Award Number: W81XWH-09-1-0204

TITLE: Inhibitors of Fatty Acid Synthase for Prostate Cancer

PRINCIPAL INVESTIGATOR: Steven J. Kridel, Ph.D.

CONTRACTING ORGANIZATION: Wake Forest University
Winston-Salem, NC 27157

REPORT DATE: May 2010

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Fatty acid synthase (FASN), the enzyme that synthesizes fatty acid in cells, is over-expressed in prostate cancer and a potential therapeutic target. We have identified several novel chemical scaffolds with potential to inhibit FASN. An extensive series of anti-FASN pharmacophores has been synthesized and characterized for their ability to inhibit recombinant FASN, FASN activity in tumor cells, and to kill prostate cancer cell lines. The best inhibitors have increased potency over other FASN inhibitors, including orlistat, the prototype FASN thioesterase inhibitor. The current studies represent a significant advancement of the development of FASN inhibitors and moves a step closer to translating FASN inhibitors into the clinic.

Subject Terms
- fatty acid synthase, thioesterase, inhibitors, drug development
Introduction

The purpose of the current research proposal is to optimize chemical scaffolds that were identified as potential inhibitors of fatty acid synthase (FASN), specifically the thioesterase (TE) domain. It is based on a series of observation by our group and others that FASN represents a valuable drug target. Using an iterative scheme of *in silico* design, activity-based screening and structural analyses we identified a series of novel pharmacophores with inhibitory activity against FASN. This proposal had three specific aims. They were 1) To optimize Compound A through structure-based design, chemical syntheses and *in vitro* testing, 2) To determine the toxicological and pharmacokinetic properties of the most promising Compound A analog(s), and 3) To test the efficacy of Compound A analog(s) in mouse xenograft models of human prostate cancer. During the course of the initial funding period significant progress has been made in optimizing initial compounds, developing new compounds and synthetic strategies, and optimizing potential FASN inhibitors for future therapeutic development. The progress of our multidisciplinary group is summarized below.

Body

In this first project year we focused on Lead Series development starting from two structural families identified as hits in high-throughput screening. Our molecular design and medicinal chemistry efforts have led to the synthesis of more than seventy (70) fully characterized compounds representing six structural classes: 5,6-quinolinediones, naphthylene-1,4-diones, 1,4-benzoquinones, 1,4-hydroquinones, benzo[d]isoxazole-4,7-diones and 1H-indazole-4,7-diones. The novel members of these classes are the subject matter of three provisional patent applications. All salient data collected, thus far on these compounds is summarized in Appendix A. Significantly we have identified three compounds (TPI-403, TPI-417 and TPI-421) as candidates for further optimization, and *in vivo* assessment against prostate cancer.

I. Pharmacological and *in vitro* data for TPI-403, TPI-417 and TPI-421

Based on our medicinal chemistry efforts and data collected thus far, the 1H-indazole-4,7-dione scaffold appears to be a flexible template for further optimization. Figure 1 summarizes data for the compounds we have selected for *in vivo* assessment and further optimization.

![Figure 1- Lead Series Data Summary](image-url)

Key: PC-3, prostate cancer cells; FS-4, normal fibroblast (control cell line); therapeutic index, \{FS-4 EC\textsubscript{50}}/\{FS-4 EC\textsubscript{50}\}
II. Further optimization strategy for TPI-403, TPI-417 and TPI-421

Further optimization of this series centers on two themes: (1) increasing affinity at TE and (2) increasing solubility in aqueous media. The former goal will also likely lead to a desired increase in therapeutic index of the series (defined here as EC_{50} (normal cells) / EC_{50} (cancer cells)). The structure-activity relationships thus far indicate that a wide variety of substituents are accommodated in Regions A and B of the 1H-indazole-4,7-diones scaffold. These regions are depicted in Figure 2.

The further optimization plan for Region A is summarized in Figure 3 and will take advantage of the fact that the 5 position of the 1,4-dihydroquinone intermediate (blue structure, Figure 3) is highly susceptible to nucleophilic attack. In addition, well-established Diels-Alder chemistry will be used to create additional fused ring structures (structures 3d and 3f). Other key targets include: the introduction of various substituents (R1) into the indazole ring of structure 3a; and coupling of various aldehydes and α,β-unsaturated ethers to the 5 position of the quinone under acidic conditions to yield compounds like 3c and 3e.

Figure 2- 1H-indazole-4,7-dione optimization regions

Figure 3- Region A optimization strategy for TPI-403, TPI-417 and TPI-421
Figure 4- Region B optimization strategy for TPI-403, TPI-417 and TPI-421

The proposed further optimization of Region B, is shown in Figure 4. Here we will take advantage of crystallographic and docking data generated by our laboratories. Together these data demonstrate that substituting a pantetheine moiety onto the 1H-indazole-4,7-diones position of the 1H-indazole-4,7-dione scaffold (blue structure, Figure 4) would preserve the likely binding mode of the quinone near the catalytic triad of TE while packing the pantetheine channel, which is a unique feature of TE. We surmise that the introduction of a pantetheine moiety in a favorable orientation will not only significantly increase TE affinity and solubility, but will also increase specificity of the series toward the target. Why? Because pantetheine is a cofactor used exclusively for fatty acid synthesis, which is an absolute requirement of epithelial cancer cells and is also known to correlate with tumor aggressiveness. Examples of pantetheine-like target compounds are shown in Figure 4: structures 4a and 4b; structure 4c is an analog of TPI-417 that attempts to preserve the aromatic moiety adjacent to the indazole ring, while introducing key features of pantetheine.

Backup Compounds and Other Findings

III. 5,6-quinoline-diones

Based on our finding that the Nanosyn library compound containing the 5,6-quinoline-dione moiety (TPI-100, see Appendix A for structure) inhibits recombinant FASN TE and cancer cell growth, we pursued development of novel analogs of this 5,6-quinolinedione. Following the synthetic scheme shown in Figure 5 we were able to synthesize 10 5,6-quinoline-dione analogs. While structure-activity relationships indicated a clear trend towards a more optimal biological profile, we turned our attention toward the promising and easily synthesized 1,4-naphthoquinones and 1,4-benzoquinones. The chemistry of the 5,6-quinoline-diones have proven to be challenging due to low yields and lack of ‘generalizability’. The overall synthesis up to the hydroxyquinoline stage (structure d) is efficient and gives high yields overall, but the critical oxidation step (d → f) provided only marginal yields and did not work with many of the amines (e) of interest.
We have devised an alternative strategy that will hopefully lead to the facile development of 5,6-quinolinediones as well as additional 1,4-benzoquinones. The overall approach is shown in Figure 6. Using this strategy, we will focus on the further optimization of TPI-107 analogs as a strategy for developing backup compounds.

IV. 1,4-naphthoquinones and 1,4-benzoquinones

As mentioned above, high-throughput screening has identified two 1,4-naphthoquinones, TPI-400 and TPI-500 (see Appendix A for structures) initially analogs of these compounds were developed using the synthesis shown in Figure 7. It is worth noting that TPI-400 proved difficult to synthesize; no attempts were made to synthesize NS-500. One analog (TPI-501) was made as an attempt to reduce the chemical reactivity of the lead compound; unfortunately the pharmacological profile of the compound was very poor. A search of literature compounds and natural products led us to screen numerous 1,4-quinone containing compounds. As a result, we discovered that the natural product juglone (see Appendix A) is a potent inhibitor of TE1. One analog of juglone was synthesized (TPI-404), with the aims of making an analog with less chemical reactivity, but again, the introduction of the N-morpholinyl group was not favored.

During the course of this work we also determined that the intellectual property space around the naphthylene-1,4-dione series is rather limited, thus we opted to find alternative scaffolds like the and 1H-indazole-4,7-diones described above. We also pursued the development of the closely related benzo[\(d\)]isoxazole-4,7-diones but we were unable to determine and efficient methodology to construct the fused isoxazole ring, nor were we able to identify an efficient process to oxidize the benzo[\(d\)]isoxazole-4,7-diol (TPI-401) to yield the desired product.

Figure 5- Synthetic strategy for 5,6-quinoline-diones

Figure 6- Future strategy for synthesis of 5,6-quinoline-diones
Key Research Accomplishments:

- Synthesis and characterization of more than 70 novel FASN inhibitor scaffolds. (see Appendix A)
- Optimization of FASN inhibitors of novel chemotypes
- Development of new synthetic strategies and avenues to generate FASN inhibitors

Reportable Outcomes:

Manuscripts

Funding received, based on this award

None

Conclusion

As detailed in the body of this annual report, we have synthesized a significant library of potential FASN inhibitors. These results highlight the significant effort that has been put forth as well as the hurdles that have been overcome. These results will be important for the continued development of potential FASN inhibitors.

So what does this body of knowledge contribute? Several academic laboratories and pharma companies are developing inhibitors against FASN. The work presented in this report highlight design and optimization of novel FASN inhibitors. This will contribute to the development of FAS inhibitors and provide an avenue toward the translation of FAS inhibitors into the clinic for potential use in treating men with prostate cancer.
<table>
<thead>
<tr>
<th>Compound Structure</th>
<th>TPI Number</th>
<th>recombinant thioesterase</th>
<th>% inhibition (10µM)</th>
<th>approx, IC₅₀ (µM)</th>
<th>% inhibition of ¹⁴C-acetate incorp.</th>
<th>cell survival, MTS assay (IC₅₀)</th>
<th>therapeutic index</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,6-quinolinediones</td>
<td></td>
<td>TE1 TE2</td>
<td></td>
<td></td>
<td></td>
<td>tumor cells</td>
<td>normal cells</td>
</tr>
<tr>
<td>TPI-00100-00-A (NS 1456)</td>
<td>20.21 22.87</td>
<td>NA NA</td>
<td>89.3 2.36 2.93 4.2</td>
<td>1.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00101-00-A</td>
<td>2.64 8.83</td>
<td>NA NA</td>
<td>ND 6.4 6.36 ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00102-00-A</td>
<td>17.27 14.45</td>
<td>NA NA</td>
<td>ND ND ND ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00103-00-A</td>
<td>1.59 11.39</td>
<td>NA NA</td>
<td>ND >10 >10 ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00104-00-A</td>
<td>0.00 12.04</td>
<td>NA NA</td>
<td>ND ND ND ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00105-00-A</td>
<td>9.20 17.59</td>
<td>NA NA</td>
<td>34 >25 >25 ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00106-00-A</td>
<td>37.72 42.72</td>
<td>NA NA</td>
<td>31 >25 20.1 16.7 ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00107-00-A</td>
<td>51.68 54.24 11.59 13.78</td>
<td>49 18.2 14.33 9.4</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00108-00-A</td>
<td>21.26 26.36</td>
<td>NA NA</td>
<td>23 >25 >25 ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00109-00-A</td>
<td>30.25 26.80</td>
<td>NA NA</td>
<td>7 >25 uM >25 uM ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00110-00-A</td>
<td>28.01 46.00</td>
<td>NA NA</td>
<td>ND ND ND ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-benzoquinones & 1,4-hydroquinones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00600-00-A</td>
<td>85.94 96.72 7.27</td>
<td>NA</td>
<td>56.3 29.2 >50 9.5</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00601-00-A</td>
<td>94.42 96.05 7.05</td>
<td>NA</td>
<td>65.7 32.2 >50 20.8</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00605-00-A</td>
<td>30.62 46.98</td>
<td>NA</td>
<td>ND ND ND ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI-00606-00-A</td>
<td>10.10 14.34</td>
<td>NA</td>
<td>20.3</td>
<td>ND ND ND ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound Structure</td>
<td>TPI Number</td>
<td>recombinant thioesterase inhibition (10μM)</td>
<td>approx, IC₅₀ (1μM)</td>
<td>approx, IC₅₀ (μM)</td>
<td>% inhibition of ¹⁴C-acetate incorporation, PC3 cells</td>
<td>cell survival, MTS assay (IC₅₀)</td>
<td>therapeutic index</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00607-00-A</td>
<td>45.23</td>
<td>19.65</td>
<td>NA</td>
<td>NA</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00608-00-A</td>
<td>35.37</td>
<td>93.22</td>
<td>NA</td>
<td>NA</td>
<td>86.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00609-00-A</td>
<td>78.46</td>
<td>96.16</td>
<td>NA</td>
<td>NA</td>
<td>89.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00610-00-A</td>
<td>37.05</td>
<td>89.56</td>
<td>NA</td>
<td>NA</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00611-00-A</td>
<td>18.19</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>44.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00612-00-A</td>
<td>95.72</td>
<td>95.19</td>
<td>NA</td>
<td>NA</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00613-00-A</td>
<td>22.84</td>
<td>90.89</td>
<td>NA</td>
<td>NA</td>
<td>63.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00614-00-A</td>
<td>18.68</td>
<td>85.27</td>
<td>NA</td>
<td>NA</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00615-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.19</td>
<td>33.3</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00616-00-A</td>
<td>98.76</td>
<td>99.33</td>
<td>6.45</td>
<td>11.2</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00617-00-A</td>
<td>98.13</td>
<td>98.88</td>
<td>1.70</td>
<td>91.4</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00618-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.19</td>
<td>33.3</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00619-00-A</td>
<td>98.76</td>
<td>99.33</td>
<td>6.45</td>
<td>11.2</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPI-00620-00-A</td>
<td>98.13</td>
<td>98.88</td>
<td>1.70</td>
<td>91.4</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Therapeutic Index:
- TPI-00607-00-A: 1.41
- TPI-00618-00-A: 2.00
<table>
<thead>
<tr>
<th>Compound Structure</th>
<th>TPI Number</th>
<th>recombinant thioesterase inhibition (10μM)</th>
<th>approx, IC50 (μM)</th>
<th>% inhibition of 14C-acetate incorp.</th>
<th>cell survival, MTS assay (IC50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TE1</td>
<td>TE2</td>
<td>TE1</td>
<td>TE2</td>
</tr>
<tr>
<td>TPI-00621-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.06</td>
<td>0.17</td>
<td>23.4</td>
</tr>
<tr>
<td>TPI-00622-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>0.70</td>
<td>0.18</td>
<td>11.4</td>
</tr>
<tr>
<td>TPI-00623-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.16</td>
<td>0.20</td>
<td>9.25</td>
</tr>
<tr>
<td>TPI-00624-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.34</td>
<td>0.42</td>
<td>57.7</td>
</tr>
<tr>
<td>TPI-00625-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.10</td>
<td>0.25</td>
<td>64.3</td>
</tr>
<tr>
<td>TPI-00626-00-A</td>
<td>100.00</td>
<td>99.70</td>
<td>1.09</td>
<td>0.40</td>
<td>42.2</td>
</tr>
<tr>
<td>TPI-00627-00-A</td>
<td>100.00</td>
<td>99.49</td>
<td>1.08</td>
<td>0.10</td>
<td>66.4</td>
</tr>
<tr>
<td>TPI-00628-00-A</td>
<td>100.00</td>
<td>97.81</td>
<td>1.16</td>
<td>0.23</td>
<td>53.7</td>
</tr>
<tr>
<td>TPI-00629-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.08</td>
<td>0.24</td>
<td>50</td>
</tr>
<tr>
<td>TPI-00630-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.55</td>
<td>0.34</td>
<td>61.85</td>
</tr>
<tr>
<td>TPI-00631-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.44</td>
<td>0.11</td>
<td>91.9</td>
</tr>
<tr>
<td>TPI-00632-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.35</td>
<td>0.36</td>
<td>49.05</td>
</tr>
<tr>
<td>TPI-00633-00-A</td>
<td>76.13</td>
<td>98.99</td>
<td>NA</td>
<td>NA</td>
<td>94.2</td>
</tr>
<tr>
<td>TPI-00634-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>NA</td>
<td>NA</td>
<td>69.7</td>
</tr>
<tr>
<td>TPI-00635-00-A</td>
<td>28.21</td>
<td>9.88</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>TPI-00636-00-A</td>
<td>81.39</td>
<td>100.00</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>

naphthylene-1,4-diones, benzo[d]isoxazole-4,7-diones & 1H-indazole-4,7-diones

juglone 100.00 100.00 0.09 0.07 95.6 6.4 8.7 5.49 0.86
<table>
<thead>
<tr>
<th>Compound Structure</th>
<th>TPI Number</th>
<th>TPI Number</th>
<th>recombinant thioesterase</th>
<th>% inhibition (10 μM)</th>
<th>approx, IC₅₀ (TE1)</th>
<th>approx, IC₅₀ (TE2)</th>
<th>% inhibition of ¹⁴C-acetate incorp. PC3 cells</th>
<th>cell survival, MTS assay (IC₅₀)</th>
<th>tumor cells</th>
<th>normal cells</th>
<th>therapeutic index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPI-00404-00-A</td>
<td>29.00</td>
<td>43.00</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00405-00-A (NS 4390)</td>
<td>22.48</td>
<td>61.70</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>29</td>
<td>>25</td>
<td>25.29</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00500-01-C (NS 4393)</td>
<td>100.00</td>
<td>100.00</td>
<td>1.08</td>
<td>0.41</td>
<td>18.75</td>
<td>19.2</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00501-01-A</td>
<td>44.28</td>
<td>34.75</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00401-00-A</td>
<td>40.00</td>
<td>55.88</td>
<td>NA</td>
<td>NA</td>
<td>29.1</td>
<td>33</td>
<td>>50</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00402-00-A</td>
<td>66.63</td>
<td>95.73</td>
<td>2.35</td>
<td>0.56</td>
<td>90.4</td>
<td>18.75</td>
<td>40</td>
<td>20.9</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00403-00-A</td>
<td>69.35</td>
<td>79.27</td>
<td>3.90</td>
<td>2.42</td>
<td>97 (IC₅₀ = 6.75 μM)</td>
<td>3.25</td>
<td>15.6</td>
<td>9.15</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00405-00-A</td>
<td>69.52</td>
<td>96.82</td>
<td>2.78</td>
<td>0.41</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00406-00-A</td>
<td>73.64</td>
<td>96.01</td>
<td>NA</td>
<td>NA</td>
<td>37.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00407-00-A</td>
<td>65.96</td>
<td>94.89</td>
<td>NA</td>
<td>NA</td>
<td>37.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00408-00-A</td>
<td>67.87</td>
<td>96.18</td>
<td>NA</td>
<td>NA</td>
<td>89.9</td>
<td>18.5</td>
<td>ND</td>
<td>22.5</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00409-00-A</td>
<td>33.50</td>
<td>92.17</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00410-00-A</td>
<td>59.61</td>
<td>91.67</td>
<td>NA</td>
<td>NA</td>
<td>1.85</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00411-00-A</td>
<td>70.51</td>
<td>97.43</td>
<td>NA</td>
<td>NA</td>
<td>0.75</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00412-00-A</td>
<td>81.63</td>
<td>97.98</td>
<td>NA</td>
<td>NA</td>
<td>9.95</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00413-00-A</td>
<td>50.23</td>
<td>94.78</td>
<td>NA</td>
<td>NA</td>
<td>20.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00414-00-A</td>
<td>52.21</td>
<td>86.40</td>
<td>NA</td>
<td>NA</td>
<td>92.4</td>
<td>25</td>
<td>ND</td>
<td>33</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00415-00-A</td>
<td>78.69</td>
<td>97.46</td>
<td>NA</td>
<td>NA</td>
<td>7.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Compound Structure</td>
<td>TPI Number</td>
<td>recombinant thioesterase % inhibition (10µM)</td>
<td>approx, IC50 TE1 (µM)</td>
<td>approx, IC50 TE2 (µM)</td>
<td>% inhibition of 14C-acetate incorp. PC3 cells</td>
<td>cell survival, MTS assay (IC50) therapeutic index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00416-00-A</td>
<td>64.31</td>
<td>NA</td>
<td>NA</td>
<td>89.9</td>
<td>25.8</td>
<td>ND</td>
<td>33</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00417-00-A</td>
<td>74.81</td>
<td>97.85</td>
<td>NA</td>
<td>96.1</td>
<td>13.8</td>
<td>ND</td>
<td>21</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00418-00-A</td>
<td>53.54</td>
<td>95.92</td>
<td>NA</td>
<td>92.2</td>
<td>31.7</td>
<td>ND</td>
<td>37</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00419-00-A</td>
<td>66.19</td>
<td>95.79</td>
<td>NA</td>
<td>67.95</td>
<td>32</td>
<td>ND</td>
<td>50</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00420-00-A</td>
<td>61.96</td>
<td>95.35</td>
<td>NA</td>
<td>68.5</td>
<td>37.5</td>
<td>ND</td>
<td>42</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00421-00-A</td>
<td>100.00</td>
<td>100.00</td>
<td>1.02</td>
<td>NA</td>
<td>70</td>
<td>17.9</td>
<td>ND</td>
<td>41</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00422-00-A</td>
<td>22.92</td>
<td>86.76</td>
<td>NA</td>
<td>0</td>
<td>48</td>
<td>ND</td>
<td>>50</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00423-00-A</td>
<td>79.75</td>
<td>97.99</td>
<td>NA</td>
<td>87.25</td>
<td>20</td>
<td>ND</td>
<td>25</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00424-00-A</td>
<td>92.59</td>
<td>100.00</td>
<td>NA</td>
<td>0</td>
<td>27</td>
<td>ND</td>
<td>50</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00425-00-A</td>
<td>0.00</td>
<td>73.61</td>
<td>NA</td>
<td>11.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPI-00426-00-A</td>
<td>48.37</td>
<td>79.24</td>
<td>NA</td>
<td>30.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Potential of 11C-acetate PET for Monitoring the Fatty Acid Synthesis Pathway in Tumors

Abstract

Positron emission tomography (PET) is a molecular imaging modality that provides the opportunity to rapidly and non-invasively visualize tumors derived from multiple organs. In order to do so, PET utilizes radiotracers, such as 18F-FDG and 11C-acetate, whose uptake coincides with altered metabolic pathways within tumors. Increased expression and activity of enzymes in the fatty acid synthesis pathway is a frequent hallmark of cancer cells. As a result, this pathway has become a prime target for therapeutic intervention. Although multiple drugs have been developed that both directly and indirectly interfere with fatty acid synthesis, an optimal means to assess their efficacy is lacking. Given that 11C-acetate is directly linked to the fatty acid synthesis pathway, this probe provides a unique opportunity to monitor lipogenic tumors by PET. Herein, we review the relevance of the fatty acid synthesis pathway in cancer. Furthermore, we address the potential utility of 11C-acetate PET in imaging tumors, especially those that are not FDG-avid. Last, we discuss several therapeutic interventions that could benefit from 11C-acetate PET to monitor therapeutic response in patients with certain types of cancers.

Keywords: 11C-acetate, fatty acid synthesis, FDG, lipid, metabolism, positron emission tomography

Running Title: PET analysis of fatty acid synthesis

Introduction

In recent years the interest in tumor cell metabolism has been reinvigorated. Advances in pathobiology, molecular biology, genomics, animal models of cancer, and technology platforms
have enhanced our knowledgebase significantly. Similarly, the development of targeted therapies and the advent of personalized medicine have provided the opportunity for cross-pollination between basic and clinical sciences. One area that has seen a surge in interest is the imaging of tumor cell metabolism through positron emission tomography (PET). The utility of PET lies in its non-invasive nature and ability to yield rapid feedback for tumor staging or therapeutic response. Significant strides have been made to connect tumor biology to clinical disease through PET. The development of multiple radiotracers with potential to image different metabolic states or pathways has further enhanced the ability to detect tumors and monitor targeted therapies [1]. In this review, the potential of 11C-acetate PET to image fatty acid synthesis and detect tumors, as well as its connection to tumor pathobiology is discussed.

Tumor metabolism and the lipogenic phenotype

The most basic principle of cancer is that a group of cells autonomously proliferate out of sync with the organism’s needs and the cell’s microenvironment. To this end, a tumor cell is dependent on its ability to gain ample access to energy and substrate precursors for assembly into new macromolecules. These seemingly basic requirements of a cancer cell lead to an elaborate reprogramming of normal metabolic pathways that are essential for the proliferation and survival of tumor cells [2]. Understanding how and when these fundamental processes are altered will provide an opportunity to improve the treatment and surveillance of cancer.

One of the primary abnormalities of most cancer cells includes their heightened dependence on glucose. In the early 1920’s, Otto Warburg observed that even in the presence of sufficient oxygen (an environment favorable for oxidative phosphorylation) cancer cells will preferentially utilize glycolysis to metabolize glucose [3]. Although this phenomenon may seem
counterintuitive, aerobic glycolysis, also known as the Warburg effect, is thought to provide cancer cells with several survival benefits [4-5]. First, the reliance on glucose for energy relieves a tumor cell of oxygen dependence in a hypoxic microenvironment. Furthermore, heightened glucose consumption provides an abundant source of energy that can be rapidly utilized as needed. Perhaps just as important as a source of energy, when metabolized, glucose also provides the necessary precursors to support the synthesis of proteins, nucleotides, and lipids.

Just as aerobic glycolysis can be a distinguishing attribute of cancer cells, most solid tumors are also characterized by a lipogenic phenotype [6]. While normal cells generally rely on dietary intake to provide an ample supply of fatty acids, cancer cells often require that fatty acids be generated de novo, regardless of their exogenous levels [7]. This requirement is critical in order for tumors to maintain proliferation and viability. As a result, the metabolism of fatty acids, in particular their biosynthesis, has gained significant attention in the past decade as a biomarker and therapeutic target in multiple cancers.

As discussed above, the metabolism of glucose provides the precursors for numerous macromolecules, including fatty acids. However, the transition from glucose to fatty acid is a distinctly non-linear process that is coordinated through the action of numerous enzymes localized in various cellular compartments (Fig. 1). While most glucose consumed in glycolysis is ultimately metabolized into lactate, some of the pyruvate generated during this reaction will be further metabolized into the fatty acid synthesis pathway. In order to do this, pyruvate is transported into the mitochondria and converted to acetyl-CoA. Since fatty acid synthesis takes place in the cytosol and the mitochondrial membrane is impermeable to acetyl-CoA, it must first be converted into citrate by citrate synthase in the tricarboxylic acid (TCA) pathway. In non-proliferating cells, the TCA cycle generally serves to synthesize ATP from oxidizable substrates,
such as amino acids. However, in rapidly dividing cells, many of the intermediates, particularly citrate, that are generated during the cycle are effluxed from the pathway in a process termed cataplerosis [2]. Once citrate is shuttled into the cytosol, it is cleaved by ATP-citrate lyase (ACL) into acetyl-CoA and oxaloacetate, comprising the first step of fatty acid synthesis [8]. It is worth noting that the carbons utilized for the production of acetyl-CoA are derived from glucose. Once within the cytosol, acetyl-CoA is converted to malonyl-CoA via carboxylation by acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the fatty acid synthesis pathway. Finally, fatty acid synthase (FASN) catalyzes the ultimate steps of fatty acid synthesis, yielding the 16-carbon fatty acid palmitate [6].

Fatty acid synthase in tumor cells

FASN is a multifunctional protein, consisting of 7 domains: the malonyl/acetyltransferase (MAT), ketoacyl synthase (KS), β-ketoacyl reductase (KR), β-hydroxyacyl dehydratase (DH), enoyl reductase (ER), acyl carrier protein (ACP), and thioesterase (TE) domains (Fig. 1) [9].
a series of thirty-two reactions, FASN condenses seven molecules of malonyl-CoA onto an acetyl-CoA head group, using NADPH as a cofactor, to produce the long-chain fatty acid, palmitate [10]. In total, fatty acid synthesis requires seven ATP, one molecule of acetyl-CoA, seven molecules of malonyl-CoA, fourteen NADPH, and 14 hydrogens per molecule of palmitate synthesized. Ultimately, the heavy reliance of cancer cells on glucose metabolism relays into their lipogenic phenotype by providing many of these precursors.

Once palmitate has been generated, it can be utilized for multiple cellular functions (Fig. 1). It can be elongated to stearate using malonyl-CoA as a substrate [11]. Palmitate (16:0) and stearate (18:0) can also be desaturated by stearoyl-CoA desaturase 1 (SCD1) to yield palmitoleate (16:1n-9) or oleate (18:1n-9), respectively [12]. These newly synthesized fatty acids are then used to support phospholipid production, and to a significantly lesser extent, triglyceride synthesis. In cancer cells, the majority of de novo synthesized fatty acids are specifically enriched into lipid rafts during membrane biogenesis [13]. In this context, it is hypothesized that increased fatty acid synthesis provides the lipid precursors necessary to produce the platforms from which so many intracellular signaling events are initiated.

Aside from membrane biogenesis, FASN can also have an impact on cellular signaling through regulation of protein palmitoylation [14]. For example, FASN activity is required for palmitoylation of Wnt1 and subsequent activation of beta-catenin. A proteomic survey of palmitoylated proteins identified nearly 400 candidates, suggesting that FASN activity could have a wide-ranging influence on protein activity and localization through this post-translational modification [15]. It has also been demonstrated that, at least in hepatocytes, FASN derived lipids act as activating ligand for peroxisome proliferator-activated receptor α (PPARα) [16].
Collectively, these findings illustrate that de novo fatty acid synthesis occupies a central role in regulating multiple dynamic processes in tumor cells.

Utilization of positron emission tomography in imaging tumor metabolism: 18F-FDG

Over the past decade, PET-based imaging has revolutionized cancer therapy by non-invasively imaging the aberrant metabolism of tumors to better diagnose and assess early response to therapy. The unique ability of PET to image cell metabolism is derived from a combination of the physical characteristics of positron emitting isotopes, advanced imaging technology, and novel radiochemistry. These factors together with an understanding of exploitable aberrant metabolic pathways in cancer has led to the development of a slew of radiotracers that have the potential to further change the landscape of imaging cancer and response to novel therapies, including small molecule inhibitors of metabolism.

Nuclear-based imaging modalities, including PET, are fundamentally different from traditional diagnostic x-ray imaging, which produce planar and computed tomography (CT) radiographs. Traditional radiographs are anatomic images that differentiate tissues based on their inherent density differences. This is accomplished by passing externally produced x-rays through the body, which are then differentially blocked (attenuated) by distinct tissue densities. The remaining non-attenuated x-rays are captured on the opposite side of the body. Tissues of high density, such as bone, allow few x-rays to pass through, consequently appearing “white” on the processed clinical image (Fig. 2). In contrast, tissues such as lungs, which have a very low density, allow ample x-rays to pass through and appear “black” on a processed image. Further distinction between tissues can be gained by the injection of non-targeted high density contrast
that differentially perfuses to more vascular tissues, such as tumors.

In contrast to traditional radiographs, in nuclear-based imaging physiological amounts of a gamma emitting radioactive compound is injected or ingested by a patient. Each class of clinical tracers has different distribution characteristics based on its chemistry and affinity to normal or diseased tissue. For example, iodine is taken up by functioning thyroid and differentiated thyroid cancer tissue. Therefore, 123I-NaI, a single photon gamma emitter, is routinely utilized in non-physiologic doses to non-invasively detect functioning or malignant thyroid tissue. The distribution of a nuclear tracer is imaged with a traditional gamma camera that provides a functional map of the tracer biodistribution (Fig. 3).

While traditional nuclear imaging techniques rely on single photon gamma emitting probes, the sensitivity and resolution of such images are inherently limited by the physics of single photon gamma emitters and imaging systems. In contrast, PET imaging exploits the unique physical characteristics of positron emitting radionuclides, such as 18F and 11C, to provide
sensitivity and resolution that is orders of magnitude better than traditional single photon nuclear imaging, making it the most sensitive imaging technique currently utilized in the clinic. Positron emitting radionuclides produce characteristic positrons from their nuclei, which travel a short distance of a few millimeters before losing their energy and combining with a nearby electron to trigger an “annihilation” event. This results in the conversion of the positron and electron into \textit{two} gamma rays of exactly 511 keV, emitted 180 degrees from each other. The characteristic energy (511 keV) and the angle of emission (180) of the gamma rays are exploited by sophisticated PET scanners that contain a ring of detectors surrounding the patient. These PET scanners only register events that are interpreted as containing the correct energy emission (511 keV) and characteristic simultaneous (coincident) hits on two detectors that are 180 degrees apart. This latter characteristic allows PET “coincident” scanners to precisely detect and localize true events as opposed to scatter or noise, giving it a significantly superior sensitivity and resolution compared to traditional single photon nuclear imaging or MR-based imaging.

\textbf{Figure 3. Biodistribution of 123I imaged by a nuclear medicine gamma camera.} A patient with a history of thyroid cancer was administered oral 123I-NaI. The tracer distributed physiologically to the stomach (S), bowel (Bo) and bladder (Bl). There is also an abnormal focus of activity (arrow) in the left pelvis that was subsequently confirmed by biopsy to be iodine-avid metastatic thyroid malignancy.
Radiotracers utilized in PET imaging generally consist of radionuclei with a short half-life, such as \(^{18}\text{F}\), \(^{11}\text{C}\), \(^{13}\text{N}\), and \(^{15}\text{O}\), integrated into substrates utilized in metabolic pathways that are aberrant in tumor cells. For example, because tumors are so often characterized by altered glucose metabolism, \(^{18}\text{F}\)-fluorodeoxyglucose (FDG)-PET has been particularly effective in characterizing malignancies that have a glycolytic phenotype. FDG, a glucose analog, is actively transported into cells in proportion to their metabolic activity where it is phosphorylated but unable to be further metabolized or exported [17-18]. Because many tumors display unfettered growth and high energy demands, they are often classified as FDG avid. Consequently, malignant foci of high positron accumulation stand out on a background of normal physiological signal (Fig. 4). A number of cancers, including, but not limited to, non-small cell lung cancer, certain lymphomas, melanoma, and head and neck cancer are all FDG avid malignancies, and their evaluation is well served by FDG-PET [19-22].

Figure 4. FDG-PET/CT in malignancy. (A) In a patient with confirmed lymphoma, a hypermetabolic lymph node takes up excess FDG which is characteristic of malignancy (Upper panel; arrow). A CT image of the same lymph node (middle panel; arrow) would not meet size criteria for malignancy. (B) FDG-PET and CT in a patient with a lung nodule (arrow) to evaluate for hypermetabolism characteristic of malignancy. No FDG uptake is seen in this lung nodule (upper panel), indicating that it is likely benign in nature. Yearly follow-up CT images (not shown) demonstrated no growth for two years after the PET/CT, confirming the benign nature of the nodule.
There are, however, a variety of other cancers, including primary hepatocellular carcinomas, renal cell carcinomas, and certain types of lymphoma, that are not easily visualized by \(^{18}\)F-FDG PET [23-25]. \(^{18}\)F-FDG PET is particularly ineffective in prostate cancer [26-27]. This is mainly because primary prostate tumors are generally not highly glycolytic, and thus do not readily accumulate FDG. Consequently, FDG uptake is no greater in prostate tumors than in benign prostatic hyperplasia (BPH) or normal glandular tissue [28-29]. It is important to note that contrary to primary disease, neuroendocrine differentiated and metastatic prostate cancers can be visualized by FDG-PET [28, 30]. Visualization of primary prostate cancer can also be occluded from detection by \(^{18}\)F-FDG PET due to the anatomical proximity of the prostate gland to the bladder (Fig. 5A) [27]. Even when bladder emptying is carried out to clear residual isotope prior to imaging, urinary excretion of FDG generally prevents prostate lesions from being detected. Because the brain consumes significant levels of glucose to support normal

Figure 5. FDG-PET is not effective in imaging certain tumor types. (A) An FDG-PET/CT demonstrates a large amount of tracer on the PET component (#) localizing to the prostate (*) on the CT component. This signal is not from the prostate but is emanating from the inferior portion of the bladder, which is filled with excreted FDG in the urine. (B) A brain FDG-PET/CT of a patient with metastatic melanoma. Image demonstrates characteristically high FDG uptake by normal brain cells, consequently masking multiple brain metastasis.
function, brain tumors can also become obscured due to high signal in surrounding, non-malignant regions (Fig. 5B) [31].

Using 11C-acetate PET to image tumor metabolism

In instances where 18F-FDG may be an inappropriate radiotracer, 11C-acetate is a radiopharmaceutical that holds much promise. Specifically, 11C-acetate could have significant value for the imaging of lipogenic tumors. 11C-acetate is believed to be actively taken into the cell by proton-coupled monocarboxylate transporter [32]. In normal cells, acetate is metabolized in the TCA cycle yielding CO$_2$ and water [33]. However, in cancer cells, acetate is preferentially utilized for fatty acid synthesis as a component of acetyl-CoA. Upon entry into the cell, acetate is converted to acetyl-CoA by acetyl-CoA synthase (ACeS), thereby making it available to feed into the fatty acid synthesis pathway. ACeS is found in two isoforms (ACeS1 and ACeS2), which are present in the cytoplasm and mitochondria, respectively. Interestingly, non-glycolytic tumor cells that exhibit low 18F-FDG uptake can express high levels of ACeS and have correspondingly high 11C-acetate uptake [34-35]. The knockdown of ACeS 1 and 2 with siRNA not only reduces uptake of 11C-acetate into tumor cells, it also decreases overall cell viability, suggesting an important role for this enzyme in tumor cells [34]. Because acetate was thought to only be available during a limited set of circumstances, it is currently unclear what role or to what extent physiological levels of acetate play in de novo fatty acid synthesis. However, in recent years it has become apparent that acetate can be made available from histone and non-histone protein de-acetylation by sirtuins, providing potential substrate for ACeS 1 and 2 to shuttle acetate into the fatty acid synthesis pathway [36]. It is worth noting that inactivation of ACeS by acetylation results in decreased incorporation of 14C-acetate into lipids [36].
Combined, these data suggest that ACeS may play a role in tumor lipid metabolism and 11C-acetate uptake by tumors.

The potential utility of 11C-acetate PET in tumors contrasts with its original clinical application, which was to assess myocardial function [37]. In myocardial tissues, carbons derived from 11C-acetate are incorporated into CO$_2$ during the TCA cycle, allowing for PET visualization of oxygen consumption. However, as previously mentioned, 11C-acetate preferentially partitions into lipids in cancer cells. The majority of studies analyzing the efficacy of 11C-acetate PET in tumors have focused on the detection of prostate cancer [38-42]. As mentioned, primary prostate cancer is a particularly poor candidate for standard 18F-FDG PET imaging due to its lower metabolic rate and proximity to the bladder. One of the most common courses of treatment for prostate cancer patients is hormone therapy or androgen ablation. However, prostate tumors frequently become unresponsive to androgen therapy due to a number of factors, including upregulation of androgen receptors, emerging as castration-refractory prostate cancers (CRPC) [43-44]. In order to assess the effectiveness of treatment, serum prostate specific androgen (PSA) levels are often monitored. Studies have shown that PSA levels greater than 2ng/ml in patients who had received radical prostatectomy as well as salvage radiotherapy increase the likelihood of disease relapse by at least two-fold [45]. However, PSA levels do not always increase in the instance of tumor recurrence. Sandblom et al demonstrated that recurrent prostate lesions in patients exhibiting PSA levels as low as 0.5 ng/ml could still imaged using 11C-acetate PET [39].

In addition to PSA levels, therapy validation is also monitored by assessing total prostate volume using conventional imaging techniques, such as CT and MRI [46-47]. However, in some cases, CT and MRI have been shown to have limitations in detecting recurrent prostate lesions
Furthermore, assessment of therapy success can take up to three months using such techniques. Conversely, 11C-acetate PET detected metabolic changes within days of androgen ablation in a murine model of prostate cancer [46]. Furthermore, in human studies, 11C-acetate PET has been shown to be effective at detecting prostate tumors, not only in the prostate bed, but also in lung, lymph node, and bone metastases [40-41]. These findings are especially significant since CT and MRI often fail to detect lymph node metastases that are smaller than 1 cm in diameter [40].

In terms of correlations between 11C-acetate incorporation in prostate cancer cells and fatty acid synthesis, it is important to note that increased FASN expression is tightly associated with prostate cancer. Expression of FASN has been linked to poor prognosis, risk of disease recurrence, and the stage of the cancer [49-51]. Coincident with these facts, the uptake of 11C-acetate in prostate cancer correlates with FASN expression and is abrogated by treatment with a small molecule inhibitor of FASN [52]. Together, these data demonstrate that tumors can be monitored by 11C-acetate PET as a function of their lipogenic phenotype; specifically, the de novo fatty acid synthesis pathway.

In addition to prostate cancer, there are a number of other tumors in which 11C-acetate PET has demonstrated success, including hepatocellular carcinoma (HCC), thymomas, renal cancers, and bronchioloalveolar carcinoma [23, 53-55]. In HCC, 18F-FDG has proven inconsistent in its ability to detect liver masses. This is due in part to normal glucose utilization and variations in the activity of certain enzymes, such as glucose-6-phosphatase, in hepatic lesions [56]. On the other hand, 11C-acetate PET was significantly more effective at detecting hepatic lesions than 18F-FDG (87.3% versus 47.3%) in a cohort of patients with various categories of liver masses, including HCC, as well as hepatic metastasis arising from peripheral
sites [23]. Thymic tumors are also difficult to detect by 18F-FDG due to their relatively low rate of growth and glucose uptake. While thymomas generally show limited sensitivity to 18F-FDG, several studies have reported that tumors arising from thymic tissue can be positively imaged using 11C-acetate [53, 57]. Importantly, FASN expression has been shown to be significantly increased in cancers that can be imaged with 11C-acetate PET [58-59]. Collectively, these studies demonstrate the utility of 11C-acetate PET in exploiting the lipogenic phenotype of cancer cells to detect certain tumors.

Using 11C-acetate PET to predict response to therapies that directly target the fatty acid synthesis pathway

In addition to using new modalities to diagnose or monitor tumors, it is intriguing to speculate that 11C-acetate PET may also be used to monitor specific cancer therapies. With the advent and expansion of targeted therapy, it is now possible to administer therapeutic agents with reduced or minor effects on normal tissue. However, it remains important to validate that the “magic bullet” homed in on its intended target. Aside from tumor regression, there are often few options to monitor therapy in the near term or real time. However, PET/CT provides a superb opportunity for scrutinizing certain targeted therapies, both directly and indirectly. The archetypical radiotracer, FDG, is the most commonly used agent in this regard. There is no more striking an example as with imatinib mesylate, a c-kit inhibitor, used to treat gastrointestinal stromal tumors (GIST). Imatinib has been demonstrated to dampen glucose transporter recruitment to the plasma membrane and thus rapidly reduce tumor 18F-FDG uptake [60]. Early clinical studies investigating the efficacy of imatinib in treating GIST revealed remarkable shifts in avidity to FDG after only 1-7 days of therapy. In terms of its prognostic abilities, a favorable response to imatinib predicted longer progression-free survival (92% vs. 12%), whereas lack of
response correlated with disease progression and poor survival [61]. A study by Engelman et al demonstrated that FDG uptake was also a determinant of whether tumors respond appropriately to a dual PI3-kinase/mTor inhibitor known as NVP-BEZ235 [62]. These studies clearly establish that the application of PET/CT may well prove to be proactive in guiding early treatment decisions.

Based on the demonstration that 11C-acetate is equivalent to, or can outperform FDG in diagnosis, staging, and predicting disease progression in certain cancers, it is logical that 11C-acetate could also be used to stratify patients for specific therapies, as well as a method to monitor response to therapy. Furthermore, because 11C-acetate PET can be used to directly monitor FASN activity, there is potential that this approach may be an effective means to validate FASN inhibitors as they progress into and through clinical development. Significant effort has been directed towards the discovery and development of agents that can inhibit the activity of FASN. That FASN comprises seven functional domains and six enzymatic pockets provides ample opportunity to target multiple functions within the single protein. Accordingly, a number of inhibitors with specificity toward the different domains of FASN have been identified (Fig. 6). The first recognized small molecules with FASN inhibitory activity targeted the

Figure 6. Inhibitors directed against select domains of FASN and ACC. Small molecule inhibitors that target the KS, KR and TE domains have been described. Small molecule inhibitors of the BC and CT domain of ACC have also been described. ACC can also be inhibited by phosphorylation at Ser 79 in the BC domain.
ketoacyl synthase (KS) domain of FASN. The KS domain coordinates with the activity of the MAT domain to catalyze the formation of an acetoacetyl-ACP intermediate, which then serves as a substrate for elongation by three of the other domains of FASN (KR, DH, and ER domains). Cerulenin, a naturally occurring antifungal derived from Cephalosporium caerulens, rapidly and irreversibly inhibits the initiation of fatty acid synthesis by binding the KS domain, thereby inducing death in tumor cells [63-64]. Synthetic analogs of cerulenin, including C75, C93, and C247, have also demonstrated strong anti-tumor activity [65-67].

In addition to the KS domain, the TE domain of FASN has also proven to be a viable drug target. Once palmitate is generated through the enzymatic activity of the KS, MAT, KR, DH, and ER domains of FASN, the TE domain is responsible for hydrolyzing the final 16-carbon product from the enzyme. The first TE inhibitor to be identified was orlistat, an FDA-approved anti-obesity drug [68]. Orlistat binds the TE domain through covalent interaction with serine 2308, the catalytic serine in the TE active site [69]. Since the discovery of orlistat as a FASN inhibitor, a number of orlistat analogs have been developed that also target the FASN-TE domain. These newly synthesized analogs share with orlistat a beta-lactone moiety as the distinguishing chemotype [70]. Beta-lactam derivatives of orlistat have also been described [71]. Altogether, several compounds similar to orlistat have been identified that exhibit improved FASN inhibitory activity, solubility, and tumor cells selectivity. Following the identification of orlistat, a subsequent high-throughput screen identified 5-(furan-2-ylmethylene) pyrimidine-2,4,6-trione as a novel pharmacophore capable of inhibiting FASN-TE with sub-micromolar Ki’s. Importantly, these compounds demonstrated selectivity against breast tumor cells when compared to immortalized breast epithelial cells [72].
Finally, the KR domain of FASN has been the focus of intense therapeutic targeting. Ursolic acid, a pentacyclic triterpenoid acid, as well as the tea polyphenols, epigallocatechin gallate (EGCG) and epicatechin gallate, interact with the KR domain of FASN, thereby inhibiting its activity [73-74]. Recently, GSK837149A was also serendipitously identified as a potent and selective inhibitor of the KR domain [75]. Unfortunately, this compound and subsequent analogs exhibit poor cellular permeability.

In order to assist in the development and design of novel FASN inhibitors, a substantial effort has been placed on advancing the knowledge base concerning the structure of FASN. There are two high-resolution structures of the human FASN-TE domain, including one with orlistat bound in the active site [69, 76]. Recently, the structure of the beta-ketoacyl synthase (KS) domain linked to the malonyl/acetyltransferase (MAT) domain of human FASN was also reported [77]. Given that such structures provide significant insight into the geometry of the substrate-binding site, they should greatly enhance structure-based design of novel FASN inhibitors. Having lead compounds identified in orlistat and cerulenin, subsequent structure-activity relationship (SAR) analysis from follow-up studies, and the identification of new pharmacophores from activity-based screening, greatly enhances the potential of translating FASN inhibitors into the clinic.

Although there are currently no small molecule inhibitors directed against FASN in the clinic, the likelihood of such molecules being developed is imminent. At such time, it would be beneficial to have in hand a procedure to monitor the efficacy of such inhibitors quickly and effectively. Because 11C-acetate uptake directly correlates with FASN levels in prostate cancer, 11C-acetate PET may predict which patients would respond best to FASN inhibitors in a clinical setting and determine whether the pathway is blocked following their administration. This
hypothesis was supported by findings demonstrating that the FASN inhibitor C75 could reduce 11C-acetate SUV by up to 60% in prostate cancer xenografts [52]. It is worth noting that inhibition of FASN activity also reduces the uptake of FDG in an orthotopic model of lung cancer [78].

In addition to fatty acid synthase, a number of other enzymes in the fatty acid synthesis pathway are also commonly overexpressed in cancer. For example, protein expression of ACC, the rate-limiting enzyme upstream of FASN, has been shown to be upregulated in numerous tumor types, including prostate cancer, hepatocellular carcinoma, and breast cancer [79-81]. Importantly, immunohistochemical analysis of breast tissue from patients with or without cancer demonstrated that the overexpression of ACC did not simply occur once a patient had progressed to a more advanced or malignant disease phenotype, but could be detected in the earliest stages of cancer development, including ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) [82]. As a result, ACC is believed to be an excellent candidate for targeted cancer therapy. Currently, several drugs that block the activity of ACC exist. From 2007 to 2008, approximately 18 distinct patents were published regarding the development of inhibitors directed against ACC [83]. One of the earliest ACC inhibitors to be identified was TOFA (5-tetradecyloxy-2-furoic acid), a lipophilic fatty acid mimetic that targets the carboxyltransferase (CT) activity of ACC (Fig. 6) [84-85]. TOFA has proven to be cytotoxic to a variety of different cancer types, including breast, lung, and colon carcinomas [85-86]. In terms of 11C-acetate accumulation, treatment of several prostate cancer lines with TOFA significantly blocked the uptake of this radiotracer [52]. Additional inhibitors of ACC include Soraphen A and CP-640186 that inhibit the BC and CT domains of the enzyme, respectively [87-88]. Although ACC inhibitors have anti-tumor potential, all ACC inhibitors that have been described thus far are not
isoenzyme selective. While ACC1 is the enzyme responsible for generating malonyl-CoA for fatty acid synthesis, it is very closely related to ACC2, the mitochondrial isoenzyme that produces malonyl-CoA to regulate β-oxidation [89-90]. Importantly, none of the inhibitors have been analyzed in vivo for their anti-tumor activity or ability to inhibit tumor fatty acid synthesis.

In addition to inhibiting ACC with small molecules, the activity of this enzyme can also be abrogated following phosphorylation by PKA and AMP-activated kinase (AMPK). Phosphorylation by these serine/threonine kinases renders ACC inactive, effectively shutting down fatty acid synthesis [91]. Importantly, AMP mimetics, like AICAR (5-aminimidazole-4-carboxamide-1-β-4-ribofuranoside), have demonstrated the potential to activate AMPK, subsequently inactivating ACC [92]. Moreover, these compounds can inhibit proliferation and induce cell death in tumor cells, including those of the prostate. There is also epidemiological evidence demonstrating that the anti-diabetic drug metformin, which works through an AMPK-dependent mechanism, decreases the risk of prostate cancer [93]. Given that acetate incorporation into tumor cells has been found to directly correlate with the extent of fatty acid synthesis, the efficacy of treatment with molecules that regulate the activity of ACC could easily be monitored using 11C-acetate PET.

Using 11C-acetate PET to predict response to therapies that indirectly target the fatty acid synthesis pathway

The same pathways that are important for initiating and driving the development and progression of cancer also have primary roles in regulating the expression of enzymes in the fatty acid synthesis pathway (Fig. 7). As a result, there is potential that the fatty acid synthesis pathway, monitored by 11C-acetate PET/CT, could serve as a surrogate marker for validating the
efficacy of or monitoring response to a myriad of therapeutic agents. Support for this idea was provided by an analysis of the response of renal cell carcinoma to sunitinib, a multi-targeted receptor tyrosine kinase inhibitor that blocks platelet derived growth factor (PDGF) and vascular endothelial growth factor (VEFG) receptors. In one case, remission was predicted by 11C-acetate PET after only two weeks of treatment [94]. Of note, gene expression for key enzymes involved in lipid synthesis, specifically FASN, can be elevated by PDGF [95]. While this study did not correlate the decrease in 11C-acetate with changes in FASN expression, it is tempting to

![Figure 7. Schematic of FASN regulation at the transcriptional, translational, and post-translational level. Receptor tyrosine kinase (RTK) signaling can lead to the induction of the PI3K/AKT, PKA, and Ras/MAPK pathways. Aberrant signaling through these pathways leads to the overexpression of FASN due to transcriptional (T_c) or translational regulation (T_l). Androgen binding to the androgen receptor (AR) increased FASN expression. De-ubiquitination stabilizes FASN protein levels to promote cellular survival.](image)
speculate that the two are linked.

There are a number of other oncogenic pathways that augment FASN expression and are targets for therapeutic development. One of the primary drivers of FASN expression is the PI3-kinase/Akt axis. Blockade of PI3-kinase (PI3K) activity and Akt expression leads to reduced FASN protein expression in cell lines from multiple tumors, including prostate, breast, and ovarian [81, 96-97]. Similarly, FASN expression correlates with loss of Pten and poor outcome in patients with prostate cancer [50, 96-97]. Currently, there are over twenty ongoing clinical trials evaluating the safety and/or efficacy of PI3K inhibitors in cancer patients (clinicaltrials.gov). Importantly, many of these compounds, including the pan PI3K inhibitors SF1126 and PX-866, have been found to target solid tumors that are particularly well served by 11C-acetate PET imaging, namely prostate cancer and renal cell carcinoma [98-99]. Consequently, it stands to reason that 11C-acetate PET analysis of patients receiving such inhibitors may be effectively used to monitor the value of treatment. Like PI3K activity, expression of H-Ras can also lead to transcriptional induction of FASN expression (Fig. 7) [100]. The efficacy of numerous MAPK inhibitors, a downstream target of the Ras signaling pathway, are also currently in clinical trials (clinicaltrials.gov).

Although FASN overexpression is primarily regulated at the transcriptional level, there are complimentary mechanisms that can also contribute to increased expression. For example, in prostate cancer, the $FASN$ gene is frequently duplicated in a manner that correlates with increased protein expression [101]. FASN levels can also be increased at the translational level through the activation of the 5’- and 3’-UTRs of its mRNA following mTor signaling (Fig. 7) [81]. Lastly, the FASN protein can be stabilized by the deubiquitinating enzyme, ubiquitin-
specific protease-2a (USP2a), which can prevent the proteasome-mediated turnover of FASN, thereby increasing protein levels [102].

In addition to the oncogenic pathways and mechanisms mentioned above, FASN expression can also be driven by variations in hormone levels, such as androgen, in hormone sensitive tissues, including the prostate and breast [103-104]. Consequently, treatment of androgen-responsive prostate tumor lines with dutasteride (a 5-alpha-reductase inhibitor that blocks the conversion of testosterone to dihydrotestosterone) significantly decreases FASN protein levels [105]. As discussed earlier, the use of 11C-acetate PET has proven effective in monitoring the response to androgen ablation, suggesting that this modality can also be used to monitor response to other therapies or relapse in men receiving hormone ablation therapy [46]. Moreover, it may detect resistance or relapse to hormone therapy earlier than PSA recurrence post nadir. Collectively, these studies suggest that PET analysis of 11C-acetate uptake could effectively monitor response to therapies that indirectly affect FASN expression and activity, likely within a shorter time frame than monitoring tumor regression.

Potential limitations of 11C-acetate PET

While 11C-acetate PET has demonstrated promise in the diagnosis and staging of several cancers, as well as in monitoring fatty acid synthesis, there are some limitations to its wide spread implementation. One hurdle is the half-life of the 11C isotope. With a half-life of 20 minutes, the use of 11C-acetate to image tumors and monitor fatty acid synthesis would be limited to institutions with in-house cyclotrons. A potential solution to effectively monitor fatty acid synthesis with acetate in instances where 11C-acetate is not feasible could be the use of 2-18F-fluoroacetate [106].
Although the uptake of 11C-acetate has been directly associated with FASN expression and activity, there are biological caveats to the use of acetate-PET/CT. One is that acetate, in addition to serving as a precursor for fatty acid synthesis, is also used for other reactions within a cell. Specifically, acetate is used for protein acetylation, especially for histones [107]. Additionally, acetate is utilized in cholesterol synthesis, which has been linked by epidemiology and experimental evidence to prostate cancer [108]. As a result, it is possible that 11C-acetate could have utility directly related to fatty acid synthesis in some cancers, while being associated with additional pathways in other cancers.

Conclusions

Significant progress has been made in deciphering the metabolic alterations that occur in cancer cells and how these changes might be exploited for the development of novel anti-cancer drugs. However, an effective means to validate the efficacy of such therapies in the clinical setting remains a high priority [109]. To date, therapy validation has centered on morphological parameters, namely tumor size, as defined by the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines [21]. While the overarching goal of cancer therapy is to eradicate the patient’s tumor burden, primarily focusing on tumor size is not always an ideal means to monitor therapy success since extended periods of time may be required before such changes are observed. Furthermore, in certain cancers, particularly that of the prostate, quantification of tumor mass is a difficult task, nullifying a proper determination as to drug efficacy according to RECIST standards [110]. Finally, merely assessing reduction in tumor size does not discriminate whether the drug of interest is specifically inhibiting the intended target.
Employing PET technology provides value beyond evaluation of tumor load for a number of reasons. First, PET is non-invasive. Second, it allows for repetitive imagining within short time frames. More specific to the current topic, PET imaging provides a means to monitor the effects of specific therapies on a given metabolic pathway often dysregulated in cancer cells, including glucose uptake and fatty acid synthesis. The goal of this review was to demonstrate the correlation between 11C-acetate uptake in tumor cells and the expression/activity of proteins involved in the fatty acid synthesis pathway in various cancers. Based on this correlation, we propose that 11C-acetate PET will have utility beyond diagnosis of specific cancers. 11C-acetate PET could be informative about patient stratification for therapy, response to specific therapeutics, and treatment decisions following surgical removal of tumors. Specifically, the development of FASN and ACC inhibitors and their subsequent translation into the clinic will require validation that could be provided by 11C-acetate PET. In addition, we have provided evidence suggesting that therapeutic interventions that indirectly impact the fatty acid synthesis pathway could also be monitored by 11C-acetate PET. Overall, the ubiquitous requirement for de novo fatty acid synthesis in cancer cells provides an opportunity to harness this trait with modern PET technology in order to provide better outcome for patients afflicted with certain cancers.

Conflict of Interest: The authors declare no conflict of interest.

Acknowledgements: Research support from NIH/NCI CA114104 and the Department of Defense Prostate Cancer Research Program W81XWH-09-1-0204 to SJK.
References

