
UNCLASSIFIED

Simulation of Statistical Distributions using the

Memoryless Nonlinear Transform

Graham V. Weinberg and Lachlan Gunn

Electronic Warfare and Radar Division

Defence Science and Technology Organisation

DSTO–TR–2517

ABSTRACT

In support of Task 07/040 (support to AIR 7000), the generation of correlated

sea clutter returns using the Memoryless Nonlinear Transform is investigated.

The generation of such clutter is critical to the performance analysis of radar

detection schemes under realistic clutter scenarios. This feature must be in-

corporated into clutter models being built at DSTO to test radar detector

performance. Examples of the transform’s application is given for a number of

target distributions of interest.
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Simulation of Statistical Distributions using the

Memoryless Nonlinear Transform

Executive Summary

This work supports the modelling and simulation requirements for Task 07/040 (support to

AIR 7000). Specifically, in order to test and evaluate the performance of radar detection

schemes being considered at DSTO, it is necessary to evaluate their performance in a

correlated clutter setting. Models of interest for sea clutter correspond to those being

investigated for high grazing angle detection, specifically the K- and KK-Distribution

models. Realistic sea clutter returns exhibit correlations in time, and it is the purpose

here to show how to generate correlated K and KK-distributed clutter by simulation.

The Memoryless Nonlinear Transform (MNLT) provides a general framework which per-

mits the generation of correlated sea clutter returns with desired marginal distributions.

Although distributions that fit into the class of spherically invariant random processes

(SIRV) can be simulated easily without the MNLT, some distributions of interest to DSTO

may not fit within the class of SIRVs. Hence it is important to have an accurate description

of the MNLT.

It is also shown how shortcomings of the MNLT can be overcome. Specifically, it has

been reported that the MNLT is problematic because it does not guarantee an exact form

of desired output autocovaiance. Essentially, the MNLT converts a correlated Gaussian

process into a new process with desired marginal distributions. It is also correlated, but not

through the same autocovariance function as the Gaussian process. It is in fact related to

the Gaussian’s autocovariance by a non-linear mapping. In a practical situation we would

like to specify a desired process with given autocovariance function. It will be shown

how this can be achieved, using an inversion method. This leads to a novel solution to

the generation of correlated returns, with desired marginal distributions and prescribed

autocovariance function.

The report outlines both the theoretical aspects of this transform, and how it is imple-

mented in practice. A simulator has been developed, which is fully described and docu-

mented in this report. A number of simulations are included to show how the code can
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be utilised. The simulator, written in Matlab, is in a form that will enable incorporation

into a number of radar models under development at DSTO.
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1 Introduction

The simulation of sea clutter returns is an integral part of the modelling, analysis and val-

idation of radar systems. In particular, it is important to have the capability to generate

synthetic radar clutter that not only posesses the desired marginal distributional charac-

teristics, but also exhibits what can be termed short range correlations in time. By the

latter we refer to clutter returns whose covariances decrease with time, such as through,

for example, a damped sinusoidal function.

The purpose of this report is to show how the Memoryless Nonlinear Transform (MNLT)

[1] can be used to simulate amplitude distributions with correlation in time. The MNLT

is a nonlinear mapping from a specified probability distribution to a target, or desired

distribution. Its formulation means we have the flexibility to start with any distribu-

tion and convert it into a desired distribution. As such, we can begin with a correlated

Gaussian stochastic process, and produce a correlated process having the distributional

characteristics of interest.

The literature contains a number of cases where the MNLT has been used to generate

correlated returns. One of the earliest references is [2], who uses the MNLT to correlate

Log-Normal clutter. Additionally, [3] also examines the Log-Normal case, while [4] and

[5] extend the MNLT to the Weibull case. The extension of the MNLT to the simulation

of correlated K-Distributed clutter first appeared in [6], followed by the derivation of the

relationship between correlation functions in [1].

In the DSTO report [7] it is argued that the MNLT does not provide an entirely sufficient

solution to the simulation of correlated clutter1. Part of the criticism of the method

is that it does not indicate how the correlation characteristics of the target distribution

can be controlled. This is because we begin with a correlated Gaussian process, and

produce an output process with a correlation function that has been transformed from the

Gaussian correlation function via the MNLT. However, it has been shown in [1] that the

correlation function of the target distribution can be expanded in terms of the Gaussian

1It is worth observing that [1] appeared after the DSTO report [7] and so the author of the latter was

unaware of the former.
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correlation function. Specifically, the expansion is in terms of Hermite polynomials from

mathematical physics. This relationship, as described in [1], can in principle be used to

determine which Gaussian correlation should be used to produce the desired correlations

in the target distribution sample. The issue with the relationship is that it expresses

the output autocovariance as a function of the Gaussian process autocovariance. What

is required is the inverse mapping, which will then specify which Gaussian process one

should start with. The novelty in the work presented here is that a general methodology,

supported by Matlab code, is developed to achieve this aim. It involves an approximate

inversion of the correlation mapping from [1], which then enables the determination of an

appropriate Gaussian input process.

In addition to the preceived issues with determining which Gaussian process to use as

input, it is also argued in [7] that the theory of spatially invariant random processes

(SIRP) provides a better solution to the problem under consideration. While this is true

for the class of SIRPs, the problem is that there are distributions of interest to DSTO

that may not fit into this class. The prime example is the KK-Distribution [20], which is

a model for high grazing angle clutter. At the time of writing it was not clear whether

the KK-Distribution fits within this class. Hence it is important to examine whether the

MNLT is useful for simulating a correlated sequence with KK-Distributed marginals.

This report analyses the problem of generating correlated clutter returns from a mathe-

matical point of view, but also develops a practical mechanism for generating it. Included

is a correlated clutter simulator in Appendix B.

To clarify what is the purpose of this work, we formulate the desired outcome in the fol-

lowing manner. We would like to generate a random sample of observations x1, x2, . . . , xn

from a prescribed continuous random variable X, with density function fX(t), cumulative

distribution function FX(t) and covariance Cov(Xi,Xj) = E(XiXj)− E(Xi)E(Xj), where

the random variables corresponding to the realisations xi and xj are Xi and Xj respec-

tively. These realisations represent amplitude or intensity measurements. We refer to this

stochastic process as the target or output process, since it is the result of the MNLT. The

Gaussian stochastic process used to generate the target process is called the input process.

We will restrict attention to stationary processes throughout, so that the mean of each
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realisation is constant. We will employ the notation and terminology used in [1], referring

to r(k) = E(X0Xk) as the correlation function of the process. We furthermore define the

covariance coefficient of the process as (r(k) − E(X0)E(Xk))/Var(X).

Such a series of observations can be used as range samples from a single-pulse return that

are input to a detection scheme, such as a Constant False Alarm Rate (CFAR) detector, or

as time samples from multiple pulses in a single range cell. We do not examine long-term

correlations in this work.

This report is structured as follows. Section 2 introduces the MNLT, and Section 3 ex-

amines the relationship between correlation functions, and shows how they can be related

analytically in a special case. Section 4 discusses our implementation of the algorithms

in question, while Section 5 discusses some examples of its output. Appendix A describes

the use of the simulator from the point of view of the user, while Appendix B contains

the source code for the simulator. Finally, Appendix C contains numerically determined

values related to the function described in Section 3.

Due to the fact that this work is highly probabilistic in nature, it is worthwhile listing

some useful references on statistics, probability and simulation. Suitable references on

probability and stochastic processes include [8] , [9] and [10], while [11] is a useful reference

on simulation. Statistical tests and methods are described in [12]. Standard radar texts

all describe sea clutter and their characteristics, for example [13] and [14] both describe

sea clutter in depth.
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2 Simulation via The Memoryless Nonlinear

Transform

The MNLT is essentially an extension of a fundamental method with which a single random

variable return can be generated. We thus begin with the generation of independent

returns, and show how this can be modified to produce dependency between the marginal

distributions in the process being simulated. Throughout, we are focusing on continuous

random variables as specified in Section 1. We also employ the notation X
d
= Y to mean

that the random variables X and Y , defined on a common probability space (Ω,F ,P),

share the same distribution function. This means that ∀A ∈ F , FX(A) = P(X ∈ A) =

FY (A) = P(Y ∈ A).

The following Lemma is the first key simulation result:

Lemma 2.1 Suppose X is a continuous random variable with cumulative distribution

function FX , and let R
d
= R(0, 1) be a uniformly distributed random variable on the unit

interval. Then the random variable F−1
X (R)

d
= X.

To see this, let Y = F−1
X (R) and observe that the cumulative distribution function of Y is

FY (y) = P(F−1
X (R) ≤ y) = P(R ≤ FX(y)) = FX(y), (1)

using the cumulative distribution function of a uniform random variable. This implies

Y
d
= X, as required.

Lemma 2.1 states that to generate a realisation from a distributionX we need only generate

a uniform random number between 0 and 1 and evaluate the inverse of the cumulative

distribution function at this point. Since we are dealing with continuous distributions, the

cumulative distribution function will be monotonically increasing and continuous, and so

the inverse will always exist.

To illustrate how (1) can be used to simulate a random variable, consider the case where

X is an exponential distribution with density fX(x) = e−x, for x ≥ 0. Then it is not

difficult to show that its cumulative distribution function FX(x) = 1− e−x and F−1
X (x) =
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− log(1 − x). Hence Lemma 2.1 implies that if r ∈ [0, 1] is a random number, then

− log(1−r) is a realisation ofX. Generating a large sequence of such numbers, and plotting

a histogram, will show that they have the same statistical characteristics as realisations

from an exponential distribution. It is worth noting that if r is a random number between

0 and 1, so is 1− r and so for simulation purposes we can focus on generating − log(r) in

the above. This result is clarified in the following Lemma:

Lemma 2.2 If R
d
= R(0, 1), then 1 −R

d
= R(0, 1).

Lemma (2.2) is proven easily by constructing the distribution function of 1−R. Another

useful result is presented in Lemma 2.3, which is essentially equivalent to Lemma 2.1:

Lemma 2.3 If X is a continuous random variable with cumulative distribution function

FX and R
d
= R(0, 1), then FX(X)

d
= R. That is, the random variable resulting by substi-

tuting X into its distribution function is uniformly distributed.

This Lemma is proven by showing that the distribution function of FX(X) matches that

of R.

Lemma 2.1 can be used to generate independent samples. Recalling the problem specifi-

cation from Section 1, we want to generate a correlated sequence, whose point to point

distributions match a prescribed distribution. It is clear the only way to proceed would

be to generate a correlated sequence of uniform random numbers, and then apply Lemma

2.1 to produce the sequence with target marginal distribution. This sequence will be thus

correlated. However, we can use Lemma 2.3 together with Lemma 2.1 to do this more

generally. The key to this is the following version of Lemma 2.1:

Lemma 2.4 Suppose X1 and X2 are two random variables, with distribution functions

FX1 and FX2 respectively. Then the random variable F−1
X2

(FX1(X1))
d
= X2.

This Lemma follows by applying Lemma 2.3 to Lemma 2.1.

Lemma 2.2 is the key to generating correlated realisations of a random process. Define

a function η(x) = F−1
X2

(FX1(x)). Then Lemma 2.2 implies that if x is a realisation of
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N(0, 1) FX1(·) F−1
X2

(·) Target Distribution

R(0, 1)

Figure 1: The Memoryless Nonlinear Transform converts a Gaussian variable into one

of the target distribution.

random variable X1, then η(x) is a realisation of random variable X2. Suppose we have a

wide sense stationary stochastic process ζ(t) evolving over time t, with correlation function

rζ(τ) = E(ζ(0)ζ(τ)), and each ζ(t)
d
= X1. Then we can transform this process to produce a

new stochastic process θ(t) = η(ζ(t)), which will be distributed according to X2 pointwise

(θ(t)
d
= X2, ∀t ≥ 0). However, this new process will have a correlation function rθ(τ) =

κ(rζ(τ)), where κ(·) is a nonlinear function.

The utility of this and Lemma 2.2 is that we can generate any random variableX2 from any

X1. Hence, we choose X1 to be a Gaussian random variable, and generate a correlated

Gaussian sequence. This is a relatively straightforward exercise, see for example [15].

This is then transformed into a sequence of random variables with the desired statistical

distribution using the function η. Figure 1 illustrates the MNLT process graphically.

The resulting sequence will consist of dependent realisations. Due to the nonlinear nature

of η, the output sequence will not necessarily have the same correlation properties as the

Gaussian input process. This is examined in the next Section.
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3 Correlation Function Mapping

This Section is concerned with the autocorrelation properties of the MNLT, and in par-

ticular, investigates the relationship between the Gaussian input and target distribution

output autocorrelation. As remarked previously, [1] derives an expansion of the output

autocorrelation in terms of the input autocorrelation. What is desired is an inverse map-

ping, so that we know which Gaussian process to begin with, in order to generate a

desired stochastic process with specified marginal distributions and autocorrelation func-

tion. While this is not always possible to do analytically, it can be done through a series

of functional approximations. We begin with the series representation of the output au-

tocorrelation.

3.1 Correlation Function Expansion

In order to understand the relationship between the correlation functions related to the

MNLT it is necessary to take a brief digression into some special functions from math-

ematical analysis. A useful reference on the latter is [16], although we merely require

the properties of certain special functions for the work to follow. Hermite polynomials

[16, 17] are a useful set of functions used in mathematical analysis, and in particular,

in Hilbert space theory. They form a complete orthogonal sequence with respect to a

Gaussian weight function, and arise in the theory of differential equations—in particular,

as a special case of the Sturm-Liouville boundary value problem [17, 18]. The 0th order

Hermite polynomial is H0(t) = 1 and for n ∈ N, the nth order Hermite polynomial is

Hn(t) = (−1)net
2 dn

dtn
(e−t2).

Hermite polynomials can also be generated with a second-order recurrence relation. Noting

that H1(t) = 2t, it can be shown that

Hn+1(t) = 2tHn(t) − 2nHn−1(t).

UNCLASSIFIED 9
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This enables us to sequentially generate Hermite polynomials. The generating function of

the Hermite polynomials is

e(2xt−x2) =
∞∑

n=0

1

n!
Hn(t)xn. (2)

It is worth noting that the generator (2) essentially specifies a Gaussian density in terms

of the Hermite polynomials.

The following Lemma is an interesting result that will be applied in the Lognormal example

considered in the next Section:

Lemma 3.1 Suppose X
d
= N(µ, 0.5) is a Gaussian random variable with fixed mean µ.

Then for each n ∈ N, E (Hn(X)) = (2µ)n.

The proof follows directly from the generator function (2).

We now derive the relationship between Gaussian input and target output autocorrelation

functions. It essentially follows from the generating function (2). Using equations (9) and

(10) of [19], (with the choice of j = 1, k = 1, z = r
2 , x = x1√

2
and y = y1√

2
), it can be shown

that

e
− 1

2(1−r2)
[x2

1+y2
1−2x1y1r]

=
√

1 − r2e−
(x2

1+y2
1)

2

∞∑
n=0

Hn

(
x1√

2

)
Hn

(
y1√
2

)
rn

2nn!
(3)

As pointed out in [1], this equation gives an expansion of the generator of an Ornstein-

Uhlenbeck process via eigenfunctions of its associated Fokker-Plank equation. When

weighted by 2π
√

1 − r2, the left hand side of (3) becomes the probability density function

of a bivariate Gaussian process, with mean zero, variances one, and covariance r. De-

note this density f(Y1,Y2). This means that the correlation function of the target process

in the MNLT formulation can be written in terms of that of the input (Gaussian pro-

cess) and Hermite polynomials. Let rinput be the Gaussian correlation function, so that

rinput(t1, t2) = E(Xt1Xt2), and let the output correlation be routput(t1, t2). In particular,

using this and the definition of correlation function, it can be shown that for a Gaussian

input process,

routput(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
η(y1)η(y2)f(Y1,Y2)(y1, y2)dy1dy2
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n an

0 E(X2)

1
√

2E(X1X2)

2 2
(
E(X2

1X2) − E(X2)
)

3 2
√

2
(
E(X3

1X2) − 3E(X1X2)
)

Table 1: The first few coefficients expressed as expectations.

=
1

π

∞∑
n=0

rinput(t1, t2)

2nn!

n (∫ ∞

−∞
e−x2

Hn(x)η(
√

2x)dx

)2

=

∞∑
n=0

rinput(t1, t2)

2nn!

n

a2
n, (4)

with the coefficients an given by

an =
1√
π

∫ ∞

−∞
e−x2

Hn(x)η(
√

2x)dx

=

∫ ∞

−∞

1√
2π
e−

x2

2 Hn

(
x√
2

)
η(x)dx

= E

[
Hn

(
X1√

2

)
η(X1)

]
, (5)

the mean in (5) being with respect to the Gaussian marginal distribution X1
d
= N(0, 1).

Note that if we assume that the Gaussian input process is wide sense stationary, the output

process will preserve this feature, in view of (4). Consequently we can write, in terms of

discrete time k ∈ N,

routput(k) =
∞∑

n=0

(rinput(k))
n

2nn!
a2

n. (6)

Using the definition of the Hermite polynomials, as well as their recurrence relation, it can

be shown that the first few Hermite polynomials are H0(t) = 1,H1(t) = 2t,H2(t) = 4t2−2

and H3(t) = 8t3 − 12t. Applying these results to (5), we can show the first few coefficients

are as given in Table 1.

The expression (6) expands the output correlation function in terms of the Gaussian input

correlation function as a power series. It is reported in [1] that this series is rapidly
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Figure 2: Relationships between input and output autocovariance coefficients for the Log-

Normal distribution.

convergent for a number of target distributions of interest. This mapping between the two

correlation functions shows how, in theory, we can control the output correlation through

the Gaussian input correlation. In essence, we require an inversion of (6).

As can be seen in figure 2, this mapping is very much nonlinear, and thus inversion in

the general case is clearly not a simple exercise. Despite this difficulty, as pointed out in

[1] and also indicated in [6], we can establish some “rules of thumb” to determine which

Gaussian process to use as input. This is addressed in the following section.

3.2 Methods of Inversion

Rules of thumb are now outlined for inversion of the autocorrelation relationship derived

in the previous Section. Firstly, it has been reported in [1, 6] that for some clutter models

of interest, there is an approximate invariance between input and output correlations. The

Weibull distribution is a good example of this. It has been found in many situations, there

is an almost linear association between the correlation functions. This means we can apply

a truncation of (6) to produce the linear estimate

routput(k) ≈ (E(X2))
2 + (E(X1X2))

2rinput(k), (7)
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and inversion is immediate, noting it may be necessary to scale the linearisation to pro-

duce a proper correlation function for the Gaussian (which means at k = 0 it must equal

1, the Gaussian’s variance). A second approach is to use ad hoc adjustment of the input

correlation to produce an output with local dependency as described by a sample corre-

lation. This assumes we are not overly concerned about the specific form of the output

correlation, but require a correlated sequence with the correct marginal distributions. A

third approach is to use a higher order polynomial approximation to (6), such as a cubic or

quartic approximation, and apply inversion numerically, scaling the appropriate solution

to produce an approximate Gaussian correlation function.

There is a fourth approach to designing the appropriate Gaussian input distribution. The

Lagrange Inversion Theorem can be applied to invert the implicit function defined through

the series (6). Suppose we have an analytic function f , and that at a point a the derivative

f ′(a) 
= 0. Then, the Theorem states that the equation f(w) = z can be solved to give

w = g(z), where g has a series expansion

g(z) = a+
∞∑

m=1

lim
w−→a

Dm−1

(
w − a

f(w) − f(a)

)m (z − f(a))m

m!
, (8)

and Dm is the mth derivative with respect to w. This can be applied to (6) by selecting

a = 0 and letting f(w) =
∑∞

n=0 bnw
n, where bn = a2

n

2nn! , and noting that f is analytic and

f ′(0) = E
2(X1X2) 
= 0 in general. Here f(a) = f(0) = b0. As an example, four terms were

manually calculated, resulting in the approximate solution

rinput(k) ≈ 1

b1
(routput(k) − b0) − b2

b31
(routput(k) − b0)

2

(9)

−
(
b3
b41

− 2b22
b51

)
(routput(k) − b0)

3 −
(
b4
b51

− 5b2b3
b61

+
5b32
b71

)
(routput(k) − b0)

4.

Given a desired distribution FX2 with correlation function routput, equation (9) gives an

indication of which Gaussian distribution X1 should be used to generate the desired cor-

related sample. Observe that b0 = E
2(X2) and so the expansion (9) is in terms of the

process autocovariance function, assuming we have a stationary target distribution.

Of the four approaches outlined here, we will focus exclusively on the third, which involves

an inversion of a partial series of the correlation function. It is expected to give more
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accurate results than a linearisation, while the approach based upon Lagrange Inversion

is basically equivalent, but requires more analytical work.

3.3 Lognormal Distributed Clutter: A Special Case

Before proceeding to the approximate solutions to the inversion problem outlined in the

previous Section, we examine a case where the relationship between input and output

correlation can be given in closed form. In [1] there are several such examples given, but

these are not entirely convincing. The example presented here is perhaps better because

it indicates how the series in (6) can be evaluated for a distribution of interest in radar.

We remark at the outset that the following simplification of (6) can be derived using

conditional probability without reference to the series expansion (6).

A positive random variable X is said to be Lognormally distributed if its logarithm is Nor-

mally distributed. We write X
d
= LN(µ, σ2) where log(X)

d
= N(µ, σ2). This distribution

has been investigated in the past as a model for radar clutter [2, 3].

Let X1
d
= N(0, 1) and X2

d
= LN(µ, σ2). Then we can select X2 = eµ+σX1 , and con-

sequently η(z) = eµ+σz . Simulating correlated returns is quite easy here because of the

straightforward relationship between the input and output distributions. We now evaluate

the coefficients an; note that by using the form of η and applying a change of variables,

an = eµ
∫ ∞

−∞

1√
π
e−

w2

2
+σw 1√

2π
Hn

(
w√
2

)
dw

= eµ+ σ2

2

∫ ∞

−∞
Hn

(
w√
2

)
1√
2π
e−

1
2
(w−σ)2)dw

= eµ+ σ2

2 E

[
Hn

(
W√

2

)]
, (10)

where W
d
= N(σ, 1). We now apply Lemma 3.1, simplifying (10) to

an = eµ+ σ2

2 2
n
2 σn. (11)

Substituting into (6), we see that

routput(k) =
∞∑

n=0

[σ2rinput(k)]
n

n!
e2µ+σ2
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= eσ
2rinput(k)+2µ+σ2

, (12)

where the Taylor series expansion for the exponential function has been used. By taking

logarithms of (12) we can obtain the required input correlation. This result is a useful test

mechanism for other approximate schemes.

3.4 Hilbert Spaces and Parseval’s Identity

In the analysis to follow, we will be exclusively using truncation of the series (6) and

applying an approximate inversion to it. It will thus be important to quantify the error

incurred by truncation of the series. In order to achieve this, it is useful to review some

Hilbert space theory, which provides some useful tools for this purpose. In particular,

we will require Parseval’s Identity as well as an understanding of the representation of a

function in terms of basis elements.

Let X be a vector space over either the real or complex numbers, with scalar field F . Then

an inner product [16] is a function

〈·, ·〉 : X ×X → F

such that all of the following hold, for x, y, z ∈ X and α ∈ F :

〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 (13)

〈αx, y〉 = α 〈x, y〉 (14)

〈x, y〉 = 〈y, x〉 (15)

〈x, x〉 ≥ 0 (16)

0 = 〈x, x〉 ⇐⇒ x = 0. (17)

That is, it is a function from a pair of vectors to a scalar that is linear in its first argument

(13,14), conjugate-symmetric (15), and positive-definite (16,17). While (16) might look

somewhat suspicious at first, since the inner product is a complex-valued function, the

application of (15) will show that 〈x, x〉 must be real.
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A space X with an associated inner product 〈·, ·〉 is called an inner product space. If it is

also complete, it is called a Hilbert space. This means every Cauchy sequence in the space

converges [16], with respect to the norm induced by the inner product, to a point in the

space. The associated norm is ||x || 2 = 〈x, x〉, and is a mapping || · || : X → R.

If two vectors have an inner product of zero, we call them orthogonal. If the elements

of a set of vectors are orthogonal to each other element, we say that the set is mutually

orthogonal. If each element has a norm of one, we describe the set as orthonormal. If

this set is sufficiently large that we can write any vector as a linear combination of its

elements, we call it an orthonormal basis. The representation in terms of any particular

basis is unique.

One might then ask how to find the coefficients of each member of the basis that are used

when forming a particular vector. When the basis {en} is orthonormal, this is

x =
∑

n

en〈x, en〉. (18)

Having found this representation, we may then introduce the Parseval Identity, which will

play an important role in determining the error bound on our truncated correlation series.

Since ||x || 2 = 〈x, x〉, it follows by (18) that

||x || 2 =

〈∑
n

en〈x, en〉, x
〉

=
∑
n

〈en〈x, en〉, x〉

=
∑
n

〈x, en〉〈en, x〉

=
∑
n

〈x, en〉〈x, en〉

=
∑
n

|〈x, en〉|2 . (19)

In Euclidean space, this statement essentially states that even if we select a different

coordinate system to represent our vectors, the square of the length of a vector will still be

given by the sum of the squares of its components as long as the new basis is orthonormal.

The family of spaces that we require for our application is L2(−∞,+∞), and an appro-

priate choice of basis functions is the Hermite polynomials with respect to the Gaussian
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Figure 3: The zeroth, first, and sixth Hermite functions.

weight function (see figure 3), given by

en(x) =
1√

2nn!
√
π
e−

1
2
x2
Hn(x), (20)

where the inner product on this space is given by

〈f, g〉 =

∫ +∞

−∞
f(x)g(x) dx (21)

(see [16] for details of this, including justification that the sequence {en(x)} forms an

orthonormal basis).

We shall see that the effect of the MNLT is described most simply when it is considered

in terms of these functions.

Before doing so, however, we return once more to Parseval’s theorem, and its interpretation

in the context of functions in L2(I), for a general interval I. The norm of a function f is

||f || 2 =

∫
I

f(t)f(t) dt

=

∫
I

|f(t)|2 dt. (22)

The square of the norm of a function of L2(I) is therefore the total energy of the function.

Expanding (19) using (21, 22), we see that (where {en} is an arbitrary orthonormal basis)∫
I

|f(t)|2 dt =
∑
n

|〈f, en〉|2 . (23)

We can write the coefficients for each element of the basis as a discrete sequence

cn = {. . . , 〈f, e−1〉, 〈f, e0〉, 〈f, e1〉, . . .},
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and therefore Parseval’s theorem is the statement that the energy in this discrete signal is

equal to the energy in our original function.

3.5 Inner Product Representation

The purpose here is to show how the correlation series (6) can be expressed in terms of the

inner product and associated basis functions of the associated Hilbert space L2(−∞,+∞).

This allows the application of Parseval’s Identity to the series, and perhaps more impor-

tantly grants an understanding of the distribution of output autocorrelation amongst the

infinitude of terms.

Note that the coefficients an of (5) can be written

an =
1√
π

∫ +∞

−∞
e−x2

Hn(x)η(x
√

2) dx

=
1√
π

∫ +∞

−∞

(
e−

1
2
x2
η

(
x
√

2
))(

e−
1
2
x2
Hn(x)

)
dx

=
1√
π

〈
e−

1
2
x2
η

(
x
√

2
)
, e−

1
2
x2
Hn(x)

〉
. (24)

The Hermite functions are given by

en(x) =
1√

2nn!
√
π
e−

1
2
x2
Hn(x),

and we define

ψ(x) =
1
4
√
π
e−

1
2
x2
η

(
x
√

2
)
,

allowing us to then simplify (24)

an =
1√
π

〈
ψ 4
√
π, en

√
2nn!

√
π

〉
=

√
2nn!〈ψ, en〉 (25)

and thus write (6) as

rout(k) =
∞∑

n=0

rinput(k)
n〈ψ, en〉2.
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Knowing that both ψ and en are real, this is equivalent to

rout(k) =
∞∑

n=0

rinput(k)
n |〈ψ, en〉|2 , (26)

thus putting the series into a form amenable to application of Parseval’s Identity.

As the input X1
d
= N(0, 1), we have that rinput(0) = E

(
X2

1

)
= 1. Similarly, by the

definition of autocorrelation, rout(0) = E
(
X2

2

)
. Thus, we can write a special case of (26):

E
(
X2

2

)
=

∞∑
n=0

|〈ψ, en〉|2 . (27)

Thus it follows from Parseval’s Identity that

||ψ || 2 = E
(
X2

2

)
, (28)

as the Hermite functions form a complete orthonormal basis for L2(−∞,+∞). But, ||ψ || 2

is the energy of the signal ψ, and therefore it has total energy equal to the instantaneous

power of the target process.

One might perhaps choose to interpret the output autocorrelation as the energy in a

filtered version of ψ. In essence, the multiplication by xn corresponds to an attenuation

by a factor of x−n of each term n. When we attempt to bound the remainder, we do so

by considering the power in ψ that the truncated series has failed to include.

3.6 Bounding the Truncation Error

The power series described in (26) can be truncated and used to determine the autocor-

relation characteristics of the transformed process. We then desire to know the error that

such an approximation introduces. Let gk(x) be the truncation of the series to order k;

that is, let

gk(x) =
k∑

n=0

xn |〈ψ, en〉|2 , (29)

and the corresponding remainder function be

rk(x) =
∞∑

n=k+1

xn |〈ψ, en〉|2 . (30)
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It should be noted that en being orthonormal implies that setting ψ = ep will result

in 〈ψ, en〉 = δnp, and thus we may produce a relationship between input and output

autocorrelation described by an arbitrary polynomial by selecting an appropriate linear

combination of these functions. Adding to ψ the function cek will therefore produce a

term with coefficient c at n = k, demonstrating that one cannot bound the remainder

without some knowledge of the target distribution.

For an input autocorrelation of magnitude at most one, as in the case of a standard normal

distribution, the worst-case error occurs when all the remaining energy of ψ is in the next

(and least attenuated) term. Irrespective of the distribution of energy in ψ, for n > k we

have that |x|n ≤ |x|k+1, and therefore can bound the remainder series:

|rk(x)| =

∣∣∣∣∣
∞∑

n=k+1

xn |〈ψ, en〉|2
∣∣∣∣∣

≤
∞∑

n=k+1

|xn| |〈ψ, en〉|2

≤
∞∑

n=k+1

∣∣∣xk+1
∣∣∣ |〈ψ, en〉|2

= |x|k+1
∞∑

n=k+1

|〈ψ, en〉|2

= |x|k+1rk(1). (31)

By (27), we have that

gk(1) + rk(1) = E
(
X2

2

)
,

and thus that

|rk(x)| ≤ |x|k+1
(
E

(
X2

2

) − gk(1)
)
. (32)

When ψ is a linear combination of Hermite functions of order at most k + 1, 〈ψ, en〉 = 0

for n ≥ k + 2, causing all but the k + 1th term to vanish, and equality is achieved:

rk(x) = |x|k+1rk(1)

= |x|k+1
(
E

(
X2

2

) − gk(1)
)
.
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Note that as gk(1) increases monotonically with k, as its coefficients are all positive.

Therefore, E(X2
2 ) − gk(1) will be decreasing, and thus we can loosen (32) slightly and

write (where n ≤ k)

rk(x) ≤ |x|k+1
(
E(X2

2 ) − gk(1)
)

≤ |x|k+1
(
E(X2

2 ) − gn(1)
)
.

We know, however, that g0(k) = E(X2)
2, and therefore that

rk(x) ≤ |x|k+1
(
E(X2

2 ) − E(X2)
2
)

= |x|k+1Var(X2), (33)

and thus, in order to achieve a remainder of at most rk(x), we must have

k ≥ log (rk(x)/Var(X2))

log x
− 1. (34)

Hence we have rules of thumb enabling the determination of errors associated with the

series truncation.

3.7 Numerical Error

The bound given in (31) is adequate only if we are to discount errors introduced by

numerical integration. While in many cases this might be sufficient, we would do well to

be able to predict the error introduced by our implementation.

Let the estimated value of each coefficient be denoted b�n, with relative error at worst εr.

That is, suppose |b∗n − |〈ψ, en〉|| ≤ εr|b∗n|. We have therefore an error that is at worst (by

the triangle inequality)

|∆(x)| ≤
k∑

n=0

|x|n
∣∣∣b�n2 − |〈ψ, en〉|2

∣∣∣
≤

k∑
n=0

|x|n |b�n + |〈ψ, en〉|| |b�n − |〈ψ, en〉||
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≤ εr

k∑
n=0

|x|n |b∗n| |2b∗n − (b∗n − |〈ψ, en〉|)|

≤ εr

k∑
n=0

|x|n|b�n| (|2b∗n| + εr|b∗n|)

=
(
ε2r + 2εr

)
gk (|x|) . (35)

Noting that coefficient errors must be applied to (32), we add the truncation error to (35)

and find that gk(ri[k]) differs from ro[k] by at most

|ε(x)| ≤ |x|k+1
[
E

(
X2

2

) − (1 − εr)
2gk(1)

]
+

(
ε2r + 2εr

)
gk (|x|) . (36)

In the worst-case of x = 1, this reduces to

|ε(1)| ≤ E
(
X2

2

) − (2ε2r + 1)gk(1)

and thus for a given worst-case error we have the requirement that

εr <

√
1

2

(
E(X2

2 ) − |ε(1)|
gk(1)

− 1

)
. (37)
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4 Implementation

The implementation of the MNLT is now addressed. It has been implemented as a Matlab

toolbox using a truncated power series for autocorrelation control. This task can be

split into five main segments: the determination of η(x), the calculation of the input

autocorrelation function, production of the correlated Gaussian series, translation to the

target distribution, and validation of the output. We address each of these individually in

the following subsections.

Beyond this, the toolbox contains integrated documentation, and examples of its use are

given in Appendix A.

4.1 Constructing the Transformation

The MNLT function η(x) = F−1
X2

(FX1(x)), defined in Lemma 2.4, transforms a standard

Gaussian random variable into one of the target distribution. However, it is clear that

FX2 is not analytically invertible in general. We thus require a numerical approximation

of its inverse. This was done by sampling FX2 uniformly over a bijective interval around

FX2 = 0.5. This then produced an approximation of the inverse using the method of cubic

splines (see figure 4). The implementation is shown in Section B.1.

F−1(x)F (x)

x x

Figure 4: Interpolation is used to determine values of the inverse CDF between samples.
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Initialisation

Per-Realisation

chol(R)

Ax

randn(N ,1)

η(·)

solvepoly(a, ro)rtarget an coeffs(η)

Output Process

A

x

ri

ro
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Figure 5: The means by which the implementation correlates the output.

4.2 Determining the Input Autocorrelation

We could use (5) to compute the values of |〈ψ, en〉|2, using the Monte Carlo approximation

|〈ψ, en〉|2 ≈ 1

N

N∑
n=1

η(xn)Hn

(
xn√

2

)
, (38)

where xn are realisations of the standard normal distribution. This was used at first,

however performance and accuracy were unsatisfactory.

Alternatively, we may use a deterministic method of numerical integration. The integral

form of (5) can be written as ∫ +∞

−∞
e−x2

f(x) dx.

Such an integral can be estimated numerically via

n∑
k=1

Akf(xk) +R(f), (39)

where xk are the roots of the nth Hermite polynomial, and

Ak =
2n+1n!

√
π

[H ′
n(xk)]

2 . (40)

(See [24] for details of this). This formula is exact for the case when f(x) is a polynomial

of order at most 2n− 1. The remainder of this approximation is given by

R(f) =
n!
√
π

2n

f (2n)(c)

(2n)!
,
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where c is the point at which f (2n)(x) takes its maximum.

A 22-point numerical integration using this method significantly outperformed the two-

million point Monte Carlo simulation. However, difficulties in calculating (40) when using

a large number of points prevented the use of this approximation when high accuracies

were required.

Hence an adaptive technique was examined; specifically, the Gauss-Kronrod algorithm [22],

whose implementation is included with Matlab. This provided a high degree of accuracy,

and is thus used in our implementation.

Having done this, we now have a finite polynomial

gk(rinput) = |〈ψ, e0〉|2 + rinput|〈ψ, e1〉|2 + r2input|〈ψ, e2〉|2 + · · · + rk
input|〈ψ, ek〉|2

which can be solved numerically.

Our next task in determining the autocorrelation of the input sequence is to find the desired

autocorrelation of the output sequence. As we are using a truncation of (4), näıvely

converting the autocovariance coefficient to autocorrelation using the known mean and

variance of the target distribution will produce a non-standard Gaussian input. Whenever

gk(x) 
= routput(x), as in almost all cases, we have that

gk(1) < routput(1) = E
(
X2

2

)
= Var(X2) + E (X2)

2 (41)

and hence solving gk(x) for the right-hand side of (41) would produce rinput(0) 
= 1.

This issue can be addressed by scaling the target autocovariance by a constant. Multiplying

ρ by (gk(1) − E(X2)
2)/Var(X2) we instead find the equation

gk(rinput) = ρ
(
gk(1) − E (X2)

2
)

+ E (X2)
2 ,

where ρ denotes the target autocovariance coefficient. In the case when ρ = 1, it is clear

that rinput = 1 is indeed a valid solution. As ρ = 1 by necessity at zero-lag, we can then

see that the resulting normal distribution will indeed be standard, and thus η(X1) will

produce the correct output distribution.
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4.3 Simulating the Correlated Process

In this brief section we clarify how the simulation of a correlated Gaussian process can be

achieved. The key to this is the well-known Cholesky Decomposition of a covariance matrix

[25]. Since a covariance matrix is positive definite, such a decomposition will always exists.

This factorisation provides a matrix A such that if R is the covariance matrix, R = AAT ,

where the latter matrix is the transpose of A.

The key idea in simulating a desired correlated Gaussian process is the following. Consider

the effect of a linear transformation on a vector of independent Gaussian variables. Let

X = [X1 · · ·Xn] be a column vector of standard independent Gausssian variables, A be an

n×n matrix, and Y = [Y1 · · · Yn] = AX. Then it is relatively simple to show that Y is also

a Gaussian process with covariance matrix AAT = R. Hence, once the Cholesky factor

matrix A is identified, we can simulate the correlated process using a matrix of independent

and identically distributed standard Gaussian random variables and A. Specific to our

simulation problem, we can generate a correlated vector Z in our target distribution with

Z = η (AX) ,

where η(Y) is taken to be the vector [η(Y1) · · · η(Yn)].

4.4 Testing

Testing and validation of the simulator built to implement the MNLT was extensive.

To test the capability of the simulator to generate uncorrelated processes, we used the

Kolmogorov-Smirnov test [12, 23] to verify that the distribution of the output matched

the theoretical distribution at a confidence level of α = 0.01, using the Exponential and

KK-Distributions with 105 elements in each realisation.

For correlated processes the Kolmogorov-Smirnov test is not an appropriate measure of

the matching of probability distributions, because it only applies to realisations that are

independent and identically distributed. Consequently a 50-bin χ2 goodness of fit test [12]

was used at a confidence level of α = 0.01. To provide an adequate sample, the test was

run against the concatenation of 1000 realisations, each of length 4000.
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These confidence levels are relatively low as the tests are intended to be run repeatedly

with various distributions as part of an automated test suite, and the use of α = 0.05 is

therefore likely to produce an unacceptable rate of false positives.
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5 Simulation Results

We are now in a position to examine the results of the application of the MNLT to a

number of clutter models of interest.

Recall that in Section 3.3 we found a closed-form relationship between the input and

output autocorrelations of the MNLT when used to simulate the Log-Normal distribu-

tion. Figure 6 provides a comparison of the result of the MNLT with a series truncation

performed, and the corresponding analytic results. The first plot in figure 6 shows the
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Figure 6: Simulation of a Correlated Lognormal Process

amplitude-squared simulation results, the second plot shows the error in cumulative dis-

tribution function, the third plot shows the autocovariance function and the fourth plot
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shows the autocovariance error. The MNLT uses a fourth-order power series truncation.

The distribution used here is the standard Lognormal LN(0, 1). We see that there is a

peak error around zero in the approximate inversion, corresponding to larger target and

input autocovariances. This error reached a maximum value of approximately 5×10−3. It

is clear here that the MNLT performs very well. Note that we are using an autocovariance

coefficient given by the expression r(k) = 1+k
ek .
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Figure 7: Simulation of a Correlated Weibull Process

Next we examine the case of generating correlated Weibull clutter; figure 7 shows the

four relevant plots. The first shows the intensity measurements, the second shows the

cumulative distribution function error, the third shows the autocovariance while the fourth

is the corresponding error. In this simulation, the target distribution is the Weibull with

cumulative distribution function F (t) = 1 − e−2.4t1.9
. The correlation function is r(k) =
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1+k
ek . The output in plots three and four is the result of the MNLT processing of a fourth-

order correlation function as before. We observe that the MNLT is working very well here

as for the Lognormal example considered previously.

The next example we consider is for simulation of correlated KK-clutter returns. Recall

that the KK-Distribution is the weighted sum of two K-Distributions; we can write its

cumulative distribution function as

FKK(t; k, ν, c1, c2) = (1 − k)FK(t; ν, c1) + kFK(t; ν, c2),

where 0 ≤ k ≤ 1 is the distribution mixing parameter, c1 and c2 are the two scale pa-

rameters and ν is the KK-Distribution’s shape parameter. The individual K-Distributions

used in the mixture have cumulative distribution function given by

FK(t; ν, ci) = 1 − (cit)
νKν(cit)

2ν−1Γ(ν)
,

for i ∈ {1, 2}.

We consider the case where the KK-Distribution is characterised by k = 0.01, ν = 3.4119,

c1 = 110 and c2 = 85. The correlation function is r(k) = cos(0.1πk)e−0.1k . The first

simulation is in figure 8, which examines the results of a linear approximation to the

autocorrelation relationship. The autocovariance errors are quite large; this is perhaps to

be expected, as it is the higher-order terms of (4) that encode the distortion produced by

the MNLT.

The use of a quadratic approximation as shown in figure 9 improves dramatically the

quality of the simulation, reducing the peak autocorrelation error to nearly one quarter

that achieved through a linear approximation.

A fourth-order approximation is shown in figure 10, which further decreases error to ap-

proximately one half that achieved using a quadratic. It is clear that increasing the quality

of the approximation will reduce the autocovariance error. Figure 11 demonstrates the

simulation of another KK-distribution, showing that the simulator performs well for a

wide range of parameters. In this case, we chose k = 0.3, ν = 2.5, c1 = 1 and c2 = 3, as

well as an autocovariance coefficient of r(k) = (1 + t)e−k. We observe the MNLT again

works very well for the KK-Distribution.
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Figure 8: Simulation of a KK Process With Linear Autocorrelation Correction

Calculated values of the series coefficients and remainders are shown in Appendix C; we

see that for the KK-Distribution, the series indeed converges quite rapidly.
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Figure 9: Simulation of a KK Process With Quadratic Autocorrelation Correction
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Figure 10: Simulation of a KK Process with Quartic Autocorrelation Control
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Figure 11: Simulation of another KK Process with Quartic Autocorrelation Control
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6 Conclusions

The Memoryless Nonlinear Transform, which enables the simulation of correlated sea

clutter from a prescribed distribution with given autocovariance function, has been in-

troduced. This process involves converting a correlated Gaussian stochastic process (the

input process) to a desired process with given autocovariance function (the output pro-

cess). A new technique, which truncates the mapping between input and output process

autocovariances and then performs an inversion, has been introduced. This enables the

determination of which input Gaussian process should be used to generate the desired

output stochastic process.

A simulator has been constructed in Matlab, and testing of some examples showed excellent

results. In particular, we showed the MNLT works very well for earlier models of sea

clutter, namely Lognormal and Weibull Distribution models. It was also demonstrated

that the MNLT worked very well for the generation of correlated KK-Distributed clutter.

Other tests, including an analysis for the case of the K-Distribution, further supported

the validity of this simulator.

The simulator provides DSTO with a capability that can be integrated into radar models

under development in the Microwave Radar Branch. This should prove to be useful for

the longer term goals of testing high grazing angle detection schemes operating under

correlated sea clutter returns.
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Appendix A Examples of Toolbox Usage

This section describes some basic use of the toolbox. More detailed documentation, in-

cluding a tutorial and a short explanation of the theory of operation, is available in the

Matlab help browser and in the help for individual functions (see Section B).

A.1 Generating an Uncorrelated Series

This example shows how one might simulate a uncorrelated exponential process. Using the

expcdf function from the Matlab Statistics Toolbox, it produces one million uncorrelated

samples distributed according to Exp(1/2). The code in Listing 1 is also available in the

toolbox as example/uncorrelated.m

Listing 1: Uncorrelated Simulation

% Generate an uncorre l a t ed e x ponen t i a l d i s t r i b u t i o n , and show

% some f e a t u r e s o f the proces s as w e l l as a histogram .

ctx = Simulator (@( t ) expcdf ( t , 2 ) , 1e6 , 0 . 0 1 ) ;

X = s imulate ( ctx ) ;

fprintf ( ’ Output s i z e :\n ’ ) ;

disp ( s ize (X) ) ;

fprintf ( ’ Output mean :\n ’ ) ;

disp (mean(X) ) ;

fprintf ( ’ Output va r i ance :\n ’ ) ;

disp ( var (X) ) ;

hist (X, 1000 ) ;
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Listing 2: Uncorrelated Simulation Output

Output s i z e :

1 1000000

Output mean :

2 .0011

Output va r i ance :

4 .0025

0 5 10 15 20 25 30
0

5000

10000

15000

Figure A1: Uncorrelated Simulation Output Histogram
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A.2 Generating a Correlated Series

This example shows how one might simulate an correlated exponential process. The

interface is the same as the uncorrelated case, however memory and computational con-

siderations restrict us to a shorter sequence. The code in Listing 3 is also available in the

toolbox as example/correlated.m.
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Figure A2: Correlated Simulation Output
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Listing 3: Correlated Simulation

% Generate a co r r e l a t e d e x ponen t i a l d i s t r i b u t i o n , and show

% some f e a t u r e s o f the proces s as w e l l as a histogram and autocovar iance

% p l o t .

r = @( t ) cos ( t ∗pi /10 ) .∗exp(−t ) ;

ctx = Simulator (@( t ) expcdf ( t , 2 ) , r ( 0 : 9 9 9 ) , 0 . 0 1 ) ;

X = s imulate ( ctx ) ;

subplot ( 2 , 1 , 1 ) ;

hist (X) ;

t i t l e ( ’Output Histogram ’ ) ;

% Average the autocovar iance over 1k r e a l i s a t i o n s .

l a g s = −50:50;

cov = zeros ( s ize ( l a g s ) ) ;

for i = 1 : 1 0 0 0 ;

X = s imulate ( ctx ) ;

cov = cov + xcov (X, 50 , ’ c o e f f ’ ) ;

end ;

cov = cov / 1000 ;

subplot ( 2 , 1 , 2 ) ;

s c a t t e r ( lags , cov , ’ . b ’ ) ;

hold on ; plot ( lags , r (abs ( l a g s ) ) , ’ r ’ ) ; hold o f f ;

box on ;

legend ( ’ Output ’ , ’ Target ’ ) ;

xlabel ( ’ Lag ’ ) ;

ylabel ( ’ Autocovar iance ’ ) ;

t i t l e ( ’Output and Target Autocovar iances ’ ) ;
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Appendix B Simulator Toolbox Code Listings

function obj = Simulator (F, r , va ra rg in )

% Simulator Simulate an au t oco r r e l a t e d time s e r i e s .

%

% ctx = Simu lator (F, N) ;

% c t x = Simu lator (F, au tocovar iance ( 1 :N) ) ;

%

% ctx = Simu lator (F, r , w) ;

%

% ctx = Simu lator ( . . . , ’ approximationOrder ’ , n ) ;

% c t x = Simu lator ( . . . , ’ approximationTol ’ , n ) ;

% c t x = Simu lator ( . . . , ’ con t ro lAu tocor re l a t i on ’ , c ) ;

%

% Example :

%

% % Generate uncor re l a t ed e x ponen t i a l v a r i a b l e s .

% F = @( t ) ( 1−exp(− t ) ) .∗ ( t >= 0) ;

% ct x = Simu lator (F, 1000) ;

%

% X 1 = s imu la t e ( c t x ) ;

% X 2 = s imu la t e ( c t x ) ;

%

% % Generate co r r e l a t e d e x ponen t i a l v a r i a b l e s .

% F = @( t ) ( 1−exp(− t ) ) .∗ ( t >= 0) ;

% r = @( t ) cos ( t ∗ p i /10) .∗ exp(− t /10) ;

% c t x = Simu lator (F, r ( 0 : 1000 ) ) ;

% X = s imu la t e ( c t x ) ;

%

% A s imu la t or o b j e c t can be used to generate au t o co r r e l a t e d

% sequences o f a r b i t r a r y d i s t r i b u t i o n s . Each in s t ance

% i s immutably t i e d to a d i s t r i b u t i o n , sequence l en g t h and

% autocovar iance .

%

% The s imu la t e method produces a r e a l i s a t i o n o f

% an au t oco r r e l a t e d time s e r i e s o f the d i s t r i b u t i o n with the
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% given CDF.

%

% When c a l l e d wi th a vec t or r o f l en g t h N, co r r e l a t e d v e c t o r s

% of l en g t h N w i l l be generated wi th the prov ided

% au t oco r r e l a t i on c o e f f i c i e n t s ( i e . r (1) shou ld be equa l to one ) .

%

% When c a l l e d wi th a s ca l a r N in p lace o f an autocovar iance vector ,

% uncorre l a t ed v e c t o r s o f l en g t h N w i l l be generated .

%

% The w argument determines the spac ing between samples o f the

% CDF. I f unspec i f i ed , t h i s d e f a u l t s to 0 . 01 . Set t h i s to a sma l l e r

% va lue f o r CDFs t ha t change q u i c k l y .

%

% The approximationOrder argument determines the order o f

% the po lynomia l approximat ion used when c o n t r o l l i n g the

% autocovar iance . I f not s p e c i f i e d , t h i s d e f a u l t s to four .

%

% The approximat ionTol argument s p e c i f i e s the r e l a t i v e t o l e r an c e o f

% the au t o co r r e l a t i on approximat ion c o e f f i c i e n t s .

% This d e f a u l t s to 1e−9.

%

% The contro lAutocovar iance argument d i s a b l e s ou tpu t

% autocovar iance con t r o l . I f t h i s i s f a l s e , then the input

% autocovar iance w i l l be used d i r e c t l y wi th the MNLT. This

% might be u s e f u l in cases where the e f f e c t o f the MNLT on

% the outpu t au tocovar iance can be determined a n a l y t i c a l l y .

%

% See a l s o S imu lator . s imu la t e

% I n i t i a l va lu es to make sure the f i e l d s are crea t ed .

obj .U = [ ] ;

obj . c o r r e l a t e d = 0 ;

obj . va r i ance = 1 ;

obj . approximationOrder = 0 ;
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obj . approximationTol = 0 ;

obj . c o n t r o l l e d = f a l s e ;

obj .w = 0 ;

obj .F = 0 ;

obj . Finv = 0 ;

% Produce a dummy c l a s s i f c a l l e d wi th no arguments so t ha t we

% can load Simu lator o b j e c t s from a f i l e .

i f nargin == 0

obj = c l a s s ( obj , ’ S imulator ’ ) ;

return ;

end

p = inputParserCompat ( ) ;

p = addRequired (p , ’F ’ , @(x ) i s a (x , ’ func t i on hand l e ’ ) ) ;

p = addRequired (p , ’ r ’ , @isnumeric ) ;

p = addOptional (p , ’w ’ , 0 . 01 , @(x ) i snumer ic ( x ) && i s s c a l a r ( x ) && x > 0 ) ;

p = addParamValue (p , ’ contro lAutocovar iance ’ , 1 , @( t ) t==0|| t==1);

p = addParamValue (p , ’ approximationOrder ’ , 4 , @( t ) 0 == rem( t , 1 ) ) ;

p = addParamValue (p , ’ approximationTol ’ , 1e−9, @( t ) 0 < t && t < 1 ) ;

p = parse (p ,F , r , va ra rg in { : } ) ;

r e s u l t s = Resu l ts (p ) ;

obj . approximationOrder = r e s u l t s . approximationOrder ;

obj . approximationTol = r e s u l t s . approximationTol ;

obj . c o n t r o l l e d = r e s u l t s . contro lAutocovar iance ;

obj .w = r e s u l t s .w;

obj .F = F;

% We begin by i n v e r t i n g the CDF.

[ a b ] = cdf bounds (F , obj .w) ;

obj . Finv = i n v e r s e f (F , a , b , obj .w) ;

r s i z e = s ize ( r ) ;
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i f i s s c a l a r ( r )

% We have been given a sca lar , and so generate

% uncorre l a t ed va lu e s . Since we need no c o r r e l a t i o n

% matrix , we save memory and on ly s t o r e the number o f

% va lues to generate .

obj .U = r ;

obj . c o r r e l a t e d = 0 ;

else

% We have an au t oco r r e l a t i on func t ion /matrix , and so

% generate co r r e l a t e d data .

% I f the ou tpu t i s to be cor re l a t ed , then we must

% prov ide an determine the input covar iance t ha t

% i s needed to produce the de s i r e d outpu t c o r r e l a t i o n .

i f obj . c o n t r o l l e d

r i npu t = i n v e r t a u t o c o r r e l a t i o n ( r , obj . Finv , . . .

obj . approximationOrder , . . .

obj . approximationTol ) ;

else

% We do not need to con t r o l the au tocovar iance .

r i npu t = r ;

end

obj . va r i ance = r i npu t ( 1 ) ;

obj . c o r r e l a t e d = 1 ;

i f i s v e c t o r ( r )

% We have been given a vector , imply ing t ha t the

% proces s i s s t a t i ona r y .

% I f the proces s i s s t a t i ona r y then we must cons t ruc t

% a c o r r e l a t i o n matrix .

%
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% DOC GAUSSIAN GENERATE

C = ones ( length ( r ) ) ;

for i = 1 : ( length ( r ) )

for j = 1 : ( length ( r ) )

C( i , j ) = r i npu t (abs ( i−j ) + 1 ) ;

end

end

% We use a Cholesky f a c t o r i s a t i o n so t ha t by

% mu l t i p l y i n g a vec t or o f normal v a r i a b l e s by U we

% produce a vec t or o f Gaussian v a r i a b l e s wi th the g iven

% co r r e l a t i o n s .

[ obj .U p ] = chol (C) ;

% Check whether C was po s i t i v e −d e f i n i t e .

i f p == 1

error ( ’ Simulator : Construct : BadCovariance ’ , . . .

[ ’ I nva l i d autocovar iance ; ’ . . .

’ Gaussian cova r i ance matrix must ’ . . .

’ be p o s i t i v e d e f i n i t e . ’ ] ) ;

end

e l s e i f r s i z e (1 ) == r s i z e (2 )

% TODO: Simulate proces s e s wi th nons t a t ionary au tocovar iances .

error ( ’ Simulator : Construct : NotImplemented ’ , . . .

’Non−s t a t i o n a r y c o r r e l a t i o n s not implemented . ’ ) ;

else

error ( ’ Simulator : Construct : NonSquareMatrix ’ , . . .

’ Autoco r r e l a t i on must be s c a l a r or vec to r . ’ ) ;

end

end

obj = c l a s s ( obj , ’ S imulator ’ ) ;
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end
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B.1 CDF Inversion

function [ a b ] = cdf bounds (F , w)

% CDF BOUNDS Determine CDF bounds o f i n v e r s i on .

%

% The bounds are d i s covered by p l a c in g both

% at a po in t near F−1(0.5) , then decreas ing and

% in c r ea s in g the lower and upper bounds r e s p e c t i v e l y

% un t i l we reach a po in t at which moving f u r t h e r r e s u l t s

% in no change .

% Arb i t rary i n i t i a l s t a r t i n g va lu e .

a = 0 ;

% We f i r s t l o c a t e ou r s e l v e s at approx imate ly the median .

while (F( a+w) < 0 . 5 )

n = 0 ;

while F( a+w∗2ˆn) < 0 .5

n = n + 1 ;

end

a = a + w∗2ˆn ;

end

while (F( a ) > 0 . 5 )

n = 0 ;

while F(a−w∗2ˆn) > 0 .5

n = n + 1 ;

end

a = a − w∗2ˆn ;

end

b = a ;

% Then , we expand the upper and lower bounds outwards u n t i l

% e i t h e r we reach an i n v a l i d va lu e or the l im i t o f numerical
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% re s o l u t i o n .

%

% The goa l here i s t ha t in the range over which we i n v e r t F,

% the in v e r s e i s a s i n g l e−va lued .

while (F(a−w) >= 0 && F(a ) ˜= F( a+w) )

a = a − w;

end

while (F(b+w) <= 1 && F(b) ˜= F(b+w) )

b = b + w;

end

% Some s a f e t y margin .

a = a + w;

b = b − w;

end

function f = i n v e r s e f (F , a , b , width )

% INVERSEF Approximate an in v e r s e CDF.

%

% The i n v e r s e f func t ion approximates an in v e r s e by sampling

% the func t ion between the bounds g iven at po in t s s epara t ed

% by the width argument . I t then i n t e r p o l a t e s between

% these po in t s to re turn a func t ion handle based on the

% piecewi se po lynomia l generated by the i n t e r p o l a t o r .

%

% The func t ion returned w i l l be equa l to a at po in t s l e s s than

% F(a ) , and b at po in t s g r ea t e r than F( b0 .

%

% See a l s o in t e rp1 .

x = a : width : b ;

y = F(x ) ;

% Generate a p i ecewi se po lynomia l from our samples .

pp = interp1 (y , x , ’ s p l i n e ’ , ’ pp ’ ) ;
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% Construct our func t ion handle .

f = @( t ) ppval (pp , t ) . ∗ ( ( t >= F(a ) ) . ∗ ( t <= F(b ) ) ) + . . .

( t < F( a ) )∗ a + ( t > F(b ) )∗b ;

end
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B.2 Correlation Control

function b n = an c o e f f s ( eta , max n , r e l t o l )

% AN COEFFS Determine c o e f f i c i e n t s f o r the au t o co r r e l a t i on s e r i e s .

%

% The an coe f f s t ake s as input a func t ion handle eta , and re tu rn s

% the f i r s t max n c o e f f i c i e n t s us ing an adap t i ve quadrature .

n = f l i p l r ( 0 : max n ) ;

b n = zeros (max n+1, 1 ) ;

f i r s t = true ;

sma l l e s t p l a c e = 1 ;

for k = n ;

H = hermite po ly (k ) ;

integrand = @( t ) z e r o i n f i n i t i e s ( . . .

polyval (H/sqrt ( f a c t o r i a l ( k )∗2ˆk ) , t ) . . .

.∗ exp(− t . ˆ 2 ) .∗ eta ( t ∗sqrt ( 2 ) ) ) ;

b n (max n−k+1) = quadgk ( integrand ,−Inf , Inf , . . .

’ RelTol ’ , r e l t o l )ˆ2/ pi ;

end

function r i npu t = i n v e r t a u t o c o r r e l a t i o n ( r , Finv , approximationOrder , . . .

t o l )

% INVERT AUTOCORRELATION Inve r t the I−>O au t oco r r e l a t i on r e l a t i o n s h i p .

%

% The i n v e r t a u t o c o r r e l a t i o n func t ion determines the input

% au t oco r r e l a t i on o f the s tandard Gaussian input to produce the de s i r e d

% outpu t au t o co r r e l a t i on us ing the method der i ved by

% Tough and Ward (1999) .

%

% Numerical i n t e g r a t i o n i s used to determine the f i r s t few c o e f f i c i e n t s

% of the power s e r i e s r e l a t i n g the au t o co r r e l a t i o n s . The provided

% autocovar iance c o e f f i c i e n t s are conver ted to our de s i r e d outpu t

% au t oco r r e l a t i on , and the po lynomia l made by t runca t in g the power
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% se r i e s i s so lved , y i e l d i n g our outpu t c o e f f i c i e n t s .

a u t o c o r r e l a t i o n p o l y = an c o e f f s (@( t ) Finv (0 .5∗(1+ erf ( t / sqrt ( 2 ) ) ) ) , . . .

approximationOrder , . . .

t o l ) ;

% We have been given autocovar iance c o e f f i c i e n t s , bu t in f a c t need

% an au t oco r r e l a t i on . For tunate ly , we can conver t between

% them .

%

% While E[ X a X (a−k ) ] = r [ k ] ∗ var (X) + mean(X)ˆ2 , we must have

% r inpu t [ 0 ] = 1 ( which our approximat ion does not pre se rve ) , and thus

% s c a l e r [ k ] by a cons tant to y i e l d t h i s au t o co r r e l a t i on , whose

% in ve r s i on at zero ∗ i s ∗ equa l to one .

mean squared = au t o c o r r e l a t i o n p o l y ( length ( a u t o c o r r e l a t i o n p o l y ) ) ;

r = r ∗(polyval ( a u to c o r r e l a t i o n po l y , 1 ) − mean squared ) . . .

+ mean squared ;

% Al l t h i s done , we can perform the in v e r s i on i t s e l f .

r i npu t = zeros ( s ize ( r ) ) ;

for i = 1 : length ( r )

r i npu t ( i ) = so l v epo l y ( au t o c o r r e l a t i o n po l y , r ( i ) ) ;

end

end

function x = so l v epo l y (p , r )

% SOLVEPOLY Solve a po lynomia l equated to a cons tant .

%

% The s o l v e p o l y func t ion s o l v e s equa t ions o f the form

%

% r = a n xˆn + . . . + a 1 x + a 0

%

% re tu rn ing the g r e a t e s t r e a l s o l u t i o n .

% This i s e qu i v a l en t to an equat ion o f the form

%
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% 0 = a n xˆn + . . . + a 0 − r

%

% which i s a l r eady s o l v a b l e .

new p = p ;

new p ( length (p ) ) = new p ( length (p ) ) − r ;

c a nd ida t e s o l u t i on s = roots ( new p ) ;

% We r e s t r i c t ou r s e l v e s to r ea l s o l u t i o n s .

r e a l s o l u t i o n s = imag( c and ida t e s o l u t i o n s ) == 0 ;

c and ida t e s o l u t i o n s = cand ida t e s o l u t i on s ( r e a l s o l u t i o n s ) ;

% We s e l e c t the g r e a t e s t o f t he s e s o l u t i o n s .

x = max( c and ida t e s o l u t i on s ) ;

end
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B.3 Series Generation

function Corre latedN = gene ra te gaus s i an ( obj )

% GENERATE GAUSSIAN Generate co r r e l a t e d Gaussian v a r i a b l e s .

%

% The genera t e gau ss ian method produces a vec t or o f c o r r e l a t e d

% standard Gaussian v a r i a b l e s based upon the c o r r e l a t i o n

% c h a r a c t e r i s t i c s s p e c i f i e d dur ing i n i t i a l i s a t i o n .

%

% The vec t or generated w i l l be o f the s i z e o f the c o r r e l a t i o n

% sequence , the rank o f the c o r r e l a t i o n matrix , or the s i z e

% given dur ing i n i t i a l i s a t i o n , as appropr ia t e .

%

% Example :

%

% ctx = S imu la t or O ldS t y l e (F, r , w) ;

% X = genera t e gaus s ian ( c t x ) ;

i f obj . c o r r e l a t e d == 0

Corre latedN = randn (1 , obj .U) ;

else

normal vars = randn (1 , length ( obj .U) ) ;

Corre latedN = normal vars ∗ obj .U;

end

end

function [ Corre latedU Corre latedN ] = gene ra te un i f o rm ( obj )

% GENERATE UNIFORM Generate co r r e l a t e d uniform va r i a b l e s .

%

% The generate uni form method produces a vec t or o f c o r r e l a t e d

% uniform va r i a b l e s on [ 0 , 1 ] by manipu lat ing a vec t or o f

% cor r e l a t e d normal v a r i a b l e s .

%

% Example :

%

% ctx = S imu la t or O ldS t y l e (F, r , w) ;
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% X = generate uni form ( c t x ) ;

Corre latedN = gene ra te gaus s i an ( obj ) ;

% CorrelatedU = normcdf ( Corre latedN ) ;

Corre latedU = 0.5∗ erfc ( Corre latedN/ sqrt ( 2 ) ) ;

end

function [X G U] = s imulate ( obj )

% SIMULATE Generate co r r e l a t e d r e a l i s a t i o n .

%

% The s imu la t e method produces a r e a l i s a t i o n o f

% an au t oco r r e l a t e d vec t or o f the d i s t r i b u t i o n with the

% given CDF.

%

% Before c a l l i n g s imu late , the CDF must be s e t wi th the

% ’F’ a t t r i b u t e .

%

% Example :

%

% F = @( t ) ( 1−exp(− t ) ) .∗ ( t >= 0) ;

% ct x = S imu la t or O ldS t y l e (F, 1000 , 0 . 01 ) ;

% X = s imu la t e ( c t x ) ;

%

% In add i t i on to the r e a l i s a t i o n o f the de s i r ed d i s t r i b u t i o n ,

% the method re tu rns the corresponding normal and uniform

% vec t o r s t ha t were used to generate the d i s t r i b u t i o n .

%

% [X gauss ian uniform ] = ct x . s imu la t e ( ) ;

%

% The r e l a t i o n s h i p between these i s such t ha t

%

% eta ( gauss ian ) = X

%

% and thus t h i s i s s u f f i c i e n t to tune the input au tocovar iance .
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% We proceed by app ly ing the in v e r s e CDF to the uniform

% d i s t r i b u t i o n .

[U G] = gene ra te un i f o rm ( obj ) ;

% We must t ake the r ea l part , as o t herw i s e we sometimes ge t

% x + 0 j , which Octave does not l i k e .

X = real ( obj . Finv (U) ) ;

end

B.4 Miscellaneous

function [H Hnm1] = hermite po ly (N)

% HERMITE POLY Return the n ’ th Hermite Polynomial .

%

% The hermi t e po ly func t ion re tu rns the c o e f f i c i e n t s o f the n ’ th

% Hermite Polynomial as the f i r s t value , and the c o e f f i c i e n t s

% of the n−1’ th Hermite Polynomial , wi th a l e ad in g zero .

%

% The nonzero c o e f f i c i e n t o f g r e a t e s t order f o r the po lynomia l o f

% order n i s 2ˆn .

i f N == 0

H = [ 1 ] ;

Hnm1 = [ ] ;

e l s e i f N == 1

H = [2 0 ] ;

Hnm1 = [ 1 ] ;

else

Hnm1 = [ 1 ] ;

H = [2 0 ] ;

for i = 1 : (N−1)

old H = H;

H = [H∗2 0 ] − [ 0 0 Hnm1∗2∗ i ] ;

Hnm1 = old H ;

end
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Hnm1 = [0 Hnm1 ] ;

end

end

B.5 InputParser Replacement

The Matlab inputParser class was required, but this was not available in Octave. We have

written our own, included here.

function obj = inputParserCompat ( ip )

i f nargin == 0

obj . r equ i r ed = {} ;

obj . op t i ona l = {} ;

obj . params = {} ;

obj . Resu l ts = {} ;

obj = c l a s s ( obj , ’ inputParserCompat ’ ) ;

e l s e i f strcmp ( c l a s s ( ip ) , ’ inputParserCompat ’ )

obj = ip ;

else

error ( ’ inputParserCompat : Expect ing no arguments . ’ ) ;

end

end

function obj = addRequired ( th i s , name , v a l i d a t o r )

obj = th i s ;

param . name = name ;

param . v a l i d a t o r = va l i d a t o r ;

id = length ( obj . r equ i r ed )+1;

obj . r equ i r ed { id } = param ;

end

function obj = addOptional ( th i s , name , de fau l t , v a l i d a t o r )
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obj = th i s ;

param . name = name ;

param . de f a u l t = de f au l t ;

param . v a l i d a t o r = va l i d a t o r ;

id = length ( obj . opt i ona l )+1;

obj . opt i ona l { id } = param ;

end

function obj = addParamValue ( th i s , name , de fau l t , v a l i d a t o r )

obj = th i s ;

param . name = name ;

param . de f a u l t = de f au l t ;

param . v a l i d a t o r = va l i d a t o r ;

id = length ( obj . params )+1;

obj . params{ id } = param ;

end

function obj = parse ( th i s , va ra rg in )

obj = th i s ;

i f nargin < length ( obj . r equ i r ed )+1

error ( ’Not enough parameters . ’ ) ;

end

% We s t a r t by dea l i n g wi th a l l o f t he requ i red arguments .

i = 1 ;

for param = obj . r equ i r ed
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va lue = vara rg in{ i } ;

param = param{1} ;

i f i s a (param . va l ida to r , ’ func t i on hand l e ’ )

i f ˜param . va l i d a t o r ( va lue )

error ( [ ’ Parameter ’ ’ ’ param . name ’ ’ ’ f a i l e d va l i d a t i o n . ’ ] ) ;

end

end

obj . Resu l ts = s e t f i e l d ( obj . Results , param . name , va lue ) ;

i = i + 1 ;

end

% Now se t the op t i ona l arguments t ha t were su pp l i e d .

parameter = 1 ;

while i <= length ( va ra rg in ) && parameter <= length ( obj . opt i ona l )

va lue = vara rg in{ i } ;

param = obj . opt i ona l {parameter } ;

i f i s a (param . va l ida to r , ’ func t i on hand l e ’ )

i f ˜param . va l i d a t o r ( va lue )

error ( [ ’ Parameter ’ ’ ’ param . name ’ ’ ’ f a i l e d va l i d a t i o n . ’ ] ) ;

end

end

obj . Resu l ts = s e t f i e l d ( obj . Results , param . name , va lue ) ;

i = i + 1 ;

parameter = parameter + 1 ;

end

% Set the o ther op t i ona l arguments to t h e i r d e f a u l t va lu es .

while parameter <= length ( obj . opt i ona l )

param = obj . opt i ona l {parameter } ;

obj . Resu l ts = s e t f i e l d ( obj . Results , param . name , param . de f a u l t ) ;
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parameter = parameter + 1 ;

end

% Set a l l o f the named arguments to t h e i r d e f a u l t va lu e s .

for param = obj . params

param = param{1} ;

obj . Resu l ts = s e t f i e l d ( obj . Results , param . name , param . de f a u l t ) ;

end

% Now look f o r the remaining named arguments .

while i < length ( va ra rg in )

paramName = vara rg in{ i } ;

i f ˜ i s cha r (paramName)

error ( ’ Parameter name must be a s t r i n g . ’ ) ;

end

matched = 0 ;

for param = obj . params

param = param {1} ;

i f strcmp (paramName , param . name)

va lue = vara rg in{ i +1};

i f i s a (param . va l ida to r , ’ func t i on hand l e ’ )

i f ˜param . va l i d a t o r ( va lue )

error ( [ ’ Parameter ’ ’ ’ param . name . . .

’ ’ ’ f a i l e d va l i d a t i o n . ’ ] ) ;

end

end

obj . Resu l ts = s e t f i e l d ( obj . Results , param . name , va lue ) ;

matched = 1 ;
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break ;

end

end

i f matched == 0

error ( [ ’ ’ ’ ’ paramName ’ ’ ’ i s not a parameter . ’ ] ) ;

end

i = i + 2 ;

i f i == length ( va ra rg in )

error ( ’No name s p e c i f i e d f o r parameter . ’ ) ;

end

end

end

function r = Resu l ts ( obj )

r = obj . Resu l ts ;

end

function disp ( obj )

fprintf ( ’ Required :\n ’ ) ;

disp ( obj . r equ i r ed ) ;

fprintf ( ’ Optional :\n ’ ) ;

disp ( obj . opt i ona l ) ;

fprintf ( ’Named:\n ’ ) ;

disp ( obj . params ) ;

end
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B.6 Testing

function f a i l = t e s t d i s t r i b u t i o n ( id , F , samples , w, d i s t a lpha , type )

% TEST DISTRIBUTION Test the Simulator ’ s uncor re l a t ed d i s t r i b u t i o n .

%

% The t e s t d i s t r i b u t i o n func t ion uses Kolmogorov−Smirnov to t e s t the

% outpu t d i s t r i b u t i o n .

%

% Use type = 1 when us ing with xUnit .

ctx = Simulator (F, samples , w) ;

f a i l = 0 ;

i f type == 0

fprintf ( ’ Test %d ( unco r r e l a t ed s imu la t i on )\n ’ , id ) ;

fprintf ( ’ \tKolmogorov−Smirnov . . . . . ’ ) ;

end

X = simulate ( ctx ) ;

min x = min(X) ;

max x = max(X) ;

% I f we are us ing Matlab , then we use the b u i l t i n k s t e s t func t ion .

i f ˜exist ( ’OCTAVE VERSION’ , ’ b u i l t i n ’ )

c d f p o i n t s = min x : ( (max x−min x )/100 ) : max x ;

[ d i s t f a i l p ] = k s t e s t (X, [ c d f p o i n t s ; F( c d f p o i n t s ) ] ’ , . . .

d i s t a l pha ) ;

else

% With Octave , t h in g s are somewhat more t r i c k y . We need a func t ion

% en t i t l e d <name> c d f . As the d i s t r i b u t i o n can change , we have

% made such a func t ion t ha t c a l l s the funct ion−handle in a g l o b a l

% va r i a b l e i d c d f f , a l l ow in g the b u i l t i n Kolmogorov−Smirnov to

% work .

% I f i d c d f f i s a l r eady se t , then save i t s current va lu e and c l e a r

% i t .
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i f exist ( ’ i d c d f f ’ , ’ v a r i a b l e ’ )

o l d i d c d f e x i s t s = true ;

o l d i d c d f v a l u e = i d c d f f ;

i f ˜isempty(whos( ’ g l o ba l ’ , ’ v a r i a b l e ’ ) )

o l d c d f g l o b a l = true ;

else

o l d c d f g l o b a l = f a l s e ;

end

clear i d c d f f ;

else

o l d i d c d f e x i s t s = f a l s e ;

end

% Set our CDF and run K−S on the da t a s e t .

global i d c d f f ;

i d c d f f = F ;

p = ko lmogorov smirnov tes t (X, ’ i d e n t i t y ’ ) ;

i f p < d i s t a l pha

d i s t f a i l = true ;

else

d i s t f a i l = f a l s e ;

end

% Restore i d c d f f to i t s o ld va lu e .

i f o l d i d c d f e x i s t s

clear i d c d f f ;

i f o l d c d f g l o b a l

global i d c d f f ;

end

i d c d f f = o l d i d c d f v a l u e ;

66 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2517

end

end

% Print ou tpu t or prov ide succes s / f a i l u r e s t a t u s to xUnit .

i f type == 0

i f d i s t f a i l == 1

f a i l = f a i l + 1 ;

fprintf ( ’ f a i l e d . (p = %f )\n\n ’ , p ) ;

end

i f f a i l == 0 ;

fprintf ( ’ passed .\n\n ’ ) ;

end

else

message = sprintf ( . . .

’ Kolmogorov−Smirnov f a i l e d at l e v e l alpha = %f ’ , . . .

d i s t a l pha ) ;

a s s e r tEqua l ( d i s t f a i l , f a l s e , message ) ;

end

end

function f a i l = t e s t c o r r e l a t i o n ( id , F , r , samples , r e a l i s a t i o n s , . . .

maxlag , w, . . .

cd f a lpha , . . .

c d f e r r o r t h r e s h o l d , . . .

c o va r i a n c e e r r o r th r e s ho l d , . . .

t e s t t y p e )

% TEST CORRELATION Test the S imu lator wi th au t o co r r e l a t e d data .

%

% Use t e s t t y p e = 1 when t e s t i n g wi th xUnit .

ctx = Simulator (@( t ) F( t ) , r ( 0 : ( samples −1)) , w) ;

i f t e s t t y p e == 0

f a i l = 0 ;
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fprintf ( ’ Test %d ( c o r r e l a t e d s imu la t i on )\n ’ , id ) ;

end

X = simulate ( ctx ) ;

i f exist ( ’OCTAVE VERSION’ , ’ b u i l t i n ’ )

c d f p o i n t s = unique (X) ;

cd f v a l u e s = emp i r i c a l c d f ( cd f po i n t s , X) ;

else

output = zeros (1 , samples ∗ r e a l i s a t i o n s ) ;

output ( 1 : samples ) = X;

end

% We need to s t o r e the outpu t covar iances ( so t ha t we can t e s t f o r

% autocovar iance er ror ) and the outpu t i t s e l f ( so t ha t we can run

% the chi−square t e s t f o r the d i s t r i b u t i o n .

cov out = zeros ( s ize(−maxlag : maxlag ) ) ;

for i = 1 : r e a l i s a t i o n s

X = s imulate ( ctx ) ;

i f exist ( ’OCTAVE VERSION’ )

cd f v a l u e s = cd f v a l u e s + emp i r i c a l c d f ( cd f po i n t s , X) ;

else %Matlab

% Save our current r e a l i s a t i o n f o r l a t e r .

output ( ( samples ∗ i +1):( samples ∗( i +1)) ) = X;

end

cov out = cov out + xcov (X, maxlag , ’ c o e f f ’ ) ;

end

l a g s = −maxlag : maxlag ;
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cov out = cov out / r e a l i s a t i o n s ;

% I f we are us ing Octave , we look at the d i f f e r e n c e between ac t u a l

% and empir i ca l CDF, as t here i s no Chi−square goodness o f f i t b u i l t

% in .

i f exist ( ’OCTAVE VERSION’ , ’ b u i l t i n ’ )

max cd f e r r o r = max(abs ( cd f v a l u e s / r e a l i s a t i o n s − F( c d f p o i n t s ) ) ) ;

i f max cd f e r r o r > c d f e r r o r t h r e s h o l d

c d f f a i l = true ;

c d f e r r o r t e x t = sprintf ( ’ (max e r r o r %f ) ’ , max cd f e r r o r ) ;

else

c d f f a i l = f a l s e ;

end

else

% Matlab has a Chi−Square goodness−of− f i t t e s t b u i l t in , so we use

% t h i s in s t ead .

[ c d f f a i l p ] = ch i 2 g o f ( output , ’ cd f ’ , F , . . .

’ nbins ’ , 10 , . . .

’ a lpha ’ , cd f a lpha ) ;

c d f e r r o r t e x t = sprintf ( ’ (p = %f ) ’ , p ) ;

c d f f a i l = l o g i c a l ( c d f f a i l ) ;

end

% We t e s t the er ror by s imply comparing the autocovar iance c o e f f i c i e n t s

% outpu t wi th the t a r g e t .

a c e r r o r = abs ( cov out − r (abs ( l a g s ) ) ) ;

max ac er ror = max( a c e r r o r ) ;

% I f we are not us ing xUnit , p r i n t the t e s t ou tpu t ou r s e l v e s .

i f t e s t t y p e == 0
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fprintf ( ’ \tCDF e r r o r . . . . . . . . . . . . . . ’ ) ;

i f c d f f a i l

f a i l = f a i l + 1 ;

fprintf ( ’ f a i l e d .%s\n ’ , c d f e r r o r t e x t ) ;

else

fprintf ( ’ passed .\n ’ ) ;

end

fprintf ( ’ \ tAutocovar iance e r r o r . . . ’ ) ;

i f max ac er ror > c o v a r i a n c e e r r o r t h r e s h o l d

fprintf ( ’ f a i l e d . Greatest e r r o r %f .\n\n ’ , . . .

max ac error , c o v a r i a n c e e r r o r t h r e s h o l d ) ;

f a i l = f a i l + 1 ;

return ;

else

fprintf ( ’ passed .\n\n ’ ) ;

end

else

% Otherwise c a l l xUnit f un c t i on s .

a s s e r tF a l s e ( c d f f a i l , ’ D i s t r i bu t i o n t e s t f a i l e d . ’ ) ;

a s se r tTrue ( max ac er ror < c o va r i a n c e e r r o r th r e s ho l d , . . .

’ Autocovar iance e r r o r too l a r g e . ’ )

end

end
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Appendix C Tables of Numerical Results

We have made numerical estimates for the coefficients of (26) for several distributions.

Exp(1) K(c = 1, ν = 1)

n |〈ψ, en〉|2 rn(1) |〈ψ, en〉|2 rn(1)

0 1.000000 1.000000 2.467396 1.532604

1 0.815765 0.184235 1.339585 0.193019

2 0.177391 0.006844 0.188737 0.004282

3 0.006685 0.000159 0.004139 0.000143

4 0.000134 0.000025 0.000085 0.000058

5 0.000017 0.000008 0.000004 0.000054

6 0.000007 0.000001 0.000001 0.000054

Table C1: Estimates of |〈ψ, en〉|2 for the Exponential and K(1, 1) distributions.

K(c = 1, ν = 2) K(c = 1, ν = 4)

n |〈ψ, en〉|2 rn(1) |〈ψ, en〉|2 rn(1)

0 5.551652 2.448348 11.806900 4.193100

1 2.235475 0.212873 3.939934 0.253167

2 0.210615 0.002258 0.252644 0.000522

3 0.002197 0.000060 0.000485 0.000037

4 0.000054 0.000006 0.000024 0.000013

5 0.000000 0.000006 0.000011 0.000002

6 0.000000 0.000006 0.000002 0.000001

Table C2: Estimates of |〈ψ, en〉|2 for the K(1, 2) and K(1, 4) distributions.
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N(µ = 1, σ = 2) LN(µ = 0, σ = 1)

n |〈ψ, en〉|2 rn(1) |〈ψ, en〉|2 rn(1)

0 1.000000 4.000000 2.71828 4.67077

1 4.000000 0.000000 2.71828 1.95249

2 0.000000 0.000000 1.35914 0.59335

3 0.000000 0.000000 0.45305 0.14030

4 0.000000 0.000000 0.11326 0.02704

5 0.000000 0.000000 0.02265 0.00439

6 0.000000 0.000000 0.00378 0.00062

Table C3: Estimates of |〈ψ, en〉|2 for the Normal and Log-Normal distributions.
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