

ANDROID PROTECTION SYSTEM: A SIGNED CODE SECURITY

MECHANISM FOR SMARTPHONE APPLICATIONS

THESIS

Jonathan D. Stueckle, Capt, USAF

AFIT/GCE/ENG/11-06

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. government and is not
subject to copyright protection in the United States.

AFIT/GCE/ENG/11-06

ANDROID PROTECTION SYSTEM: A SIGNED CODE SECURITY

MECHANISM FOR SMARTPHONE APPLICATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Jonathan D. Stueckle, B.S. Computer Engineering

Captain, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

iv

AFIT/GCE/ENG/11-06

Abstract

This research develops the Android Protection System (APS), a hardware-

implemented application security mechanism on Android smartphones. APS uses a hash-

based white-list approach to protect mobile devices from unapproved application

execution. Functional testing confirms this implementation allows approved content to

execute on the mobile device while blocking unapproved content. Performance

benchmarking shows system overhead during application installation increases linearly as

the application package size increases. APS presents no noticeable performance

degradation during application execution. The security mechanism degrades system

performance only during application installation, when users expect delay.

APS is implemented within the default Android application installation process.

Applications are hashed prior to installation and compared against a white-list of

approved content. APS allows applications that generate a matching hash; all others are

blocked. APS blocks 100% of unapproved content while allowing 100% of approved

content. Performance overhead for APS varies from 100.5% to 112.5% with respect to

the default Android application installation process. This research directly supports the

efforts of the USAF and the DoD to protect our information and ensure that adversaries

do not gain access to our systems.

v

Acknowledgements

I would like to thank my advisor and committee for their support and contribution

to this work. It would not have been possible without their suggestions and guidance

along the way. I am grateful to my advisor, Dr. Rusty Baldwin, for providing excellent

classroom instruction as well as expert guidance in selecting a topic, narrowing research

area, and staying on task. I thank my committee members, Dr. Richard Raines and Mr.

William Kimball for their expertise and guidance throughout the research process. Most

importantly, I thank my wife for her constant support and encouragement. I deeply

appreciate the sacrifices she made as I spent countless hours away from home. She is

probably more excited than I am to have this work completed. Thank you.

vi

Table of Contents

 Page

Abstract .. iv

Acknowledgements ... v

Table of Contents ... vi

List of Figures .. viii

List of Tables .. ix

I. Introduction .. 1

1.1 Research Domain... 1

1.2 Problem Statement... 2

1.3 Research Goals .. 2

1.4 Document Outline ... 3

II. Literature Review ... 4

2.1 Introduction to ARM Architecture .. 4

2.1.1 Programmers‘ Model ... 4

2.1.2 Instruction Set .. 9

2.1.3 Addressing Modes ... 13

2.1.4 Memory and System Architectures ... 15

2.1.5 Vector Floating-Point Architecture ... 17

2.2 Introduction to Google Android Operating System .. 17

2.2.1 Operating System Background .. 18

2.2.2 Advantages Offered by Android.. 19

2.2.3 Known Implementations of Operating System.. 20

2.2.4 Summary.. 22

2.3 Examination of Android Protection Mechanisms ... 23

2.3.1 Component Interactions ... 23

2.3.2 Built-in Security Features .. 23

2.3.3 Current State of Protection Mechanisms ... 25

2.3.4 Proposal for Improved Security Measures .. 30

2.3.5 Summary.. 30

III. Methodology ... 32

vii

3.1 Background ... 32

3.2 Problem Definition .. 32

3.2.1 Goals and Hypothesis .. 33

3.2.2 Approach ... 33

3.3 System Boundaries .. 34

3.4 System Services ... 35

3.5 Workload ... 36

3.6 Performance Metrics ... 36

3.7 System Parameters... 37

3.8 Factors ... 39

3.9 Evaluation Technique .. 41

3.10 Experimental Design ... 42

3.11 Methodology Summary ... 42

IV. Android Protection System Performance .. 44

4.1 Introduction ... 44

4.2 Android Protection System Implementation ... 44

4.2.1 White-list Creation .. 45

4.2.2 Hash Digest Placement .. 45

4.3 Evaluation Technique .. 46

4.4 Functional Protection Testing .. 47

4.5 Performance Benchmark ... 49

4.6 Summary ... 54

V. Conclusions .. 55

5.1 Research Accomplishments ... 55

5.2 Research Impact .. 56

5.3 Future Research Areas ... 57

Appendix A. MD5 Message Digest Algorithm ... 59

Appendix B. APS Modification to Android OS 1.5 .. 73

Bibliography .. 84

viii

List of Figures

Figure Page

 2.1 ARM Register Organization ..6

 2.2 ARM Instruction Encoding Pattern ...10

 2.3 Overview of the Android Application Stack ...19

 2.4 SCanDroid Architecture of Analysis ...26

 3.1 Android Protection System ..35

 4.1 Application Load Time – APS Enabled...51

 4.2 Application Load Time – APS Disabled ...52

 4.3 Difference in Application Load Times ..53

ix

List of Tables

Table Page

 2.1 ARM Processor Modes ..5

 2.2 ARM Exception Types ..7

 3.1 Experimental Factors ...39

 4.1 APS Functional Protection Results ..48

 4.2 APS Performance Testing Results ...50

 4.3 Difference in Mean Load Times ..52

1

 ANDROID PROTECTION SYSTEM: A SIGNED CODE SECURITY

 MECHANISM FOR SMARTPHONE APPLICATIONS

I. Introduction

1.1 Research Domain

Mobile devices are an ever-increasing part of our society. Cut off network access

or service coverage and life for many comes screeching to a halt. Mobile phones expand

communication networks beyond wired limitations. Smartphones, mobile phones that

can execute third party code, further extend the capabilities now at the fingertips of the

general public. Smartphone users have the ability to control home security features,

modify house lighting, start cars, manage bank accounts, stream online video, use Global

Positioning System (GPS) services, and many more, all from the convenience of a mobile

phone application.

Gartner estimates that worldwide mobile phone sales for Q3 2010 totaled 417

million devices, of which 81 million were smartphones. Smartphone sales grew 96

percent from Q3 2009, accounting for 19.3 percent of overall mobile phone sales.

Google‘s Android Operating System accounted for 25.5 percent of smartphone sales, up

from 3.5 percent in 2009 [GN10].

As smartphone use increases, the security of applications and underlying code

becomes increasingly important. This research focuses on the domain of smartphone

application security, specifically on the Android Operating System.

2

1.2 Problem Statement

Increased smartphone use is a serious security issue. Smartphone applications

access and store sensitive information including GPS location, Short Message Service

(SMS) billing, bank account login credentials, premium phone calls, e-mails, and text

messages. Access to this information greatly incentivizes malicious application

developers to create new ways to steal sensitive data.

Anyone can write, sign, and submit an application to the Android Market. Many

of these applications are available for free download. The average smartphone in the

United States has 22 applications installed [NW10]. However, Android application

security depends almost solely on decisions users make when downloading and installing

applications. Numerous applications reside on smartphones with no mechanism in place

to protect against malicious code execution.

1.3 Research Goals

The existing application security solution on the Android Operating System is

inadequate, relying heavily on user discretion. Signature-based mobile phone security

(anti-virus, anti-spyware, etc.) is unable to keep up with the rapid growth in smartphone

use. Therefore, malicious content is freely available and often infects mobile devices.

The goal of this research is to improve application security on a mobile platform.

This research adheres to a defense-in-depth strategy. The native security in the

Android Operating System is left intact. This research adds a complementary security

mechanism to prevent unauthorized application code from executing on an Android

device. The approach implements the security mechanism within kernel space of the

3

operating system so that the protection itself cannot be compromised by malicious code.

Once implemented, the security mechanism is benchmarked for performance overhead

and protection effectiveness.

1.4 Document Outline

Chapter II summarizes the ARM architecture, the Android Operating System, and

the current state of security mechanisms—those native to Android as well as third-party

products. Chapter III introduces the methodology for developing, implementing, and

evaluating a new application security mechanism, called Android Protection System

(APS). This mechanism ensures that application packages on the Android platform are

verified before code is allowed to execute. Chapter IV discusses and analyzes the results

from benchmarking the performance of APS. Finally, Chapter V highlights

accomplishments of this research, focusing on the impact to the smartphone community

as well as suggestions for future work.

4

II. Literature Review

2.1 Introduction to ARM Architecture

Most mobile phones use a microprocessor based on the ARM architecture

[SAH09]; Google also selected ARM as the architecture on which to develop the Android

Operating System (OS). This architecture, with processors available to meet a variety of

performance, power, area, and application needs, is a natural fit for mobile devices. This

section explores five aspects of the ARM architecture and examines Android‘s use of this

architecture. The Programmers‘ Model and Instruction Set sections examine the

architecture in general. The Addressing Modes, Memory and System Architectures, and

Vector Floating-Point Architecture sections look more in-depth at the architecture and

how they apply to the Android OS.

2.1.1 Programmers’ Model

The Programmers‘ Model portion of the ARM Architecture Manual [ARM05]

describes various aspects of the architecture including data types, processor modes,

registers, general-purpose registers, program status registers, exceptions, endian support,

unaligned access support, synchronization primitives, the Jazelle Extension, and saturated

integer arithmetic. All of these are crucial to understand application programming for the

Android device and for making kernel-level modifications to the system.

ARM supports byte, halfword, and word data types. Most data operations are

performed on word quantities [ARM05]. ARM instructions are exactly one word and

aligned on four-byte boundaries. The architecture has seven processor modes as shown

in Table 2.1. All modes other than user mode are considered privileged modes and are

5

not accessible other than via an exception. The privileged modes have full access to

system resources and can freely change mode.

Table 2.1. ARM Processor Modes [ARM05]

The ARM architecture provides 37 programmer accessible registers, 31 general-

purpose registers and six status registers. All registers are 32 bits in width, although the

status registers typically do not allocate or implement all 32 bits. The architecture

arranges the registers in banks that partially overlap. The current mode determines which

of the banks are available. Each processor mode has access to 15 general-purpose

registers, one or two status registers, and the program counter. An overview of this

layout is shown in Figure 2.1 below. Each column represents a processor mode, showing

the available register resources.

6

Figure 2.1. ARM Register Organization [ARM05]

Program Status Registers include the Current Program Status Register (CPSR)

and the Saved Program Status Register (SPSR). The CPSR is accessible from any of the

processor modes, but the SPSR is only accessible from exception modes. The CPSR

contains condition code flags, interrupt disable bits, current processor mode, as well as

additional status and control information. The SPSR preserves the value of the CPSR

whenever an exception occurs. Both the CPSR and SPSR have reserved bits, user-

7

writable bits, privileged bits, and execution state bits. Condition codes consist of

Negative (N), Zero (Z), Carry (C), and oVerflow (V) [ARM05].

Exceptions occur when there is an externally generated interrupt or an attempt to

execute an undefined instruction. Exceptions interrupt normal execution flow, so

processor state must be saved prior to executing the exception routine. ARM supports

seven exception types as shown in Table 2.2 with the associated processor mode.

Table 2.2. ARM Exception Types [ARM05]

ARM supports mixed endian data access—the address of a particular byte in

memory will be the same regardless of whether it is being accessed through big endian or

little endian means. Byte, halfword, and word accesses all return the same data

regardless of endianness. This is accomplished through the use of byte invariance, which

means that the address of a byte in memory is the same no matter what type of access is

used. Double and multiple word accesses are treated as series of word accesses, so the

same bytes are returned in these cases as well. Instruction fetches in ARM use little

endian byte order and must be word-aligned.

8

ARM has unaligned word and halfword data access support. If enabled, the

processor uses as many memory accesses as necessary to generate the required transfer of

adjacent bytes transparently to the programmer.

ARM also supports comprehensive non-blocking shared-memory synchronization

primitives that scale for multiple-processor system designs. This is an improvement over

the read-locked-write operations that swap register contents with memory for shared

memory synchronization. The two instructions that perform this synchronization are

Load-Exclusive (LDREX) and Store-Exclusive (STREX). LDREX loads a register from

memory, forces the executing processor to indicate an active inclusions access in the

local monitor, and marks the physical address as exclusive access for the executing

processor if the Shared memory attribute is present for this address. STREX performs a

conditional store to memory, only if the executing processor has exclusive access to the

memory addressed.

The Jazelle Extension accelerates bytecode execution of Java Virtual Machines

(JVMs) [ARM05]. JVMs can be written to automatically take advantage of accelerated

opcode execution if available, but the bytecode will still execute even if the extension is

not present. The Jazelle Extension expects general-purpose registers and other resources

to conform to a particular calling convention when the Jazelle state is entered and exited.

The J bit from the processor status registers in conjunction with the T bit determines the

execution state of the processor.

Finally, saturated integer arithmetic is supported in ARM. Saturated arithmetic

modifies the way normal integer arithmetic behaves by allowing arithmetic operations

that exceed the bounds of the 32-bit registers. The result of a saturated arithmetic

9

operation represents the closest possible number to the correct mathematical result. If the

correct result is too great to represent in 32 bits and overflows the upper end of the

representable range, the result is set to +231-1. If the correct result is too small to

represent in 32 bits and overflows the lower end of the representable range, the result is

set to -231-1. This modification is useful for many Digital Signal Processing (DSP)

applications. These applications do not react well to an abrupt change of sign, which

would be the result on an arithmetic operation overflow.

2.1.2 Instruction Set

ARM instructions must adhere to the specific encoding pattern shown in Figure

2.2. Any other pattern of bits is considered UNPREDICTABLE or UNDEFINED. Most

ARM instructions will act as a NOP unless the N, Z, C, and V flags in the CPSR satisfy

the condition specified in the condition code field of the instruction. There are only a few

instructions that execute unconditionally. These instructions have been introduced in

ARMv5 and later.

Branch instructions allow conditional branches either forward or backward in the

program. These branches can be up to 32MB and are executed by a specific instruction

or by writing a value to the program counter (PC) register. Additional functionality is

introduced with the Branch with Link (BL), Branch and Exchange (BX), Branch with

Link and Exchange (BLX), and Branch and Exchange Jazelle (BXJ) instructions.

10

Figure 2.2. ARM Instruction Encoding Pattern [ARM05]

BL preserves the address of the instruction after the branch. BX copies the

contents of a general-purpose register to the PC and shifts the processor to Thumb state if

bit [0] of this transferred value is 1. BLX behaves like BX, but writes the address of the

next instruction into the LR and shifts to Thumb state. BXJ also behaves like BX, but

enters Jazelle state if it is available and enabled. These instructions implement subroutine

behavior if the programmer desires to use them as such.

11

ARM provides 16 different data-processing instructions to perform logical

operations, basic arithmetic operations, tests, comparisons, moves, and bit clears. Most

of these instructions require two source operands. Some store results to a register and

update condition flags and others simply update condition flags for jump and branch

operations (conditionals and loops). One of the two source operands must always be a

register and the other may be a register or an immediate value, depending on the specific

instruction.

ARM can perform multiplication on several different classes of instructions.

Normal multiplication takes two 32-bit inputs and returns a 32-bit output. Long

multiplication takes two 32-bit inputs and returns a 64-bit result. Halfword multiplication

takes two signed 16-bit inputs and returns a 32-bit result. Word, halfword multiplication

produces a top 32-bit result. Most significant word multiplication takes two 32-bit inputs

and returns a top 32-bit result. Dual halfword multiplication produces a 32-bit result

from two 16-bit inputs.

ARM‘s normal data-processing and multiply instructions are complemented by a

set of parallel addition and subtraction instructions. There are six distinct basic

instructions, each of which has six variants, for a total of 36 possible instructions. The

basic instructions exchange or manipulate the data sources while the variants incorporate

signed/unsigned arithmetic modulo 28 or 216, signed/unsigned saturating arithmetic, and

signed/unsigned arithmetic with halved results. Similarly, extend instructions come with

six basic instructions that unpack data by sign or zero-extending bytes to

words/halfwords and halfwords to words. There are sign extension and zero extension

variants for each of these six basic extend instructions.

12

Two instructions move contents of a PSR to or from a general-purpose register.

There are also several instructions that write directly to specific bits or groups of bits

within the CSPR. These instructions can set a condition code flag to a known value, to

enable or disable interrupts, to change processor mode, to change the endianness of

load/store operations, and change the processor state.

The basic load and store instructions in the ARM architecture come in two broad

types. The first loads or stores a 32-bit word or an 8-bit unsigned byte. The second loads

or stores a 16-bit unsigned halfword, load and signs a 16-bit halfword or an 8-bit byte, or

loads or stores a pair of 32-bit words. Addressing modes for both types are formed using

the base register and an offset. The base register is always a general-purpose register and

the offset is an immediate value, a register, or a scaled register. This combination of base

register and offset forms the memory address in one of three ways: offset, pre-indexed, or

post-indexed. Multiple load and store instructions are similar in format and intent except

they operate on a subset of the general-purpose registers rather than one at a time.

The Swap (SWP) or Swap Byte (SWPB) instructions operate on semaphores.

Both instructions have a single addressing mode and are used for process

synchronization. Memory semaphores can be loaded and altered without interruption

because the load and store operations are atomic.

Processor exceptions occur via a Software Interrupt (SWI) instruction or a

Breakpoint (BKPT) instruction. User mode can make calls to privileged OS code by

using the SWI instruction. The BKPT instruction causes a Prefetch Abort exception to

occur, which is handled by a previously installed debug monitor program. This is

13

sometimes referred to as a software breakpoint. The ARM processor ignores the

immediate fields in both of these instructions.

Coprocessor instructions in the instruction set provide communication with

coprocessors. The three types include a coprocessor data processing operation, register

transfer to and from coprocessor registers, and address generation for the coprocessor

Load and Store instructions [ARM05]. Coprocessors are distinguished by a 4-bit field in

the instruction.

2.1.3 Addressing Modes

The first addressing mode used with ARM instructions is called ―Data-processing

operands.‖ This mode has 11 formats to calculate the shifter_operand portion of the

data-processing instruction. This shifter_operand portion could be an immediate, a

register, or the result of one of many shift or rotate operations on a register. Each

variation of the 11 formats has its own specific syntax and operation flow.

The second addressing mode is ―Load and Store Word or Unsigned Byte.‖ The

mode has nine formats to calculate the address for the respective load or store instruction.

The addressing_mode portion of the load or store instruction could be an immediate

offset/index, a register offset/index, or a scaled register offset/index. For an immediate

offset, the address is calculated by adding or subtracting the immediate value to or from

the value in the base register. For a register offset, the mode calculates an address using

the values in the index register and the base register. For scaled register offset, the mode

calculates the address using the shifted or rotated value in the index register and the base

register.

14

The third addressing mode is ―Miscellaneous Loads and Stores‖ with six formats.

The addressing_mode portion of the load or store instruction could be an immediate

offset, register offset, immediate pre-indexed, register pre-indexed, immediate post-

indexed, or register post-indexed. The addressing_mode portion of the instruction is

calculated in the same way as the second addressing mode, above.

The fourth addressing mode is ―Load and Store Multiple.‖ These instructions

work the same as those above in the third addressing mode except that they operate on a

subset of the general-purpose registers rather than a single register. The

addressing_mode can be increment after, increment before, decrement after, or

decrement before. For increment after, the start_address is equal to the base register

value and increments by four for each subsequent address. For increment before, the

start_address is equal to the base register value plus four and increments by four for each

subsequent address. For decrement after, the start_address is equal to the base register

value minus four times the number of registers specified in the encoding, plus 4 and

increments by four for each subsequent address. For decrement before, the start_address

is equal to the base register value minus four times the number of registers specified in

the encoding and increments by four for each subsequent address.

The final addressing mode is ―Load and Store Coprocessor.‖ This mode has four

options to calculate the address of a respective load or store instruction. The

addressing_mode could be an immediate offset, immediate pre-indexed, immediate post-

indexed, or unindexed. All four options produce a sequence of consecutive addresses.

For immediate offset, the mode adds or subtracts four times the immediate offset value to

or from the base register value to get the first address and increments by four for

15

subsequent addresses until signaled by the coprocessor to stop (no more than 16 words).

For immediate pre-indexed, the mode adds or subtracts four times the immediate offset

value to or from the base register value and increments by four for subsequent addresses

until signaled by the coprocessor to stop. The difference is that the first address is written

back to the base register only when the condition code status matches the condition

specified in the instruction. For immediate post-indexed, the first address is the base

register value and the mode increments by four for subsequent addresses until signaled by

the coprocessor to stop. The base register value is updated during the process whenever

the condition code status matches the condition specified in the instruction. For

unindexed, the first address is the base register value and the mode increments by four to

calculate subsequent addressed until signaled by the coprocessor to stop.

2.1.4 Memory and System Architectures

Memory behavior in ARM is classified by type: strongly ordered, device, and

normal. Each of these types can be further distinguished by access mechanisms and

cacheable and shared attributes. Coprocessor 15 (CP15) is the primary control

mechanism for virtual memory systems as well as identification, configuration, and

control of other memory configurations and system features.

The type, size, access speed, and architecture of memory are all important parts of

the decision process to achieve certain overall system performance and cost goals. A

memory hierarchy is formed when different types of memory are included in a system

design. The memory is typically layered where layers with higher numbers are further

16

from the core and have increased access times. ARM provides caches and I/O at each

layer. Higher layers have a larger size but also increased latency.

The L1 cache supports multiple virtual address aliases to a specific memory

location. CP15 controls the size, associativity, and organization parameters of the cache

within the subsystem. Entries in the L1 cache do not need to be invalidated for different

virtual to physical mappings. This reduces the requirement for cache clean on a context

switch, which helps software perform more efficiently. Aliases to the same physical

address may exist in memory regions that are described in the page tables as being

cacheable [ARM05]. The L2 cache can be either tightly coupled to the core or

implemented as memory mapped peripherals on the system bus. Additional levels of

cache may be used, but are not required.

Tightly Coupled Memory (TCM) is a physically addressed area of memory that

makes up part of the Level 1 memory subsystem (along with the L1 cache). This area

provides low latency memory without the unpredictability of caches. This memory is

ideal for storing critical routines, for use as scratchpad data, for data types whose locality

properties are not well suited to caching, and for critical data structures such as interrupt

stacks [ARM05].

Resets, interrupts, and imprecise aborts are typically asynchronous events, as

opposed to the synchronous events tied to many exceptions. Resets are the only non-

maskable event contained within the ARM architecture. Interrupts have three different

levels: fast interrupt request, non-maskable fast interrupt request, and normal interrupt

request. Whatever causes the interrupt must be deasserted prior to re-enabling of the

interrupts.

17

2.1.5 Vector Floating-Point Architecture

The vector floating-point architecture (VFP) is a coprocessor extension to the

ARM architecture [ARM05]. It adds single-precision and double-precision floating-point

arithmetic to the system. To completely implement the VFP, the architecture must

include support code which provides features not supplied by the hardware.

The VFP comes with 32 general-purpose registers, and a full set of instructions

for loading, storing, transferring, adding, subtracting, multiplying, dividing, square-

rooting, copying, converting, and comparing values in these registers. VPF also supports

floating-point exceptions for invalid operations, division by zero, overflow, underflow,

and inexact.

VFPs can be implemented with or without a hardware component. Software-only

implementations (VFP emulators) use ARM routines to emulate all floating-point

arithmetic. These implementations can be more efficiently accomplished through the

direct use of software floating-point libraries, and hence have not been developed.

Hardware implementations use the hardware to handle common cases and use support

code only when the hardware cannot handle a case. This approach optimizes the

performance of the architecture.

2.2 Introduction to Google Android Operating System

Release of the Google Android OS opened numerous opportunities for coders and

application developers to write programs and make modifications to customize almost

any portion of a mobile device [FOG09, Dim08, Has08, BurE09]. This open platform

supports customized legitimate applications, but also opens the door for a significant

18

increase in malicious content [RML09]. The Android OS is primarily for use on mobile

devices, mainly cellular phones [Mur09]. Organizations target customers who own

mobile devices and companies who want their core applications built on a platform

supported by the Open Handset Alliance (OHA) [HK09], so it is important that security

professionals develop an understanding of Android OS to mitigate risks and

vulnerabilities.

This section presents background on Android, followed by specific advantages

and known implementations of Android. The information contained in this section

provides a better understanding of the impact Google Android OS has had on the mobile

device community.

2.2.1 Operating System Background

Google was among the first in the mobile OS community to open mobile OS‘s by

developing the Android Platform, supporting standards and publishing APIs which

encouraged widespread, low-cost development of mobile applications. In September

2008, T-Mobile released the first smartphone based on the Android Platform as well as a

Software Development Kit (SDK) [UTG08]. In October, the source code was made

available under Apache‘s open source license.

Key architectural goals of the Android Platform allow applications to interact

with one another and to reuse components. The platform incorporates a Linux-based

operating system stack for managing devices, memory, and processes and has libraries

related to telephony, video, graphics, and User Interface (UI) programming [HK09].

19

The Android architecture consists of five distinct layers on the system stack: the

Acorn RISC Machine (ARM) Linux core, the libraries, the Dalvik run-time byte-code

interpreter, the application framework, and the applications [JTD09]. The platform is not

a single piece of hardware or software, but a complete end-to-end software framework

configurable to work on a variety of hardware implementations. It includes everything

from the bootloader to the applications. Figure 2.3 shows a graphical representation of

the application stack.

Figure 2.3. Overview of the Android Application Stack [SDT08]

2.2.2 Advantages Offered by Android

The Android Platform offers a variety of advantages not currently available in

other mobile operating systems. Google opened the Android market, allowing

20

application developers to publish applications without any restrictions [DCI09].

Additionally, being an open platform encourages device and service provider-

independency. Consumers are not tied to a specific device or cellular-service company to

use Google Android.

Android provides fully-developed features to exploit cloud-computing resources

and supports a relational database on the handset [HK09]. It supports 2D and 3D

graphics as well as various media file formats, allowing developers to create media

common applications [DCI09].

The Dalvik VM significantly enhanced the power management system of the

Android Platform. This custom VM takes generated Java class files and combines them

into its own native executable format. Since it reuses duplicate information across

various class files, space requirements are half what the JVM .jar file requires [HK09].

Google also fine-tunes the garbage collection, omits the just-in-time (JIT) compiler, and

uses registers instead of the stack for generation of assembly code. These enhancements

significantly reduce the power requirements of the system, making the Android Platform

suitable for mobile device use.

Finally, Android application developers can develop applications for any platform

[JMH08] and applications can run in parallel when loaded on the device. This allows

processes running in the background to send alerts and notifications to the user.

2.2.3 Known Implementations of Operating System

The Open Handset Alliance (OHA) is a confederation of 50 Telecoms, mobile

hardware, and software companies. Headed by Google, the OHA backed Android as one

21

of its first open platform operating systems. The Android Platform has been released on

numerous cellular phones across a wide variety of service providers.

Good Technology uses Android devices to connect to their corporate enterprise so

employees can access company resources via a secure container in the client which

separates protected enterprise data from personal data and applications stored on the

mobile device. The container also enables the IT department to enforce security policies,

wipe enterprise data, and have government-grade data encryption [GT09].

The FrauVent application improves the physical security of sensitive information

utilized during financial transactions [PGT09]. FrauVent incorporates a multi-modal

protocol that gives users information about a pending questionable transaction in a way

that provides a suitable context for approving or rejecting such exchanges. The goal is to

establish the legitimacy of the transaction. FrauVent uses the GPS and Mapping

capabilities resident on an Android device. For example, when questionable charges are

applied against a user‘s bank account, the financial institution immediately sends a

message to the user‘s phone requesting location and purchase information. The user has

the opportunity to follow reactive protocol and approve or flag the transaction. Users can

also follow proactive protocol and send location verification to their financial institute

prior to making transactions. Proactive action prevents account lockouts and fraud flags

when transactions are made at odd hours or in varied locations. This solution reduces the

costs of fraud without requiring financial institutions to significantly change their

extensively deployed end systems.

Android supports memory streaming, making it suitable for Voice over Internet

Protocol (VoIP) and there are proposals to incorporate software in Android devices to

22

secure VoIP [YA09]. Additionally, the automotive industry may incorporate the Android

Platform into In-Vehicle Infotainment systems [MTV09]. The open platform encourages

reuse between models as well as between manufacturers. The capabilities of Android

provide an interface similar to Personal Digital Assistant (PDA) and cell phone interfaces

consumers have come to expect.

IMS-Learning Design (IMS-LD) learning activity-based implementations rely on

client-server architectures which are problematic for resource-limited mobile devices

without reliable Internet access [ZNA09]. Google Android implements a subset of the

IMS-LD design specification and uses SMS messages for synchronization thereby

providing a correlated learning environment for system users.

Mobile Social Networks (MSNs) are also making use of Android [LC09]. The

information stored on devices is often shared and transferred between members of these

networks. MSN applications collect and store data on the device as well as information

pertaining to any social network contacts or ―friends.‖

2.2.4 Summary

This section introduces the Google Android OS, examines the background of the

development as well as some of the features the platform offers over competing mobile

operating systems, and outlines several uses of the Android Platform in various

capacities. It is most prevalent in mobile devices, but is also starting to be used in

corporate networks, the automotive industry, and the banking industry to secure financial

transactions. With the widespread use of this platform, it is imperative that security

23

mechanisms be thoroughly reviewed and improved to protect data throughout various

implementations.

2.3 Examination of Android Protection Mechanisms

This section reviews components within Android and briefly describes the

associated interactions. The built-in security features of the OS are closely examined.

Three current implementations of security measures for Android are also reviewed. The

strengths and weaknesses of each method are discussed. Finally, an improved Android

security protection mechanism is proposed.

2.3.1 Component Interactions

Android defines four component types: Activity, Service, Content provider, and

Broadcast receiver [EOM09]. Activity components define an application‘s user interface.

Only one activity has keyboard and processing focus at a time, all others are suspended.

Services do background processing thereby enabling activities to continue after the user

interface disappears. Content providers store and share data using a relational database.

Each one has an associated authority describing the content it contains. Broadcast

receivers act as mailboxes for messages from other applications.

2.3.2 Built-in Security Features

The validity of on-board security features are a key interest area for consumers

[Tho09]. Natively, Android provides protection through permissions as well as isolation

and signatures. Permissions ensure that explicit access is granted by an application for

other applications to access data and functionality. These permissions cannot be set at

run-time, but rather must be set at install time via a ―manifest‖ which contains the

24

permissions enforced and requested by each application [BurJ08]. When a package

installer is installing an application, it sets all of these permissions in the manifest via

dialog with the user. This is flawed in that it is not actually known whether applications

will use the permissions and thereby gain trust legitimately or not [Phy10].

The isolation and signatures protection native in Android are implemented by

running applications in their own Virtual Machine (VM) and as a Linux process. Each

application is assigned a unique Linux user-id (UID) so its files are not visible to other

applications. This allows Android to limit the damage of any programming flaws. If

signatures allow UIDs to be shared, files can become visible to other applications

[BurJ09].

Currently, Android does not support hardware-based security features for

application developers, although most Android phones are equipped with the required

hardware modules [SAH09]. Android does, however, provide an additional protection in

the form of signatures. Any Android application must be signed with a certificate whose

private key is held by the developer. This certificate does not need to be signed by a

certificate authority; it is used only to establish trust between applications by the same

developer [Cha09, SFK10]. This signature does not provide complete protection, but

adds an additional layer of security to the overall system.

A team from Kokusai Denshin Denwa Institute (KDDI) R&D Laboratories

formally analyzed the permission-based security model of Android, showing that after

specifying system elements, the specified system preserves the desired security properties

[SKF09]. This analysis was based on certain specific states, but does not translate to all

states an Android device could enter.

25

2.3.3 Current State of Protection Mechanisms

Several protection mechanisms for the Android Platform have been developed.

This section examines three of them and explores the strengths and weaknesses of each.

SCanDroid provides users with a better context for making security-relevant decisions

when installing applications. Saint (Secure Application INTeraction) governs install-time

permission assignment and their use at runtime. Finally, static analysis of executables

uses collaboration to accomplish malware detection.

2.3.3.1 SCanDroid

SCanDroid (Security Certifier for Android) reasons about the security of Android

applications [FCF10]. It statically analyzes data flows through applications and makes

security-relevant decisions automatically. This provides the user context to make an

informed security decision when installing a new application. An Android application

can allow other applications to share its data and functionality, but the accesses must be

carefully controlled.

SCanDroid relies on Android-provided access controls and on underlying abstract

semantics of Android applications to track data flow through and across components, as

shown in Figure 2.4. The implementation consists of seven modules as well as Watson

Libraries for Analysis (WALA) interface: a bytecode loader, string/data analysis, an

inflow filter, flow analysis, an outflow filter, a manifest loader, and a checker. The

bytecode loader sends application bytecode through String/Data Analysis and Flow

Analysis, resulting in a Flows for Application consisting of data flow maps and graphs.

The Checker compares this Flows for Application to output from the Manifest Loader

26

determining Constraints for the application. If data flow is not consistent with security

permissions specified by the manifest, the user is informed of potential danger prior to

application installation. Not all data flow can be statically analyzed, so some Constraints

may be conditional, requiring Additional Information for Further Analysis.

Figure 2.4. SCanDroid Architecture of Analysis [FCF10]

27

Android applications all have components of type activity, service,

broadcastReceiver, and contentProvider [BurJ08]. Components extend one of the base

classes and override the methods in that class. Each of the methods is considered an

entry point and SCanDroid modularly analyzes those entry points. SCanDroid treats

component classes and methods as idealized, primitive constructs (as opposed to

modeling general classes and methods). It considers permissions as the only mechanism

to control cross-component interactions. This ensures data cannot flow from one store to

another by preserving a well-typed environment. Stores are generalizations of content

providers, databases, files, and other data containers. Therefore, a value from m can flow

to store n only if readers of n can already read from m and writers of m can already write

to n.

This system requires the Java source code of the compiled JVML bytecode of

applications for analysis. Depending on the source of applications, this bytecode may be

difficult to obtain. Additionally, this system still allows the security decision to be made

by the end user. End users tend to be more focused on convenience and availability than

on security issues.

2.3.3.2 Secure Application INTeraction (Saint)

Saint addresses the limited ability of applications to control who can access their

interfaces as well as compensates for the rudimentary facilities that control how their

interfaces are used by other applications. Finally, Saint enhances the limited means

applications have of selecting which application‘s interfaces they use [OME09]. The

28

improved infrastructure provides applications with installation-time policies to regulate

the assignment of permissions that protect their interfaces.

Saint uses an enhanced installer for applications to regulate application-defined

permissions. This goes well beyond the Android model of only allowing/disallowing

permission assignments based on application-independent rules. Now applications can

exert control over the assignment of permissions declared through an explicit policy

[OME09]. Saint enforces runtime policies of two types: access policies for identifying

caller security requirements and expose policies for identifying callee security

requirements. Saint optionally can allow or disallow the user to override

system/application policies.

The Saint Installer and Saint Mediator are the key components of the Saint

architecture, along with an AppPolicy Provider, FrameworkPolicyManager, and

Condition Extensibility. The Installer and Mediator enforce additional permission

granting policies and mediate interprocess communication to ensure interaction policies

specified by both the caller and callee applications are enforced. This greatly enhances

the native Android permission security, but still allows users to determine which

applications to install and run.

2.3.3.3 Static Analysis of Executables

 Schmidt et al [SBS09] statically analyze executables on Android for

collaborative malware detection. They extract function calls from the Android

environment using the command readelf and compare this attribute set with malware

executables, using PART, Prism, and Nearest Neighbor Algorithms for classification.

29

The PART classifier scans the decision tree learner and extracts decision rules. The

Prism classifier uses pure rules to cover the entire attribute set through rule induction.

The Nearest Neighbor Algorithm maps each result to a state space of {malicious,

normal}, calculates distance to a subset, and determines if this result falls within a

specified uncertainty level.

The binary determination between malicious and normal executables is

transformed into a certainty value falling in the range [0, 1]. A value of 0 indicates

normal and a value of 1 indicates malicious. Values in between indicate level of

maliciousness. Taking desired false-positive rate into consideration, a threshold is set for

distinguishing between normal and malicious content. Depending on the results, analysis

can be performed on-device, sent out for collaboration between mobile devices, or sent to

a remote mobile server for further inspection. The executable is then classified as benign

if it falls below the threshold; otherwise, it is classified as malicious and not allowed to

run.

The weakness in this method is it requires a device to trust other surrounding

devices if acceptable results are not obtained on the device itself. There is no guarantee

that a neighboring device has not been compromised and will provide misleading analysis

results. Additionally, since the system compares known malware function calls to

function calls of legitimate executables, it is a form of signature-based detection. If a

malware developer uses function calls that closely follow legitimate executables already

on the Android device, the malware stands a good chance of being classified as benign.

30

2.3.4 Proposal for Improved Security Measures

On March 9, 2010, England‘s The Register reported an instance of an embedded

malware on an HTC Android phone that attempted to steal information from connected

personal computers (PCs) when the device synchronized [Gir10]. The malware itself was

resident on a Secure Digital (SD) memory card mounted in the device. This type of

malicious behavior will become more prevalent on mobile devices as mobile use of data

networks increases. None of the current security implementations discussed in this

chapter would have prevented the attack described.

In fact, malicious code can be executed on mobile devices despite all precautions

the end user may take to avoid unintentionally allowing programs to access or modify

data outside the parameters of set permissions. A protection mechanism for PCs called

SecureQEMU [Kim09] requires all legitimate code on the machine be signed at the page

level. Hashes for each page are protected in the system kernel. Only code executing

within a signed page is allowed to execute on the machine. Code attempting to execute

on the machine is checked against the page hashes stored in the kernel and if there is not

a match, none of the code on that page is allowed to execute. This system requires a

known good state from which to initialize the protection and be provided trusted hashes.

To date, no similar protection mechanism has been implemented on a mobile OS.

2.3.5 Summary

This section presents an overview of protection mechanisms native to the Android

Platform. It starts with a brief description of system components and then explores three

aspects of built-in security within the OS. It presents three alternative protection

31

mechanisms developed for the Android, examining the strategy behind each method.

Finally, it concludes none of these protection mechanisms are sufficient to protect a

device from execution of malicious code. A brief overview of a new mobile security

solution is provided and is examined in depth in the following chapters.

32

III. Methodology

3.1 Background

Google‘s Android operating system (OS) is an open platform, allowing

programmers to modify and customize the content and operational environment of

mobile devices. Malicious code can be executed on mobile devices despite all

precautions an end user may take to avoid unintentionally allowing programs to access or

modify data. This research takes protection mechanisms originally developed for

personal computers (PCs) and moves them to the Android environment. Legitimate code

is signed at the application package level for all programs on the device in a known good

state. Hashes for each package are stored in the system kernel and only code from a

signed package is allowed to execute on the machine. Code attempting to execute on the

machine is checked against the package hash stored in the kernel and if there is no match,

code in that package is not allowed to execute. This system requires a known good state

from which to initialize the protection and be provided trusted hashes. As the world‘s

computing environment becomes more and more mobile, it is crucial that the same

security precautions employed on PCs are transitioned into the mobile environment.

3.2 Problem Definition

This section describes the specific goals of the research along with a hypothesis of

the expected results. The approach describes how the hypothesis is tested against the

research goals.

33

3.2.1 Goals and Hypothesis

The explosion of laptop and handheld devices around the world has significantly

increased the importance of the mobile computing environment. Cell phones are no

longer simply a means of making person-to-person calls, they now store and transfer

data, play music, check and send e-mail, browse the Internet, receive GPS navigation,

and more. As a result, like PCs, mobile devices are increasingly the target of malicious

attacks. The goal of this research is to provide a robust protection mechanism for mobile

OSs. The research uses as a baseline a mechanism implemented on a PC and determines

if it can provide the same level of protection on a mobile platform. Specifically, the

research determines the effectiveness of implementing system protection within the

kernel of the OS itself. The effectiveness of the new protection is compared to the native

protection offered by the OS.

The data collected during testing is examined to analyze the various protection

levels offered and system overhead. The hypothesis for the research is that the new

protection method will provide significant improvement in mobile system security

without requiring substantial overhead. It is expected an end-user will notice little to no

difference in system performance once the new protection mechanism is in place.

3.2.2 Approach

Many mobile protection programs run on a mobile device as just another user

program. A better approach is to embed the protection mechanism within the kernel

itself. The kernel is modified such that it recognizes legitimate code and programs

34

requesting to execute on the device. Only recognized programs are allowed to execute.

This is known as a white-list.

To determine if the new protection mechanism performs better than the native

protection of the system, unapproved application packages are submitted to the mobile

device. The success rate of the new protection mechanism is compared to the native

protection success rate.

To determine whether the improved protection system requires substantially more

overhead than the existing protection system, the load time for various programs with and

without the new protection mechanism enabled is also analyzed.

3.3 System Boundaries

The System Under Test (SUT) for this research is the Android Protection System

(APS). APS includes the Android mobile device, the Android OS, a modified kernel, and

various default applications on the mobile platform. Approved and unapproved

applications provide input to the system but are not part of the system itself. This

research focuses on Google‘s Android platform, built on the ARM processor architecture.

No additional OS‘s are considered. The SUT does not include any Android applications

that may provide system protection, only the native protection is in place. The Android

mobile device communicates with an external server to receive input and updated system

content. These interactions are guided by the end-user. The workload on the system

consists of an end-user performing standard mobile device functions such as placing

phone calls, browsing the Internet, sending text messages, running applications, and

35

listening to music. APS prevents unapproved content from executing on the Android

device.

The Component Under Test (CUT) is the modified kernel within the Android OS.

Figure 3.1 shows the system complete with inputs, outputs, and internal components.

 Figure 3.1. Android Protection System

3.4 System Services

The service APS provides is protection from the execution of unapproved content

on the mobile device. This allows for normal use of all approved programs and

applications on the device while disallowing all others. Any unapproved program

attempting to execute is considered malicious and the protection service prevents

execution. The protection service does not interfere with the execution of approved

programs and applications.

36

The protection service has two primary outcomes: unapproved content is

successfully blocked or it is allowed. These two outcomes are each paired with a

secondary outcome: approved content is successfully executed or approved content is

blocked. The primary focus of the system is to successfully prevent unapproved content

from executing on the mobile device. However, a mobile device is rendered unusable if

approved content is also unable to execute. It is critical that the protection service

succeed in both the primary and the secondary outcomes.

3.5 Workload

The workload for the system consists of programs within the system. The

workload includes both approved and unapproved applications. The end-user submits

this workload to the system by running programs and applications on the Android device.

The number and size of applications sent to the system are workload parameters.

These parameters vary from small to medium to large to extra-large levels and are

discussed further in Section 3.8. When varied, these requests can affect the performance

of the system. It is important to vary the workload to determine how the system performs

under different loads. Varying the workload parameters ensures that the system blocks

all unapproved content without noticeable performance degradation.

3.6 Performance Metrics

The first metric to evaluate the performance of the APS is the percentage of

unapproved content blocked. This metric directly reflects the success of the system in

preventing the execution of unapproved programs or applications on the Android device.

37

To achieve success, APS needs to achieve 100% for this metric; all unapproved content is

blocked.

The second metric is the percentage of approved content allowed. This metric

also reflects how well the system allows all approved programs and applications to

execute on the Android device. To succeed, APS needs to achieve 100% for this metric

as well; all approved content is allowed.

The final metric is program delay. This metric compares the measured time for

program and application loading without the protection mechanism in place to the

measured time for loading with the protection mechanism in place. APS adds overhead

because it verifies all execution requests prior to program execution. This delay

manifests itself in the time it takes for the program or application to load. Once the

program or application is executing, system overhead should be the same whether or not

the protection mechanism is in place. The measurement of this metric starts when the

system receives a program request and stops when the program completes initialization

and is ready for user interaction. Therefore, this metric measures the load time for

execution requests.

3.7 System Parameters

The parameters listed below affect performance of the protection mechanism.

 Device Type – The device type specifies the particular mobile platform being

tested. This research uses an Android Developer Phone 2 (ADP2).

 Operating System (OS) – The OS changes how the protection mechanism is

implemented while the hardware architecture changes based on the OS.

38

Modifications to the kernel or hooks into system calls are treated differently

depending on the OS. The OS used in this research is Android OS 1.5.

 Onboard RAM – The RAM available determines how quickly the system will

be able to process requests. More RAM should result in better performance.

The ADP2 has 192MB of onboard RAM.

 Onboard Storage Space – The storage space available in the system

determines how many programs and applications can be loaded on the device

at a time. Higher capacity means more executable code can be loaded. The

ADP2 has 512MB of Flash memory (ROM) and a 1GB microSD card.

 Application Type – The type of applications used in the test changes the way

the protection mechanism behaves. Content submitted to the system includes

Android application files.

 Default Content – The programs and applications installed by default on the

device affect the performance of the protection mechanism. A larger

collection of default content translates to more executable code that must be

signed initially and more hashes that must be checked for verification

purposes each time an execution service request is received. Default

applications on the ADP2 include: Alarm Clock, Browser, Calculator,

Calendar, Camcorder, Camera, Contacts, Dev Tools, Dialer, Email, Gallery,

Messaging, Music, Settings, Spare Parts, and Voice Dialer.

 White-list – APS relies on a collection of hash digests of each approved

application package in the system. The location and size of this white-list

affects the efficiency of the protection mechanism.

39

 Central Processing Unit (CPU) – The CPU of the system device determines

how fast the system can execute instructions and therefore has an effect on the

efficiency of the protection mechanism. The ADP2 has a MSM7200A

528MHz processor.

 APS Control – APS consists of a modified Android kernel, complete with an

application white-list and custom security functions. This protection

mechanism is either enabled on the device or is absent. Enabling APS affects

system performance.

3.8 Factors

The factors listed below are used in this research at the corresponding levels.

Table 3.1 displays a table of all factors and levels.

Table 3.1. Experimental Factors

Factors Levels

Application

Type

Unapproved Content
Malicious Application

Non-malicious Application

Approved Content

Workload

Small

Medium

Large

Extra-Large

APS Switch
Enabled On

Enabled Off

 Application Type

o Unapproved Content – This application is not on the approved list for

the system and can be one of two types: malicious or non-malicious

application.

40

 Malicious Application – This application uses a virus or malware

to attack the system. The malicious application represents an

unauthorized user trying to gain access to the system.

 Non-malicious Application – This program or application is not

malicious but is also not on the approved list for the system. Non-

malicious applications represent legitimate users trying to

download and install programs or applications not approved for

use on the device.

o Approved Content – This application is on the system by default or

included in the list of programs allowed to execute on the device. All

executable code in this level is signed and models normal users

executing approved programs.

 Workload

o Small – An Android application package of size <100KB is requested

for execution on the device. An individual service request is sent for

an application while no other applications are executing. The number

of requests sent is one and the frequency is once.

o Medium – An Android application package of size >100KB and

<500KB is requested for execution on the device. An individual

service request is sent for an application while no other applications

are executing. The number of requests sent is one and the frequency is

once.

41

o Large – An Android application package of size >500KB and <1MB is

requested for execution on the device. An individual service request is

sent for an application while no other applications are executing. The

number of requests sent is one and the frequency is once.

o Extra-Large – An Android application package of size >1MB is

requested for execution on the device. An individual service request is

sent for an application while no other applications are executing. The

number of request sent is one and the frequency is once.

 APS Switch

o Enabled On – APS is fully functional on the device, checking each

application package against the white-list prior to installation and

execution.

o Enabled Off – APS is turned off on the device, leaving application

packages to be handled by the default Android security mechanisms.

3.9 Evaluation Technique

A combination of simulation and measurement is used to evaluate the system.

The Android Software Development Kit (SDK) comes with a simulator for the Android

environment. The simulator verifies that the protection mechanism compiles successfully

on the Android device. Several Android OS versions are available for development use.

Following simulation, Android OS modifications are made and the kernel is

compiled on an actual Android device. Thus, measurements are taken on the real-world

system and directly show how the system performs.

42

The experimental configuration is an HTC Android Dev Phone 1 connected to a

Dell Latitude D630 laptop. Modifications made to the Android OS and the modified

kernel are compiled and flashed on the Dev Phone via the Dell laptop. Unapproved

content is loaded on the phone via the Dell laptop. The combination of simulation and

measurement supports each method being evaluated by the other.

3.10 Experimental Design

A full factorial design is used to evaluate the interaction between factors. The

factors include application type, workload, and APS switch, with 3, 4, and 2 levels,

respectively. This results in 3 x 4 x 2 = 24 experiments. It is expected that sufficient

statistical basis for analysis is achieved with 5 replications which brings the total number

of experiments to 120. Each experiment is run until service requests are allowed or

denied. The device, OS, onboard RAM, onboard storage, CPU, and default content all

remain the same throughout the experiments while the factors vary.

The variance of the data in this research should be relatively low, as the results

depend solely on either the allowing or blocking of application code. Results will be

reported with 95% confidence. The system overhead is expected to be slightly higher

with the APS employed and slightly higher with larger application packages.

3.11 Methodology Summary

Mobile devices are quickly becoming as popular as PCs for general purpose

computing. While computer network-type protections are available for mobile networks,

they are not nearly as sophisticated. This chapter describes the methodology for testing a

mobile network protection mechanism for Google‘s Android platform installed on an

43

HTC Dev Phone. The goal of the research is to provide a protection mechanism within

the kernel of the mobile device platform without incurring substantial system overhead.

The SUT and CUT are identified along with the accompanying parameters.

Factors are selected from the system and workload parameters. The methodology varies

these factors during experimentation to produce results in a variety of configurations.

The metrics used for evaluation include percentage of unapproved content blocked,

percentage of approved content allowed, and program delay.

The methodology consists of both simulation and measurement evaluations. The

Android platform comes with an emulator used for the simulations and an HTC Dev

Phone connected to a Dell Latitude D630 laptop is used for the measurement evaluations.

A full factorial design is implemented with 120 experiments being conducted across 5

replications.

44

IV. Android Protection System Performance

4.1 Introduction

This chapter presents the Android Protection System (APS), a signed code

modification of the Android OS 1.5 running on a smartphone device. White-list creation

and hash digest placement are described in the security mechanism implementation. The

evaluation technique is examined and results for functional protection and performance

overhead are reported and analyzed.

4.2 Android Protection System Implementation

Proper identification of Android application code is essential for successful APS

implementation. Android application code is delivered in packages called .jar or .apk

files similar to .zip archives. Android applications are typically written in the Java

programming language. The Dalvik Virtual Machine (DVM) operates strictly on Dalvik

bytecode, so all Java bytecode is converted and stored in a file called Classes.dex, which

is packaged inside the application-specific .apk file. The DVM must extract the

Classes.dex file from the .apk to install and run the application.

Default applications come pre-installed on the Android device and all default

applications are considered approved content. Other applications must go through the

installation process prior to execution. If changes are made to application packages after

installation, the application will not execute until it is reinstalled. During the installation

process, APS computes a hash of the application package and compares the result to the

white-list of approved content.

45

4.2.1 White-list Creation

The white-list stores a collection of content approved for execution on the device.

Rather than storing exact copies of the application files, which would be highly

inefficient, the APS computes a cryptographic hash digest offline for every approved

application package. These digests are saved in a white-list for comparisons at runtime.

These digests make it virtually impossible for an attacker to craft an application such that

it would be allowed to execute on the system. Even if the digests are openly stored, the

hashing is one-way, and it is impossible to compute a message from a digest.

The hashing algorithm used is the MD5 Message Digest Algorithm created and

copyrighted by RSA Data Security. The algorithm can be viewed in its entirety in

Appendix A. This algorithm comes complete with driver methods for creating hash

digests from files, strings, or directly from standard input. The MDFile() method

calculates hash digests for all approved .apk files offline. These digests make up the

white-list used by the APS.

4.2.2 Hash Digest Placement

Once all hash digests are calculated, they are stored as Strings in a file within the

Android kernel. Android applications are installed and loaded by a Package Manager.

APS creates new functions within Android OS PackageManagerService which are

accessible only by kernel-level processes, thus separating the protection mechanism from

user space. The hash digests, cryptographic hash algorithm, and APS security function

are placed within this service.

46

When a user attempts to install and execute an application on the Android device,

the system jumps into the PackageManagerService routines. Before allowing an

installation or runtime environment, the application package is supplied as input to a

hashing function that returns the MD5 checksum of the file in the form of a hash digest.

This digest is compared to the pre-computed values stored in the white-list. If a match is

found, the application package is considered approved content, the packageApproved flag

is set, and the application is allowed to install and execute on the device. If a match for

the hash digest is not found in the white-list, the packageApproved flag is not set and the

function sends an error message without installing the application or allowing it to

execute on the device. Appendix B identifies modifications made to the Android 1.5

source code.

4.3 Evaluation Technique

To evaluate the protection performance of APS, it is tested with the protection

mechanism both enabled and disabled. In the enabled configuration all application

package installation requests first pass through the custom APS security function. Upon

a white-list match the package is installed and a successful confirmation message is

passed to the user. If there is no white-list match, the package is blocked from

installation and a rejection message is passed to the user. The disabled configuration

removes the custom APS security function; all application package installation requests

are handled by the native Android system. In the disabled configuration it is expected all

applications will be allowed to install and execute on the device. Section 4.4 examines

results from protection testing.

47

To evaluate a system performance benchmark, the Android Debug Bridge (adb)

measures program delay. The adb is a versatile tool for managing the state of an

Android-powered device. It is a client-server program with built-in functions for timing

metrics. The server component runs as a background process on the development

machine (Dell laptop) and communicates with a daemon running as a background process

on the Android device. The client on the development machine establishes

communication through a command-line interface. A timestamp is taken when the

system receives an installation request from the adb client. A second timestamp is taken

when the installation request is finished processing and control is returned to the user.

Elapsed time is reported in milliseconds. Section 4.4 examines results from performance

testing.

4.4 Functional Protection Testing

Table 4.1 contains the functional protection results for the 120 tests conducted.

The APS mechanism is enabled for the first 60 tests. 12 applications are individually

submitted to the system for installation and 5 tests are run with each application for a

total of 60 tests with this APS configuration. The same 60 tests are run with the APS

mechanism disabled. The first letter of the application name identifies the size of the

application package. Small, medium, large, and extra-large file sizes are represented by

―s‖, ―m‖, ―l‖, and ―x‖ respectively. The remainder of the application name identifies the

application type. Approved, non-malicious, and malicious types are represented by

―app‖, ―non‖, and ―mal‖ respectively. Approved application packages have

corresponding entries in the system white-list and are expected to be allowed. Non-

48

malicious application packages do not have corresponding entries in the white-list and are

expected to be blocked. Malicious application packages are approved applications that

have been modified by an attacker. These packages have corresponding entries in the

white-list for the approved version, but the modified versions are expected to be blocked.

Table 4.1. APS Functional Protection Results

49

Tests 1 through 20 evaluate the four approved application packages with APS

enabled. In each case the actual action matches the expected action of ―allow.‖ Tests 21

through 60 evaluate the four non-malicious and four malicious application packages, all

of which should be blocked by APS. The results show that APS successfully produced

the expected action in each case.

Tests 61 through 120 evaluate the 12 application packages against the system with

APS disabled. The expected action for each of these tests is that the system will allow

installation and execution. There is no mechanism outside user interaction in place to

prevent installation of unapproved content. Test results indicate that the default Android

protection mechanism produced the expected action for each test case.

APS is successful in preventing the execution of unapproved application packages

on the Android device. 100% of unapproved content is blocked. APS is also successful

in allowing approved application packages to execute on the Android device. 100% of

approved content is allowed.

4.5 Performance Benchmark

The performance results of the 120 tests are shown in Table 4.2. Each row in the

table represents a single test configuration that is repeated five times. The five test times

are shown in the columns on the right with a calculated mean for each configuration. The

table is organized by application name and size, making it simple to compare

performance with APS enabled to performance with APS disabled (every row switches

APS status). As expected, mean load times for test configurations with APS enabled are

slightly higher than mean load times for test configurations with APS disabled.

50

Table 4.2. APS Performance Testing Results

Figure 4.1 shows a linear response in application load time according to file size.

The regression model for APS load time performance is ݀ܽ݋ܮ ܶ݅݉݁ ൌ ͲǤͳʹͲ ൅ ͲǤ͹͹͸ כ (1) ݁ݖ݅ܵ ݈݁݅ܨ

where ‗File Size‘ is the size of the application package file (.apk). The p value for the

regression analysis is less than 0.001, providing convincing evidence that the regression

model is a good fit for the data.

51

Figure 4.1. Application Load Time – APS Enabled

Figure 4.2 also shows a linear response in application load time according to file

size. The regression model for default Android load time performance is ݀ܽ݋ܮ ܶ݅݉݁ ൌ ͲǤͲͻͶ͹ ൅ ͲǤ͹͹͸ כ (2) ݁ݖ݅ܵ ݈݁݅ܨ

where ‗File Size‘ is the size of the application package file (.apk). The only difference

between these models is the location of the intercept.

The difference in performance mean times between APS enabled configurations

and APS disabled configurations is minimal. Table 4.3 shows that the mean difference

never exceeds 200 milliseconds, even for the largest application package sizes. The data

shows a linear response in mean load time according to file size. The regression model

for predicting the difference in mean time is ݁ܿ݊݁ݎ݂݂݁݅ܦ ൌ ʹͶǤͻ͹ͺ ൅ ͲǤͲͺ͸ כ (3) ݁ݖ݅ܵ ݈݁݅ܨ

52

where ‗File Size‘ is the size of the application package file (.apk). The 95% confidence

interval for the intercept is [-15.107, 65.065] and for the slope is [0.040, 0.132].

Figure 4.2. Application Load Time – APS Disabled

Table 4.3. Difference in Mean Load Times

The regression model is displayed in Figure 4.3. The plot has a few points

outside the 95% confidence interval, but the model has a clear linear increase. The

53

largest application package sizes tested in this research approach 2MB, nearly double the

1MB average size for Android applications. Even at this large size, the mean difference

in load time remains less than two-tenths of a second. The effect APS has on system

performance remains unnoticeable to the user. For a user to notice a difference in system

performance during an application installation process, the difference would have to be

several seconds. This threshold is significantly larger than the 1 second threshold

proposed by Nielsen [Nie93] because it takes place during the installation process, when

users expect a delay. Using (3), an application package size would have to be 23MB in

order for the user to experience an extra two seconds of delay with APS enabled. Thus,

APS achieves the development goal of adding minimal performance overhead.

Figure 4.3. Difference in Application Load Times

54

4.6 Summary

APS performs very well with respect to the default Android protection

mechanisms. Performance overhead for APS varies from 100.5% to 112.5% with respect

to the default Android application installation process. The overhead is linearly

increasing, but will remain within usable user limits for application packages up to at

least 23MB. APS prevents 100% of unapproved installations while allowing 100% of

approved content to install and execute. Chapter V addresses accomplishments of this

research and proposes future work for adding capability to this protection mechanism.

55

V. Conclusions

5.1 Research Accomplishments

This research explores application protection in the smartphone world.

Smartphones have greater capabilities than standard mobile phones, namely the ability to

run third party applications. While this ability provides many conveniences to

smartphone users, it also introduces new incentive and avenues for malicious activity.

APS is a signed code security mechanism developed and implemented on an Android 1.5

kernel. APS focuses on protecting the mobile device from the installation and execution

of unapproved applications, as this is where a high percentage of malicious activity

originates. The performance of APS is compared to the performance of the default

Android 1.5 platform.

Malicious applications can attack a mobile platform in many ways, but the

application packages must be unpacked and installed on the device in order for internal

code to execute. APS employs a security mechanism that hooks into the default

application installation process on the Android platform. APS prevents applications from

installing unless a hash digest computed during runtime matches a value stored in a

white-list within the Android kernel.

APS blocked 100% of installation requests originating from unapproved content

while allowing 100% of approved content to install and execute on the device. The APS

security mechanism is implemented on the Android platform with little or no noticeable

performance impact to the user. The mechanism is implemented during the installation

process, so default and approved applications on the device continue to execute with no

56

performance impact. All performance impact is realized during application installation.

A 1.8MB application package increases the system overhead during installation by 106

milliseconds. To reach two seconds in system overhead, a 23MB application package

would be required (based on a 95% prediction interval). With an average application

package size of ~1MB, the Android with APS does not impact user experience.

5.2 Research Impact

APS is perfectly suited for USAF and DoD enterprise deployment. However, the

type of protection offered by APS would likely not appeal to a typical smartphone user.

The signed-code mechanism of APS prevents users from downloading, installing, and

executing unapproved applications. With thousands of applications available, typical

users will avoid security mechanisms that hinder application freedom. Government,

military, and many corporate organizations however, may welcome ways to control

content allowed on company devices.

The white-list-based approach offered by APS is a simple means to an end for

security-minded organizations. This research establishes a foundation for building a

secure mobile device environment. Mobile system administrators can prepare a white-list

of approved applications for company devices and use APS to ensure no additional

applications are installed by device users. This security mechanism allows corporations

to reap the benefits of smartphone technology without having to worry about creating

vulnerabilities through the installation of unwanted applications.

57

5.3 Future Research Areas

The open source Android OS provides countless opportunities for custom security

modifications. Thus, APS is not an end-all solution. Even so, this research presents a

proof of concept that can be further developed into many types of security

implementations.

APS focuses on application security. New application packages are verified

against a white-list prior to installation. Protection is also needed for resident data on the

mobile device. Signing static code does not prevent the signed code from executing in a

malicious manner. Approved content that is later executed in some modified manner or

order could gain access to sensitive data on the device that is assumed to be safe from

attack. Adapting APS to ensure that applications execute as intended after installation

would solve this problem.

The manifest file (AndroidManifest.xml) contained in each application package

controls application permissions. All permissions are established at installation time and

cannot be modified during runtime. The typical smartphone user has no insight into the

legitimacy of application permission requests made during installation. Modifications

could be made to the APS mechanism to examine the manifest file prior to installation,

verifying that all requested permissions are necessary and legitimate. This approach

removes user approval of any system permission access requests.

The previous section discussed the limitations APS imposes on smartphone

application freedom. APS does however allow applications to be added to the device as

long as the hash is verified against a white-list. This limits the application selection to

only the pre-approved list. To approve more applications, the kernel has to be re-

58

compiled with a new white-list and flashed to the device. The APS security mechanism

could be modified to allow new applications to be added on the fly. This solution would

be difficult to develop while maintaining adequate protection, but success would make

APS-enabled devices attractive to a much broader user base.

The current APS implementation hard-codes a white-list directly inside the

custom security function. This is efficient, but security would be improved if the hash

digests were stored in an encrypted file that was not opened until white-list values were

requested. The performance hit taken for removing hard-coded white-list entries would

be worthwhile for the improved security.

This research focuses on application security. There are many additional types of

executable code resident on a mobile device. APS could be improved so as to protect

against a wider range of file types. Applications have the ability to dynamically pull code

from the Internet. This code would not pass through the application installation process,

so APS would not block it. The challenge is developing a mechanism that protects

against numerous file types and modes of execution without decreasing system

performance and overloading limited resources on the mobile device.

Though developed on the Android platform, APS need not be a purely

smartphone security mechanism. As Android is deployed to new types of devices,

research opportunities continue to grow. Tablet PCs, desktops, laptops, and automotive

computer systems are environments that need Android security research. APS has

proven successful in a smartphone environment and should also be tested on more robust

devices.

59

Appendix A. MD5 Message Digest Algorithm

Appendix A contains the MD5 Message Digest Algorithm as created and

implemented by RSA Data Security, Inc. This code is used to calculate hash digests for

approved Android application packages. These hash digests are stored in a white-list for

use in the APS implementation.

/*

 ** md5.h -- Header file for implementation of MD5
**
 ** RSA Data Security, Inc. MD5 Message Digest Algorithm
**
 ** Created: 2/17/90 RLR
**
 ** Revised: 12/27/90 SRD,AJ,BSK,JT Reference C version
**
 ** Revised (for MD5): RLR 4/27/91
**
 ** -- G modified to have y&~z instead of y&z
**
 ** -- FF, GG, HH modified to add in last register done
**
 ** -- Access pattern: round 2 works mod 5, round 3 works mod 3
**
 ** -- distinct additive constant for each step
**
 ** -- round 4 added, working mod 7
**

 */

/*

 ** Copyright (C) 1990, RSA Data Security, Inc. All rights
reserved. **
 **
**

60

 ** License to copy and use this software is granted provided
that **
 ** it is identified as the "RSA Data Security, Inc. MD5 Message
**
 ** Digest Algorithm" in all material mentioning or referencing
this **
 ** software or this function.
**
 **
**
 ** License is also granted to make and use derivative works
**
 ** provided that such works are identified as "derived from the
RSA **
 ** Data Security, Inc. MD5 Message Digest Algorithm" in all
**
 ** material mentioning or referencing the derived work.
**
 **
**
 ** RSA Data Security, Inc. makes no representations concerning
**
 ** either the merchantability of this software or the
suitability **
 ** of this software for any particular purpose. It is provided
"as **
 ** is" without express or implied warranty of any kind.
**
 **
**
 ** These notices must be retained in any copies of any part of
this **
 ** documentation and/or software.
**

 */

/* typedef a 32 bit type */
typedef unsigned long int UINT4;

/* Data structure for MD5 (Message Digest) computation */
typedef struct {
 UINT4 i[2]; /* number of _bits_ handled mod
2^64 */
 UINT4 buf[4]; /* scratch
buffer */
 unsigned char in[64]; /* input
buffer */

61

 unsigned char digest[16]; /* actual digest after MD5Final
call */
} MD5_CTX;

void MD5Init ();
void MD5Update ();
void MD5Final ();

/*

 ** End of md5.h
**
 ******************************* (cut)

 */

/*

 ** md5.c
**
 ** RSA Data Security, Inc. MD5 Message Digest Algorithm
**
 ** Created: 2/17/90 RLR
**
 ** Revised: 1/91 SRD,AJ,BSK,JT Reference C Version
**

 */

/*

 ** Copyright (C) 1990, RSA Data Security, Inc. All rights
reserved. **
 **
**
 ** License to copy and use this software is granted provided
that **
 ** it is identified as the "RSA Data Security, Inc. MD5 Message
**
 ** Digest Algorithm" in all material mentioning or referencing
this **

62

 ** software or this function.
**
 **
**
 ** License is also granted to make and use derivative works
**
 ** provided that such works are identified as "derived from the
RSA **
 ** Data Security, Inc. MD5 Message Digest Algorithm" in all
**
 ** material mentioning or referencing the derived work.
**
 **
**
 ** RSA Data Security, Inc. makes no representations concerning
**
 ** either the merchantability of this software or the
suitability **
 ** of this software for any particular purpose. It is provided
"as **
 ** is" without express or implied warranty of any kind.
**
 **
**
 ** These notices must be retained in any copies of any part of
this **
 ** documentation and/or software.
**

 */

/* -- include the following line if the md5.h header file is
separate -- */
/* #include "md5.h" */

/* forward declaration */
static void Transform ();

static unsigned char PADDING[64] = {
 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

63

/* F, G and H are basic MD5 functions: selection, majority,
parity */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4
*/
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s, ac) \
 {(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define GG(a, b, c, d, x, s, ac) \
 {(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define HH(a, b, c, d, x, s, ac) \
 {(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define II(a, b, c, d, x, s, ac) \
 {(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }

void MD5Init (mdContext)
MD5_CTX *mdContext;
{
 mdContext->i[0] = mdContext->i[1] = (UINT4)0;

 /* Load magic initialization constants.
 */
 mdContext->buf[0] = (UINT4)0x67452301;
 mdContext->buf[1] = (UINT4)0xefcdab89;
 mdContext->buf[2] = (UINT4)0x98badcfe;
 mdContext->buf[3] = (UINT4)0x10325476;
}

void MD5Update (mdContext, inBuf, inLen)
MD5_CTX *mdContext;

64

unsigned char *inBuf;
unsigned int inLen;
{
 UINT4 in[16];
 int mdi;
 unsigned int i, ii;

 /* compute number of bytes mod 64 */
 mdi = (int)((mdContext->i[0] >> 3) & 0x3F);

 /* update number of bits */
 if ((mdContext->i[0] + ((UINT4)inLen << 3)) < mdContext->i[0])
 mdContext->i[1]++;
 mdContext->i[0] += ((UINT4)inLen << 3);
 mdContext->i[1] += ((UINT4)inLen >> 29);

 while (inLen--) {
 /* add new character to buffer, increment mdi */
 mdContext->in[mdi++] = *inBuf++;

 /* transform if necessary */
 if (mdi == 0x40) {
 for (i = 0, ii = 0; i < 16; i++, ii += 4)
 in[i] = (((UINT4)mdContext->in[ii+3]) << 24) |
 (((UINT4)mdContext->in[ii+2]) << 16) |
 (((UINT4)mdContext->in[ii+1]) << 8) |
 ((UINT4)mdContext->in[ii]);
 Transform (mdContext->buf, in);
 mdi = 0;
 }
 }
}

void MD5Final (mdContext)
MD5_CTX *mdContext;
{
 UINT4 in[16];
 int mdi;
 unsigned int i, ii;
 unsigned int padLen;

 /* save number of bits */
 in[14] = mdContext->i[0];
 in[15] = mdContext->i[1];

 /* compute number of bytes mod 64 */
 mdi = (int)((mdContext->i[0] >> 3) & 0x3F);

 /* pad out to 56 mod 64 */
 padLen = (mdi < 56) ? (56 - mdi) : (120 - mdi);

65

 MD5Update (mdContext, PADDING, padLen);

 /* append length in bits and transform */
 for (i = 0, ii = 0; i < 14; i++, ii += 4)
 in[i] = (((UINT4)mdContext->in[ii+3]) << 24) |
 (((UINT4)mdContext->in[ii+2]) << 16) |
 (((UINT4)mdContext->in[ii+1]) << 8) |
 ((UINT4)mdContext->in[ii]);
 Transform (mdContext->buf, in);

 /* store buffer in digest */
 for (i = 0, ii = 0; i < 4; i++, ii += 4) {
 mdContext->digest[ii] = (unsigned char)(mdContext->buf[i] &
0xFF);
 mdContext->digest[ii+1] =
 (unsigned char)((mdContext->buf[i] >> 8) & 0xFF);
 mdContext->digest[ii+2] =
 (unsigned char)((mdContext->buf[i] >> 16) & 0xFF);
 mdContext->digest[ii+3] =
 (unsigned char)((mdContext->buf[i] >> 24) & 0xFF);
 }
}

/* Basic MD5 step. Transform buf based on in.
 */
static void Transform (buf, in)
UINT4 *buf;
UINT4 *in;
{
 UINT4 a = buf[0], b = buf[1], c = buf[2], d = buf[3];

 /* Round 1 */
#define S11 7
#define S12 12
#define S13 17
#define S14 22
 FF (a, b, c, d, in[0], S11, 3614090360); /* 1 */
 FF (d, a, b, c, in[1], S12, 3905402710); /* 2 */
 FF (c, d, a, b, in[2], S13, 606105819); /* 3 */
 FF (b, c, d, a, in[3], S14, 3250441966); /* 4 */
 FF (a, b, c, d, in[4], S11, 4118548399); /* 5 */
 FF (d, a, b, c, in[5], S12, 1200080426); /* 6 */
 FF (c, d, a, b, in[6], S13, 2821735955); /* 7 */
 FF (b, c, d, a, in[7], S14, 4249261313); /* 8 */
 FF (a, b, c, d, in[8], S11, 1770035416); /* 9 */
 FF (d, a, b, c, in[9], S12, 2336552879); /* 10 */
 FF (c, d, a, b, in[10], S13, 4294925233); /* 11 */
 FF (b, c, d, a, in[11], S14, 2304563134); /* 12 */
 FF (a, b, c, d, in[12], S11, 1804603682); /* 13 */
 FF (d, a, b, c, in[13], S12, 4254626195); /* 14 */

66

 FF (c, d, a, b, in[14], S13, 2792965006); /* 15 */
 FF (b, c, d, a, in[15], S14, 1236535329); /* 16 */

 /* Round 2 */
#define S21 5
#define S22 9
#define S23 14
#define S24 20
 GG (a, b, c, d, in[1], S21, 4129170786); /* 17 */
 GG (d, a, b, c, in[6], S22, 3225465664); /* 18 */
 GG (c, d, a, b, in[11], S23, 643717713); /* 19 */
 GG (b, c, d, a, in[0], S24, 3921069994); /* 20 */
 GG (a, b, c, d, in[5], S21, 3593408605); /* 21 */
 GG (d, a, b, c, in[10], S22, 38016083); /* 22 */
 GG (c, d, a, b, in[15], S23, 3634488961); /* 23 */
 GG (b, c, d, a, in[4], S24, 3889429448); /* 24 */
 GG (a, b, c, d, in[9], S21, 568446438); /* 25 */
 GG (d, a, b, c, in[14], S22, 3275163606); /* 26 */
 GG (c, d, a, b, in[3], S23, 4107603335); /* 27 */
 GG (b, c, d, a, in[8], S24, 1163531501); /* 28 */
 GG (a, b, c, d, in[13], S21, 2850285829); /* 29 */
 GG (d, a, b, c, in[2], S22, 4243563512); /* 30 */
 GG (c, d, a, b, in[7], S23, 1735328473); /* 31 */
 GG (b, c, d, a, in[12], S24, 2368359562); /* 32 */

 /* Round 3 */
#define S31 4
#define S32 11
#define S33 16
#define S34 23
 HH (a, b, c, d, in[5], S31, 4294588738); /* 33 */
 HH (d, a, b, c, in[8], S32, 2272392833); /* 34 */
 HH (c, d, a, b, in[11], S33, 1839030562); /* 35 */
 HH (b, c, d, a, in[14], S34, 4259657740); /* 36 */
 HH (a, b, c, d, in[1], S31, 2763975236); /* 37 */
 HH (d, a, b, c, in[4], S32, 1272893353); /* 38 */
 HH (c, d, a, b, in[7], S33, 4139469664); /* 39 */
 HH (b, c, d, a, in[10], S34, 3200236656); /* 40 */
 HH (a, b, c, d, in[13], S31, 681279174); /* 41 */
 HH (d, a, b, c, in[0], S32, 3936430074); /* 42 */
 HH (c, d, a, b, in[3], S33, 3572445317); /* 43 */
 HH (b, c, d, a, in[6], S34, 76029189); /* 44 */
 HH (a, b, c, d, in[9], S31, 3654602809); /* 45 */
 HH (d, a, b, c, in[12], S32, 3873151461); /* 46 */
 HH (c, d, a, b, in[15], S33, 530742520); /* 47 */
 HH (b, c, d, a, in[2], S34, 3299628645); /* 48 */

 /* Round 4 */
#define S41 6
#define S42 10

67

#define S43 15
#define S44 21
 II (a, b, c, d, in[0], S41, 4096336452); /* 49 */
 II (d, a, b, c, in[7], S42, 1126891415); /* 50 */
 II (c, d, a, b, in[14], S43, 2878612391); /* 51 */
 II (b, c, d, a, in[5], S44, 4237533241); /* 52 */
 II (a, b, c, d, in[12], S41, 1700485571); /* 53 */
 II (d, a, b, c, in[3], S42, 2399980690); /* 54 */
 II (c, d, a, b, in[10], S43, 4293915773); /* 55 */
 II (b, c, d, a, in[1], S44, 2240044497); /* 56 */
 II (a, b, c, d, in[8], S41, 1873313359); /* 57 */
 II (d, a, b, c, in[15], S42, 4264355552); /* 58 */
 II (c, d, a, b, in[6], S43, 2734768916); /* 59 */
 II (b, c, d, a, in[13], S44, 1309151649); /* 60 */
 II (a, b, c, d, in[4], S41, 4149444226); /* 61 */
 II (d, a, b, c, in[11], S42, 3174756917); /* 62 */
 II (c, d, a, b, in[2], S43, 718787259); /* 63 */
 II (b, c, d, a, in[9], S44, 3951481745); /* 64 */

 buf[0] += a;
 buf[1] += b;
 buf[2] += c;
 buf[3] += d;
}

/*

 ** End of md5.c
**
 ******************************* (cut)

 */

/*

 ** md5driver.c -- sample routines to test
**
 ** RSA Data Security, Inc. MD5 message digest algorithm.
**
 ** Created: 2/16/90 RLR
**
 ** Updated: 1/91 SRD
**

68

 */

/*

 ** Copyright (C) 1990, RSA Data Security, Inc. All rights
reserved. **
 **
**
 ** RSA Data Security, Inc. makes no representations concerning
**
 ** either the merchantability of this software or the
suitability **
 ** of this software for any particular purpose. It is provided
"as **
 ** is" without express or implied warranty of any kind.
**
 **
**
 ** These notices must be retained in any copies of any part of
this **
 ** documentation and/or software.
**

 */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>
#include <string.h>
/* -- include the following file if the file md5.h is separate --
*/
/* #include "md5.h" */

/* Prints message digest buffer in mdContext as 32 hexadecimal
digits.
 Order is from low-order byte to high-order byte of digest.
 Each byte is printed with high-order hexadecimal digit first.
 */
static void MDPrint (mdContext)
MD5_CTX *mdContext;
{
 int i;

 for (i = 0; i < 16; i++)
 printf ("%02x", mdContext->digest[i]);
}

69

/* size of test block */
#define TEST_BLOCK_SIZE 1000

/* number of blocks to process */
#define TEST_BLOCKS 10000

/* number of test bytes = TEST_BLOCK_SIZE * TEST_BLOCKS */
static long TEST_BYTES = (long)TEST_BLOCK_SIZE *
(long)TEST_BLOCKS;

/* A time trial routine, to measure the speed of MD5.
 Measures wall time required to digest TEST_BLOCKS *
TEST_BLOCK_SIZE
 characters.
 */
static void MDTimeTrial ()
{
 MD5_CTX mdContext;
 time_t endTime, startTime;
 unsigned char data[TEST_BLOCK_SIZE];
 unsigned int i;

 /* initialize test data */
 for (i = 0; i < TEST_BLOCK_SIZE; i++)
 data[i] = (unsigned char)(i & 0xFF);

 /* start timer */
 printf ("MD5 time trial. Processing %ld characters...\n",
TEST_BYTES);
 time (&startTime);

 /* digest data in TEST_BLOCK_SIZE byte blocks */
 MD5Init (&mdContext);
 for (i = TEST_BLOCKS; i > 0; i--)
 MD5Update (&mdContext, data, TEST_BLOCK_SIZE);
 MD5Final (&mdContext);

 /* stop timer, get time difference */
 time (&endTime);
 MDPrint (&mdContext);
 printf (" is digest of test input.\n");
 printf
 ("Seconds to process test input: %ld\n", (long)(endTime-
startTime));
 printf
 ("Characters processed per second: %ld\n",
 TEST_BYTES/(endTime-startTime));
}

70

/* Computes the message digest for string inString.
 Prints out message digest, a space, the string (in quotes) and
a
 carriage return.
 */
static void MDString (inString)
char *inString;
{
 MD5_CTX mdContext;
 unsigned int len = strlen (inString);

 MD5Init (&mdContext);
 MD5Update (&mdContext, inString, len);
 MD5Final (&mdContext);
 MDPrint (&mdContext);
 printf (" \"%s\"\n\n", inString);
}

/* Computes the message digest for a specified file.
 Prints out message digest, a space, the file name, and a
carriage
 return.
 */
static void MDFile (filename)
char *filename;
{
 FILE *inFile = fopen (filename, "rb");
 MD5_CTX mdContext;
 int bytes;
 unsigned char data[1024];

 if (inFile == NULL) {
 printf ("%s can't be opened.\n", filename);
 return;
 }

 MD5Init (&mdContext);
 while ((bytes = fread (data, 1, 1024, inFile)) != 0)
 MD5Update (&mdContext, data, bytes);
 MD5Final (&mdContext);
 MDPrint (&mdContext);
 printf (" %s\n", filename);
 fclose (inFile);
}

/* Writes the message digest of the data from stdin onto stdout,
 followed by a carriage return.
 */
static void MDFilter ()
{

71

 MD5_CTX mdContext;
 int bytes;
 unsigned char data[16];

 MD5Init (&mdContext);
 while ((bytes = fread (data, 1, 16, stdin)) != 0)
 MD5Update (&mdContext, data, bytes);
 MD5Final (&mdContext);
 MDPrint (&mdContext);
 printf ("\n");
}

/* Runs a standard suite of test data.
 */
static void MDTestSuite ()
{
 printf ("MD5 test suite results:\n\n");
 MDString ("");
 MDString ("a");
 MDString ("abc");
 MDString ("message digest");
 MDString ("abcdefghijklmnopqrstuvwxyz");
 MDString

("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
);
 MDString
 ("1234567890123456789012345678901234567890\
1234567890123456789012345678901234567890");
 /* Contents of file foo are "abc" */
 MDFile ("foo");
}

void main (argc, argv)
int argc;
char *argv[];
{
 int i;

 /* For each command line argument in turn:
 ** filename -- prints message digest and name of file
 ** -sstring -- prints message digest and contents of
string
 ** -t -- prints time trial statistics for 1M
characters
 ** -x -- execute a standard suite of test data
 ** (no args) -- writes messages digest of stdin onto
stdout
 */
 if (argc == 1)

72

 MDFilter ();
 else
 for (i = 1; i < argc; i++)
 if (argv[i][0] == '-' && argv[i][1] == 's')
 MDString (argv[i] + 2);
 else if (strcmp (argv[i], "-t") == 0)
 MDTimeTrial ();
 else if (strcmp (argv[i], "-x") == 0)
 MDTestSuite ();
 else MDFile (argv[i]);
}

/*

 ** End of md5driver.c
**
 ******************************* (cut)

 */

73

Appendix B. APS Modification to Android OS 1.5

Appendix B contains the APS security mechanism implementation on the

Android OS 1.5. APS modifies the contents of PackageManagerService.java. All APS

modifications fall within the installPackageLI() function shown here. The

PackageManagerService.java file in its entirety can be viewed in the com.android.server

package downloaded from http://source.android.com.

/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the
"License");
 * you may not use this file except in compliance with the
License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
software
 * distributed under the License is distributed on an "AS IS"
BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied.
 * See the License for the specific language governing
permissions and
 * limitations under the License.
 */

package com.android.server;

private PackageInstalledInfo installPackageLI(Uri pPackageURI,
 int pFlags, boolean newInstall) {
 File tmpPackageFile = null;
 String pkgName = null;
 boolean forwardLocked = false;
 boolean replacingExistingPackage = false;
 // Result object to be returned
 PackageInstalledInfo res = new PackageInstalledInfo();
 res.returnCode = PackageManager.INSTALL_SUCCEEDED;
 res.uid = -1;

74

 res.pkg = null;
 res.removedInfo = new PackageRemovedInfo();

 main_flow: try {
 tmpPackageFile = createTempPackageFile();
 if (tmpPackageFile == null) {
 res.returnCode =
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE;
 break main_flow;
 }
 tmpPackageFile.deleteOnExit(); // paranoia
 if (pPackageURI.getScheme().equals("file")) {
 final File srcPackageFile = new
File(pPackageURI.getPath());
 // We copy the source package file to a temp file
and then rename it to the
 // destination file in order to eliminate a
window where the package directory
 // scanner notices the new package file but it's
not completely copied yet.
 if (!FileUtils.copyFile(srcPackageFile,
tmpPackageFile)) {
 Log.e(TAG, "Couldn't copy package file to
temp file.");
 res.returnCode =
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE;
 break main_flow;
 }
 } else if (pPackageURI.getScheme().equals("content"))
{
 ParcelFileDescriptor fd;
 try {
 fd =
mContext.getContentResolver().openFileDescriptor(pPackageURI,
"r");
 } catch (FileNotFoundException e) {
 Log.e(TAG, "Couldn't open file descriptor
from download service.");
 res.returnCode =
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE;
 break main_flow;
 }
 if (fd == null) {
 Log.e(TAG, "Couldn't open file descriptor
from download service (null).");
 res.returnCode =
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE;
 break main_flow;
 }
 if (Config.LOGV) {

75

 Log.v(TAG, "Opened file descriptor from
download service.");
 }
 ParcelFileDescriptor.AutoCloseInputStream
 dlStream = new
ParcelFileDescriptor.AutoCloseInputStream(fd);
 // We copy the source package file to a temp file
and then rename it to the
 // destination file in order to eliminate a
window where the package directory
 // scanner notices the new package file but it's
not completely copied yet.
 if (!FileUtils.copyToFile(dlStream,
tmpPackageFile)) {
 Log.e(TAG, "Couldn't copy package stream to
temp file.");
 res.returnCode =
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE;
 break main_flow;
 }
 } else {
 Log.e(TAG, "Package URI is not 'file:' or
'content:' - " + pPackageURI);
 res.returnCode =
PackageManager.INSTALL_FAILED_INVALID_URI;
 break main_flow;
 }
 pkgName = PackageParser.parsePackageName(
 tmpPackageFile.getAbsolutePath(), 0);
 if (pkgName == null) {
 Log.e(TAG, "Couldn't find a package name in : " +
tmpPackageFile);
 res.returnCode =
PackageManager.INSTALL_FAILED_INVALID_APK;
 break main_flow;
 }
 res.name = pkgName;
 //initialize some variables before installing pkg
 final String pkgFileName = pkgName + ".apk";

 /*
 * Android Protection System (APS) Code added by Capt
Jonathan D. Stueckle, USAF
 * Air Force Institute of Technology Graduate Student,
March 2011
 *
 * A boolean flag 'packageApproved' is initialized for
storing the result of the content hashing

76

 * and comparison. The flag remains false unless the
value is updated based on the result from
 * the custom approveApk()function.
 *
 * The full path of the application package requesting
installation is sent to the custom function.
 * This source file is run through the hashing algorithm
and returns a boolean "true" if a match
 * is found. In this case, the application package then
continues through the installation process.
 * If no match is found, the function exits leaving the
flag with a "false" value, causing the
 * installPackageLI() function to exit with an "Invalid
APK" Error message.
 */

 /* Flag to store hashing & comparison result (added
JDS) */
 boolean packageApproved = false;

 /* Full application package path sent to custom APS
function (added JDS) */
 packageApproved=approveApk(tmpPackageFile.getPath());

 /*
 * Hash digest match was found in white-list, so
application package is approved
 * and can continue through normal installation
process. (added JDS)
 */
 if(packageApproved)
 {

 /* Normal installation process not modified by
JDS */
 final File destDir =
((pFlags&PackageManager.FORWARD_LOCK_PACKAGE) != 0)
 ? mDrmAppPrivateInstallDir
 : mAppInstallDir;
 final File destPackageFile = new File(destDir,
pkgFileName);
 final String destFilePath =
destPackageFile.getAbsolutePath();
 File destResourceFile;
 if ((pFlags&PackageManager.FORWARD_LOCK_PACKAGE)
!= 0) {
 final String publicZipFileName = pkgName +
".zip";
 destResourceFile = new File(mAppInstallDir,
publicZipFileName);

77

 forwardLocked = true;
 } else {
 destResourceFile = destPackageFile;
 }
 // Retrieve PackageSettings and parse package
 int parseFlags = PackageParser.PARSE_CHATTY;
 parseFlags |= mDefParseFlags;
 PackageParser pp = new
PackageParser(tmpPackageFile.getPath());
 pp.setSeparateProcesses(mSeparateProcesses);
 pp.setSdkVersion(mSdkVersion);
 final PackageParser.Package pkg =
pp.parsePackage(tmpPackageFile,
 destPackageFile.getAbsolutePath(),
mMetrics, parseFlags);
 if (pkg == null) {
 res.returnCode = pp.getParseError();
 break main_flow;
 }
 if (GET_CERTIFICATES &&
!pp.collectCertificates(pkg, parseFlags)) {
 res.returnCode = pp.getParseError();
 break main_flow;
 }

 synchronized (mPackages) {
 //check if installing already existing
package
 if
((pFlags&PackageManager.REPLACE_EXISTING_PACKAGE) != 0
 &&
mPackages.containsKey(pkgName)) {
 replacingExistingPackage = true;
 }
 }

 if(replacingExistingPackage) {
 replacePackageLI(pkgName,
 tmpPackageFile,
 destFilePath, destPackageFile,
destResourceFile,
 pkg, forwardLocked, newInstall,
 res);
 } else {
 installNewPackageLI(pkgName,
 tmpPackageFile,
 destFilePath, destPackageFile,
destResourceFile,
 pkg, forwardLocked, newInstall,
 res);

78

 }
 } //End of normal installation process

 /*
 * Hash digest match was not found in white-list, so
application package is not
 * approved and is blocked from continuing through the
installation process.
 * APS adds an error message here to indicate to the
user that the application
 * package was not approved. (added JDS)
 */
 else {
 /* Message sent back to user (added JDS) */
 res.returnCode =
PackageManager.INSTALL_FAILED_INVALID_APK;
 /*Skip installation process and return error
(added JDS) */
 break main_flow;
 }

 } finally {
 if (tmpPackageFile != null && tmpPackageFile.exists())
{
 tmpPackageFile.delete();
 }
 }
 return res;
 }

 /*
 * Android Protection System (APS) Code added by Capt
Jonathan D. Stueckle, USAF
 * Air Force Institute of Technology Graduate Student, March
2011
 *
 * This code was obtained from http://www.apache.org and
provides the
 * functionality for calculating MD5 hash digests for the
application packages.
 * The APS custom aproveApk() function utilizes
getMD5Checksum(), which then calls
 * createChecksum() to help calculate the hash.
 *
 * getMD5Checksum() incorporates a fast way to convert a byte
array to a HEX string.
 */

 public static String getMD5Checksum(String filename) throws
Exception {

79

 /* byte array to hold result from hashing function (added
JDS) */
 byte[] b = createChecksum(filename);

 /* String to hold HEX conversion of byte array (added JDS)
*/
 String result = "";

 /* Convert byte array to HEX string (added JDS) */
 for (int i=0; i < b.length; i++) {
 result +=
 Integer.toString((b[i] & 0xff) + 0x100,
16).substring(1);
 }
 /* Hash digest of application package now returned to
approveApk() function
 * for determination of white-list match. (added JDS)
 */
 return result;
 }

 public static byte[] createChecksum(String filename) throws
 Exception {

 /* Read in application package for hashing (added JDS) */
 InputStream fis = new FileInputStream(filename);

 /* Calculate MD5 checksum of application package (added
JDS) */
 byte[] buffer = new byte[1024];
 MessageDigest complete = MessageDigest.getInstance("MD5");
 int numRead;
 do {
 numRead = fis.read(buffer);
 if (numRead > 0) {
 complete.update(buffer, 0, numRead);
 }
 } while (numRead != -1);
 fis.close();
 /* Returns byte array containing hash digest (added JDS)
*/
 return complete.digest();
 }

 /*
 *

80

 * Android Protection System (APS) Code written by Capt
Jonathan D. Stueckle, USAF
 * Air Force Institute of Technology Graduate Student, March
2011
 *
 * This function receives the full path of an application
packages as input and
 * returns a boolean output indicating if a hash digest match
was found in the
 * white-list. A value of 'true' corresponds to a match, so
the boolean
 * 'approvedContent' is initialized to 'false.'
 *
 * The APS white-list consists of hash digests stored in
strings. There is a digest
 * corresponding to each default application on the system as
well as for external
 * applications that have been approved.
 *
 * A string 'hash_check' is set to the return value from the
getMD5Checksum() function.
 * This string is a HEX representation of the MD5 hash digest
computed on the
 * submitted application package.
 *
 * This string is then compared against each string stored in
the white-list. If a match
 * is found, the boolean flag is set to 'true' and returned.
This allows the submitted
 * application package to continue through the installation
process and the application
 * be allowed to execute on the Android device. If no match
is found, the flag remains
 * 'false' and when returned it blocks the application
package from installation, denying
 * execution of the application on the device.
 */

 public static boolean approveApk(String filePath) {

 /* Flag to store hashing & comparison result */
 boolean approvedContent = false;

 /* APS white-list - represents all approved applications */
 String alarm = "8896f8d227b04781daaf095c3167736d";
 //Default app
 String browser = "a3f878fc3450f69543bd689f148a6cd7";
 //Default app
 String calc = "af7704733992987922f89e4d09607def";
 //Default app

81

 String calendar = "c7a5ba3b1b03fcdad1bfbdaaa2588a6a";
 //Default app
 String calProv = "e3c570a2f83e2dd73610b0c42c3ec1cb";
 //Default app
 String camera = "2108c148abb3c9ecfacc3d420359f267";
 //Default app
 String contacts = "7207e0d85e4655da4486b9febb0d2da5";
 //Default app
 String contProv = "7d76c5495830aed6c9855a37e5d58cd5";
 //Default app
 String dev = "b682a76a5de57d2399136d0739e3f4f6";
 //Default app
 String downProv = "ab73085f4bca1720021b9766d4930d07";
 //Default app
 String drmProv = "2a320eefe517fe3213333f639e8ce498";
 //Default app
 String email = "f1a7e8a24fc6492a873af6939bb103a2";
 //Default app
 String googSearch = "06a45a35afb6efebecd295255357ba93";
 //Default app
 String html = "46db4ef1e3b005c8313d11e83e0955af";
 //Default app
 String imProv = "7629ec3578803de655508718c9e5f577";
 //Default app
 String latin = "330335bfc4c3333fa8d15e77caebea90";
 //Default app
 String launch = "23491fcbd1d40701e9bbfc1be53a7af9";
 //Default app
 String media = "7339bd4c3e81fb7a43601ce05c280ba3";
 //Default app
 String mms = "e81e0161aabcdcfe7df30824f4763b9f";
 //Default app
 String music = "60dc8e68ec2a850e34c61e459e4d4304";
 //Default app
 String packIns = "1c5355e767f1887a725d555b38a5abd0";
 //Default app
 String phone = "a42e096375cb31eb2cdc733818300607";
 //Default app
 String sdk = "6ba40c5241c04d395b5303c8f7dd2aab";
 //Default app
 String settings = "e25d7d5f97cac8650c10a9e5ab3faa30";
 //Default app
 String setProv = "6abe6e95a75a78ec122714a889d9878a";
 //Default app
 String sound = "b3226a2a4ef823b71c738a87e366a0db";
 //Default app
 String spare = "b7ebad29f535b4645f58f013cbe86bd7";
 //Default app
 String subsc = "282f7575bcc9bbfb6570e060635d58a3";
 //Default app

82

 String telep = "893d234aac0fcde18b0246856d2cb455";
 //Default app
 String term = "16e003868e775a18805955e7ffe736e4";
 //Default app
 String user = "69cf79ae88262974b7e194ba91d3476d";
 //Default app
 String voice = "4c8a08b5c4c1bbb653d8d8eba72a6be3";
 //Default app
 String framres = "1bfdef7219657c99badbc593851ed4a7";
 //Default app
 String appinst = "5ebbe69c85dbe29f26faa51dbc02f730";
 //AppsInstaller
 String algtut = "dc8c5fe4bd847b42a47664a989a9932c";
 //AlgebraTutor
 String mictagread = "3e0b5702d3fb27af68d1d701b9cc9a14";
 //MicrosoftTagReader
 String tinyflash = "5be80ad02692a41912aaeb2d01c2a8c9";
 //TinyFlashlight
 String apricalc = "0eded4890d8dde529761d16ea75d3f01";
 //aPriceCalc
 String autokill = "bcd8b0a97b7750da7c2c19a1d39b09fe";
 //AutorunKiller
 String ligrac = "4bdee01df1fc194cb014a96653b75096";
 //LightRacer
 String vidbox = "c1f012df7d3d463b2c67cc6bc70d82cf";
 //videobox

 /* Variable to store hash digest of application package */
 String hash_check = "";

 try{
 /* Get hash digest */
 hash_check = getMD5Checksum(filePath);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 /* Compare hash digest to all values stored in the APS
white-list */

 if(hash_check.equals(voice)||hash_check.equals(user)||hash_
check.equals(term)||

 hash_check.equals(telep)||hash_check.equals(subsc)||hash_ch
eck.equals(spare)||

 hash_check.equals(sound)||hash_check.equals(setProv)||hash_
check.equals(settings)||

83

 hash_check.equals(sdk)||hash_check.equals(phone)||hash_chec
k.equals(packIns)||

 hash_check.equals(music)||hash_check.equals(mms)||hash_chec
k.equals(media)||

 hash_check.equals(launch)||hash_check.equals(latin)||hash_c
heck.equals(imProv)||

 hash_check.equals(html)||hash_check.equals(googSearch)||has
h_check.equals(email)||

 hash_check.equals(drmProv)||hash_check.equals(downProv)||ha
sh_check.equals(dev)||

 hash_check.equals(contProv)||hash_check.equals(contacts)||h
ash_check.equals(camera)||

 hash_check.equals(calProv)||hash_check.equals(calendar)||ha
sh_check.equals(calc)||

 hash_check.equals(browser)||hash_check.equals(alarm)||hash_
check.equals(framres)||

 hash_check.equals(appinst)||hash_check.equals(algtut)||hash
_check.equals(mictagread)||

 hash_check.equals(tinyflash)||hash_check.equals(apricalc)||
hash_check.equals(autokill)||

 hash_check.equals(ligrac)||hash_check.equals(vidbox))

 /* Match is found - indicate approved application */
 approvedContent = true;

 /* Flag containing approval result - 'true' if match found
*/
 return approvedContent;

 } /* End of APS custom security function */

84

Bibliography

[ARM05] ARM Architecture Reference Manual. Cambridge, England: ARM Limited,

2005.

[BurE09] E. Burnette. Hello, Android: Introducing Google’s Mobile Development

Platform. Raleigh NC: The Pragmatic Bookshelf, 2009.

[BurJ08] J. Burns. ―Developing Secure Mobile Applications For Android: An

Introduction to making secure Android applications‖. iSec Partners. October,
2008.

[BurJ09] J. Burns. ―Mobile Application Security on Android: Context on Android

Security‖. iSec Partners. Prepared for Black Hat USA 2009. June, 2009.

[Cha09] A. Chaudhuri. ―Language-Based Security on Android‖. Programming

Languages and Analysis for Security (PLAS) ’09. Dublin Ireland. June 15,
2009.

[DCI09] Dot Com Infoway. ―Android by 2012: A study on present and future of

Google‘s Android‖. Position Paper. http://www.dotcominfoway.com.
October 2009.

[Dim08] J. Dimarzio. Android: A Programmer’s Guide. New York: The McGraw-Hill

Companies, 2008.

[EOM09] W. Enck, M. Ongtang, and P. McDaniel. ―Understanding Android Security‖.

IEEE Security & Privacy. 50-57. IEEE, January/February, 2009.

[FCF10] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. ―SCanDroid: Automated

Security Certification of Android Applications‖. Submitted to IEEE S&P’10:
Proceedings of the 31st IEEE Symposium on Security and Privacy. 2010.

[FOG09] M. Feldmann, V. Oleniuk, L. Globa, and A. Schill. ―Overview of a Model-to-

Code Transformation Approach for Generating Service-Based Interactive
Applications for Google Android‖. 2009 19th International Crimean
Conference “Microwave & Telecommunication Technology”. 362-364.
Crimea Ukraine, September 14-18, 2009.

[Gir10] J. Girard. ―Isolated Android Attack Portends Future Exploits‖. Gartner Inc.

ID Number: G00175285. March 12, 2010.

85

[GN10] Gartner Newsroom. ―Gartner Says Worldwide Mobile Phone Sales Grew 35
Percent in Third Quarter 2010; Smartphone Sales Increased 96 Percent‖.
http://www.gartner.com/it/page.jsp?id=1466313. Dec. 10, 2010.

[GT09] Good Technology. ―Good for Enterprise – iPhone, Android and webOS‖.

Architecture and Security Whitepaper. http://www.good.com. 2009.

[Has08] C. Haseman. Android Essentials. Lexington KY: Apress firstPress, 2008.

[HK09] S. Y. Hashimi and S. Komatineni. Pro Android. Berkeley CA: Apress, 2009.

[JMH08] D. Jezard, J. Makkar, and D. Holding-Parsons. ―Google Android‖. Tiger

Spike White Paper. Tiger Spike Limited, London. October 1, 2008.

[JTD09] M. Jantscher, M. Talhaoui, D. De Vos, I. Cunha, A. Roszcyk, and M.

Datsyuk. ―Android‖. Android Team 2009. http://www.mad-
ip.eu/files/reports/Android.pdf.

[Kim09] W. B. Kimball. SecureQEMU: Emulation-Based Software Protection

Providing Encrypted Code Execution and Page Granularity Code Signing.
MS thesis, AFIT/GCO/ENG/09-03. School of Engineering and Management,
Air Force Institute of Technology (AU), Wright Patterson AFB OH, March
2009.

[LC09] N. Li and G. Chen. ―Multi-Layered Friendship Modeling for Location-Based

Mobile Social Networks‖. Proceedings of the Sixth Annual International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (Mobiquitous) Toronto, Canada, 2009.

[MTV09] G. Macario, M. Torchiano, and M. Violante. ―An In-Vehicle Infotainment

Software Architecture Based on Google Android‖. IEEE Symposium on
Industrial Embedded Systems (SIES) 2009. 257-260. IEEE, 2009.

[Mur09] M. L. Murphy. Beginning Android. Berkeley CA: Apress, 2009.

[Nie93] J. Nielsen, Usability Engineering. San Francisco: Morgan Kaufmann, 1993.

[NW10] NielsenWire. ―The State of Mobile Apps‖.

http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/.
Dec. 12, 2010.

[OME09] M. Ongtant, S. McLaughlin, W. Enck, and P. McDaniel. ―Semantically Rich

Application-Centric Security in Android‖. Department of Computer Science

86

and Engineering, The Pennsylvania State University, University Park, PA.
2009.

[PGT09] F. S. Park, C. Gangakhedkar, and P. Traynor. ―Leveraging Cellular

Infrastructure to Improve Fraud Prevention‖. 2009 Annual Computer
Security Applications Conference. 350-359. IEEE, 2009.

[Phy10] PhysOrg. ―How Secure are iPhone and Android Apps‖.

http://www.physorg.com/news189356350.html. April 1, 2010.

[RML09] M. Raythattha, J. Moore, D. Lu, and S. Yang. ―Google Android Strategy‖.

Google – Memo to the CEO. March 11, 2009.

[SAH09] J. W. Stevenson, D. Albert, R. Hockauf. ―Security and Trust on Android‖.

Proposal for Giesecke & Devrient Contribution. Giesecke & Devrient
GmbH. November 4, 2009.

[SBS09] A-D. Schmidt, R. Bye, H-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yüksel, S.

A. Camtepe, and S. Albayrak. ―Static Analyis of Executables for
Collaborative Malware Detection on Android‖. IEEE ICC 2009
Communication and Information Systems Security Symposium. Dresden,
Germany, 2009.

[SDT08] Spectrum Data Technologies. ―Thoughts on Google Android‖. A Spectrum

White Paper. http://www.spectrumdt.com. February 2008.

[SFK10] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.

―Google Android: A Comprehensive Security Assessment‖. Computing Now.
IEEE Security & Privacy. IEEE Computer and Reliability Societies. vol. 8,
no. 2, 35-44. March/April 2010.

[SKF09] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka. ―Towards Formal

Analysis of the Permission-based Security Model for Android‖. icwmc,
pp.87-92, 2009 Fifth International Conference on Wireless and Mobile
Communications. 2009.

[Tho09] C. Thomas. ―Surviving in iPhone Territory‖. The Conversation Group.
Lessons in Competitive Brand – Building from the Android and G1 Phone
Launch. 2009. http://www.theconversationgroup.com/wp-
content/uploads/2009/08/Google-Android-Social-Media-Landscape-
Executive-Summary.pdf.

[UTG08] M. Ughetti, T. Trucco, and D. Gotta. ―Development of agent-based, peer-to-

peer mobile applications on ANDROID with JADE‖. The Second

87

International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. 287-294. IEEE Computer Society, 2008.

[YA09] C. Y. Yeon and S. M. Al -Marzouqi. ―Practical Implementations for Securing

VoIP Enabled Mobile Devices‖. 2009 Third International Conference on
Network and System Security. 409-414. IEEE Computer Society, 2009.

[ZNA09] I. A. Zaulkernan, S. Nikkhah, and M. Al -Sabah. ―A Lightweight Distributed

Implemtation of IMS LD on Google‘s Android Platform‖. 2009 Ninth IEEE
International Conference on Advanced Learning Technologies. 59-63. IEEE
Computer Society, 2009.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-03-2011
2. REPORT TYPE

Master‘s Thesis
3. DATES COVERED (From – To)

Sep 2009 – Mar 2011
4. TITLE AND SUBTITLE

Android Protection Mechanism: A Signed Code Security Mechanism for

Smartphone Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Stueckle, Jonathan D., Capt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GCE/ENG/11-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency, Intelligence Surveillance Reconnaissance PMO
Attn: Dave Lehr, Military Investment Program Director
9800 Savage Road
Ft. George G. Meade, MD 20755-6248
(240) 373-2548

10. SPONSOR/MONITOR’S
ACRONYM(S)

NSA OPS2B

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research develops the Android Protection System (APS), a hardware-implemented application security mechanism on
Android smartphones. APS uses a hash-based white-list approach to protect mobile devices from unapproved application
execution. Functional testing confirms this implementation allows approved content to execute on the mobile device while
blocking unapproved content. Performance benchmarking shows system overhead during application installation increases
linearly as the application package size increases. APS presents no noticeable performance degradation during application
execution. The security mechanism degrades system performance only during application installation, when users expect
delay. APS is implemented within the default Android application installation process. Applications are hashed prior to
installation and compared against a white-list of approved content. APS allows applications that generate a matching hash; all
others are blocked. APS blocks 100% of unapproved content while allowing 100% of approved content. Performance
overhead for APS varies from 100.5% to 112.5% with respect to the default Android application installation process. This
research directly supports the efforts of the USAF and the DoD to protect our information and ensure that adversaries do not
gain access to our systems.
15. SUBJECT TERMS
Mobile device security, application security, signed code protection, android application security,

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

98

19a. NAME OF RESPONSIBLE PERSON
Dr. Rusty O. Baldwin, ENG

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 x4445; Rusty.Baldwin@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

