility for the definition of data structures for the messages to be 
transmitted (to avoid problems like the “var1%expression%var2” example 

stated above) 

• a step-independent time-stamping (maybe this can also be realized via the 
register set) 

• a function/mechanism realizing digital signatures 
 

 
Additionally, our approach would benefit from new watermarking specific 
primitives in CASPER, which would allow us to model specific characteristics like 
e.g. non-blind or non-invertible watermarking schemes. 
Currently, only the security aspects of entity-authenticity and confidentiality can be 
modeled/verified using CASPER/FDR on static networks a limited number of pre-
defined communicating entities and with strictly sequential data transmissions.  
There exist language constructs and mechanisms in CASPER which also aim at 
allowing for integrity verification (hashes), but these mechanisms are not working 
satisfactorily. Also data-origin-authenticity can not be verified using CASPER22. 

                                                                 

22 To provide evidence a counter-example is given here, showing that data-origin-authenticity cannot 
be verified using the given approach. In the counter-example scenario an agent X sends an 
unencrypted message m to an agent Y who forwards it to an Agent Z. Lets assume the integrity of 
such an scenario could be modeled by giving the agents X and Z predefined knowledge of each other 
and specifying an agreement between X and Z on the message m. In this case trivially an attack 
should be found by the model-checker FDR representing a man-in-the-middle attack with an intruder 
claiming to be node Y (which is unknown to X and Z before the protocol run). However, the results of 
an FDR run on such an example show that no attack was found, therefore counter-proving this case. 
The reason for this behavior seems to be the fact that CASPER is designed to check the authenticity 
of two nodes exchanging certain messages. Once this authenticity is given, fulfillment of the 
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Similar to integrity verification mechanisms, CASPER contains language constructs 
for time-stamping but these language constructs can not be used satisfactory in 
protocol design for our intended field of applications. 
If the result of the security evaluation by FDR is negative (possible attacks have been 
found) the output of the verification process can be used to harden the protocol. So 
far no methods for the realization (manually or (semi-)automatic) of this process are 
existing. 

 
As a last practical restriction it has to be mentioned, that the computational 
complexity for the verification of a protocol in FDR seems to be very high in 
comparison to the size of the protocol23. So far no exact figures exist on how many 
agents and protocol steps FDR can handle, because the state space resulting from 
the processing of different context models of the same size strongly varies. Own 
experiments with medium-sized protocols already required sometimes more than the 
3GB of RAM available on our test machine. This problem, which is inherent to the 
model checking approach, could partly be addressed by approaches for protocol 
simplification or the usage of other model checking approaches like ATHENA 
[Song1999]. 
 
In summary of these restrictions imposed by CASPER and FDR, we have to mention, 
that so far only a strongly limited number of tools are available that can be adapted 
for the modeling, generation and/or verification of watermarking-based protocols. 
Most of those tools (e.g. CSP or AVISPA) have the same severe restrictions 
mentioned above for the CASPER & FDR combination. Nevertheless, we would 
expect more of such modeling tools to emerge in the near future for two reasons: on 
one hand we see the immense advantages automatic protocol verification can have 
over manual verification, and on the other hand, watermarking-based protocols can 
offer interesting non-observability options in addition to all the security aspects 
addressable also by cryptographic primitives and protocols. 

                                                                                                                                                                                                        

agreement-statement is declared (which is the case from the beginning of the protocol run of the 
above mentioned simple example, because the source and destination node know each other already 
by predefined knowledge).  
Nevertheless, data-origin-authenticity and integrity are two examples of security aspects which would 
be beneficially for the automated verification in CASPER or similar languages, because the channels 
in watermarking protocol scenarios are often considered insecure. 
 
23

 The CASPER website (http://www.comlab.ox.ac.uk/gavin.lowe/Security/index.html) states on this 
fact: “One weakness with the CSP/FDR approach is that it can only be applied to finite (typically small) 
instances of the protocol. This means that if no attack is found, there may still be an attack upon a 
larger instance. We are currently investigating under what circumstances it is enough to analyze only 
small instances: more precisely, we have discovered sufficient conditions under which if there is no 
attack on a particular small system, then there is no attack upon any larger system. Many commercial 
protocols are rather large and complicated. This makes their direct analysis using CSP and FDR 
infeasible, because of the resulting explosion in the state space and message space sizes; it also 
makes any other form of analysis more difficult, because of the mass of details. We are therefore 
investigating safe simplifying transformations for protocols, that is transformations on protocols such 
that if there is an attack on the original protocol, then there is also an attack on the transformed 
protocol. The idea is, starting from a large, complicated protocol, to apply as many such 
transformations as possible, without introducing new attacks; if the resulting protocol is secure, then so 
is the original.” 
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5.4. Indications for possible future work 

Regarding our framework realization: What is still missing in our realization is a 
model for the security of the watermarking components/primitives introduced as 
a requirement for all formal method approaches in section  1.1. This model could be 
included into the watermarking algorithm description and contain information about 
known vulnerabilities (against attacks), known or estimated security levels, etc. The 
evaluation of these characteristics could be integrated into two different stages of the 
framework: either in step 2 and step 3 (the path search and selection) or in step 4 
and step 6 (the CASPER modeling and FDR checking). Both alternatives have their 
specific advantages and drawbacks. If the evaluation of the security of the algorithms 
is included into the path search, like to other watermarking characteristics, then the 
number of evaluation runs for the FDR would be much lower. If this evaluation could 
be included into an extended version of CASPER and be verified with FDR, then all 
security evaluations (communication security as well as watermarking primitive 
security) would be performed as one functional block.  
A further requirement for efficient implementation of our framework would be a 
specification of the cost or quality functions required in the selection steps (step 
3 and 7) where a choice has to be made regarding possible alternative solutions. 
Here we are still lacking a good concept on how to generalize such functions for a 
large field of application scenarios. 
Our framework would strongly benefit from extensions of the CASPER language 
(see section  5.3). These extensions might strongly decrease the effort required in the 
modeling and would allow us to include integrity (and partially also non-repudiation) 
into the set of security aspects verifiable with this approach. Also alternative 
realizations based on other languages (like e.g. AVISPA) might be worth some 
practical investigations. 
 
Regarding our methodology and theoretical framework: Here the three major 
problems in our concept (conceptualization, message modeling and design of a 
general purpose compiler – see section  5.2) would have to be solved. Furthermore, 
research effort might be investigated into the investigation of probabilistic 
simulation strategies that might replace or complement the model checking used in 
our work for the verification of the protocols. Such a simulation-based approach 
would also enable moving away from static network descriptions and allow 
investigations on changing or even ad-hoc networks. 
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Appendix A: Basic CASPER constructs – a introduction 
with a focus on watermarking protocols 
Since CASPER is not designed to verify watermarking-based security protocols, 
some effort has to be spent on adapting this language (or more precisely its usage) 
towards the requirements of POWER. 
To do so, this appendix is split into four parts: the first part briefly summarizes basic 
concepts in CASPER models and a gives a short protocol example, the second part 
focuses on simulating a watermark message and watermarking algorithms in 
CASPER, the third part is concerned with watermarking infrastructure modeling and 
the last part with watermarking protocol security modeling in CASPER. 

Basic concepts in CASPER models 

CASPER ([Lowe98], [Lowe09], [Ryan00]) as a protocol modeling tool offers the 
possibility to represent the design of a protocol in a human- and machine-readable 
format, which can then be compiled into Communication Sequential Processes (CSP; 
[Hoare04], [Roscoe1994], [Ryan00]) notation to be verified by the FDR (Failures-
Divergences Refinement; [FDR]) model checker. If FDR returns a negative statement 
while running the verification process, a possible attack on the communication 
scenario is found. With the usage of this procedure, the security aspects of 
confidentiality, authenticity and integrity of messages communicated in a designed 
protocol can be evaluated in an automated way. 
The protocol description in CASPER is structured into eight well defined blocks. 
These blocks are named #Free variables, #Processes, #Protocol 

description, #Specification, #Actual variables, #Functions, 

#System and #Intruder information. The right order of these blocks is needed 

for the compiler but is of no importance for the understanding of the protocol 
modeling process.  
A very simple example of an agent A sending a message mes to an agent B using a 

symmetric encryption is given in table 1. 
 

Part Topology Attack scenario description 

1 #Free variables 

A,B : Agent 

mes : Message 

Skey : SharedKey 

InverseKeys = (Skey,Skey) 

 

2 #Processes 

SENDER(A,mes) knows Skey 

REICEIVER(B) knows Skey 

 

3 #Protocol Description 

0.  →A : B 

1. A→B : {mes}{Skey} 

 

4  #Specification 

Secret (A, mes, [B]) 

5 #Actual variables 

AVA, AVB, Mallory : Agent 

AVmes: Message 

 

6 #Functions  
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7 #System 

SENDER(AVA,AVmes) 

RECEIVER(AVB) 

 

8  #Intruder Information 

Intruder = Mallory 

IntruderKnowledge = {AVA,AVB} 

 

In the #Free variables section all the variables (including the agents) used in the 

protocol are specified together with all functions. The given example specifies two 
variables A and B which are of type Agent and a data-object mes of type Message. 

A shared key Skey is also given representing a symmetric key used in this example. 

A pair of inverse keys needs to be specified for this shared key to signal that a 
message encrypted with Skey will become the original message after being 

decrypted with Skey again. If a key is inverse to itself it is a symmetric key. If it is 

inverse to any other key, it is an asymmetric key. In the current example Skey is 

inverse to Skey representing a shared secret in a symmetric key scenario. 

 
The #Processes section describes the agents participating in the protocol. Each 

agent is represented by a process (i.e. SENDER, RECEIVER) including a variable of 

type Agent as input and additional variables (i.e. mes). The keyword knows tells the 

program which functions are known by this process in addition to the knowledge it 
gains by the parameters communicated to the process. In the given example both 
agents know the shared key Skey due to the assigned parameters. Agent A also 

knows the Message mes. 

 
The block #Protocol description represents the communication steps of the 

protocol, each line representing one step. These steps follow a simple source → 

destination : message – syntax. 

In our example, agent A is told by the environment about the existence of an agent B 

in an initialization step 0. He then sends its value of mes to agent B in step 1 of this 

example. Before the sending he encrypts it with the shared key Skey 

 
Security aspects to be checked are defined in the #Specification section. There 

exist two main constructs for defining specification. First is a secret specification, 

stating, that some piece of data is only known to certain nodes after completion of the 
run. The keyword secret in our example states that the message mes is a secret 

only known to agent A and is in addition only allowed to be known by agent B. If any 

other agent gains access to this secret during the protocol run this is returned as a 
possible attack.  
Another important statement in the #Specification section is of the form 

Agreement(A,B,[mes]). It can be used for verifying the entity-authenticity 

regarding the communication partners. In the case of the communication partners 
being directly connected to each other (with no additional node in between) FDR 
checks whether A and B completed a protocol run with each other (both agreeing on 
the value of the transmitted mes) concluding that they are correctly authenticated 
(here entity-authenticity) to each other. 
 
In the #Actual variables block certain values are allocated to the variables, i.e. 

AVA is the specific value of the variable A. This block can be derived easily from the 
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#Free variables as the only addition is another Agent in form of an Intruder, 

usually named Mallory. 

 
In the #Functions section functions can be defined. Within the context of our 

work in POWER we found no functions provided by CASPER which are useful for 
watermarking protocol modeling. 
 
In the #System block the specific values of the variables given in this scenario are 

handed to the agents. Similar to the #Actual variables this can be derived 

directly from the #Processes block. 
 
The block #Intruder Information defines the intruder and his knowledge. In the 

given example - according to Kerckhoffs’ law - he has all the knowledge except the 
secret key and the message (which is explicitly defined as being secret in the 
#Specification block). 

 
By changing the information specified in the eight CASPER blocks, different 
topologies, different security aspects as well as different attacker scenarios can be 
defined. #Free Variables, #System, and #Protocol Description all govern 

the topology and will be changed to represent other topologies. 
By changing the #Specification block, different security aspects can be checked, 

while by changing the #Intruder Information, different attacker scenarios can 
be modeled. 

Simulating a watermark message and watermarking algorithms in 
CASPER 

Since CASPER currently point offers no special constructs for representing digital 
watermarks and the corresponding embedding and retrieving functions, an 
approximated representation needs to be developed from the given constructs. We 
therefore assume that an agent embeds a message mes with an (optional) overhead 

oh (which might be needed for certain watermarking schemes, i.e. in hierarchical 
watermarks) into a cover cov using a given watermarking algorithm. By sending the 
message, the overhead and the cover object as three different items to the receiving 
agent, the transfer of the watermarked cover is emulated in CASPER. The receiver 
then assumes the message overhead and the cover to be the result of (an emulated) 
extraction process. This very simple approximation shows similar properties than a 
real watermarking scheme: A possible intruder can only be prevented from accessing 
the watermark message by the usage of a key for embedding. This can be 
approximated in CASPER by the encryption of the watermark message and the 
overhead by this key. An intruder now still has access to the cover object (since it is 
not encrypted in our emulation) but he can not read the watermark message or the 
overhead. Similarly, a non-invertible watermarking scheme can be emulated by 
sending a changed cover (new cover variable) to the receiver. In this case a 
reconstruction of the original cover during the detection process won't be possible. 

To extend our example from the previous section from sending a simple message 
from A to B to sending an invertibly watermarked cover producing an overhead we 

have to add a variable oh to represent the overhead created by the embedding 

algorithm and a cover cov to the model. We also change the #Protocol 

description block by using the symmetric key the agents know already to encrypt 
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the message and the overhead since they are embedded with a key and not 
extractable without it: 

A→B : {mes,oh}{Skey(A)},cov 

Watermarking infrastructure modeling in CASPER 

The incorporation of infrastructure mechanisms like a Public Key Infrastructure (PKI) 
or a Time Server (TS) can be modeled in CASPER in two different ways. The less 
complex way is to assume that an agent has acquired a timestamp or the public key 
of a communication partner automatically. In this case he would only add the 
timestamp as another data item to be transferred to the receiver or respectively use 
the public key to embed the watermarking message. The second, more complex way, 
would also allow for the acquisition process of a timestamp or a public key to be 
checked for security flaws. To do so the acquisition process of a timestamp or a 
public key would be modeled by using additional agents acting as time- or key-
servers. In such a scenario each request to and answer from such a server would be 
modeled as a separate communication step in the #Protocol description 

section. 

Watermarking protocol security modeling in CASPER 

The definition of the security aspects that should be validated takes place inside the 
#Specification block. Casper yields several constructs for such a specification of 

which a secret and an agreement are the most common. 
 
CASPER (http://www.comlab.ox.ac.uk/gavin.lowe/Security/Casper/manual.pdf page 
31) defines a secret as follows: 
”Secret(A, s, [B1,…,Bn]) specifies that in any completed run, A can expect the 

value of the variable s to be a secret; B1 , … ,Bn are the variables representing 

the roles with whom the secret is shared. More precisely, this specification fails if A 

can complete a run, where none of the roles B1 , … . ,Bn is legitimately taken by 

the intruder, but the intruder learns the value A gives to s. 

Therefore the usage of a secret-Specification lies in the modeling of confidentiality, 
as it states that the protocol is vulnerable if an intruder can obtain a certain piece of 
data.” 
 
An agreement is defined for CASPER as: 
“Agreement(A, B, [v1,…,vn]) specifies that A is correctly authenticated to B, 

and the agents agree upon v1 , … , vn; more precisely, if B thinks he has 

successfully completed a run of the protocol with A, then A has previously been 

running the protocol, apparently with B, and both agents agreed as to which roles 

they took, and both agents agreed as to the values of the variables v1 , …, vn, 

and there is a one-one relationship between the runs of B and the runs of A.” 

This means that an agreement is fulfilled if two nodes are authenticated to each 
other. This specification is used to prove entity-authenticity. 
 
The #Intruder Information yields further possibilities for security checking as it 
allows to model attackers that have gained any chosen amount of knowledge about 
the system in regard. This block can be automatically created giving the intruder a 
standard set of knowledge. This could be - according to Kerckhoffs’ law - all the 
information which is not explicitly specified as secret or a key not supposed to be 
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known by the intruder. Other possible scenarios would i.e. include a case where the 
intruder learned a secret key by means of social engineering.  
 

#Intruder Information 
Intruder = Mallory 
IntruderKnowledge = {AVA,AVB,Mallory} 

In the given example Mallory does not know mes because he doesn’t have the 

symmetric key. If the key Skey would be added to this knowledge, it would obviously 
yield other results regarding the security of the protocol. 
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Appendix B: Translation rules 
In this appendix the translation rules required to translate XML context models into 
CASPER protocols (see section  2.2.1.2) are described in detail. These rules have 
been designed to translate our application scenarios presented in sections  3.2 and 
 3.3 – they will not be complete for general purpose translation into CASPER. The 
rules are implemented by the translator tool for CASPER protocol generation from 
the XML context models described in section  3.1.2. 
 
Note: As CASPER doesn't support numbers in variable names, each instance of “1” 
in an identifier is translated to “a”, “2” to “b”, and so on. To allow for easier separation, 
all XML code is given in Courier New font, all CASPER code in italic Courier 

New font. 

For better clarity the rules of translation are presented here in the order the resulting 
instructions will appear in the resulting CASPER-Protocol. Therefore this Appendix is 
structured into the eight blocks of a CASPER file: #Free variables, 

#Processes, #Protocol description, #Specification, #Actual 

variables, #Functions, #System, and #Intruder information. 

 

#Free variables 

Here the variables used in the protocol are declared, common types and their 
counterparts in the XML context model are: 
 
<Agents> : Agent 

Agents are taken from the <src> and <dst>-Tags of the <subtasks> 

 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

</subtask> 

 
Becomes in CASPER 
 
A,B : Agent 

 
Rule 1 
<subtask> 

  <src>[NODESRC]</src>  

  <dst>[NODEDST]</dst>  

� [NODESRC],[NODEDST] : Agent 

 
 
<Covers> : Cover 

Covers are identified by the <id>-Tags of different <covers> inside the 
<subtasks> 
 
Example: 
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<cover> 
<id>cover1</id> 
<type>image</type> 

</cover> 
 
Becomes in CASPER: 
cover1 : Cover 

 
Rule 2 
<cover> 

  <id>[COVER]</id> 

� [COVER] : Cover 

 
 
<Data> : Data 

Data blocks are taken from the <content>-Tag of different <messages> inside the 

<subtasks>. This concerns only the raw data blocks, because encryption, hashing 

or signing are handled separately. 
 
Example: 
<content> 

mes 

</content> 

 
Becomes in CASPER: 
mes : Data 

 

Rule 3 
<content> 

  [DATA] 

� [DATA] : Data 

 
 
<Keys> : sharedkey 

The used keys are a more complex construct, with the necessity to take required 
information different tags in the XML context model. First, all different <dwm>-blocks 

that are marked as using a symmetric key (i.e. which contain a  
<key>symmetric</key> statement) get a key assigned. 
 
Example: 
<dwm> 

<id>dwm1</id> 

...  

<key>symmetric</key> 

</dwm> 

 
Becomes in CASPER: 
keydwma : sharedkey 
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Second, keys might also be used by encryption in the <message>-blocks. If this 

encryption is marked as symmetric (<encrypted-symmetric>) a key for the 

corresponding level of the message must be created. 
 
Example: 
<message> 

<id>message</id> 

<level>0</level> 

<content> 

<encrypted-symmetric> 

Data 

</encrypted-symmetric> 

</content> 

</message> 

 
Becomes in CASPER: 
keylevela : sharedkey 

 
It is also possible that asymmetric encryption is used. In this case we assume that a 
message is encrypted with the public key of the recipient. So, a pair of keys must be 
defined in that case. 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

<encrypted-asymmetric> 

Data 

</encrypted-asymetric> 

</content> 

... 

 
Becomes in CASPER: 
SkeyB : secretkey 

PkeyB: publickey 

 
Furthermore, when using signatures asymmetric keys are also used. In this case we 
assume that a message is signed with the secret key of the source. A pair of keys 
has to be specified in this case. 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

<signed> 

Data 

</signed> 

</content> 
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... 

 

 
Becomes in CASPER: 
SkeyA : secretkey 

PkeyA : publickey 

 
Rule 4 
  <id>[DWM]</id> 

  ... 

  <key>symmetric</key> 

</dwm> 

� 

key[DWM] : sharedkey 

 

<level>[LEVEL]</level> 

<content> 

  <encrypted-symetric> 

    [DATA] 

  </encrypted-symetric> 

</content> 

�  

keylevel[LEVEL] : sharedkey 

 

<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    <encrypted-asymetric> 

      [DATA] 

    </encrypted-asymetric> 

  </content> 

�  

Skey[NODEDST] : secretkey 

Pkey[NODEDST] : publickey 

 

<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    <signed> 

      [DATA] 

    </signed> 

  </content> 

�  

Skey[NODESRC] : secretkey 

Pkey[NODESRC] : publickey 

 
 
InverseKeys = <Keylist> 
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From the list of keys generated by the application of rule 4 the relation between those 
must be specified. For symmetric keys the keys are inverse to themselves. For 
asymmetric keys the public key is inverse to the secret key of the same node.  
 
keydwma : sharedkey 

SkeyA : secretkey 

PkeyA: publickey 

 
Is extended by: 
InverseKeys = (keydwma,keydwma),(SkeyA,PkeyA) 

 
Rule 5 
[KEY[LEVEL]] : sharedkey 

�  

InverseKeys = ([KEY[LEVEL]],[KEY[LEVEL]]) 

 

[SKEY[NODE]] : secretkey 

[PKEY[NODE]] : publickey 

if [NODE] == [NODE] � 

InverseKeys = ([SKEY],[PKEY]) 

 

 
H: HashFunction 

If any part of any message is containing hashes, a hash function H has to be added 

to the CASPER statements. 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

<hashed> 

Data 

</hashed> 

</content> 

... 

 
Becomes in CASPER: 
H: HashFunction 

 
Rule 6 
<hashed> 

  [DATA] 

</hashed> 

�  

H: HashFunction 
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#Processes 

Here the knowledge of the agents partaking in the protocol is modeled. Therefore 
process names are assigned to all agents, starting with the source of the first subtask 
which is labeled as SENDER to the destination of the last subtask which is labeled as 

RECEIVER. All nodes in between are labeled FORWARDn, where n is A, B,... 

according to the fact that CASPER doesn't handle numbers in designators. 
 
Example: 
NodeA, NodeB, NodeC : Agent 

 
Becomes: 
SENDER(NodeA) 

FORWARDERA(NodeB) 

RECEIVER(NodeC) 

 
The knowledge of a node consists of: 

• his own identity 

• the keys of the dwms he uses 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<dwm> 

<id>dwm1</id> 

... 

 
Becomes in CASPER: 
SENDER(NodeA, keydwma) 

FORWARDER(NodeB,keydwma) 

 
Rule 7 
<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <dwm> 

    <id>[DWM]</id> 

    ... 

� 

[NODEPOSITION[NODESRC]]([NODESRC],key[DWM]) 

[NODEPOSITION[NODEDST]]([NODEDST],key[DWM]) 

 
 
Cover altered by a node 
A cover is altered by a node, if that node sends a cover he hasn't received at any 
earlier step of the protocol. 
This is the case when a node is a.) the SENDER-node of the network or b.) a 

FORWARDER-node that uses a certain cover while being the source src of a 
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<subtask> it hasn't acquired while being the destination dst of the preceding 

<subtask>. 

 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

<meta> 

<cover> 

<id>coverA</id> 

<type>image</type> 

</cover> 

 
and 
SENDER(NodeA) 

 
Are extended to:  
SENDER(NodeA, CoverA) 

 
Rule 8 
<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  <meta> 

    <cover> 

      <id>[COVER]</id> 

 

if [NODEPOSITION[NODESRC] == SENDER �  

SENDER(NODESRC],[COVER]) 

if [NODEPOSITION[NODESRC] != SENDER  

  and [COVER] != [COVER FROM LAST SUBTASK] �  

[NODEPOSITION](NODESRC],[COVER]) 

 
 
Data altered by a node 
Data is altered by a node if that node sends data he hasn't received at any earlier 
step of the protocol. 
This is the case when a node is a.) the SENDER-node of the network or b.) a 
FORWARDER-node that send certain data while being the source src of a <subtask> 

it hasn't acquired while being the destination dst of the preceding <subtask>. 

 
Example:  
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

data 

</content> 

 
and 
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SENDER(NodeA) 

 
Are extended to:  
SENDER(NodeA, data) 

 
Rule 9 
<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    [DATA] 

  </content> 

 

if [NODEPOSITION[NODESRC] == SENDER �  

SENDER(NODESRC],[DATA]) 

if [NODEPOSITION[NODESRC] != SENDER  

  and [DATA] != [DATA FROM LAST SUBTASK] �  

[NODEPOSITION](NODESRC],[DATA]) 

 
 
The secret key of a node was declared in the #Free variables 

 
Example: 
SkeyA: SecretKey 

 
Results in: 
SENDER(NodeA,SkeyA) 

 
Rule 10 
Skey[NODE] : secretkey 

� 

[NODEPOSITION](NODE,Skey[NODE]) 

 
 
All shared keys a node has access to 
A node has access to a shared key if a node sends any message corresponding to 
the used hierarchy level 
This property could also be modeled more complex with a key exchange scenario but 
this is outside the scope of this work. Instead we use the easier method of modeling 
the keys as knowledge of the nodes. 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<message> 

<id>message</id> 

<level>1</level> 
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Becomes: 
SENDER(NodeA, keylevel1) 

 

Rule 11 
<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <message> 

    <id>message</id> 

    <level>[LEVEL]</level>  

� 

[NODEPOSITION[NODESRC]]([NODESRC],keylevel[LEVEL]) 

 
 
All public keys of all other agents in the scenario 
 
Example: 
PkeyA,PkeyB,PkeyC : PublicKey 

 
Becomes: 
SENDER(NodeA,PkeyA,PkeyB, PkeyC) 

 
Rule 12 
[PKEYS] : PublicKey 

� 

[NODEPOSITION](NODE,[PKEYS]) 

 

#Protocol description 

Here all data transfers are declared. One step is created for each subtask. 
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<message> 

<id>message</id> 

<level>0</level> 

<content> 

<data>data</data> 

</content> 

</message> 

 
Becomes in CASPER: 
A → B : data 

 
As the message can be more complex, the resulting step becomes more complex. 
Encryption, signing and hashing are possible with different results: 
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If the encryption is marked as symmetric (encrypted-symmetric) the key for 

the corresponding level of the message is used to encrypt. 
 
Example: 
<message> 

<id>message</id> 

<level>0</level> 

<content> 

<encrypted-symmetric> 

data 

</encrypted-symmetric> 

</content> 

</message> 

 
Becomes in CASPER: 
A → B : {data}{keylevela} 

 
It is also possible that asymmetric encryption is used. In this case we conclude that 
a message is encrypted with the public key of the recipient.  
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

<encrypted-asymmetric> 

data 

</encrypted-asymmetric> 

</content> 

 
Becomes in CASPER: 
A → B : {data}{PkeyB} 

 
Furthermore when using signatures we conclude that a message is signed with the 
secret key of the source.  
 
Example: 
<subtask> 

<src>A</src> 

<dst>B</dst> 

... 

<content> 

<signed> 

data 

</signed> 

</content> 

 
Becomes in CASPER: 
A → B : {data}{SkeyA} 

 
The last possibility is a hashed message. 
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Example: 
<hashed> 

data 

</hashed> 

 
Becomes in CASPER: 
A → B : H(data) 

 
 
Rule 13 
<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    <encrypted-symmetric> 

      [DATA] 

    </encrypted-symmetric> 

  </content> 

�  

[NODESRC] � [NODEDST] : {[DATA]}{keylevel[LEVEL]} 

 

<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    <encrypted-asymmetric> 

      [DATA] 

    </encrypted-asymmetric> 

  </content> 

�  

[NODESRC] � [NODEDST] : {[DATA]}{Pkey[NODEDST]} 

 

<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <content> 

    <signed> 

      [DATA] 

    </signed> 

  </content> 

�  

[NODESRC] � [NODEDST] : {[DATA]}{Skey[NODESRC]} 

 

<subtask> 

  <src>[NODESRC]</src> 

  <dst>[NODEDST]</dst> 

  ... 

  <hashed> 
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    [DATA] 

  </hashed> 

�  

[NODESRC] � [NODEDST] : H([DATA]) 

 

#Specification 

A #specification represents the security properties which should be checked by 

the model checker. There exist two main constructs for defining a 
#specification. The first is a secret statement, stating that some piece of data 

is only known to certain nodes after completion of the run. This statement is used to 
model and verify confidentiality. The other statement is an agreement which states 

that two nodes are authenticated correctly and agree on a certain value. This 
statement is used for entity-authenticity. 

#Actual variables 

Copy the #Free variables block and add an AV in front of each variable and add  

"Mallory" as an Agent. 
 

#Functions 
This block remains empty for our watermarking-focused modeling and verification 
operations. 
 

#System 

Copy the #Processes block and add an AV in front of each variable. 

#Intruder Information 

This block can be automatically created giving the intruder a standard set of 
knowledge. This could be - according to Kerckhoffs’ law - all the information which is 
not explicitly specified as secret i.e. in the general case a key not supposed to be 
known by the intruder. To model advanced attacker scenarios with different sets of 
intruder knowledge, manual adaptation of this block is required. 


