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Abstract The interpretation of nuclear magnetic reso-

nance (NMR) experimental results for metabolomics

studies requires intensive signal processing and multivari-

ate data analysis techniques. A key step in this process is

the quantification of spectral features, which is commonly

accomplished by dividing an NMR spectrum into several

hundred integral regions or bins. Binning attempts to

minimize effects from variations in peak positions caused

by sample pH, ionic strength, and composition, while

reducing the dimensionality for multivariate statistical

analyses. Herein we develop an improved novel spectral

quantification technique, dynamic adaptive binning. With

this technique, bin boundaries are determined by optimiz-

ing an objective function using a dynamic programming

strategy. The objective function measures the quality of a

bin configuration based on the number of peaks per bin.

This technique shows a significant improvement over both

traditional uniform binning and other adaptive binning

techniques. This improvement is quantified via synthetic

validation sets by analyzing an algorithm’s ability to create

bins that do not contain more than a single peak and that

maximize the distance from peak to bin boundary. The

validation sets are developed by characterizing the salient

distributions in experimental NMR spectroscopic data.

Further, dynamic adaptive binning is applied to a 1H NMR-

based experiment to monitor rat urinary metabolites to

empirically demonstrate improved spectral quantification.

Keywords NMR � Metabolomics � Binning �
Quantification � Dynamic programming

1 Introduction

Metabolomics, the measurement of metabolite concentra-

tions and fluxes in various biological systems, is one of the

most comprehensive of all bionomics (Fiehn 2002; Reo

2002). Unlike proteomics and genomics that assess inter-

mediate products, metabolomics assesses the end product

of cellular function, metabolites. Changes occurring at the

level of genes and proteins (assessed by genomics and

proteomics) may or may not influence a variety of cellular

functions. But metabolomics, by contrast, assesses the end

products of cellular metabolic function, such that the

measured metabolite profile reflects the cellular metabolic

status. For instance, a disease or foreign compound may

interfere at the genomic or proteomic level, while it will

always manifest itself at the metabolomic level. Further,

nuclear magnetic resonance (NMR) spectroscopy of biofl-

uids has been shown to be an effective method in meta-

bolomics to identify variations in biological states (Lindon

et al. 2001; Nicholson and Wilson 1989; Shockcor and

Holmes 2002). In contrast to various other proteomic,

genomic, and metabolomic analyses, NMR spectroscopy is
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non-invasive, non-destructive, and requires little sample

preparation (Reo 2002).

Typically, NMR metabolic spectroscopic data are ana-

lyzed as follows: (1) standard post-instrumental processing

of spectroscopic data, such as the Fourier transformation,

phase adjustment, and baseline correction; (2) quantifica-

tion of spectral features commonly implemented via bin-

ning; (3) normalization and scaling; and (4) multivariate

statistical modeling of data. Quantification of spectral

features, step (2), is a key step in the development of

classification algorithms and biomarker identification (i.e.,

pattern recognition). A common method of quantification

employed by the NMR community is known as binning or

bucketing, which divides an NMR spectrum into several

hundred regions. This technique is performed to (1) mini-

mize effects from variations in peak positions caused by

sample pH, ionic strength, and composition (Spraul et al.

1994); and (2) reduce the dimensionality for multivariate

statistical analyses. The result is a data set with fewer

features, thereby, increasing the tractability of pattern

recognition techniques, such as principal component anal-

ysis (PCA) (Hotelling 1933; Jolliffe 1986) and partial least

squares discriminant analysis (PLS-DA) (Martens and

Naes 1989; Wold 1966).

There are several alternatives to spectral binning that

still provide data dimension reduction. Examples of these

include PARS (Forshed et al. 2005; Torgrip et al. 2003),

curve-fitting method for direct quantification (Crockford

et al. 2005), peak alignment tools in HiRes (Zhao et al.

2006), and targeted profiling (Weljie et al. 2006). These

techniques identify peaks or specific peak patterns in the

spectra that are conserved across spectra. After the patterns

have been identified, they are quantified by determining the

peak area or amplitude. The accuracy of these algorithms is

dependent on the spectral resolution, the quality of the peak

alignment, and the breadth of spectroscopic pattern dat-

abases. Since spectral resolution is dependent upon the

magnetic field strength (i.e., instrument specific), the

spectral patterns in complex mixtures (e.g., urine and

plasma) are also field dependent. This adds another level of

complexity to targeted profiling techniques that attempt to

match spectral patterns against standard spectra acquired at

a specific magnetic field.

Recently, there have been several full resolution tech-

niques developed (Cloarec et al. 2005; Stoyanova et al.

2004) and applied (Schoonen et al. 2007, b). In most cases,

these techniques require the spectra to be preprocessed by

an alignment algorithm, providing a ‘‘cleaner’’ data set

(Forshed et al. 2002, 2003, 2005; Stoyanova 2004; Vogels

et al. 1993, 1996). Further, several examples of artifacts

from unaligned NMR signals have been reported, thus,

proper alignment is a critical problem when applying full

resolution techniques (Brekke et al. 1989; Brown and

Stoyanova 1996; Defernez and Colquhoun 2003; Forshed

et al. 2002; Stoyanova et al. 2004), and is necessary to

correct for differences that reflect variations of the indi-

vidual’s metabolism (Nicholson et al. 1999). In contrast,

bin-based techniques attempt to mitigate misalignment by

dividing the spectrum into regions that ideally remove

quantification errors due to misalignment.

Despite the development of these differing quantifica-

tion techniques, binning remains a common high

throughput quantification technique for the NMR commu-

nity (Åberg et al. 2009). Additionally, with the continually

expanding applications of NMR-based metabolomics into

new fields with variations of sample types, this generalized

binning methodology continues to be an appropriate first

approach. Thus new techniques that improve this meth-

odology, such as that described herein, remain an important

avenue for development. For a detailed comparison of

alternative quantification techniques to binning see Åberg

et al. 2009; Cloarec et al. 2005; Weljie et al. 2006.

The traditional binning method is to divide a spectrum into

several hundred non-overlapping regions or bins of equal size.

This simple technique has been shown to be effective in the

field of metabolomics (Beckwith-Hall et al. 2002; Beckwith-

Hall et al. 1998; Connor et al. 2007; Gartland et al. 1990;

Griffin et al. 2001; Robertson et al. 2000; Robosky et al. 2002;

Wang et al. 2004; Whitehead et al. 2005). While uniform

binning mitigates the effects from variations in peak positions,

shifts occurring near the boundaries can result in dramatic

quantitative changes in the adjacent bins due to the non-

overlapping boundaries. This problem can be countered by

incorporating a kernel-based binning method that weights the

contribution of peaks by their distance from the center of the

bin (Anderson et al. 2008).

Another method for countering this problem is to

dynamically determine the size and location of each bin.

One such dynamic binning algorithm is adaptive intelligent

binning, which recursively identifies bin edges in existing

bins (De Meyer et al. 2008). Another dynamic binning

method is adaptive binning, which uses the undecimated

wavelet transform to smooth a composite spectrum. The

observed peaks and minima of the smoothed composite

spectrum are then used to dynamically bin the spectra

(Davis et al. 2007). The composite spectrum is smoothed to

remove multiple observed peaks that arise from misaligned

peaks. When using a composite spectrum, adjacent peaks

in the same spectrum can be misinterpreted as resulting

from shifts from a single peak. To overcome this drawback,

the bin boundaries can be dynamically determined by

optimizing a heuristic based objective function that utilizes

individual spectra smoothed via a wavelet transform.

Herein we propose a novel dynamic binning method,

dynamic adaptive binning, for processing NMR spectro-

scopic data for multivariate analysis. With this technique

P. E. Anderson et al.

123



bin boundaries are dynamically determined via dynamic

programming by optimizing an objective function that

measures the quality of the bin configuration. This tech-

nique is shown to be superior to the traditional uniform

binning technique and other advanced binning techniques

(adaptive binning and adaptive intelligent binning) based

on their ability to create bins containing a single peak and

maximize the distance from peak to bin boundary. This

comparison is facilitated by synthetic data sets that capture

the salient characteristics of 1H NMR spectroscopic data

from a urinary profile (Anderson et al. 2009). Finally, a

case study demonstrates the capabilities of dynamic adap-

tive binning in comparison to uniform binning on a 1H

NMR-based experiment to monitor rat urinary metabolites.

2 Methods

The technique of spectral binning is a general signal pro-

cessing technique that reduces the dimensionality of

spectroscopic data while attempting to retain the pertinent

information and mitigate quantitative effects of peak mis-

alignment. Spectral quantification transforms every sample,

represented as an NMR spectrum, into a feature vector.

Biomarker identification can then be defined as finding a

set of features that describe a pattern between groups, thus,

the success of biomarker identification is directly related to

the quality of the feature vectors. Here a biomarker is

defined as a set of NMR signals that change relative to

some reference (i.e., before and after exposure to a toxin).

Such an experiment will have at least two groups (e.g., pre-

dose and post-dose) for which spectroscopic data is

compiled.

2.1 Spectroscopic data

Both empirical and synthetic spectroscopic data are

employed to show the application of dynamic adaptive

binning. The synthetic spectroscopic data sets are based on

urine 1H spectra and were developed by characterizing the

salient distributions in empirical spectroscopic data

(Anderson et al. 2009). Each spectrum is modeled as a

combination of Gaussian–Lorentzian peaks and a piece-

wise cubic interpolated baseline. These synthetic data sets

enable the use of exacting performance metrics because the

true location and size of each peak is known a priori. By

using the synthetic data sets, metrics are developed that

directly measure the ability of a spectral binning algorithm

to create bins containing a single observed peak, while

minimizing the probability of splitting peaks between bins.

In addition to comparing spectral binning algorithms on

synthetic data sets, this manuscript demonstrates the

application of dynamic adaptive binning on empirical data

from a 1H NMR-based experiment to monitor rat urinary

metabolites after exposure to a-naphthylisothiocyanate

(ANIT).

Animals were given a single administration, via oral

gavage at 10 ml/kg, of ANIT in corn oil vehicle at one of

the following doses: 20, 50, and 100 mg/kg. Control ani-

mals received corn oil only at 10 ml/kg. Sample size was

5–9 per group. All protocols for handling laboratory ani-

mals were approved by the Wright-Patterson Institutional

Animal Care and Use Committee (IACUC) and meet

appropriate Federal guidelines. Fisher 344 rats (*250 g)

were obtained from Charles Rivers Laboratory equipped

with jugular vein catheters, and allowed to acclimate for

7 days prior to the start of the study. Animals were then

housed individually in metabolism cages and given

ad libitum access to food (Purina Certified Rat Chow #

5002) and water. The housing environment was maintained

on a 12 h light–dark cycle at 25�C, and all animals were

examined by Vivarium personnel twice daily to ensure

their health and well-being. Urine was collected into con-

tainers chilled on dry ice and containing 1 ml of 1%

sodium azide. All urine samples were stored at -40�C

prior to analysis by NMR spectroscopy.

Urine samples for NMR analysis were prepared as

described by Robertson et al. (Robertson et al. 2000) and

modified as follows (Westrick et al., submitted). Samples

were thawed at 4�C overnight then allowed to equilibrate to

room temperature just prior to NMR sample preparation. A

600 ll aliquot of urine was mixed with 300 ll of a phos-

phate buffer (0.2 M monosodium phosphate and 0.2 M

disodium phosphate, pH 7.4) and allowed to equilibrate for

ten minutes. Samples were then centrifuged at 5000 rpm

(2300 rcf) for ten minutes to remove any particulate matter

and 550 ll of supernatant was transferred to a 5 mm NMR

tube. An internal standard consisting of 150 ll of trime-

thysilylpropionic (2, 2, 3, 3 d4) acid (TSP) dissolved in

deuterium oxide was added at a final concentration of

2 mM.

Proton NMR spectra were acquired at 25�C on a Varian

INOVA operating at 600 MHz. Water suppression was

achieved using the first increment of a NOESY pulse

sequence, which incorporated saturating irradiation (on-

resonance for water) during the relaxation delay (7.0 s

total; 2 s with water presaturation) and the mixing time

(50 ms total; 42 ms with water irradiation). Data were

signal averaged over 64 transients using a 4.0 s acquisition

time and interpulse delay of 11.05 s.

NMR spectral data were processed using Varian soft-

ware and employing exponential multiplication (0.3 Hz

line-broadening), Fourier transformation, and baseline

flattening (fifth-order polynomial and spline fitting rou-

tines). The TSP signal was used as an internal chemical

shift reference (set at 0.0 ppm), and the regions
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surrounding the residual water signal (&4.8 ppm) and the

urea signal (&5.8 ppm) were excluded from the analyses.

The vertical shift of the entire spectrum was adjusted such

that the mean of the intensities between 11.6 and 10 ppm (a

region containing spectral noise) was zero. Then the peak

intensities of each spectrum were normalized to a constant

sum.

2.2 Algorithm

Dynamic adaptive binning determines the optimal bin

configuration of n observed peaks as measured by an

objective function. This process is divided into two steps:

(1) determining the location of the observed peaks in each

spectra and (2) finding the optimal bin boundaries with

respect to the objective function. The identification of the

observed peaks in each spectrum is accomplished by

identifying local maxima after smoothing via a wavelet

transform (Alsberg et al. 1997; Cancino-De-Greiff et al.

2002; Kaczmarek et al. 2004; Perrin et al. 2001; Shao et al.

2003). After the observed peaks of each spectrum have

been determined, the algorithm determines the optimal bin

configuration using a dynamic programming strategy to

efficiently find the best solution. These bin boundaries can

then be used to quantify additional spectra.

2.2.1 Optimizing bin boundaries using dynamic

programming

The complexity of identifying significantly responding

metabolites (i.e., biomarkers) is increased when multiple

peaks fall in the same bin. Ideally, each bin should contain

a single peak from each spectrum representing the same

metabolite. In 1H NMR spectra, a peak representative of a

single type of proton in a molecule (i.e., methine, methyl,

etc.) can sometimes be split into a multiplet (i.e., doublet,

triplet, etc.) due to J-coupling. Our approach does not

attempt to address this issue, but rather, bin boundaries are

selected to ideally contain only a single peak. As an

optional post binning step, the user can interactively

modify bin boundaries in an effort to combine signals that

are identified as a J-coupled multiplet. The degree to which

a bin approaches this ideal is approximated by counting the

number of observed peaks within its boundaries for each

spectrum. This can be quantified by a bin heuristic objec-

tion function (BHOF) that is calculated as follows:

BHOFða;xÞ ¼
X

s

1� Nsj j; ð1Þ

where Ns is the number of observed peaks in spectrum s for

the region defined by the bin boundaries, [a,x]. A BHOF

value of 0 indicates that for the bin [a,x] each spectrum has

one observed peak.

The bin heuristic objective function measures the fitness

of an individual bin. For a set of bins, b, a global heuristic

objective function (GHOF) is calculated as follows:

GHOF ¼
X

½a;x�2b
BHOFða;xÞ; ð2Þ

where b is the set of all bins and [a,x] are the boundaries of

a bin. Thus, two or more sets of bin boundaries,

fb1; . . .; bng, can be ranked according to their GHOF

scores. The GHOF score represents the cumulative score of

the individual bins. The fitness of an individual bin is

measured as the degree to which it conforms to the ideal

that a bin contains one observed peak from each spectrum.

The GHOF score is a discrete function, where different

sets of bin boundaries can yield the same GHOF score. To

decide between these configurations, various tiebreaking

heuristic objective functions (THOF) can be developed.

One way to distinguish between these configurations is by

the number of bins, where THOF = kbk. The choice to

maximize or minimize THOF will depend on the prefer-

ence of the researcher, as increasing the number of bins

increases the probability of peaks spanning bin boundaries;

however, decreasing the number of bins increases the

probability of two or more peaks residing in a single bin.

For this manuscript, the THOF metric is maximized. If two

bin configurations have an equal number of bins, then the

configuration that maximizes the margins between adjacent

bins is selected, where the margin between two adjacent

bins is the minimum distance between their observed

peaks. The average margin (AVGM) is defined as follows:

AVGM ¼ 1

bk k
Xbk k

i¼2

marginði� 1; iÞ; ð3Þ

where margin(i - 1, i) is the margin between the previous

and the i-th bin. Thus, the best binning solution is found by

minimizing GHOF using THOF as a metric to distinguish

between equivalent configurations.

In addition to these two objective functions (GHOF and

THOF), unrealistic bin boundaries are avoided by includ-

ing two additional parameters: the maximum distance

between observed peaks in the same bin (W) and the

minimum distance between an observed peak and a

boundary (D). The first parameter is designed to avoid

undesirably large bins, such as combining the entire

spectrum in a single bin. The second parameter controls the

minimum desired distance between observed peaks in

adjacent bins, thus, preventing the algorithm from splitting

peaks deemed too close by the user.

The optimal binning of n observed peaks is found via a

dynamic programming strategy that minimizes GHOF with

THOF breaking ties. Specifically, the optimal solution for

binning n observed peaks is obtained by incorporating the
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n-th observed peak into the optimal solution for binning

previous observed peaks (illustrated in Fig. 1). Intuitively,

the algorithm incrementally builds the solution by incor-

porating optimal solutions of subproblems. Proofs verify-

ing optimal substructure and overlapping subproblems can

be found in the supplemental materials. Formally, the

recurrence relationship for incorporating the n-th observed

peak is given in Table 1.

The bin boundaries are defined by the first and last

observed peaks in the bin, which are known as the base

observed peaks. The left-boundary is defined by finding the

location of the minimum intensity of a maximum com-

posite spectrum between the first observed peak in the bin

and the previous observed peak. This procedure is repeated

with the right-boundary using the last observed peak in the

bin and the next observed peak. If this location results in an

observed peak to boundary distance below the user-defined

threshold, then the boundary is centered between the

adjacent observed peaks. The exceptions include the left-

boundary of the first bin and the right-boundary of the last

bin, which are set to a distance of half the maximum dis-

tance between observed peaks. Note that adjacent observed

peaks closer than two times the threshold between

observed peaks can be ignored because a valid boundary

splitting the observed peaks does not exist.

2.2.2 Selecting the parameters for identifying observed

peaks

The procedure for determining the location of the observed

peaks begins by smoothing each spectrum using a deci-

mated wavelet transformation (Alsberg et al. 1997; Can-

cino-De-Greiff et al. 2002; Kaczmarek et al. 2004; Perrin

et al. 2001; Shao et al. 2003). A smooth spectrum is created

Fig. 1 Progression of binning

six observed peaks from two

spectra. The algorithm

optimizes the bin boundaries

proceeding from left to right,

where a dashed line indicates

the portion of the spectrum that

the algorithm has not

considered. (a) The optimal

binning of the 1st observed

peak. The configuration shown

in (b) is unrealistic because the

2nd and 3rd observed peaks are

too close to be in separate bins.

(c, d) both have identical GHOF
scores for binning the first three

observed peaks, but (c) would

be preferred due to its higher

THOF score. (e, f) both show

equivalent configurations for

binning the first three observed

peaks, but (f) is preferred due to

its higher THOF score. (g) is

invalid due to the distance

between the first and last

observed peaks. The optimal

binning of the first 5 observed

peaks is shown in (h), and

finally, the optimal binning of

the first 6 observed peaks is

shown in (j)
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by deconstructing each spectrum using a specific wavelet

and then zeroing the wavelet coefficients that are desig-

nated as noise. There are several options to consider when

smoothing via a wavelet transform, including the selection

of the wavelet, the threshold selection rule, soft or hard

threshold, and whether or not to include multiplicative

threshold scaling.

The wavelets selected for evaluation in this study

include the commonly used Haar, Daubechies, Symlets,

and Coiflets wavelets (Daubechies 1992). Threshold

selection rules based on either Stein’s unbiased risk (rigr-

sure), a heuristic variant of Stein’s unbiased risk (heursure),

a universal threshold (sqtwolog), or minimax thresholding

(minimaxi) are evaluated. The value of using hard or soft

thresholding is also evaluated, along with the benefit of

using multiplicative threshold rescaling. The threshold

rescaling techniques evaluated include no rescaling (one),

rescaling using a single estimation of level noise based on

first level coefficients (sln), and rescaling done using level

dependent estimation of noise (mln). Further, baseline

variations and incorrectly smoothed regions can result in

spurious observed peaks; therefore, only those observed

peaks significantly above the noise of the spectrum are

retained. The threshold is calculated as n times the standard

deviation of a region of noise. All permutations of the

aforementioned wavelet parameters and 1 B n B 6 are

evaluated to determine the optimal wavelet configuration.

The performance of a wavelet smoothing technique is

evaluated by comparing the observed peaks to the correct

locations of those peaks. The correct locations are deter-

mined from the synthetic data set using spectra without

noise. The optimal alignment between the computed and

correct observed peaks is then calculated to provide the

average distance (AD) from the correct observed peaks.

The score for matching two observed peaks is equal to the

absolute value of the distance between observed peaks, and

the penalty for skipping an observed peak is defined as

0.01 ppm. After an optimal alignment is determined, the

average distance between matched observed peaks is cal-

culated as follows:

AD ¼ 1

Nmatched

X

i

cxi � sxij j; ð4Þ

where Nmatched is the number of observed peaks matched

between the correct and smoothed spectra, and cxi and sxi

are the locations of the i-th correct and smoothed observed

peaks, respectively. In addition, the alignment provides the

percentage of missed peaks (PM), and extra (PE) peaks are

also computed:

PM ¼ Nmissed

Ncorrect

; ð5Þ

PE ¼ Nextra

Nsmooth

; ð6Þ

where Ncorrect is the number of correct observed peaks,

Nmissed is the number of correct observed peaks that are not

matched to a smooth observed peaks, Nextra is the number

of smooth observed peaks not assigned to a correct

observed peaks, and Nsmooth is the number of smooth

observed peaks.

2.3 Evaluating and comparing binning algorithms

2.3.1 Metrics applied to synthetic data sets

Synthetic data sets are employed to provide a statistical basis

for comparing binning algorithms. For any statistical com-

parison on synthetic data to be useful, the synthetic data must

accurately characterize the salient features of real data. The

synthetic data used in this manuscript are based on urine 1H

nuclear magnetic resonance data (Anderson et al. 2009). In

total, 40 data sets each with 20 control and 20 treatment

spectra were used to compare three binning algorithms:

dynamic adaptive binning (DAB), uniform binning, adap-

tive binning (AB), and adaptive intelligent binning.

For the application considered here––identification of

biomarkers of toxicity––the objective of a binning tech-

nique is to increase the effectiveness of biomarker identi-

fication. The result of such analysis is a set of bins that have

been labeled as significantly responding (i.e., responsive).

These responsive bins are then examined to determine

which metabolites are reflected by each bin. The complexity

of this analysis is increased when multiple observed peaks

from a single spectrum reside in a single bin. Further, the

closer an observed peak is to a boundary the more its effects

are distributed across adjacent bins, and the higher the

probability that individual peaks will span bin boundaries.

As spectra contribute more than one peak to a bin, the

more difficult it becomes to interpret the results. The ability

of a binning technique to achieve this ideal is measured by

penalizing each extra or missing observed peak in a bin.

This metric is called the normalized number of observed

peaks per bin (NNPs). While similar in calculation to the

BHOF score described in the methods, the NNPs metric is

calculated using clean synthetic spectra from which noise

has been removed. Thus, the exact locations of the

observed peaks are known when calculating NNPs. These

are not known to the dynamic adaptive binning technique.

Further, to fairly compare algorithms, the set of bins

included in the NNPs metric is limited to those bins con-

taining at least one observed peak (i.e., empty bins are

excluded). The normalized number of observed peaks per

bin is defined as follows:
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NNPsða;xÞ ¼ 1� Nsj j; ð7Þ

where Ns is the number of observed peaks in the clean

spectrum s for the region defined by bin [a,x]. A NNPs

value of 0 indicates that for the bin [a,x] in spectrum

s contains one observed peak.

When calculating the number of observed peaks, the

bins are restricted to those containing at least one observed

peak.

In addition to measuring the number of observed peaks

per bin, the probability of peaks spanning boundaries must

be considered when evaluating binning algorithms. The

probability of peaks spanning boundaries is approximated

by calculating the distance from each observed peak to the

nearest boundary (DPB):

DPBi ¼ xi � pij j; ð8Þ

where pi is the location of the i-th observed peak, and xi is

the location of the nearest boundary. Finally, the time

complexity of an algorithm is of practical importance. To

measure this, the CPU seconds the algorithm spent in user

mode is studied for all 40 data sets.

2.3.2 Comparing algorithms on empirical 1H data set

The dynamic adaptive binning method is compared to

uniform, adaptive, and adaptive intelligent binning on its

ability to analyze a 1H toxicology data set. The motiva-

tion of an adaptive binning technique is demonstrated on

two sample regions of spectroscopic data. Further, the

results after principal component analysis (PCA)––a

common unsupervised latent vector visualization tech-

nique––are analyzed for each of the aforementioned bin-

ning algorithms. The ability of a binning technique to

enhance the results of PCA by improving between group

separation and within group scatter is illustrated by the

PCA scores plots. The parameters for each algorithm are

selected from the results of the normalized number of

peaks per bin.

3 Results

3.1 Peak identification via wavelet smoothing

All combinations of the wavelet parameters and techniques

previously described were evaluated and ranked according

to the average of the percentage of peaks missed and the

percentage of extra peaks (AVG). The top 10 peak identi-

fication configurations are shown in Table S2 of the sup-

plemental information. The most accurate configuration of

wavelet parameters, as measured by the average of PE and

PM, is wavelet: sym7, thresholding: soft, rescaling:

rigrsure, level: 1, rescaling: one, and number of noise

standard deviations: 5. While not significantly different

from the other top wavelet configurations, this configura-

tion is assumed for all future analyses. In practice, any of

the top configurations would produce similar results.

3.2 Evaluating and comparing binning techniques

Each spectral binning algorithm is analyzed as a function

of their tunable parameters. The process of uniform binning

is measured as a function of the bin width. For 1H NMR

spectra, a standard bin width is 0.04 ppm. For this analysis,

the bin width is varied from 0.01 to 0.06 ppm by 0.01 ppm.

The performance of adaptive binning (AB) was measured

as a function of the level of the wavelet transform, which is

varied between 1 and 6 for adaptive binning. For adaptive

intelligent binning (AIB), the parameter R is set to 0.15,

0.5, and 0.85. For dynamic adaptive binning (DAB), the

maximum bin width is set to 0.04 ppm and the minimum

distance from boundary to observed peak is varied from 0

to 0.004 by increments of 0.001. The wavelet parameters

for DAB were selected as the best results from Table S1.

For a statistical comparison, the algorithms were ranked

according to their performance on the four metrics recor-

ded for the synthetic data sets described in Sect. 2.3.1.

A detailed comparison of the four binning algorithms

based on the metrics previously described was carried out

using several standard statistical tests. First each of the

metrics was tested for normality using the Anderson–

Darling test, which rejected normality for the number of

observed peaks per bin and the distance from observed

peak to nearest boundary (a = 0.05). The test failed to

reject normality for the other two metrics, and thus, they

are assumed to come from a normal distribution. Further,

the Levene test showed that the variance of the CPU sec-

onds exhibited heterogeneity (a = 0.05).

Using Welch’s variance-weighted one-way ANOVA, the

mean the CPU seconds per data set was significant using an

alpha of 0.05. The Games-Howell multiple comparison test

was used to determine significant differences between

algorithms. Algorithm and parameter pairs were sorted

Table 1 Recurrence relationship that recursively defines the optimal

binning of n maxima

Description Score

1. n-th maximum is a base for a new

bin

GHOFn = GHOFn-1

?BHOF(an, xn)

2. n-th and n – i maxima are the bases

for a new bin if the distance

between the two maxima is less

than the maximum bin width,

where i is an integer greater than 0.

GHOFn = GHOFn-i-1

?BHOF(an-i, xn)
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according to their mean rank using the Kruskal–Wallis test

with multiple comparisons. These results are summarized in

Table 2, where significantly different results are shown

with different adjacent shading. To simplify the table, the

mean rank was normalized by dividing each rank by the

minimum mean rank.

Using the Kruskal–Wallis test (nonparametric one-way

ANOVA), the mean ranks of both the distance from

observed peak to nearest boundary and the normalized

number of observed peaks per bin were significant using an

alpha of 0.05. A multiple comparison test on the mean ranks

(analogous to the Tukey–Kramer method) was used to

determine any significant differences between algorithms.

Algorithm and parameter pairs were ranked according to

these tests and are summarized in Table 3, where algo-

rithms with differing ranks are significantly different.

3.3 Empirical 1H NMR data set

The dynamic adaptive binning method and the traditional

uniform binning method were applied to a 1H NMR-based

Table 2 The performance of the binning algorithms and their

parameters as measured by the mean CPU seconds/data set relative to

the fastest algorithm, where 1 normalized CPU second equals 0.31 s

on an Intel Core 2 Duo with 4 GB of RAM

Method and

parameters

Mean CPU seconds relative

to fastest algorithm

Mean

rank

AB, 5 1 1

AB, 3 1.05 1.25

AB, 4 1.05 1.39

AB, 6 1.05 1.47

AB, 2 1.12 2.60

AB, 1 1.29 3.39

Uniform, 0.06 1.82 3.98

Uniform, 0.05 2.18 4.61

Uniform, 0.04 2.71 5.22

Uniform, 0.03 3.65 5.84

Uniform, 0.02 5.41 6.45

Uniform, 0.01 10.88 7.06

DAB, 0.004 473.12 8.33

DAB, 0.003 473.43 8.55

DAB, 0.002 474.71 9.39

DAB, 0.001 512.94 10.13

DAB, 0 9406.47 10.75

AIB, 0.15 42841.35 12.04

AIB, 0.5 47335.35 12.07

AIB, 0.85 50460.65 12.09

For a quick comparison, the slowest algorithm (AIB, 0.85) required

approximately 4.3 h to complete on average. Algorithm and param-

eter pairs were sorted according to the multiple comparison tests on

the mean ranks. Significantly different results are shown with

different adjacent shading

Table 3 The performance of the binning algorithms and their param-

eters as measured by (a) normalized number of observed peaks per bin,

and (b) median distance from observed peak to nearest boundary

(a)

Method and

parameters

Median normalized #

of observed peaks/bin

Mean

Rank

DAB, 0 0 1

Uniform, 0.01 1 1.96

Uniform, 0.02 1 2.09

DAB, 0.001 1 2.09

AB, 3 1 2.21

AB, 4 1 2.21

AB, 5 1 2.21

AB, 6 1 2.21

AIB, 0.15 0 2.21

AIB, 0.5 1 2.24

AIB, 0.85 1 2.24

AB, 2 1 2.25

AB, 1 1 2.26

DAB, 0.002 1 2.72

Uniform, 0.03 3 2.91

DAB, 0.003 2 2.98

DAB, 0.004 2 3.01

Uniform, 0.04 4 3.39

Uniform, 0.05 5 3.86

Uniform, 0.06 7 4.07

(b)

Method and

parameters

Median dist. from observed

peak to nearest boundary

Mean

rank

DAB, 0.004 0.48916 4.25

DAB, 0.003 0.16632 3.91

DAB, 0.002 0.05086 3.73

Uniform, 0.06 0.01507 3.19

Uniform, 0.05 0.01249 3.06

Uniform, 0.04 0.01001 2.89

DAB, 0.001 0.00584 2.67

Uniform, 0.03 0.00738 2.66

AIB, 0.85 0.00459 2.39

Uniform, 0.02 0.00499 2.31

AIB, 0.5 0.00250 1.85

Uniform, 0.01 0.00252 1.70

DAB, 0 0.00208 1.58

AIB, 0.15 0.00167 1.52

AB, 6 0.00083 1.02

AB, 5 0.00083 1.02

AB, 4 0.00083 1.02

AB, 2 0.00083 1.02

AB, 3 0.00083 1.01

AB, 1 0.00083 1

Algorithm and parameter pairs were sorted according to the multiple

comparison tests on the mean ranks. Significantly different results are

shown with different adjacent shading
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experiment to monitor rat urinary metabolites. The

parameters were selected based on their ability to minimize

the normalized number of observed peaks per bin

(Table 3b). Figure 2 illustrates the motivation of dynamic

binning techniques on two sample regions using a uniform

bin width of 0.01 ppm and dynamic adaptive binning

parameters D = 0 and W = 0.04 ppm. The results of

principal component analysis on samples from several non-

lethal doses of ANIT (20 mg/kg, 50 mg/kg, and 100 mg/

kg) are shown in Fig. 3.

4 Discussion

Spectroscopic binning algorithms attempt to enhance the

effectiveness of pattern recognition techniques by reducing

problem dimensionality with minimal loss of information.

One application of a binning algorithm is the determination

of biomarkers associated with toxic exposure. The com-

plexity of this analysis increases when multiple peaks fall

in the same bin and span bin boundaries, both of which

result in a loss of information. Thus, a binning algorithm

attempts to minimize the number of dimensions, while

maximizing pertinent information and mitigating peak

misalignment. The results of this analysis are then analyzed

post-hoc to determine the specific metabolites contributing

to an individual bin.

The performance of binning algorithms was measured

by the minimum distance from observed peak to boundary

(DPB) and the normalized number of observed peaks per

bin (NNP) (Table 3). In summary, the dynamic adaptive

binning algorithm (D = 0) has a significantly better mean

rank of normalized number of observed peaks per bin than

all other algorithm and parameter pairs. It should also be

noted that while the median normalized number of

observed peaks per bin for AIB (R = 0.15) is 0, its mean

rank is used in the multiple comparison test. When

increasing the user-defined parameter, minimum distance

from observed peak to boundary (D = 0, 0.001, 0.002,

0.003, and 0.004), the probability of peaks spanning bin

boundaries decreases, but the normalized number of

observed peaks per bin also increases. This increases the

complexity of determining the metabolites reflected by

each bin. Using a minimum distance from boundary to

observed peak of 0.001 ppm balances these two goals.

Secondary to the performance of the algorithms as

measured by DPB and NNP, the computational complexity

as measured by the CPU seconds spent in user mode is also

important. In summary, all methods required significantly

less CPU seconds than adaptive intelligent binning

(R = 0.15, 0.5, and 0.85). In addition, the CPU seconds

required by adaptive intelligent binning (D = 0), were

significantly greater than uniform binning, adaptive bin-

ning, and dynamic adaptive binning (D = 0.001, 0.002,

0.003, 0.004).

While the advantages of dynamic adaptive binning are

quantified using the synthetic spectral data sets, the per-

formance on an experimental 1H data set is illustrated in

Fig. 2. Uniform binning successfully mitigates misalign-

ment when peaks fall in the center of the bin; however, it

creates boundaries at fixed intervals, regardless of the

environment. This can lead to peaks spanning adjacent

bins, as shown in Fig. 2. The probability of a peak span-

ning bin boundaries decreases as the bin width increases;

however, this also increases the probability of multiple

peaks residing in a single bin. In general, uniform binning

lacks the flexibility to deal with the complexities of a 1H

NMR spectrum.

Fig. 2 Sample regions of 1H

spectroscopic data

demonstrating the advantages of

dynamic adaptive binning

(a) over uniform binning (b)
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The ability of each binning technique to enhance sub-

sequent pattern recognition techniques by improving

within and between group scatter is demonstrated by ana-

lyzing the PCA results on the 1H toxicology data set

(Fig. 3). This scores plot shows that dynamic adaptive

binning provides equivalent or better separation measured

by the Euclidian distance between means for each ANIT

dose (20 mg/kg, 50 mg/kg, and 100 mg/kg) throughout the

time course (day-1, day-2, day-3, and day-4). A specific

example of this improvement is the increase in separation

between 100 mg/kg ANIT samples at day-3 (d3) and

50 mg/kg ANIT samples at day-2 (d2). The separation

between these two groups is 28, 4, 4, and 33 for dynamic

adaptive binning, uniform binning, adaptive binning, and

adaptive intelligent binning, respectively. Examining this

separation shows the advantages of dynamic adaptive

binning and adaptive intelligent binning versus uniform

and adaptive binning. Further, by examining the separation

between the 50 mg/kg ANIT samples at day-2 and day-3

for the binning algorithms shows that dynamic adaptive

binning, uniform binning, and adaptive binning provide a

twofold increase in group separation versus adaptive

intelligent binning. The exact distances are 42, 39, 42, and

17, respectively.

In comparison to dynamic adaptive binning, adaptive

binning and adaptive intelligent binning have fewer user

defined parameters. In addition, these algorithms avoid the

problem of determining the location of observed peaks;

however, finding the locations of the observed peaks has

several advantages, including the ability for the user to

filter the observed peaks of interest (i.e., based on height).

Using the observed peaks also provides the user with

domain specific parameters, such as minimum distance

from observed peak to the nearest boundary. Finally, the

inclusion of observed peaks will facilitate the development

of more sophisticated objective functions that can improve

quantification by identifying multiplets and assisting in

further deconvolution. Specifically, the identified peaks

may be supplied as input to a targeted approach that removes

metabolites identified with high confidence. The updated

spectra could then be processed by a binning approach.

The software was written in MATLAB and is avail-

able for download at http://birg.cs.wright.edu/panderson/

dab.zip.

Fig. 3 Principal component

scores (means and standard

error) after dynamic adaptive

binning (a), uniform binning

(b), adaptive binning (c), and

adaptive uniform binning (d) for

several non-lethal ANIT doses

(control: black; 20 mg/kg

ANIT: blue; 50 mg/kg ANIT:

red; and 100 mg/kg ANIT:

magenta). Each dose is

measured as a function of time

(e.g., d2 is 2 days post-dose).

See text for details
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Åberg, K. M., Alm, E., & Torgrip, R. J. O. (2009). The correspon-

dence problem for metabonomics datasets. Analytical and
Bioanalytical Chemistry, 394, 151–162.

Alsberg, B. K., Woodward, A. M., & Kell, D. B. (1997). An

introduction to wavelet transforms for chemometricians: A time-

frequency approach. Chemometrics and Intelligent Laboratory
Systems, 37, 215.

Anderson, P. E., Raymer, M. L., Kelly, B. J., Reo, N. V., DelRaso, N.

J., & Doom, T. E. (2009) Nuclear magnetic resonance synthetic

validation sets. Available from: http://birg.cs.wright.edu/nmr_

synthetic_data_sets.

Anderson, P. E., Reo, N. V., DelRaso, N. J., Doom, T. E., & Raymer,

M. L. (2008). Gaussian binning: A new kernel-based method for

processing NMR spectroscopic data for metabolomics. Meta-
bolomics, 4, 261–272.

Beckwith-Hall, B. M., Holmes, E., Lindon, J. C., Gounarides, J.,

Vickers, A., Shapiro, M., et al. (2002). NMR-based metabo-

nomic studies on the biochemical effects of commonly used drug

carrier vehicles in the rat. Chemical Research in Toxicology, 15,

1136.

Beckwith-Hall, B. M., Nicholson, J. K., Nicholls, A. W., Foxall, P. J.,

Lindon, J. C., Connor, S. C., et al. (1998). Nuclear magnetic

resonance spectroscopic and principal components analysis

investigations into biochemical effects of three model hepato-

toxins. Chemical Research in Toxicology, 11, 260.

Brekke, T., Kvalheim, O. M., & Sletten, E. (1989). Prediction of

physical properties of hydrocarbon mixtures by partial-least-

squares calibration of carbon-13 nuclear magnetic resonance

data. Analytica Chimica Acta, 223, 123–134.

Brown, T. R., & Stoyanova, R. (1996). NMR spectral quantitation by

principal-component analysis II.––determination of frequency

and phase shifts. Journal of Magnetic Resonance. Series B, 112,

32–43.

Cancino-De-Greiff, H. F., Ramos-Garcia, R., & Lorenzo-Ginori, J. V.

(2002). Signal de-noising in magnetic resonance spectroscopy

using wavelet transforms. Concepts in Magnetic Resonance, 14,

388–401.

Cloarec, O., Dumas, M. E., Craig, A., Barton, R. H., Trygg, J.,

Hudson, J., et al. (2005). Statistical total correlation spectros-

copy: An exploratory approach for latent biomarker identifica-

tion from metabolic 1H NMR data sets. Analytical Chemistry,
77, 1282.

Connor, S. C., Gray, R. A., Hodson, M. P., Clayton, N. M., Haselden,

J. N., Chessell, I. P., et al. (2007). An NMR-based metabolic

profiling study of inflammatory pain using the rat FCA model.

Metabolomics, 3, 29–39.

Crockford, D. J., Keun, H. C., Smith, L. M., Holmes, E., & Nicholson,

J. K. (2005). Curve-fitting method for direct quantitation of

compounds in complex biological mixtures using 1H NMR:

Application in metabonomic toxicology studies. Analytical
Chemistry, 77, 4556–4562.

Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial

and Applied Mathematics (SIAM).

Davis, R. A., Charlton, A. J., Godward, J., Jones, S. A., Harrison, M.,

& Wilson, J. C. (2007). Adaptive binning: An improved binning

method for metabolomics data using the undecimated wavelet

transform. Chemometrics and Intelligent Laboratory Systems,
85, 144–154.

De Meyer, T., Sinnaeve, D., Van Gasse, B., Tsiporkova, E.,

Rietzschel, E. R., De Buyzere, M. L., et al. (2008). NMR-based

characterization of metabolic alterations in hypertension using

an adaptive, intelligent binning algorithm. Analytical Chemistry,
80, 3783–3790.

Defernez, M., & Colquhoun, I. J. (2003). Factors affecting the

robustness of metabolite fingerprinting using 1H NMR spectra.

Phytochemistry, 62, 1009–1017.

Fiehn, O. (2002). Metabolomics––the link between genotypes and

phenotypes. Plant Molecular Biology, 48, 155–171.

Forshed, J., Andersson, F. O., & Jacobsson, S. P. (2002). NMR and

bayesian regularized neural network regression for impurity

determination of 4-aminophenol. Journal of Pharmaceutical and
Biomedical Analysis, 29, 495–505.

Forshed, J., Schuppe-Koistinen, I., & Jacobsson, S. P. (2003). Peak

alignment of NMR signals by means of a genetic algorithm.

Analytica Chimica Acta, 487, 189–199.

Forshed, J., Torgrip, R. J., Aberg, K. M., Karlberg, B., Lindberg, J., &

Jacobsson, S. P. (2005). A comparison of methods for alignment

of NMR peaks in the context of cluster analysis. Journal of
Pharmaceutical and Biomedical Analysis, 38, 824.

Gartland, K. P., Sanins, S. M., Nicholson, J. K., Sweatman, B. C.,

Beddell, C. R., & Lindon, J. C. (1990). Pattern recognition

analysis of high resolution 1H NMR spectra of urine. A

nonlinear mapping approach to the classification of toxicological

data. NMR in Biomedicine, 3, 166.

Griffin, J. L., Williams, H. J., Sang, E., & Nicholson, J. K. (2001).

Abnormal lipid profile of dystrophic cardiac tissue as demon-

strated by one- and two-dimensional magic-angle spinning (1)H

NMR spectroscopy. Official Journal of the Society of Magnetic
Resonance in Medicine, 46, 249.

Hotelling, H. (1933). Analysis of a complex of statistical variables

into principal components. Journal of Educational Psychology,
24, 417–441.

Jolliffe, I. T. (1986). Principal component analysis. New York:

Springer-Verlag.

Kaczmarek, K., Walczak, B., de Jong, S., & Vandeginste, B. G.

(2004). Preprocessing of two-dimensional gel electrophoresis

images. Proteomics, 4, 2377.

Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition

methods and applications in biomedical magnetic resonance.

Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1.

Martens, H., & Naes, T. (1989). Multivariate calibration. London:

Wiley.

Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics:

Understanding the metabolic responses of living systems to

pathophysiological stimuli via multivariate statistical analysis of

biological NMR spectroscopic data. Xenobiotica, 29, 1181.

Nicholson, J. K., & Wilson, I. D. (1989). High resolution proton

magnetic resonance spectroscopy of biological fluids. Progress
in Nuclear Magnetic Resonance Spectroscopy, 21, 444–501.

Perrin, C., Walczak, B., & Massart, D. L. (2001). The use of wavelets

for signal denoising in capillary electrophoresis. Analytical
Chemistry, 73, 4903–4917.

Reo, N. V. (2002). NMR-based metabolomics. Drug and Chemical
Toxicology, 25, 375–382.

Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson,

D. A., & Braden, T. K. (2000). Metabonomics: Evaluation of

nuclear magnetic resonance (NMR) and pattern recognition

technology for rapid in vivo screening of liver and kidney

toxicants. Toxicological Sciences, 57, 326–337.

Robosky, L. C., Robertson, D. G., Baker, J. D., Rane, S., & Reily, M.

D. (2002). In vivo toxicity screening programs using metabo-

nomics. Combinatorial Chemistry and High Throughput Screen-
ing, 5, 651.

Schoonen, W. G., Kloks, C. P., Ploemen, J. P., Horbach, G. J., Smit,

M. J., Zandberg, P., et al. (2007a). Sensitivity of (1)H NMR

analysis of rat urine in relation to toxicometabonomics. Part I:

Dose-dependent toxic effects of bromobenzene and paracetamol.

Toxicological Sciences, 98, 271.

Dynamic adaptive binning

123

http://birg.cs.wright.edu/nmr_synthetic_data_sets
http://birg.cs.wright.edu/nmr_synthetic_data_sets


Schoonen, W. G., Kloks, C. P., Ploemen, J. P., Smit, M. J., Zandberg,

P., Horbach, G. J., et al. (2007b). Uniform procedure of (1)H

NMR analysis of rat urine and toxicometabonomics Part II:

Comparison of NMR profiles for classification of hepatotoxicity.

Toxicological Sciences, 98, 286.

Shao, X. G., Leung, A. K., & Chau, F. T. (2003). Wavelet: A new

trend in chemistry. Accounts of Chemical Research, 36, 276.

Shockcor, J. P., & Holmes, E. (2002). Metabonomic applications in

toxicity screening and disease diagnosis. Current Topics in
Medicinal Chemistry, 2, 35.

Spraul, M., Neidig, P., Klauck, U., Kessler, P., Holmes, E.,

Nicholson, J. K., et al. (1994). Automatic reduction of NMR

spectroscopic data for statistical and pattern recognition classi-

fication of samples. Journal of Pharmaceutical and Biomedical
Analysis, 12, 1215.

Stoyanova, R., Nicholls, A. W., Nicholson, J. K., Lindon, J. C., &

Brown, T. R. (2004a). Automatic alignment of individual peaks

in large high-resolution spectral data sets. Journal of Magnetic
Resonance, 170, 329–335.

Stoyanova, R., Nicholson, J. K., Lindon, J. C., & Brown, T. R.

(2004b). Sample classification based on Bayesian spectral

decomposition of metabonomic NMR data sets. Analytical
Chemistry, 76, 3666–3674.
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