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ABSTRACT

A general framework is introduced that enables the construction of the Neyman-

Pearson optimal detector for a single general target model embedded within

complex clutter whose amplitude distribution forms a mixture. This enables

the determination of asymptotic decision rules for high resolution high graz-

ing angle detection of targets in spiky sea clutter. In addition, suboptimal

approximations are derived and analysed.
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Neyman-Pearson Optimal and Suboptimal Detection for

Signals in General Clutter Mixture Distributions

Executive Summary

This research supports the contribution of Electronic Warfare and Radar Division’s Mar-

itime Radars Group’s work for Task 07/040 (support to AIR 7000). The research is aimed

at giving the Group an understanding of what radar detectors would be suitable for de-

tecting small maritime targets embedded in high resolution spiky sea clutter, from an

airborne maritime surveillance platform.

This report introduces a general framework which enables the determination of the

Neyman-Pearson optimal radar detector for single targets embedded within an arbitrary

clutter mixture model. Such clutter models have found applicability in the modelling of

high resolution and high grazing angle sea clutter. In particular, the KK-Distribution,

which is a mixture of two K-Distributions, has been used to improve the fit of theoret-

ical distribution functions to the corresponding empirical distributions functions. This

has proven critical in the case of modelling high grazing angle clutter obtained from a

horizontally polarised radar. The research presented here shows how the optimal decision

rule can be derived for any mixture of amplitude distributions as the clutter model, with

a target model that consists of indepedent components. This extends recent work on the

determination of optimal decision rules for Swerling I targets in high grazing angle clutter,

with the latter modelled as a KK-Distribution. The importance of the Neyman-Pearson

optimal detector is that it is the one which, for a fixed false alarm rate, provides the

maximum detectibility of targets in clutter. Hence it will outperform any other decision

rule.

Due to the formulation of the Neyman-Pearson Lemma, the optimal detector will

depend on the target signal to clutter ratio. This is a serious shortcoming in terms of

practical applications of detectors. This is because it will be difficult to assess the signal

strength in spiky sea clutter without invoking an auxiliary detection scheme. Since the

key requirement for AIR 7000 is detection of small targets, we can use this restriction to

obtain suboptimal approximations. This is done using a novel approach of constructing

upper bounds on the likelihood function, and using this as a suboptimal detector. It
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has been found that such suboptimal decision rules can provide excellent performance for

small target detection. This can be coupled together with a linear detector to provide a

detection scheme, independent of the signal to clutter ratio, with reasonable performance

in a large number of scenarios.

In a recent thesis by the author1, the case of detection of a Swerling-type target in KK-

Distributed clutter was examined extensively. It is of interest to AIR 7000 to analyse the

results from this thesis for the case of limiting clutter forms. This means we are interested

in the detection schemes when the K-Distributed components in the KK-mixture limit to

Rayleigh as the K-Distribution’s shape parameter increases. It will be shown that limiting

detectors are derived easily using the general results derived in this report.

1“Optimal and Suboptimal Radar Detection Of Targets From High Grazing Angles and in High Reso-

lution Sea Clutter”, MSc Thesis, University of Adelaide, 2010.
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5.2 ROC curves, again for the Rayleigh/K-Distribution mixtures. Both figures
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24 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4 ROC curve for a Rayleigh/Rayleigh mixture, with parameters µ1 = 10, µ2 =
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µ1 = 0.01, µ2 = 0.05 and k = 0.01. On the left, we see the suboptimal works

very well, while on the right, it introduces a detection loss at about 22 dB. . 18

5.5 Left figure shows ROC curve for the case where the Rayleigh mixture has

parameters µ1 = 0.1 and µ2 = 0.001, with mixing coefficient k = 0.4. The

right plot shows the corresponding likelihood function, for two values of λ

as given in the caption. The likelihood function becomes flat as t increases,

which explains why it is produces an optimal detector that is close to the

linear detector for large SCR. In this situation, the suboptimal detector has

terrible performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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1 Introduction and Problem Formulation

1.1 Background

The purpose of this work is to present a general solution to the construction of Neyman-

Pearson optimal detectors for clutter amplitude distributions that are mixtures. In par-

ticular, the analysis and results in [1] are generalised considerably. In the latter, the focus

is on optimal detection schemes for the case of Swerling-type targets in high grazing angle

sea clutter distributions of relevance to the modelling and analysis efforts for AIR 7000.

Namely, [1] focused on the KK-Distribution, which is a mixture of two K-Distributions.

It turns out that some of the results in [1] generalise to arbitrary clutter mixtures, and

the Swerling I target assumption can be removed and replaced by a more general model.

Notably the major result Theorem 3.3.1 in [1], which shows the intensity squared density

for a Swerling I target in KK-Distributed clutter factors into a weighted sum of the same

target but in two separate K-Distributed clutter cases, can be shown to apply much more

generally. This enables a general theorem, for the optimal detector for certain targets in

mixture clutter distributions, to be derived. This theorem shows the mixture property is

preserved through the intensity function.

This discovery of the generalisation only occurred because the limiting cases associated

with the KK-model are of interest to AIR 7000. In particular, since the K-Distribution

limits to a Rayleigh as the shape parameter increases, it was of interest to investigate the

effects of this on the optimal and suboptimal detectors in [1].

The idea of mixture distributions for clutter modelling was introduced in [2], in the

context of improving the tail fit of clutter models to real high resolution radar sea clutter,

obtained from high grazing angles. Modern high resolution radars are subject to severely

non-Rayleigh clutter [3]. The clutter of interest is that obtained from an airborne maritime

surveillance platform, operating from high altitude, and scanning the sea surface at high

grazing angles. Such clutter is highly spiky and as the major targets of interest are small

in a signal to clutter ratio sense, it is important to have good models for such clutter and

detection schemes that are close to optimal.

The well-known K-Distribution [3, 4, 5] has been determined to be a good model

UNCLASSIFIED 1



DSTO–RR–0363 UNCLASSIFIED

for such clutter. It fits into the class of compound Gaussian models [6], and models

adaptively the two key characteristics of sea clutter. These are a component modelling

the fast fluctuations of clutter, and another part accounting for underlying modulation of

the clutter [6]. The short term or fast fluctuation is referred to as the speckle component,

while the modulation or slow varying component is called the texture. The K-Distribution

model uses a root Gamma distribution to model the slow varying component, while a

bivariate Gaussian process is the fast varying component [7, 8].

It has been reported that although the K-Distribution is a good fit to such clutter

obtained from a vertically polarised radar, when the polarisation is switched to horizontal,

it has been observed that the K-Distribution does not provide an adequate model in the

clutter tail regions [2]. Hence it was proposed that a mixture of two K-Distributions

may provide a more suitable solution. An interpretation and justification for this mixture

model is given in [2], which states that one mixture distribution models the Bragg/whitecap

scatterers, while the second models sea spikes [1] This new distribution is known as the KK-

clutter model, and as reported in [2], it significantly improved the fitting of the modelling

distributions of horizontally polarised radar clutter returns.

Mixture distributions are formulated in the amplitude domain, and in general any

two amplitude distributions can be combined to produce a mixture density through a

weighting factor. Means and moments can then be specified in terms of the separate mixing

distributions. Additionally, the distribution function also decomposes into a weighted sum

of mixed individual distribution functions. See [1] for an analysis of such distributions.

The optimal detector considered in this work is that derived via the Neyman-Pearson

Lemma [9]. This states that the form of the best decision rule is based on a threshold

comparison of the likelihood ratio. Best decision rule refers to the fact that this Lemma

yields a statistical hypothesis test that will have the maximum power for a given test

size [10]. In radar terminology this translates to a detector which, for a fixed false alarm

rate, will have the maximal probability of detection in comparison to similar decision rules

based upon a fixed threshold.

Before turning to a mathematical formulation of the detection problem under inves-

tigation, useful references are indicated. For an excellent exposition on mathematical
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statistics, including hypothesis testing and the Neyman-Pearson Lemma, refer to [10]. An

excellent account of single pulse detection is outlined in [11], which also discusses Swerling

target models. Conditional probability and stochastic decompositions are a central com-

ponent in the proof of key results, and so the reader is referred to [12] for probability and

conditioning, while [13] is a suitable reference on probability and stochastic processes. A

good reference on probability distributions and their properties is [14].

1.2 Mathematical Formulation

To put the problem of interest in a mathematical framework, we suppose the complex

signal is sss = |sss|eiΘ, where |sss| is the signal amplitude and Θ
d
= R(0, 2π) is the signal

phase, assumed to be uniformly distributed. Without loss of generality we assume these

are independent. The clutter in the complex domain is ccc = |ccc|eiΦ, where |ccc| is the clutter

amplitude and Φ
d
= R(0, 2π) is the uniformly distributed phase. It is assumed that each

of these four random variables introduced thus far are independent. The clutter models of

relevance are those whose amplitude distributions form mixtures. This translates to the

assumption that our clutter amplitude density can be decomposed into

f|ccc|(t) = (1 − k)f|ccc1|(t) + kf|ccc2|(t), (1.1)

where ccc1 and ccc2 represent the mixture components in the complex domain, and k ∈ [0, 1]

is the mixture coefficient. The random variables |ccc1| and |ccc2| are non-negative amplitude

distributions. We assume these complex random variables possess independent phase

distributions on the interval [0, 2π]. For the KK-Distribution model in [2], both |ccc1| and

|ccc2| are K-Distributions, with different scale parameters but the same shape parameter.

As in [1], we focus on single look detection. Additionally, we will focus on amplitude

squared, or intensity, detection. The problem of detecting a signal within clutter can be

stated as a statistical hypothesis test. If we let ttt be the radar test value from a single scan

in the complex envelope, we are interested in testing whether ttt is just clutter, or whether

it also contains a target signature. This can be formulated as

H0 : ttt = ccc vs H1 : ttt = sss + ccc, (1.2)
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where H0 is the null-hypothesis and H1 is the alternative hypothesis. The Neyman-Pearson

Lemma [10] states that the optimal test takes the form of rejecting the null hypothesis if the

likelihood ratio exceeds a fixed threshold. The likelihood ratio is the ratio of the densities

of the radar return under each hypothesis, and the threshold is determined through the

size of the statistical test. This is the probability of rejecting the null hypothesis when

it is actually true. In statistical signal processing terminology, this is the false alarm

probability [11].

Since we are only examining single scan returns, the likelihood ratio is just the ratio

of the radar return under each hypothesis. However, as stated previously, we will be

focusing on amplitude squared detection. Hence we must construct the densities under

each hypothesis for amplitude squared statistics. Let f0 = f|ccc|2 be the density of the radar

return under H0, and f1 = f|sss+ccc|2 be that for a return under H1. Then the likelihood ratio

test becomes

L(t) :=
f1(t)

f0(t)
> τ, (1.3)

where τ is a fixed threshold, which is determined by setting the false alarm rate to a fixed

level. Clearly, what is required is the construction of the appropriate densities, and a test

value t = |ttt|2, corresponding to an amplitude squared measurement, is then used to assess

whether there is a target in the radar return. Although this is a simple formulation, the

construction of these densities can be problematic. Additionally, there may not be closed

form solutions for these.

The remainder of the report is organised as follows. Section 2 derives the optimal

Neyman-Pearson detector for the test formulated above. Section 3 is concerned with the

application of the results in Section 2 to the cases of a Swerling target in Rayleigh/K-

Distributed clutter, as well as the case of Rayleigh/Rayleigh mixture. Section 4 pursues

the construction of suboptimal likelihoods based upon the optimal detectors in Section 3.

Finally, Section 5 examines the performance of all detectors derived in Sections 3 and 4

using receiver operating characteristic (ROC) curves. The latter is a visual measure of

performance, since for a fixed false alarm probability, it plots the signal to clutter ratio

against the detection probability for a given detector.
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2 The Neyman-Pearson Optimal Detector

2.1 Density Under H1

As shown in the previous Section, the key to constructing the optimal Neyman-Pearson

detector is the construction of the appropriate intensity density functions. Clearly the more

challenging density to construct is that of |sss + ccc|2. The following shows how the mixture

property is preserved through the decomposition of ccc into its residual components:

Theorem 2.1. Let sss be a complex signal with independent real and imaginary components,

and let ccc be the complex clutter model, such that the latter consists of a mixture distribution

in amplitude, as defined by (1.1), with uniform phase distribution on the interval [0, 2π].

Suppose further that sss and ccc are statistically independent. Then the intensity density

factorises as

f|sss+ccc|2(t) = (1 − k)f|sss+ccc1|2(t) + kf|sss+ccc2|2(t), (2.1)

where k ∈ [0, 1] is the mixture coefficient, and ccc1 and ccc2 are the two complex mixture

distributions.

This Theorem is a major generalisation of Theorem 3.3.1 in [1]. Observe that the

target model only requires independent in-phase and quadrature components, generalising

the Swerling I assumption in [1]. Before presenting the proof of Theorem 2.1 two technical

Lemmas are presented. The first is known as the Convolution Lemma:

Lemma 2.1. Suppose X and Y are two real valued continuous independent random vari-

ables defined on the same probability space (Ω,F , IP). Then the random variable X + Y is

well defined and has density

fX+Y (t) =

∫
D

fX(t − ω)fY (ω)dω, (2.2)

where fX and fY are the densities of X and Y respectively, and D is an appropriate

domain of integration.

The domain D in Lemma 2.1 is determined by the range of values over which the

integrand in (2.2) is defined. As an example, if both X and Y are nonnegative, then clearly
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D = [0, t]. A second useful result specifies the density of a squared random variable in

terms of its own density:

Lemma 2.2. Let X be a continuous random variable with density fX . Then the random

variable X2 has density

fX2(t) =
1

2
t−

1
2

(
fX(

√
t) + fX(−

√
t)

)
. (2.3)

Both Lemmas 2.1 and 2.2 are proven easily by considering the distribution function of

the random variables of interest, and then simplifying and differentiating. The references

[12] and [13] can be consulted for clarification of this. Note that in the case where a random

variable is nonnegative, the second term in the right hand side in (2.3) is identically zero.

The proof of Therem 2.1 is now presented. The key to this is to decompose the random

variable |sss+ccc|2 into independent components and apply Lemma 2.1 repeatedly. From the

definitions of the signal and clutter in the complex domain, we can write

|sss + ccc|2 = |sss|2 + |ccc|2 + 2|sss||ccc| cos(Θ − Φ)

= (|ccc| + |sss| cos(Θ − Φ))2 + (|sss| sin(Θ − Φ))2 , (2.4)

where the first equality follows by the definition of the complex modulus and applying

trigonometric identities, and the second follows by completing the square. For brevity,

define two random variables Z1 = |sss| cos(Θ − Φ) and Z2 = |sss| sin(Θ − Φ). Observe

that these two variables are the real and imaginary components of a complex signal with

amplitude |sss| and with phase being the difference between that of sss and ccc. It is claimed

that the assumption imposed upon the components of the signal sss induce independence

between Z1 and Z2. To see this, observe that since both Θ and Φ are independent and

uniformly distributed on the interval [0, 2π], it is not difficult to show that the difference

Θ − Φ
d
= R(−2π, 2π). Further, using statistical conditioning, the law of total probability

and distribution functions, it is not difficult to show that we can write Θ−Φ ≡ KR, where

R
d
= R(0, 2π) and K takes values ±1 with equal probabilities, and is independent of R.
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Hence, for a measurable set A ⊆ [−1, 1],

IP(cos(Θ − Φ) ∈ A) = IP(K = 1)IP(cos(KR) ∈ A|K = 1)

+IP(K = −1)IP(cos(KR) ∈ A|K = −1)

=
1

2
IP(cos(R) ∈ A) +

1

2
IP(cos(R) ∈ A)

= IP(cos(R) ∈ A), (2.5)

and so we see that cos(Θ − Φ)
d
= cos(R). By appealing to the identity sin(Θ − Φ) =

±
√

1 − cos2(Θ − Φ), it can be shown that sin(Θ − Φ)
d
= sin(R). Hence Z1 ≡ |sss| cos(R)

and Z2 ≡ |sss| sin(R), where R
d
= R(0, 2π) is independent of sss. Hence by assumption these

must be independent also.

Returning to the proof of the main result, we see that an application of the convolution

Lemma 2.1 yields

f|ccc|+Z1
(t) =

∫ ∞

0
f|ccc|(ω)fZ1

(t − ω)dω, (2.6)

where fZ1
is the density of Z1. Hence, it follows with an application of Lemma 2.2 to

(2.6),

f(|ccc|+Z1)2(t) =
1

2
t−

1
2

∫ ∞

0
f|ccc|(ω)fZ1

(
√

t − ω)dω, (2.7)

yielding the density of the first component of (2.4). A second application of the convolution

Lemma 2.1, together with (2.7), generates

fZ2
2+(|ccc|+Z1)2(t) =

∫
D

f(|ccc|+Z1)2(x)fZ2
2
(t − x)dx

=

∫
D

∫ ∞

0

1

2
x− 1

2 f|ccc|(ω)fZ1
(
√

x − ω)fZ2
2
(t − x)dωdx, (2.8)

where D is an appropriate domain of integration, determined by where the density of the

squared variable Z2
2 in (2.8) is defined as a function of t−x. Since the amplitude clutter dis-

tribution is assumed to be a mixture, it follows from (2.8) that the densityfZ2
2+(|ccc|+Z1)2(t)

will also be a weighted sum of densities. The two components can be found by setting

k = 0 and k = 1 respectively, and noting at these extremes the clutter model corresponds

to ccc1 and ccc2 respectively. This completes the proof of Theorem 2.1, as required.
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2.2 Optimal Detector

We are now in a position to state the form of the likelihood function for the Neyman-

Pearson optimal detector. The following is the main result:

Theorem 2.2. For the binary statistical test formulated above, and for the signal sss and

clutter ccc specified in Theorem 2.1, the Neyman-Pearson Optimal detector, in the intensity

domain, has likelihood

L(t) =
2
√

t
[
(1 − k)f|sss+ccc1|2(t) + kf|sss+ccc2|2(t)

]
(1 − k)f|ccc1|(

√
t) + kf|ccc2|(

√
t)

, (2.9)

where t = |ttt|2 is the intensity test value. The optimal decision rule is L(t)
H1

><
H0

τ , where τ

is the detection threshold, which means we reject the null hypothesis when the likelihood

exceeds this detection threshold, and do not reject the null hypothesis otherwise. The

threshold can be determined by setting the radar false alarm probability to a prescribed

level.

The proof of Theorem 2.2 follows immediately from Theorem 2.1 and an application

of Lemma 2.2 to the clutter density f|ccc|.

In the next Section optimal detectors are given for two clutter mixture distributions

of interest, which are the limiting forms of the KK-Distribution clutter model.

3 The Rayleigh/K and Rayleigh/Rayleigh

Mixture Cases with Swerling I Target

The Rayleigh Distribution is the well-known limit of the K-Distribution as the shape pa-

rameter ν increases [8, 15]. It is hence of interest to consider the mixture distribution

(1.1) for the case where one component is Rayleigh and the other K-Distributed. Also,

the situation where both components are Rayleigh is of interest. This Section will fo-

cus on deriving the Neyman-Pearson optimal detectors for these limiting mixture clutter

distributions.
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3.1 Rayleigh/K Case

Recall, a random variable X has a Rayleigh distribution [11, 14] with parameter µ > 0 if

its density is given by

fX(t) = 2µte−µt2 , (3.1)

and we write X
d
= Ray(µ). Its associated distribution function FX(t) = IP(X ≤ t) can be

shown to be

FX(t) = 1 − e−µt2 . (3.2)

Such a distribution has mean IE(X) = 1
2

√
π
µ

and variance var(X) =
[
1 − π

4

]
1
µ
.

The K-Distribution [3, 4, 5] with scale parameter c > 0 and shape parameter ν > 0

has density

fK(t) =
2c

Γ(ν)

(
ct

2

)ν

Kν−1(ct), (3.3)

where we write K
d
= K(c, ν). The function Kν(t) is the modified Bessel function of the

second kind, of order ν and Γ is the Gamma function. The distribution function FK

associated with the K-Distribution can be shown to have the compact form

FK(t) = IP(K ≤ t) = 1 − (ct)νKν(ct)

2ν−1Γ(ν)
. (3.4)

As reported in [2], the mean and variance of K are given by

IE(K) =

√
πΓ(ν + 1

2)

cΓ(ν)

var(K) = IE(K2) − [IE(K)]2 =
1

c2

[
4ν − πΓ2(ν + 1

2)

Γ2(ν)

]
. (3.5)

Throughout the following we will assume the target model is Swerling I, so that its

amplitude has a Rayleigh Distribution with parameter λ, and its phase Θ is unifomly

distributed on [0, 2π]. Hence |sss| d
= Ray(λ). It is shown in [1] that, with the Rayleigh

amplitude assumption, the complex signal sss has a bivariate Gaussian distribution, such

that its marginal distributions are independent. Hence X1 = |sss| cos(Θ) and X2 = |sss| sin(Θ)

are independent, and it is also shown in [1] that each possesses a Gaussian distribution

with zero mean and variance 1
2λ

. In order to apply Theorem 2.1, we first examine the

case of the Swerling I target in Rayleigh clutter, which we denote by cRcRcR in the complex

UNCLASSIFIED 9
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domain. Suppose the clutter has a Rayleigh amplitude distribution but with a parameter

µ, and with independent phase Φ
d
= R(0, 2π). Then its components are also independent

Gaussians with Y1 = |cRcRcR| cos(Φ)
d
= N(0, 1

2µ
) and Y2 = |cRcRcR| sin(Φ)

d
= N(0, 1

2µ
). Then we

can write

|sss + cRcRcR|2 = (X1 + Y1)
2 + (X2 + Y2)

2, (3.6)

and since this is the sum of squares of two independent Gaussian random variables, each

with zero mean and variance 1
2µ

+ 1
2λ

, it follows that |sss + cRcRcR|2 d
=

(
1
2µ

+ 1
2λ

)
χ2

2, where χ2
n

is a Chi-Squared distribution with n degrees of freedom [10, 14]. Consequently, recalling

a χ2
2 distribution is identically Exponential with mean 2, the following Lemma is thus

proven:

Lemma 3.1. Under the assumption of a Swerling I target in Rayleigh Distributed clutter,

the amplitude squared density has an Exponential Distribution with mean 1
λ

+ 1
µ
. Hence

f|sss+cRcRcR|2(t) =
1

1
λ

+ 1
µ

e
− t

( 1
λ

+ 1
µ ) .

Lemma 3.1 can be applied immediately to Theorem 2.2 for mixture distributions involv-

ing a Rayleigh component. The next result provides the amplitude squared distribution

for a Swerling I target in K-Distributed clutter:

Lemma 3.2. Under the assumption of a Swerling I target in K-Distributed clutter, where

the latter has scale parameter c and shape parameter ν, the amplitude squared density is

f|sss+cK |2(t) =
c2νφ(t; c, ν, λ)

22νλν−1Γ(ν)
, (3.7)

where

φ(t; c, ν, λ) :=

∫ ∞

0

zν−1

z + 1
e−

c2

4λ
ze

− λt
z+1dz. (3.8)

The proof can be found in [1], which also includes a detailed discussion of the special

function φ and its evaluation.

It is now rather straightforward to specify the Neyman-Pearson optimal detector for a

Swerling I target in a mixture of Rayleigh and K-Distributed clutter. The following is the

main result:

10 UNCLASSIFIED
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Theorem 3.1. Suppose the Swerling target model has a Rayleigh amplitude distribution

with parameter λ > 0, and that the clutter amplitude is a mixture of Rayleigh and K-

Distributions. Assume the clutter parameters are µ and (c, ν) respectively. Then with a

mixture parameter k ∈ [0, 1], the likelihood ratio for amplitude squared detection is

L(t) =

(1−k)
1
λ

+ 1
µ

e
− t

1
λ

+ 1
µ + kc2νφ(t;c,ν,λ)

22νλν−1Γ(ν)

(1 − k)µe−µt + kcν+1t
ν−1
2 Kν−1(c

√
t)

2νΓ(ν)

. (3.9)

3.2 Rayleigh/Rayleigh Case

Similarly, for the case of an amplitude clutter distribution consisting of two Rayleigh

distributions, we can derive the following main result:

Theorem 3.2. In the case of a mixture of two Rayleigh distributions, with parameters µ1

and µ2 respectively, and with a Swerling I target model with amplitude parameter λ, the

optimal detector has likelihood

L(t) =

(1−k)
1
λ
+ 1

µ1

e
− t

1
λ

+ 1
µ1 + k

1
λ
+ 1

µ2

e
− t

1
λ

+ 1
µ2

(1 − k)µ1e−µ1t + kµ2e−µ2t
. (3.10)

Observe that the optimal detectors in Theorems 3.1 and 3.2 depend on the target pa-

rameter λ. From a practical radar detection perspective, this is a significant shortcoming,

since the radar will not be aware of the target’s mean. It will also be difficult to estimate

this in a highly spiky clutter environment [1]. Nevertheless, it is possible to construct sub-

optimal decision rules that do not depend on λ, and give good performance in a number

of cases. This is examined in the next Section.

4 Suboptimal Approximations of Optimal

Detectors

4.1 Signal to Clutter Ratio

The likelihoods in Theorems 3.1 and 3.2 both require knowledge of the target strength

through the parameter λ, and as such are not useful in practical radar detection scenar-
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ios where this parameter is unknown. Hence it is important to investigate whether this

parameter can be estimated or approximated in the likelihoods of the optimal detectors.

Estimation of the average target strength in a highly spiky clutter environment is ex-

tremely difficult. This is because sea clutter spikes will mask the target, and may also be

confused with targets. Hence estimation of λ in the likelihoods in Theorem 3.1 and 3.2

may not be simple to perform.

An alternative approach, introduced in [1], is to construct upper bounds on the likeli-

hood by investigating ranges over which λ may vary. This can be done, for example, by

assuming we are interested in the detection of small targets in high clutter scenarios. As

an example, we may assume λ > 1 and produce a corresponding bound on the likelihood.

Analysis in [1] found that by using an upper bound such as this, near optimal detection can

be performed for quite a reasonable range of target sizes relative to the clutter strength.

The latter can be measured through the signal to clutter ratio (SCR), which for the case

of a Rayleigh/K Clutter mixture and Swerling I target model, the SCR is given by

SCR =
1

λ
(

1−k
µ

+ 4kν
c2

) , (4.1)

where the target parameter is λ, µ is the Rayleigh clutter component parameter and (c, ν)

is the parameter set for the K-Distributed component. As before k ∈ [0, 1] is the mixing

coefficient. For the case of a mixture of two Rayleigh distributions, the SCR is

SCR =
1

λ
(

1−k
µ1

+ k
µ2

) , (4.2)

where the Rayleigh components have parameters µ1 and µ2 and k is the mixing coefficient.

4.2 Suboptimal Likelihoods

Two approximate likelihoods that follow very easily from the main results Theorems 3.1

and 3.2 are now presented. The first is for a Swerling I target in a mixture of Rayleigh

and K-Distributed clutter:

Corollary 4.1. The function

M(t) =
(1 − k)µe

− µt

µ+1 + kc2νφ(t;c,ν,1)
22νΓ(ν)

(1 − k)µe−µt + kcν+1t
ν−1

2 Kν−1(c
√

t)
2νΓ(ν)

(4.3)
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can be used as a suboptimal approximation for the likelihood function in Theorem 3.1.

This function is an upper bound on the likelihood Theorem 3.1 for the case where the

target parameter exceeds 1.

Note that the ratio of the special function φ(t; c, ν, λ) and λν−1 is essentially replaced

by unity in the construction of this bound.

For the case of a Rayleigh/Rayleigh mixture with Swerling I target, the following is

the relevant result:

Corollary 4.2. The expression

N(t) =
(1 − k)µ1e

− µ1t

µ1+1 + kµ2e
− µ2t

µ2+1

(1 − k)µ1e−µ1t + kµ2e−µ2t
(4.4)

is an upper bound on the optimal likelihood in Theorem 3.2, for the case where λ > 1, and

can be used as a suboptimal approximation to the likelihood in this Theorem.

The next Section will examine the performance of these suboptimal approximations

relative to the performance of the optimal decision rules.

5 Receiver Operating Characteristic Curves

5.1 False Alarm Probability and Detection Threshold

Before examining detector performance, we first outline how the detection threshold τ can

be determined once the false alarm probability is specified. The false alarm probability

is that of rejecting the null hypothesis when it is actually true. This means the return is

just clutter. The probability of false alarm is given by PFA = IP(L(T ) > τ |H0). It can be

shown that

PFA = (1 − k)e−µτ +
k(c

√
τ)νKν(c

√
τ)

2ν−1Γ(ν)
, (5.1)

for the case of a mixture of Rayleigh and K-Distributed clutter with parameter sets µ and

(c, ν) respectively.
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DSTO–RR–0363 UNCLASSIFIED

In the case of a Rayleigh/Rayleigh clutter mixture, with parameters µ1 and µ2, the

relationship is

PFA = (1 − k)e−µ1τ + ke−µ2τ . (5.2)

The relationships (5.1) and (5.2) can be derived by appealing to the distribution functions

(3.2) and (3.4), and noting we are focusing on amplitude squared detection. In specific

applications, these equations can be solved numerically to yield the desired detection

threshold τ . Throughout the following, we set PFA = 10−6, which is a value typically used

in radar detection analysis.

5.2 Detector Performance: Rayleigh/K Clutter Mixture

Our numerical analysis begins with the receiver operating characteristic (ROC) curves in

figure 5.1, which is for a Rayleigh/K mixture with clutter parameters µ = 0.001, c = 1

and ν = 5.5 (for the left plot), and µ = 1, c = 20 and ν = 7.5 (for the right plot). In

both cases the mixing parameter is k = 0.1. Each figure shows the optimal detector for

this clutter mixture, as well as the suboptimal detector based upon (4.3). In addition

to this, what is termed a linear detector is also included for comparative purposes. Such

a detector rejects the null hypothesis if its test value exceeds a threshold. In statistical

terms, it T is the test statistic, then the decision rule is to reject H0 if T > κ, for a

threshold κ determined from the false alarm probability. It is important to observe that

if a likelihood function is monotonic, then a uniformly most powerful test exists [10], and

the optimal detector, given by either Theorem 2.1 or 2.2 reduces to this linear detector.

This is because L(t) is invertible in these cases. See [1] for extensive examination of this

in the case of KK-Distributed clutter.

With reference to the simulation in figure 5.1, we see the left plot shows the optimal

detector is slightly better than the linear detector. The suboptimal detector matches the

optimal detector up until roughly 22 dB, and then becomes significantly worse than both

the linear and optimal detectors.

The second plot in figure 5.1 shows improved suboptimal detector performance up to

about 26 dB, and then a detection loss is introduced in the suboptimal detector. Here

we observe that the optimal detector is closely matching the linear detector. This is

14 UNCLASSIFIED



UNCLASSIFIED DSTO–RR–0363

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR (dB)

P
d

ROC Curve

RK−Optimal
RK−Suboptimal
Linear

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR (dB)

P
d

ROC Curve

RK−Optimal
RK−Suboptimal
Linear

Figure 5.1: Receiver Operating Characteristic (ROC) curves for the case of a Swerling I

target in a mixture of Rayleigh and K-Distributed clutter. The figure on the left is for the

case where the clutter parameters are µ = 0.001, c = 1 and ν = 5.5, with mixing coefficient

k = 0.1. The false alarm rate is 10−6, and 105 simulations were used in the Monte Carlo

estimation of each ROC point. The right figure is for the case where µ = 1, c = 20 and

ν = 7.5. All other parameters as for the left figure.

because, in this case, the K-Distribution in the mixture distribution is dominant, and for

these parameter in the corresponding K-Distribution optimal detector, the likelihood is

monotonic [1]. Note that the reciprocal of µ is proportional to the mean of the Rayleigh

component. Hence for large µ we would expect small contributions from the Rayleigh

component in the clutter mixture.

In cases where the likelihood is approximately monotonic, the linear detector will be

the most appropriate choice for a suboptimal detector. This is because it requires no

knowledge of the target parameter.

The second set of simulations examined are in figure 5.2, which is for the case where

the Rayleigh clutter has parameter µ = 5, and the K-Distributed clutter has c = 100 and

ν = 5.5. The left plot uses a mixing parameter of k = 0.01, while the right uses k = 0.9.

The former case implies the Rayleigh component contributes more, while the latter is for

the case of K-dominance. The left plot shows the optimal and suboptimal detectors match

right up to the 30 dB point, and are better than the linear detector. The right plot shows

much the same, except there are periods where the optimal and suboptimal detectors

are much better than the linear detector. Further simulations show that the suboptimal
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Figure 5.2: ROC curves, again for the Rayleigh/K-Distribution mixtures. Both figures

use clutter parameters µ = 5, c = 100 and ν = 5.5. Left plot uses mixing parameter

k = 0.01, while right uses k = 0.9. As for figure 5.1, the suboptimal detector is matching

the optimal detector very well.

decision rule introduces a detection loss for much higher SCR.

figure 5.3 shows scenarios where the suboptimal detector can have unexpected results.

In the plot on the left, the Rayleigh clutter has µ = 0.005, while c = 5 and ν = 2.5 for

the K-Distribution. The mixing parameter is k = 0.1. We see the suboptimal detector

completely fails. In this case it is clear that the linear detector is a good approximation to

the optimal detector. The right plot is for µ = 0.001, c = 50 and ν = 5.5 with k = 0.01.

Here the suboptimal performs well until about 23 dB, and then it introduces a detection

loss.

5.3 Performance of Optimal Detector: Rayleigh/Rayleigh

Clutter Mixture

Next we examine some ROC curves for a Rayleigh/Rayleigh mixture. Figures 5.4 and 5.5

show very similar behaviour as for the Rayleigh/K mixture. The first plot in figure 5.4 is

for the case where the two Rayleigh components have parameters µ1 = 10 and µ2 = 50

respectively. The mixing parameter is k = 0.1. It is clear the suboptimal detector is

matching the optimal detector very well, but it only introduces a minor improvement in

detection probability when compared to a linear detector. The right plot is for the case
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Figure 5.3: ROC curves for a Rayleigh/K mixture, left plot is for µ = 0.005, c = 5 and

ν = 2.5, with k = 0.1. Right plot is for µ = 0.001, c = 50 and ν = 5.5 with k = 0.01.

The left simulation shows the failure of the suboptimal detector in this case. The right plot

shows the suboptimal works very well until roughly 24 dB.

where µ1 = 0.01, µ2 = 0.05 and k = 0.01. The suboptimal detector has much better

performance, and matches the optimal detector, until about 22 dB, then it introduces a

detection loss.

In a majority of simulations considered for the case of a Rayleigh/Rayleigh mixture,

it was found that the optimal detector offered only marginal improvement over the linear

detector. This seemed to suggest that it may be possible that a uniformly most powerful

test is close to the linear detector. Analysis of the behaviour of the derivative of the

likelihood function in Theorem 3.2 can give some insight into this. It can be shown, by

applying the quotient rule of differential calculus to the likelihood in Theorem 3.2, that

the sign of the derivative of the likelihood L(t) is determined by the function

H(t) = e−[α1+µ1]t(1 − k)µ1α1 [µ1 − α1] + e−[α1+µ2]tk(1 − k)µ2α1 [µ2 − α1]

+e−[α2+µ1]tk(1 − k)µ1α2 [µ1 − α2] + e−[α2+µ2]tkµ2α2 [µ2 − α2] , (5.3)

where α1 = 1
1
λ

+ 1
λ1

and α2 = 1
1
λ
+ 1

λ2

. Note that in general α1 < µ1 and α2 < µ2, and so the

first and fourth terms in (5.3) are nonnegative. Clearly the second and third terms are

nonnegative when µ2 > α1 and µ1 > α2. This condition is equivalent to the requirement
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Figure 5.4: ROC curve for a Rayleigh/Rayleigh mixture, with parameters µ1 = 10, µ2 =

50 and mixing factor k = 0.1 (left figure). The right is for the case where µ1 = 0.01, µ2 =

0.05 and k = 0.01. On the left, we see the suboptimal works very well, while on the right,

it introduces a detection loss at about 22 dB.

that

µ2

λ
+

µ2

µ1
> 1 and

µ1

λ
+

µ1

µ2
> 1. (5.4)

Upon inspection we can conclude that the likelihood will be an increasing function under

a number of scenarios. In the case where µ1 = µ2, we see that condition (5.4) will be

satisfied. Others include when min{µ1, µ2} > λ, when µ1 = λ and µ2 is an integral

multiple of µ1 and vice versa. Note that the mixing coefficient k can also dictate whether

the likelihood is nonnegative. Clearly at its endpoints, the second and third terms are

eliminated in (5.3), implying a nonnegative derivative sign.

Figure 5.5 is an example where the suboptimal detector completely fails. The simu-

lation is for the case where the Rayleigh/Rayleigh clutter has parameters µ1 = 0.1 and

µ2 = 0.001, with mixing coefficient k = 0.4. The left plot shows the ROC curve, while the

right plot shows the likelihood function (optimal detector) for two λ values. We see the

likelihood is non-monotonic initially, then becomes roughly decreasing, flattening out to

zero as t increases.
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Figure 5.5: Left figure shows ROC curve for the case where the Rayleigh mixture has

parameters µ1 = 0.1 and µ2 = 0.001, with mixing coefficient k = 0.4. The right plot

shows the corresponding likelihood function, for two values of λ as given in the caption.

The likelihood function becomes flat as t increases, which explains why it is produces an

optimal detector that is close to the linear detector for large SCR. In this situation, the

suboptimal detector has terrible performance.

5.4 Guidelines on Suboptimal Detectors

The simulations presented in this Section suggest a number of strategies that can be used

when designing a suboptimal detector for the target detection problem analysed here. In

the case where the K-Distribution is dominant in the clutter mixture model, the likelihood

function can be tested for monotonicity via numerical methods. If it is monotonic, a

uniformly most powerful test exists, and it coincides with the linear decision rule. The

latter requires no knowledge of the target parameter. If the likelihood does not appear

to be monotonic, then one of the suboptimal decision rules can be applied, generally for

small target detection. For larger target detection, the linear detector can be employed.

In the case of a Rayleigh/Rayleigh clutter mixture, the linear detector is more reliable

and can be used for all cases of target size, with only a small detection loss relative to the

optimal detector.
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6 Conclusions and Further Research

The Neyman-Pearson optimal detector was derived for the case of detection of a complex

signal with independent components embedded within complex clutter whose amplitude

distribution forms a mixture model. This result generalises the analogue in [1], which is

limited to the case of optimal detection of a Swerling I target in KK-Distributed clutter.

The general result derived here allowed the determination of the asymptotic forms of the

optimal detector in KK-Distributed clutter. Specifically, decision rules for detection of

Swerling targets in Rayleigh/K and Rayleigh/Rayleigh clutter amplitude mixtures were

derived.

To remove the dependence of decision rules on the signal to clutter ratio, upper bounds

were used to derive suboptimal detectors. These were shown to perform well in a number of

scenarios, namely for small signal strengths relative to the clutter, and a series of guidlines

were proposed for their use, coupled with the option of using a linear detector.

Further work will be devoted to finding better suboptimal approximations for larger

signal to clutter ratios. Additionally, the case of detection based upon a scan of several

pulses is under investigation.
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