An Assessment of the Properties of Internal Combustion Engine Lubricants Using an Onboard Sensor

Ryan J. Clark, Claudia M. Fajardo

Mechanical and Aeronautical Engineering
Western Michigan University, Kalamazoo, MI

SAE World Congress and Exhibition

April 12, 2011
An Assessment of the Properties of Internal Combustion Engine Lubricants Using an Onboard Sensor

Ryan J Clark; Claudia M Fajardo

Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI

US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

Approved for public release, distribution unlimited

Presented at SAE 2011 World Congress April 12-14, 2011 Detroit, Michigan, USA, The original document contains color images.
Outline

- Goal and motivation
- Background
- Research objectives
 - Research methodology
 - Bench-top experiments
 - Engine experiments
- Conclusions
Goal and Motivation

• Monitor lubricant degradation in internal combustion engines through direct, in-situ measurement of lubricant properties

• Benefits
 – Cost and energy usage
 • Lubrication improvements may save up to 20% of the total annual energy consumed by vehicles in the US (~14 billion US dollars)
 – Logistics
 • Tailor oil change intervals to actual vehicle needs
 – Environmental
Background

• Current Methods
 – Algorithms based on driver inputs or supplemented with oil property measurements (e.g., dielectric constant)

• Disadvantages
 – Contamination might be overlooked
 – Over or underestimation of oil change interval

• Needs and Challenges
 • Measure oil properties accurately, directly and in-situ
 • Validate threshold values indicative of oil degradation
 • Identify potential causes of measured lubricant condition
Research Objectives

• Quantify the accuracy and precision of lubricant property measurements from an on-board oil-condition sensor

• Correlate changes in the physical properties of the lubricant with likely causes of oil degradation

• Quantify changes in the physical properties of the lubricant with respect to engine operating time
Research Methodology

• Properties measured by the sensor
 – Temperature (55°C to 150°C)
 – Density (0 to 1.5 g/cm³)
 – Viscosity (0 to >50 cP)
 – Dielectric Constant (1.00 to 6.00)

• Lubricant type
 – Rotella T 15W-40

• Bench-top experiments
 – Quantify accuracy of sensor output
 – ASTM standards or reference instruments

• Engine experiments
 – Monitor properties changes with respect to engine operating time
Results from Bench–Top Experiments: Temperature and Density

- Sensor requires ~20 min to reach thermal equilibrium
- Agreement with reference reading to within 2°C
- Viscosity measurements conducted with the sensor are within 6% of ASTM D445 values
Results: Dielectric Constant

- Sensor output compared to a reference instrument (Brookhaven’s BI-870 dielectric constant meter)
- Accuracy of the reference instrument validated a priori
- Sensor reading ~ 6.5% less than reference instrument
Dielectric Constant: Thermal Cycle Results

- Strong dependence of dielectric constant trends on the lubricant additive package.
Results: Fuel-Contaminated Oil (1)

- Condemning limit for kinematic viscosity (18%) was reached at fuel concentrations of 9.4% (ASTM) and 7.4% (sensor)
- The flash point (ASTM D 92) decreased by 11.8 % from the baseline measurement as fuel contamination increased from 0.5% to 10.5%
• Dielectric constant measurements are marginally insensitive to fuel contamination
• Dielectric constant trends measured during a thermal cycle are similar between non-contaminated and fuel-contaminated oil samples
Engine Experiments: Initial Tests

• Objective
 – Quantify changes in the physical properties of the lubricant as a function of engine operating time

• Experimental setup
 – Diesel engine
 – Sensor installed prior to oil filter
 – Operated for 73 hrs at 2,200 RPM and 75% maximum load
 – Oil sampled after the warm-up period and then approximately every 6 hrs. in 150mL increments
Results: Dielectric Constant

- Decrease of 11% over the course of engine tests
- Increase of 1.5% upon the addition of new oil
Results: Viscosity

- The viscosity increased by 10% over the course of engine tests.
- Detected increase of 4% upon the addition of new oil.
Results: Property Trends

- The increase in dielectric constant might be attributed to additive depletion.
- Increase in oxidation by-products causes a viscosity increase.
- A simultaneous decrease in viscosity and increase in dielectric constant suggests the additive package depletion to have a dominant effect.
Conclusions

• Baseline measurements
 – Kinematic viscosity
 • Sensor output and ASTM D445 agree within 6%
 – Dielectric constant
 • Sensor output and reference instrument agree within 6%

• Fuel-contaminated oil
 – Kinematic viscosity
 • As fuel contamination increases to 10.5%, the lubricant viscosity decreases by 21.5% (sensor) and 23.7% (ASTM)
 – Dielectric Constant
 • Marginal sensitivity to fuel contamination (0.5% to 10.5% by vol.)

• Engine experiments
 – Dielectric constant decreased 11%
 – Viscosity increased 10%
 – Correlation between dielectric constant and viscosity
Research Areas for Future Work

- Establish a dielectric constant threshold indicative of oil degradation

- Quantify correlations between thresholds in lubricant properties
 - Response surface methodology

- Quantify correlations in lubricant properties over longer periods of engine operation
Acknowledgments

• CAViDS
 – This material is based upon work for the Center for Advanced Vehicle Design and Simulation (CAViDS). The work is supported by the U.S. Army TACOM Life Cycle Command under Contract No. W56HZB-08-C-0236, through a subcontract with Mississippi State University and was performed for the Simulation Based Reliability and Safety (SimBRS) research program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Army TACOM Life Cycle Command

• Mark Uhrich
 – Measurement Specialties

• Annie Pathiparampil
 – Vice Chair of ASTM subcommittee 6 on Analysis of Lubricants

• Michael Nienhuis and Matthew Roobol