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Abstract

Air Mobility Command’s (AMC) airlift assets that transit airfields in Afghanistan
are given only a small variety of ground times in order to accomplish their mission. These
ground times are based on overarching categories of missions that aircraft execute, such
as cargo upload, cargo download, passenger upload, passenger download, or a
combination of these. The current mission planning system uses these overarching
categories to plan ground times and does not account for the exact amount of cargo or
passengers. This leads to longer or shorter ground times than planned. In order to increase
stability at these fields and better account for the number of sorties that can be planned
into Afghanistan, a method to calculate optimal or near optimal ground times is needed.

This research creates a linear regression model that accounts for the size of cargo
upload, cargo download, passenger upload, and passenger download known by the
mission planner. This model can be used by the mission planners at AMC’s Tanker
Airlift Control Center (TACC) to increase the efficiency of planning sorties into
Afghanistan. Six months of historical data is filtered and categorized and then analysis is
accomplished using the JMP linear regression program. Eight scenarios are analyzed to
account for C-17, C-130 and C-5 missions to Bagram AB, Kandahar AB and Camp
Bastion airfields in Afghanistan. Analysis is concluded and insights are drawn regarding
how to stabilize planned ground times.

Three of the scenario models are found to be significant and are validated with
split data from a separate month’s worth of data. All C-130 models are not significant due
to many factors. The remaining insignificant models can be attributed to data system
errors and unexplained variance. The use of the three significant models will increase
stability in AMC planning and efficiency. In turn, our overall wartime effectiveness will

be enhanced.
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OPTIMIZING GROUND TIMES FOR AMC AIRCRAFT IN AFGHANISTAN

1. Introduction

1.1. Background

Air Mobility Command’s (AMC) mission statement is “Provide Global Air

Mobility ... Right Effects, Right Place, Right Time” (www.amc.af.mil). Since the

beginning of Operation Enduring Freedom, AMC has tried to accomplish this and has
airlifted “approximately 12.5 million passengers, delivered more than 4.5 million tons of
cargo, distributed more than 1.5 billion gallons of fuel, and performed nearly 133,000
patient movements” (Wilson). AMC accomplishes its airlift prowess with aircraft such as
the C-17, C-5, C-130, KC-10 and KC-135. These aircraft have specific missions. The C-
17, C-5 and C-130’s primary missions are to deliver cargo, in many different forms, to
areas around the World. The KC-135 and KC-10’s primary mission is air refueling with a
secondary mission of moving cargo.

This research focuses on the cargo delivered into Afghanistan. Since the bulk of
the cargo is delivered from the C-17, C-5 and the C-130, the focus is on these aircraft.
The C-17 can carry 102 troops/paratroops (188 troops with palletized seating), 36 litter
and 54 ambulatory patients and attendants, 170,900 pounds of cargo with up to 18 pallets

positions and can fly between 2,400-6,000 nautical miles (dependent on cargo weight)


http://www.amc.af.mil/�

without air refueling. The C-5 can carry 73 passengers, 270,000 pounds of cargo with up
to 36 pallet positions and can fly up to 6,320 nautical miles (dependent on cargo weight)
without air refueling. Both aircraft have a virtually unlimited range when utilizing in-
flight refueling. The C-130 can carry 40,000 pounds of cargo with 6-8 pallets or 74-97
litters or 16-24 CDS bundles or 92-128 combat troops or 64-92 paratroopers, or a
combination of any of these up to the cargo compartment capacity or maximum
allowable weight and can fly 1200-2000 nautical miles (dependent on cargo weight)
(AFPAM10-1403, Air Force Aircraft Fact Sheets).

All of these aircraft have operational restrictions in order to land at certain
airfields. These restrictions are mainly determined by the size of the available runway and
if the runway is stressed for a specific type of aircraft. These restrictions keep the C-5 out
of many airfields in Afghanistan. It only lands at Bagram, Kandahar, and Kabul airfields.
The C-17 can land on more runways, due it its smaller size and capability to land on
unprepared surfaces. The C-130 is the most versatile of the three cargo aircraft and can

land at almost any airfield in Afghanistan.

1.2. Problem Statement

Air Mobility Command’s (AMC) airlift assets, that transit airfields in
Afghanistan, are given only a small variety of ground times (slot times) in order to
accomplish their mission. These are based on what overarching type of mission the
aircraft are executing, i.e. cargo upload, cargo download, passenger upload, passenger
download, refueling, or a combination of these missions. The current mission planning

system uses these overarching categories to plan ground times and does not account for



how much cargo or how many passengers are to be loaded or unloaded. This can be seen
in Table 1.1. If an aircraft has only a download or an upload, then the ground time is
shorter, i.e. 1+45 for the C-17 with one event (one hour and forty five minutes). If the
aircraft has both a download and an upload, then the ground time is increased, i.e. 3+15
for the C-5 with two events. These numbers were received from current Tanker Airlift

Control Center mission planners and Air Force Pamphlet 10-1403.

Table 1.1 Event Planning Ground Time

Acft 1 EVENT (hours) 2 EVENTS (hours)
C-17 1+45 2+15
C-130 0+45 1+30

C-5 2+15 3+15

The use of these generic times leads to much longer or shorter ground times than
planned. In order to stabilize airflow at these fields and better account for the number of
sorties that can be planned into Afghanistan, a method to calculate optimal or near
optimal slot times is needed. This should increase the efficiency of how troops and cargo
are delivered to downrange locations. In turn, our overall wartime operations will be

enhanced.

1.3. Methodology

A retrospective study is accomplished to address the problem statement. This
includes historical data synchronization and linear regression methods. These are used to

build a suitable model for AMC to use and more reliably predict ground times. Data



synchronization is used to merge database information into a usable format. This format
is then used in linear regression software (JMP) to develop models to fit different
scenarios. These scenarios include each airfield and each jet individually; therefore, there

are eight models developed based on each scenario.

Table 1.2 Scenario Matrix

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 Scenario 1 Scenario 2 Scenario 3
C-130 Scenario 4 Scenario 5 Scenario 6
C-5 Scenario 7 Scenario 8 C-5s do not transit

The different models are needed because each jet has different ramps, parking spaces,
aerial port capabilities and other variables per airfield. These other variables are set to
remain constant at these fields.

The linear regression analysis checks for model adequacies, significance,
multicollinearity, influence points, outliers, and other factors such as VIF, Cp, R? and
adjusted R? that are defined in Chapter 2. This should satisfy the need to understand if the
historical information is usable in the regression model. Following these tests, and based
on the regression coefficients; a regression equation is computed and used to predict how
long jets should be planned to stay on the ground per cargo and passenger loads. The

cargo is accounted for in pallet positions and the passengers are counted individually.

1.4. Assumptions/Limitations

There are many assumptions and limitations that could impact this analysis and

mission success. These lie within the aircraft, the aircrew operating the aircraft, the Aerial



Port crews (crews that upload and download cargo), the airspace over and on the way to
the airfield, and the airfield itself. These are standard assumptions that are sometimes
taken for granted, but could severely impact mission success.
The assumptions are:
e Aircrew operating the same type of aircraft have the same abilities to
download all different types of cargo
e No engine running offloads or onloads are accomplished for C-17 or C-5
aircraft
e Aerial ports have the needed equipment to download and upload all types
of cargo from each specific aircraft sent to its airfield
e Aerial port members have the same ability to download and upload cargo
e Airspace is open over and leading to the specific landing runway
e Runways are open without major implications to inbound or outbound
aircraft, i.e. the runway is open and the taxiways to the parking spots are
usable
e Weather conditions at the airport during landing windows satisfy basic Air
Force Instruction 11-202V3 weather requirements
e Time to transit from landing to parking is always constant per airfield
e Time to transit from parking to takeoff is always constant per airfield
e Parking spots per aircraft are constant
e Crew planning and inspection times are constant

e Concurrent servicing of cargo and fuel is approved



Limitations impacting this study mainly come from acquiring the data to analyze the
ground times of different aircraft. The major limitations are listed below:
e Not all aircrew and aerial port members have the same ability to download
and upload equipment
e Data systems from which information is pulled, i.e. GDSSII and GATES
are not perfect and rely on Airmen to input data correctly
o Data is not kept for all different types of delays on the ground
0 Delay codes are considered inaccurate within GDSSII
0 Changes to the scheduled ground times are made within GDSSII
while the mission is active, the schedule ground time should
remain the same throughout the mission
0 Numerous data points (i.e. mission information) have more pallet
positions or passengers than are possible for the aircraft to hold
0 Numerous data points have no cargo or passenger data
e No database known at this time keeps track of how much fuel each jet has

uploaded and the time required for fueling

1.5. Research Objectives

The objective of this research is to build a model that accounts for the amount of
cargo uploaded, cargo downloaded, passengers uploaded, and passengers downloaded.
Other known delays such as a Medical Evacuation, refueling, and any other known length

of delays are added separately based on specific mission requirements by the mission



planner. This model is instantiated in an EXCEL program that the mission planners at
AMC’s Tanker Airlift Control Center (TACC) can use to increase the efficiency of
planning sorties into Afghanistan.

In order to build this model, data is needed from TACC. This data consists of how
long it takes to upload and download certain amounts and types of cargo and passengers.
This data can be taken from two different systems, Global Decision Support System 2
(GDSS 1) and Global Air Transportation and Execution System (GATES).

GDSS Il is used by every Air Force command post at airfields in Afghanistan and
by the TACC. Airmen at these centers input data including: the scheduled and actual
land times, take off times, and, if applicable, reasons for delay. GDSS Il can be accessed
by most Airmen who operate in the AMC environment to tell when incoming planes will
be landing, how much cargo they have, if there is a delay, and to prepare their field for
the incoming aircraft. This is an essential tool for Airmen to accomplish their jobs.

GATES is a system used by Aerial Port members to track passenger and cargo
uploads and downloads. This system records cargo movement per mission identification
numbers into and out of individual airports. This system tracks where cargo is currently,
where it came from and where it is going.

The GATES system is used to pull information about how much cargo and how
many passengers were downloaded and uploaded onto specific aircraft with specific
mission numbers. This information is cross referenced with information from GDSSII of
scheduled and actual ground times. A model is developed based on this information and

used to improve the ground time planning system.



In order to test this model, six months of historical data are run through the model
and insight is drawn as to how much the ground time planning has changed and how
many more or less aircraft can be planned downrange in a given day and month. The
model based on six months of historical data is then used on subsequent historical months
to see if the model predicted ground times were closer to the actual ground times than the

originally scheduled ground times.

1.6. Summary

Chapter one presented the background for the research, problem statement and a
way ahead. This topic is very important to the future of AMC planning in theater
operations. Chapter two discusses the literature for this research and focuses on
applicable areas of linear regression with additional review for future research. Chapter
three contains a discussion and explanation of the methodology. Chapter four captures
the analysis of the information generated by the methodology. Chapter five discusses

conclusions and recommendations for AMC and future research.



2. Literature Review
This chapter contains many techniques and areas of focus to analyze airflow
problems and cargo loading planning techniques. Initially this problem was thought to
have more of a focus on the need to understand actual airflow into and out of the
Afghanistan Theater of Operations. After much study and analyzing, this problem proved
amenable to analysis using a simple linear regression. This literature review has a limited
discussion on the airflow into and out of the theater to enlighten future scholars on

possible ways to proceed if requested or needed by AMC or other affiliates.

2.1. Linear Regression

Linear regression is a commonly used statistical technique to analyze a
relationship between variables. This type of study can and is used in almost every type of
field. The results have been proven and the methodology is sound. Two books are used in
this review. One is “Introduction to Linear Regression Analysis” (Montgomery, Peck,
Vining, 2001) and the other is “Design and Analysis of Experiments” (Montgomery,
2009). Both of these books have many good points to focus on in this analysis, but the
main focus in the review is on the “Introduction to Linear Regression Analysis”.

Initially, Montgomery et al. (2001) talks about data collection techniques. There
are three basic methods of collecting data: a retrospective study based on historical data,
an observational study, and a designed experiment (Montgomery, Peck, Vining, 2001). A
historical data collection is needed in this analysis; therefore, a retrospective study is

needed. There are several disadvantages of a retrospective study.



Some of the relevant data often are missing. The reliability and quality of the data
are often highly questionable. The nature of the data often may not allow us to
address the problem at hand. The analyst often tries to use the data in ways they
were never intended to be used. Logs, notebooks, and memories may not explain
interesting phenomena identified by the data analysis (Montgomery, Peck,
Vining, 2001, p.8).

These shortcomings are not all apparent in every historical observation but need to be

kept in mind while conducting an analysis. Some of these problems could lead to outliers.

Simple linear regression is based on one regressor (x) and its relationship with a
response variable (y). The point is to try and fit a line by using the data to show

relationships and predict outcomes. This leads to the simple linear regression model:

The technique used to find By and B; is the method of least squares; estimate the o and 1
so that the sum of the squares of the differences between the observations y; and the

straight line is a minimum (Montgomery, Peck, Vining, 2001).

2.2. Multiple Linear Regression

Multiple linear regression is a focus for this study. This is because many different
regressors are needed to understand a complicated system. A simple form of this equation
would be

This is called a multiple linear regression model with k regressors. The
parameters Pj (j=0,1,...,k) are called the regression coefficients. This model
describes a hyperplane in the k-dimensional space of the regressor variables X;.
The parameter B; represents the expected change in the response y per unit change
in x;j when all of the remaining regressor variables are held constant
(Montgomery, Peck, Vining, p.68, 2001).

10



Any regression model that is linear in its parameters is a linear regression model,
regardless of the shape of the surface it generates.

Multiple linear regression also uses the method of least squares to determine the
regression coefficients as in the simple linear regression. After accomplishing this, there
needs to be a check of statistical significance in the regression model. The test for
significance determines if there is a linear relationship between the response and any
regressor variables. For this, an F test can be used to test the hypothesis Ho: B1= 2 =...=

Bk =0, and rejection criteria would be if Fo>F, ; »-> (Montgomery, Peck, Vining, 2001).

2.3. Checking Model Adequacy

The major assumptions in regression are that 1) the observations are adequately
described by the model, 2) the errors are normally distributed, 3) the errors are
independently distributed, 4) the errors have a constant, but unknown, variance and 5)
that the errors have a mean of zero (Montgomery 2009). These are very important
assumptions that need to be checked to legitimately make statistical inferences.
Montgomery also discusses ways to work around some of these areas if they are not
adequate.

To find if the observations are adequately encapsulated in the model, R* and

adjusted R? are computed (Montgomery 2009). The coefficient of determination, R?:

— —— . “SStis a measure of the variability in y without considering the

effect of the regressor variable x and SS is a measure of the variability in y remaining
after x has been considered” (Montgomery, Peck, Vining, p. 39, 2001). R* could be

considered the proportion of variation explained by x. R? is between 0 and 1 and the

11



higher the number, the more the variability is explained with 1.0 being a perfect fit. The
R? equation can falter with numerous regressors (over fit the model and inflates R?);

therefore, adjusted R? was developed. The adjusted R statistic penalizes the model for
using many regressors. ——— , where n is the number of observations

and p is the number of regressors (Montgomery 2009).

To check for normally distributed errors, a simple test of the normal probability
plot of residuals is accomplished. If the residuals fall within a specific distance from a
straight line through their center, they are assumed to be normally distributed. Also, the
average value for the residuals should be approximately zero (Montgomery 2009).

Checking for independently distributed error requires a plot of the residuals in
time sequence. If no pattern is visible, they are assumed independent (Montgomery
2009). Historical data can be assumed to be independent due to the lack of ability to plan
or record information.

To verify that the errors have a constant, but unknown, variance, a plot of
residuals verses fitted (or predicted) values is used. The model is correct and the
assumption holds if the residuals do not follow any pattern. The magnitude of the
residuals versus the predicted values should be relatively constant across the observations
and the average value of the residuals should be approximately zero (Montgomery 2009).
If this is not confirmed, variance stabilizing transformations can be applied to the Y
variable to try and correct the problem. This is seen when, after the transformation, the

data is more symmetric and does not have a funnel or bow shape.
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There are many different types of transformations. Montgomery (2009) discusses
the square root, logarithmic, arcsine, reciprocal square root, reciprocal, and rank
transformations. He also discusses the use of the Box-Cox Method to estimate the
transformation parameter (Montgomery 2009). One additional method that he employs
in his earlier work is a method of weighted least squares (Montgomery, Peck, Vining
2001). All of these methods can work for different sets of data based on their individual
relationships. Finding a useful transformation can make all the difference in a good

analysis.

2.4. Outliers & Multicollinearity

Detecting outliers and multicollinearity are important to any linear regression
analysis. These areas can point to fundamental flaws or further areas to analyze. This
additional analysis could consist of eliminating the specific data point, or could lead to
information that sheds light on additional areas of interest.

Outliers are extreme observations. These points have residuals that are much
larger than others. Typically they are three to four standard deviations from the mean
(Montgomery, Peck, Vining 2001). These points are not representative of the rest of the
data and could possibly have serious effects on the regression model. Montgomery
suggests using scaled residuals, such as the studentized and R-student residuals. Once
found, these points need to be investigated. Hopefully the reason for their curious
behavior can be established. If there was an error in collecting the observation, this error
should be fixed or the data point should be thrown out (Montgomery, Peck, Vining

2001). If no error is found and the point is just unusual, then it should be kept in the
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model. “Deleting these points to ‘improve the fit of the equation’ can be dangerous, as it
can give the user a false sense of precision in estimation or prediction” (Montgomery,
Peck, Vining, p.154, 2001).

Specific types of outliers can be seen as leverage or influence points. These points
are explicit outliers in that they affect the model differently and in a relatively exact
manner. Leverage points are points that lie on the regression line and do not affect the
regression equation, but will have an impact on statistics such as R Influence points pull

the regression equation in its direction. Therefore, it is

-
leverage

significantly above or below the majority of the points. . point
y A

The knowledge of a leverage or influence point does not .o

mean to discard, but as with other outliers, more _ " oumon

X

investigation of those points needs to be made and a final _
Figure 2.1 Leverage and

) ) . . Influence Points
determination on whether to leave in or discard should be

made judiciously. Cook’s Distance test can be used to consider both the location of the
point in the x-space and the response variable in measuring influence. This “uses a
measure of the squared distance between the least-squares estimate based on all n points

and the estimate obtained by deleting the ith point, say ~ ” (Montgomery, Peck,
Vining, p.212, 2001).

Multicollinearity occurs when two or more regressors in a multiple regression are

highly correlated. Montgomery states when “there are near linear dependencies among
the regressors the problem of multicollinearity exists” (p. 325, 2001). This can cause the

inferences based on the regression model to be flawed or misleading.
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There are four primary sources of multicollinearity: “the data collection method
employed, constraints on the model or in the population, model specification and an over
defined model” (Montgomery, Peck, Vining, 2001, p. 326). The data collection method
can cause this to occur if only a subspace of the samples is taken. Constraints on the
model or in the population can also cause multicollinearity by using regressors that are
correlated. Montgomery uses a reference between family income and house size as two
regressors that would cause multicollinearity (2001). Model specification by the choice of
model can cause multicollinearity. If this occurs, look at the specific reasons a model was
chosen. An over defined model has more regressors than observations (Montgomery,
Peck, Vining 2001).

Multicollinearity is one reason why large variances and covariances can occur for
the least-squares estimators of the regression coefficients. “This implies that different
samples taken at the same x levels could lead to widely different estimates of the model
parameters” (Montgomery, Peck, Vining, 2001, p.329). This can also produce least-
squares estimates that are too large in absolute value.

Detecting multicollinearity is essential to understanding the multiple regression
model. Montgomery et al. (2001) discusses several techniques to include, the
examination of the correlation matrix, variance inflation factors (VIF), and the
eigensystem analysis of X'X. The examination of the correlation matrix involves looking
at the off diagonal elements of the X'X matrix. If the absolute value is close to 1.0, then
there is a strong linear dependence. “The VIF for each term in the model measures the
combined effect of the dependencies among the regressors on the variance of that term”

(Montgomery, Peck, Vining, 2001, p.337). One or more large
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VIFs indicate multicollinearity. Montgomery et al. (2001) states from practical
experience that if a VIF exceeds 5 or 10, then the associated regression coefficient is
poorly estimated because of multicollinearity. The eigensystem analysis of the XX
matrix measures the extent of multicollinearity in the data. “If there are one or more near-
linear dependencies in the data, then one or more of the eigenvalues will be small”
(Montgomery, Peck, Vining, 2001, p.339).

Montgomery et al. (2001) discusses multiple ways to deal with multicollinearity.
This can be accomplished by collecting additional data, model respecification, or ridge
regression. Collecting additional data has been suggested as the best method to combat
multicollinearity (Montgomery, Peck, Vining 2001). This should be collected in order to
break up the multicollinearity in the model.

Although multicollinearity can produce poor estimates of the individual model
parameters, it does not necessarily imply that the fitted model is a poor predictor. “If
predictions are confined to regions of the x-space where the multicollinearity holds
approximately, the fitted model often produces satisfactory predictions” (Montgomery,

Peck, Vining, 2001, p.330).

2.5. Variable Selection & Model Building

Variable selection and model building are integral to analysis. There are many
methods that Montgomery discusses to find the best regression equation, and there are
advantages to all of them. Some of the ways to measure and determine the best fit and

build the model are by using the coefficient of determination (R?), adjusted R?, residual
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mean square (MSyes), Mallows’s C, statistic, and AlCc. R? and adjusted R? were

previously discussed.

The residual mean square is ——— The goal of this is to minimize

MS;s and this also coincides with adjusted R? when it is at its maximum. Mallow’s Co

statistic is related to the mean square error of a fitted value and looks for bias in the
model, —_ . Montgomery et al. (2001) states small values of C, are

desirable. Mallow (1973) states that minimizing C,, is similar to a stepwise regression
algorithm and that the smallest or negative C, — p is a good fit. Azen and Budescu (2009)
show that C, = p and that a small difference shows a good fit with no bias and models
with C, > p have some bias.

Akaike’s corrected information criterion (AlCc) is a biased corrected version of
Akaike’s information criterion (AIC) (Lindsey and Sheather, 2010).

20k 4+ 2)(k+3)

RSS . d
i AlC- = AIC +
: n—(k+2)—1

+2k+n+nlog(2n)
n :

AIC =nlog

As the criterion decreases, the model becomes more desirable. This is measured by the
maximized log likelihood of the predictor coefficients and error variance (Lindsey and
Sheather, 2010). This number does not have a value in magnitude that is sought-after, but
the lowest value of all the AICc is the most desirable.

There are many computational techniques for variable selection. Montgomery
discusses trying all possible regressions and stepwise regression. The all possible

regression method is made easier with strong computer programs such as JMP and
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efficient algorithms. Montgomery et al. (2001) discusses that with less than 30 regressors,
the solve time is relatively easy with the all possible regressions approach.

Stepwise regression breaks down into three specific areas: forward selection,
backward elimination and stepwise regression (a combination of the first two)
(Montgomery, Peck, Vining, 2001). Forward regression starts with zero regressors in the
model. One regressor is added to the model at a time. The first regressor selected for
entry is the one with the largest simple correlation with the response variable. This
regressor is entered if its F statistic exceeds a specified F value. The second regressor
picked for entry is the one with the largest correlation with the response after adjusting
for the effect of the first regressor, and if its F statistic exceeds the specified F value, it is
also added (Montgomery, Peck, Vining, 2001). This continues until the next regressor
with the largest correlation does not surpass the specified F value.

Backward elimination uses the partial F statistic as well. The partial F statistic is
computed for each regressor as if it were the last variable to enter the model. The smallest
of these partial F statistics is compared with a preselected F value, and if it is less than
that value it is removed. This continues until one regressor’s F value is not below the
specified F value for elimination (Montgomery, Peck, Vining, 2001). Stepwise regression
combines both of these methods and needs an F value for including and another F value
for eliminating from the model. This is a modification of forward selection in that it starts
with zero regressors and adds them as in the forward selection method. But following the
inclusion, the backwards method is checked to see if the previous regressor should be

eliminated. Frequently the choice of the F value to enter is higher than the F value to
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leave; therefore, it is “more difficult to add a regressor than to delete one” (Montgomery,

Peck, Vining, 2001, p.314).

2.6. Model Validity

Montgomery discusses three validation techniques for regression models. These
are, 1) “analysis of the model coefficients and predicted values including comparisons
with prior experience, physical theory, and other analytical models or simulation results.
2) Collection of new (or fresh) data with which to investigate the model’s predictive
performance. 3) Data splitting, that is, setting aside some of the original data and using
these observations to investigate the model’s predictive performance” (Montgomery,
Peck, Vining, 2001, p.530).

Analysis of the model coefficients and predicted values should be studied to
determine if they are stable and their signs and magnitudes are reasonable. “Previous
experience, theoretical considerations, or an analytical model can often provide
information concerning the direction and relative size of the effects of the regressors”
(Montgomery, Peck, Vining, 2001, p.531). The VIF can also be used as a guideline as
discusses previously.

Collecting fresh data is the most effective way of validating a regression model
with respect to its predictive performance (Montgomery, Peck, Vining, 2001). If the
model gives accurate predictions of the new data, these confirmatory runs will be seen as
evidence that the model works. Montgomery et al. (2001) recommends at least 15-20 new

observations to get a reliable assessment of performance.
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Splitting the data is acceptable if collecting new data is not possible. When this
happens, the data needs to be split into two parts, the estimation data and the prediction
data (Montgomery, Peck, Vining, 2001). Careful consideration as to what data goes into
each category is needed. A disadvantage of this method is that it reduces the precision
with which the regression coefficients are estimated (Montgomery, Peck, Vining, 2001,

p.537).

2.7. Integer Programming Techniques

Integer programming techniques to solve air traffic flow management problems
have been studied and published in many journals. Integer programming has advantages
in this type of study. One is that, most of the time, a closed form solution can be found.
Another is that the known constraints can usually be accounted for accurately and
updated in a timely manner. A drawback is that, due to the size of the network and
problem, not all constraints can be accounted for.

Bertsimas and Stock (1998) considered the air traffic flow management problem
for commercial aircraft and used an integer programming method to increase
optimization of air traffic. They built a model that accounted for the capacities of the
National Airspace System as well as capacities at individual airports. Then, they solved a
large scale realistic sized problem with several thousand flights which significantly
improved the state of the system.

This study included a reduced problem specific to a ground holding problem.

This special case involved only the departure and arrival airport and had significant
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computational advantages over the larger problem. The ground hold problem is in line

with optimizing ground times in Afghanistan.

Baker et al.’s (2001) article on optimizing military airlift used the same premise
and included a mathematical formulation with very specific constraints. One of these
constraints dealt with airfield parking and servicing capacity constraints. These mainly
deal with the number of parking spots at the airfield and if fuel or other services are
available. Their technique and constraining process are useful for minimizing ground

times in Afghanistan.

One of the most recent and notable articles is “An integer programming approach
to support the US Air Force’s air mobility network” by Koepke et. all (2008). This
research extended Bertsimas and Stock’s study to the Air Force. Koepke et al. used a
maximum number of jets on the ground compliance formula (MCF) in order to suggest
how to delay aircraft on the ground to avoid a violation of multiple constraints. This
formulation takes into account constraints based on the priority of the mission, diplomatic

clearances, hazardous cargo, and time delays.

2.8. Simulations

Simulation methods that deal with the mobility airlift problem mostly encompass
the entire flow of cargo and aircraft from the point of embarkation to the point of
debarkation. These simulations are very intricate, but do not delve into the preciseness of

the exact amount of time one aircraft should spend on the ground at a specified location.
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Examples of these simulations are MASS (Mobility Analysis Support System) and
AMOS (Air Mobility Operations Simulator).

The main simulation used predominantly by AMC is the AMOS. Thisis a
discrete-event worldwide airlift simulation model used in strategic and theater operations
to deploy military and commercial airlift assets (Wu et al., 2009). It is favored because of
its tremendous flexibility and ability to handle uncertainty. But, this simulation method
requires significant input by the user to specify a series of rules to obtain realistic

behaviors.

2.9. Stochastic Models

Ball et al. (2003) developed a stochastic integer program with dual network
structure and applied it to the ground holding problem. This paper analyzed a
generalization of the classic network flow model. It also shows that the matrix underlying
the stochastic model is a dual network. “Thus the integer program associated with the
stochastic model can be solved efficiently using network flow or linear programming
techniques” (Ball et al., 2003).

Mukherjee and Hansen (2007) developed a dynamic stochastic model for the
single airport ground handling problem. Their stochastic model has the ability to account
for uncertainty and is able to update information based on evolving forecasts. Basically, it
is an optimization model that assigns ground delays to individual aircraft to optimize
some objective related to quantities of airborne and ground delays. This allows for
revised ground delays for flights that have not taken off to their next location. The

uncertainty in this model is addressed by considering a finite set of potential scenarios of
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how the airfield arrival capacity may develop. This uncertainty is easier to understand in
the commercial environment where weather is the major uncertainty. In a combat
situation, there are many more uncertainties that will arise as aircraft come into and out of

theater.

2.10. Summary

Chapter two summarized literature used in this field and what is used in this
research. The main topics included linear regression and applicable themes in that area of
study. Additional areas of study are incorporated and can be used in future research.
Chapter three uses the linear regression topics and expounds on how they are used for

this specific research.
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3. Methodology

3.1. Data Synchronization

Two data bases are used to gather needed information and incorporate all of the
data to analyze the problem. These data bases include the Global Decision Support
System 2 (GDSS 1) and the Global Air Transportation and Execution System (GATES).
These two data bases are independent systems that are integrated for this analysis.

GDSSII provides an enormous amount of information to the Air Force about
specific missions that are accomplished around the world. A subset of this information
includes the scheduled arrival time per mission, scheduled departure time per mission,
actual arrival time per mission, actual departure time per mission, mission identification
number, arrival location (International Civil Aviation Organization, ICAO), previous
location (ICAOQ), next location (ICAQO), aircraft type (Mission Design Series, MDS),
Total Passengers (Pax), Total Cargo, and delay remarks. All of this information is
important for this analysis and was pulled from the system for the months of January-July
2010.

GATES also provides a plethora of information to the Air Force and DoD
partners about specific loads on aircraft throughout the world. The subset of GATES
information that is needed for this analysis includes: mission identification number
(Aerial Port of Debarkation Number (APOD) mission number), aircraft type (Mission
Design Series, MDS), APOD ICAO, number of passengers, Pallet net Weights, Pallet
Type, and Equivalent Pallet Positions. This critical information was pulled from the

system for the months of January-July 2010.
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These two databases are synchronized using EXCEL databases. GDSSII has the
ability to download directly into EXCEL, and GATES uses a MSACCESS format that is
downloaded into EXCEL. These databases are merged using the mission identification
number from GDSSII and the APOD mission number from GATES. Pivot tables and
lookup functions in EXCEL make the process easier, but this process still requires a very
large number of data tables in EXCEL to properly separate and merge data. These final
spreadsheets include 36 columns of information consisting of information from GDSSI|I
and GATES. GDSSII information includes the Mission number, aircraft type, airfield,
actual departure time of day (Greenwich Mean Time), scheduled time on the ground
(mins), actual time on the ground (mins), total passengers and total cargo in lIbs, delay
codes and delay remark. GATES information includes: equivalent pallet positions for the
offload (10 columns) and onload (10 columns) of basic cargo, loose stock, palletized
cargo, rolling stock, standard cargo, and pallet trains of size 2, 3, 4, 5, and 6, total cargo
offloaded in equivalent pallet positions, total cargo onloaded in equivalent pallet
positions, passengers offloaded, passengers onloaded, total passengers, and total cargo in
equivalent pallet positions.

The merging of GATES and GDSSII databases shows substantial error. Although
these systems are required to be used by the Air Force and DoD, they do not match
during the period studied. For example, GDSSII recorded 8687 mission numbers while
GATES pulled 8369 mission numbers from January-July 2010. (GDSSII does include
minor cargo and passenger information, but does not include the specific cargo and
passenger data needed to accomplish this analysis). The information from Gates is broken

into 6528 missions with cargo information and 4682 missions with passenger
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information, where 2841 missions have both cargo and passenger information. When
these databases are merged, the data must be limited to missions that are in both
databases. This yields an overlap of 7342 mission numbers from GDSSII and GATES

that have cargo or passenger information. This can be seen in Figure 3.1.

Jan-Jul 2010 OEF Missions
8687 8369
7342
6528
4682
I »8a1
GDSSII GATES OVERLAP CARGO PAX CARGO & PAX

Figure 3.1 Data Base Merging
This data is broken down by aircraft type and airfield. This reduces variance

based on taxi time, cargo capacity, aircraft capabilities, aerial port capabilities at each
airfield, and other basic mission issues that are specific to each jet at each airfield.
Therefore, eight sets of data are analyzed. These sets included three aircraft types (C-17,
C-5 and C-130) at three airfields (Bagram AB, Kandahar AB, and Camp Bastion

Afghanistan). Note, C-5s do not transit Camp Bastion. Table 3.1 lists the data sets.
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Table 3.1 Data Base Description

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 Data Base 1 Data Base 2 Data Base 3
C-130 Data Base 4 Data Base 5 Data Base 6
C-5 Data Base 7 Data Base 8 C-5s do not transit

Data splitting is used because all data are historical and there are seven months of
data with thousands of data points. Six months of data, January through June, are used to
build the model. The seventh month is used to validate the models. 6541 total lines of
data from January through June are sifted through for useful mission information. The

initial data statistics are shown in Table 3.2.

Table 3.2 Lines of data per airfield per aircraft type

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 895 839 789
C-130 2132 1275 419
C-5 78 114 C-5s do not transit

Further pruning is accomplished based on delay codes and delay remarks of
missions in GDSSII. Delay codes are numbers that should correspond with different
reasons for late departures. After analyzing thousands of lines of data, this set of
supposedly easy to use information is deemed unusable. This is due to hundreds of the
same delay codes being used with conflicting delay remarks, i.e. delay code 201 would

have a delay remark of “no delay” or delay from “previous station”. Therefore, each
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individual delay remark needed to be reviewed and filtered for usefulness. If the subject
matter expert (SME) thinks the delay remarks cause a significant delay, then that line of
data is unusable. Many of the delay remarks include delays for maintenance, human
remains movement, weather, flight planning delays/HHQ taskings, ramp freezes,
MEDEVAC:S, double blocking, fueling, ATC congestion, specific user delays to include
distinguished visitor movements, closure of the runway for hostile fire and many other

reasons.

Table 3.3 Lines of data without delays

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 635 673 649
C-130 1456 822 323
C-5 52 79 C-5s do not transit

Additional pruning needs to occur for lines that do not have cargo or passenger
information (e.g. the mission shows zero cargo and zero passengers moved). This
requires sorting by total cargo and then sorting by total passengers. This further lowers

our usable data as shown in Table 3.4.

Table 3.4 Lines of data with cargo/passenger information without delays

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 529 565 589
C-130 1251 728 287
C-5 27 48 C-5s do not transit
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Other areas where pruning is needed are data lines showing more pallet positions
or passengers carried than the specific airframes can actually carry and duplicate mission
numbers. Data lines with more cargo or passengers are easily deleted. Some duplicate
mission numbers also have duplicate cargo information, but different ground times.
These missions are individually examined and eliminated based on delay remarks. This

subsequently lowers the available data to the numbers in Table 3.5.

Table 3.5 Lines of data with cargo/passenger information without delays

Bagram Air Base | Kandahar Air Base Camp Bastion
C-17 439 485 570
C-130 736 429 195
C-5 27 48 C-5s do not transit

Supplementary pruning is also accomplished based on actual ground times. It is
observed that many mission numbers are associated with very small ground times but still
offload and onload a significant amount of passengers and/or cargo. These missions are
intertwined with engine running offload and onloads. It is also observed that many
missions with typical offloads and onloads are on the ground for an extended period of
time with no remarks or delays. These missions are deemed by the SME to be unrealistic
and to have an error that is unexplained or undocumented.

Therefore, C-17 missions are not used with times on the ground below 60 minutes
or above 360 minutes (6 hours). The SME considers 60 minutes the lowest value that a
crew can taxi in, perform normal crew duties involving engine shutdown and startup, taxi

out and takeoff. The SME also considers the time of 360 minutes to be the upper limit of
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cargo offloading and on loading for extreme cases. One of these cases could involve the
downloading and uploading a major sized helicopter. In order to use the same rational
with the C-130 and C-5, the upper time limit for C-17 is used as a base to eliminate
erroneous data. The C-17 upper limit is close to 2 standard deviations away from the
mean for the three airfields. Therefore, for C-5s and C-130s times above two standard
deviations away from the mean are considered too long on the ground and therefore have

either undocumented delays or planned ground times for other reasons than cargo.

Table 3.6 Two Standard Deviations above the mean (minutes)

Bagram Air Base | Kandahar Air Base Camp Bastion
C-130 246 284 157
C-5 628 455 C-5s do not transit

For C-5s, the shortest ground time is only a factor for one mission (40 mins on the ground
is unrealistic for a C-5 considering taxi and crew operations) and this point is eliminated.
For C-130s, the shortest ground time is considered 20 minutes as the minimum time to
taxi, offload or onload, and takeoff. This is used instead of 60 minutes due to the C-130s
consistent use of engine running offloads and onloads. This takes the total numbers for
the six month period down to where they can be introduced into JMP, see Table 3.7. The
amount of data lost due to error and or delays is significant. See Table 3.8 for the

percentage of usable data from January to June 2010.
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Table 3.7 Lines of data after final pruning

Bagram Air Base

Kandahar Air Base

Camp Bastion

C-17 374 383 388
C-130 574 383 173
C-5 24 43 C-5s do not transit

Table 3.8 Percent of usable data from original s

et from Jan-Jun 2010

Bagram Air Base

Kandahar Air Base

Camp Bastion

C-17 41.79% 45.65% 49.18%
C-130 26.92% 30.04% 41.29%
C-5 30.77% 37.72% C-5s do not transit

specific aircraft at specific airfields in Afghanistan. This is based on a retrospective study
with historical data from January — July 2010. While using a retrospective study, it is
known that some relevant data is often missing and the reliability and quality could be
questionable. This can be seen with the GDSSII and GATES databases not matching

perfectly and some data missing or not considered valid by the subject matter expert.

regressors applied to this complicated system. This is considered a linear problem due to

the time it takes to offload cargo and the time on the ground in Afghanistan being

3.2. Regression

considered linear.
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The JMP program is used in order to accomplish regression due to the number of




JMP’s multiple linear regression has many steps to accomplish. First, the data
must be collected and entered into a new data table. This is accomplished for all eight
data sets. The data is first taken out of the 36 columns from the GDSSII and GATES
merged EXCEL spreadsheets. Both columns of time on the ground in minutes are entered
into the data table, with the actual times on the ground used as the Y variable.

This problem uses 22 regressors. They include varying types of cargo offloaded
and onloaded at each location, along with the number of passengers offloaded and then
onloaded at each station. There are ten different types of cargo that is categorized by the
GATES system. They include, belly cargo (BC), loose stock (LS), rolling stock (RS),
palletized cargo (PC), skid cargo (SD), and pallet trains consisting of two — six pallets
tied together as one pallet (T2, T3, T4, T5, T6). This makes up 20 of the regressors (ten
during offload and ten during onload), each taking a different amount of time to
accomplish. Each one of these types of cargo is given an equivalent pallet position in
GATES. This means that for a certain type of cargo, e.g. a HMMWYV as rolling stock
taking up two pallet positions on an airframe, it is counted as the number of pallet
positions it displaces on each aircraft. This is the number that is used to analyze the
system. Weight was initially used, but due to the variance in weight per pallet position,
number of pallet positions is a much better factor for time on the ground. For example, it
takes the same time, manpower and equipment to push a pallet that weighs 100 Ibs as it
does to push one that weighs 20001bs. Finally, passengers offloaded and passengers
onloaded are the last two regressors, each taking a different amount of time to

accomplish. Passengers are counted individually.
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The labels used in JMP, and for the actual columns in the EXCEL database,
include the following: Sched Time on Ground mins, Actual Time on Ground mins (Y
variable), BC off, LS off, PC off, RS off, SD off, T2 off, T3 off, T4 off, T5 off, T6 off,
BC on, LS on, PC on, RS on, SD on, T2 on, T3 on, T4 on, T5 on, T6 on, pax offloaded,
and pax onloaded. Any type of cargo followed by an “off” is considered occurring in the
offload phase of operations and any type of cargo followed by an “on” is considered
occurring in the onload phase of the mission.

Once the data are collected into a new data table in JMP, the computational
technique of stepwise regression is used for all eight scenarios. This is accomplished by
selecting the Analyze tab, then Fit Model. Then, actual time on the ground in mins is
selected as the Y variable and the 22 regressors are selected as construct model effects.
Next, stepwise is selected and run with p-value thresholds of 0.1 for the probability to
enter and 0.05 for the probability to leave. Mixed stepwise is selected and run. Interaction
of these regressors were examined initially and found to have no significance, therefore
they are not considered in this analysis.

The mixed stepwise regression uses the forward selection and backward
elimination together to select only the best regressors that create the strongest model.
This starts with zero regressors in the model. One regressor is added to the model at a
time and then checked to make sure it stays in the model. The first regressor selected for
entry is the one with the largest simple correlation with the response variable. This
regressor is entered if its F statistic exceeds the specified p-value threshold (0.1).
Following the inclusion, the model is changed and then backwards method is checked to

see if the previous regressor should be eliminated. If the F statistic is below 0.05, it
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should then be eliminated. This is based on the new model; therefore, the F statistic for
this new model is needed. This continues until neither the selection p-value threshold or
elimination p-value thresholds are met. This creates the strongest model. This stepwise
regression produces a Sum of Squares Error, Degrees of Freedom for Error, the
coefficient of determination (R%), adjusted R?, Mallows’s C, statistic and AICc. Adjusted
R? is closely analyzed due to the large number of regressors.

From the stepwise fit screen, Make Model is selected. This keeps actual time on
the ground as the Y variable and uses the regressors selected in the stepwise regression to
construct the model effects. Then, least squares is run to find the following information:
Summary of fit to include, the coefficient of determination (R?), adjusted R?, Root Mean
Square Error, Mean of the Response, Observations, an ANOVA table, parameter
estimates, Residuals by Predicted plot, actual by predicted plot, leverage plots and lack of

fit table.

3.3. Checking Model Adequacy

Checking the models adequacy is accomplished next. The major assumptions of
regression are checked: 1) the observations are adequately described by the model; 2) the
errors are normally distributed; 3) the errors are independently distributed; 4) the errors
have a constant, but unknown, variance; and 5) the errors have a mean of zero
(Montgomery 2009).

Checking for normally distributed errors, a simple test of the normal probability
plot of residuals, is accomplished. In JMP, the Normal Quantile Plot is used as the normal

probability plot of residuals. These two plots are the same, but use different scales. If the
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residuals fall within a specific distance from a straight line through their center, they are
assumed to be normally distributed. Also, the average value for the residuals should be
approximately zero (Montgomery 2009). The specific distance is called the “fat pencil
test”. If the data points fall within a pencil thickness distance, then they will be assumed
normal with slight divergence at the lower and upper ends. This chart is accessed in JMP
by saving the residuals as a column in the original data table. After returning to the
original data table, analysis of the distribution of the new regression column is conducted
and the normal quantile plot is analyzed. The residuals are examined for a mean of zero.

Checking for independently distributed error requires a plot of the residuals in
time sequence. If no pattern is visible, they are assumed independent (Montgomery
2009). In this analysis, historical data is assumed to be independent due to the lack of
ability to plan or record information.

To satisfy that the errors have a constant, but unknown, variance, a plot of
residuals verses fitted (or predicted) values is used. The model is correct and the
assumption holds if the residuals do not follow any pattern. The magnitude of the
residuals versus the predicted values should be relatively constant across the observations
and the average value of the residuals should be approximately zero (Montgomery 2009).
This is seen in the fit of the least squares with the residuals by predicted plot. A pattern in
all of the scenarios is not readily apparent. Still, transformations are accomplished to
attempt to alleviate any possible patterns. The transformations discussed in Montgomery

(2009) and available in JIMP are the square root, logarithmic and reciprocal.
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3.4. Outliers

Upon initial review there many outliers in this data. These points have residuals
that are much larger than others. Typically they are three to four standard deviations from
the mean (Montgomery, Peck, Vining 2001). The residuals in each scenario are analyzed
and standard deviations between three and four are considered. The studentized residuals
are also plotted versus predicted values to look for outliers. These points are not
representative of the rest of the data and could possibly have serious effects on the
regression model.

If no error is found and the point is just unusual, then it should be kept in the
model. “Deleting these points to ‘improve the fit of the equation’ can be dangerous, as it
can give the user a false sense of precision in estimation or prediction” (Montgomery,
Peck, Vining, p.154, 2001). The SME decides if these points should stay in the model or

be eliminated.

3.5. Multicollinearity

Multicollinearity is examined to find correlation between regressors. When “there
are near linear dependencies among the regressors the problem of multicollinearity
exists” (Montgomery, Peck, Vining, p. 325, 2001). This can cause the inferences based
on the regression model to be flawed or misleading.

Areas for this study that are looked into are the data collection method employed
and model specification. The data collection method can cause multicollinearity to occur
if only a subspace of the samples is taken (Montgomery, Peck, Vining, 2001). This

definitely occurs in the data due to GATES and GDSSII not matching. Therefore, some
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data are lost creating a subset of the population. Therefore, some multicollinearity may be
present. Model specification is also a possible source of multicollinearity and is looked
at if strong correlations exist between variables.

Detecting multicollinearity is based on the examination of the factor correlation
matrix and studying the variance inflation factors (VIF). The examination of the
correlation matrix involves looking at the off diagonal elements of the X'X matrix
(Montgomery, Peck, Vining, 2001). If the absolute value is close to 1.0 then there is a
strong linear dependence. In JMP, this is accomplished by using the regressors found
from the stepwise regression in each scenario in JMP’s multivariate analysis tool. This
yields a correlation matrix and scatterplot matrix for all used regressors and the Y
variable.

The VIF was examined for each scenario. One or more large VIFs indicate
multicollinearity. JMP finds the VIF by using the inverse correlation matrix. This is
accomplished using the same multivariate tools as in the correlation matrix and
scatterplot. The diagonal elements of (X’X)* are the VIF values. Values below five are

considered not to have multicollinearity.

3.6. Model Validity

JMP creates a prediction expression for each scenario. This prediction expression
uses the intercept and parameter estimates for the regressors found during the stepwise
regression. This model is then checked using the predicted value functionality of JMP as
compared to the actual times on the ground. The prediction error sum of squares (PRESS

statistic) is analyzed. The PRESS statistic is the sum of the squared PRESS residuals and
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measures model quality (Montgomery, Peck, Vining, 2001). Small values of PRESS are
desired.

The Box-Cox transformation is used to stabilize variance issues in the data. This
is accomplished by applying the Box-Cox transformation to the Y variable to correct for
any possible non-constant variance. JMP allows this by selecting the Box Cox Y
transformation after the regression is run. This shows a plot of the Sum of Squares Error
by A. After viewing the table of estimates, the best transformation is saved to the initial
data table and reviewed.

Next, the model is analyzed with the seventh month of data that was split from the
original data. This prediction expression is with each scenario’s data. This results in a
predicted time on the ground for each aircraft at each field. The predicted times are then
compared with the actual times on the ground. A paired t test of both sets of data is
accomplished to gain understanding and determine if the model is valid. Results that
show no statistical difference in the predicted and actual times yield a regression model

that can be applied to real world operations.

3.7. Summary

The next chapter presents results and analysis. The statistical techniques presented in
this chapter are applied. Results are shown and the predictive capabilities of the various
models are tested. Additional impact to AMC’s worldwide airlift operations are analyzed

and shown.
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4. Results and Analysis

This chapter describes the results found and analysis conducted for each of the

eight scenarios. First, the stepwise regression is shown, and the Sum of Squares Error,

Degrees of Freedom for Error, the coefficient of determination (R?), adjusted R?, and

Mallows’s C, statistic are reported. Next, the model is built and checked for adequacy.

Then, outliers and multicollinearity are considered. Finally, each scenario’s model is

checked for validity.

4.1. Stepwise Regression

Stepwise regression is conducted in all eight scenarios. This is accomplished

using JMP and the mixed method of stepwise regression. This gives the most suitable

model based on the p-value of 0.1 for inclusion and 0.05 for exclusion. Appendix A

provides the output for all eight scenarios. Table 4.1 summarizes the stepwise findings

for each scenario.

Table 4.1 Stepwise Regression Results

Scenario R? adjR* |Inte rcept|# Parameters Cp AlCc | min AlCc

1| C-17 OAIX 0.257 0.249 172.7 5 5.3 4034 4032
2| C-170AKN | 0.532 0.525 167.5 7 5.2 4147 4145
3| C-17 OAZI 0.305 0.301 161.1 4 3.7 4965 4965
4| C-1300AIX | 0.109 0.102 57.9 5 -2.5 5682 5682
5|/ C-1300AKN | 0.144 0.135 105.5 5 7.9 4332 4330
6| C-1300AzZI | 0.091 0.08 51 3 4.7 1557 1557
7| C-50AIX 0.487 0.438 364.4 3 1.7 272 272

8| C-50AKN 0 0 266.1 1 -4.7 475 475

Information in Table 4.1 illustrates that some of the models are initially better

than the others. All models that are more closely examined have a R? above 0.25; the
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other models are not continued in the data analysis. The C-130 scenarios were not
continued due to low variance in their ground time based on cargo. This is based on C-
130s use of engine running cargo operations and their small and quick cargo offload and
onloads. Model eight is not a good model due to zero regressors making the stepwise
significance for inclusion.

Adjusted R? is provided at in Table 4.1. In all scenarios, the adjusted R* closely
matches the R?. The adjusted R? values penalize for the addition of multiple regressors
that inflate R®. Therefore, based on the R? and adjusted R?, and the eliminated scenarios
for this research, models 1, 2, 3 and 7 are continued.

Next, Mallow’s C,, statistic is reviewed from Table 4.1. As Montgomery et al.
(2001) stated, small values of C,, are desirable. This statistic should be close to p for a
good model and favorably lower in value than p. All scenarios meet this qualification
with the exceptions of 1, 5, and 6, but all of the scenarios fall under the 2p to be an
acceptable level of bias (Mallows, 1973). Therefore all scenarios are acceptable in regard
to Mallow’s C,, statistic.

Finally, AlCc is evaluated as a measure of goodness of fit. All of the scenarios
fall within 1-2 of the minimum AICc. This shows that there is relatively no difference
between the AlCc of the model and the minimum AICc. Therefore, each model can be

used to make inferences on the scenarios.

4.2. Normal Standard Least Squares

The stepwise regression outcomes are put into the actual standard least squares

model in JMP. This is accomplished by confirming the Y variable and regressors and
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selecting the standard least squares, make model option in the stepwise regression screen.
The output can be seen in Appendix B. Figures B1-B8 represent scenarios 1-8. This
output includes the Actual by Predicted Plots, Summary of Fit, Analysis of Variance,
Lack of Fit, Parameter Estimates and Residual by Predicted Plot. Figure B8 is blank due

to the lack of regressors chosen to enter from the stepwise regression.

4.3. Model Adequacy

The information provided by JMP in the normal standard least squares is used to
determine model adequacy. This is accomplished to see that: 1) the observations are
adequately described by the model, 2) the errors are normally distributed, 3) the errors are
independently distributed (assumed due to historical data), 4) the errors have a constant,
but unknown, variance, and 5) the errors have a mean of zero.

To determine if the observations are adequately described by the model, adjusted
R? is reviewed. Each model has specific constants that create longer or shorter times on
the ground and create an environment where more variance can be explained by the
model. Therefore these scenarios cannot be compared to each other based on purely R
The initial R? values for the scenarios continued are above 0.25. This is adequate for each
model.

Errors that are normally distributed can be seen using the normal quantile plot
from JMP. This is accomplished for models 1, 2, 3, and 7 in Figures 4.1 thru 4.4. All
normal quantile plots fall within a reasonable distance from a straight line through their
center (pass the fat pencil test) with allowable trailing data on the extremities. Therefore,

all are assumed to be normally distributed.
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Figure 4.3 C-17 OAZI Normal Plot
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Figure 4.4 C-5 OAIX Normal Plot

JMP produces the plot of residuals versus predicted values to examine constant,

but unknown, variance. This can be seen in Figures 4.5 thru 4.8. The residuals do not

follow any real particular pattern such as a funnel, megaphone or bowing. There does

appear to be evidence of missing data. This is inevitable when using historical data that is

highly erroneous. There is also evidence of possible split data set. Looking through the

data intensely, there is no evidence or similarities that are observed to split the data in



order to separate the two data sets as in Figure 4.5. Anything nonlinear should be
addressed and a transformation should be accomplished to alleviate any non-constant
variance. Due to the erroneous nature of the data and the slight downward trend in the

data, transformations are accomplished in order to alleviate any non-constant variances.

Figure 4.5 C-17 OAIX Residuals by Figure 4.7 C-17 OAZI Residuals by
Predicted Plot Predicted Plot

Figure 4.6 C-17 OAKN Residuals by Figure 4.8 C-5 OAIX Residuals by
Predicted Plot Predicted Plot

Transformations used include the square root, logarithmic, and reciprocal. These
transformations are shown below for the C-17 at OAZI. This is the case with the most

variance resembling a semi-funnel shape. From looking at Figures 4.9-4.11 and
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reviewing the data from the regression using the transformations, the square root
transformation reduced the variance the greatest amount. Therefore, the square root

transformation is used on all four remaining models.

Figure 4.9 C-17 Square Root Figure 4.10 C-17 Log Transformation
Transformation

Figure 4.11 C-17 Reciprocal Transformation
The square root transformation output is displayed in Appendix C. A summary of

this data is presented in Table 4.2. This table shows slight increases and decreases in R
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and adjusted R? and the charts show less funneling or bowing effects. Therefore, constant

variance is mostly achieved.

Table 4.2 Square Root Transformation

Scenario R? adj R? Intercept|# Parameters| RMSE Obs | Variance
1| C-17 OAIX 0.271 0.263 12.89 5 2.1 374 | Constant
2| C-170AKN | 0.512 0.505 12.82 7 1.9 383 Constant
3| C-17 0AZI 0.266 0.258 12.65 4 2 457 Constant
7| C-50AIX 0.605 0.567 18.99 3 1.5 24 Constant

Determining the residual errors mean is accomplished by saving the residuals in a
column in the JMP spreadsheet. Then, the column is transferred into the EXCEL program
and averaged. In all cases, the average is zero or an extremely small number that
approximates zero. The JMP distribution fitting tool also shows a mean of zero.
Therefore, the last assumption holds for the four remaining scenarios and these models

check for adequacy.

4.4. Outliers

Outliers are reviewed using the above three standard deviations method and
studentized residuals. When residuals fall more than three standard deviations from the
mean, or they are shown as outliers on the plot of studentized residuals, the actual data
points are looked at for errors. If the SME believes an error has occurred, the point is
eliminated. Table 4.3 shows the summary of data points found to be potential outliers
from both methods. Figures 4.12-4.15 show the actual studentized residuals versus

predicted values with the outliers in grey and circled.
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Table 4.3 Summary of Outlier Detection

Scenario > 3 Std Dev | Studentized Plot| SME deteremined Error new R new adj R’
1| C-17 OAIX 0 0 0 N/A N/A
2| C-17 OAKN 2 0 1 0.504 0.498
3| C-17 0AzI 2 2 0 N/A N/A
7| C-50AIX 0 1 0 N/A N/A
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There are no outliers found for Scenario 1 in either method. In Scenario 2, there
are 2 outliers found using the standard deviation method and none found using the plot of
studentized residuals verse predicted values. The SME determined that one point is
erroneous and the other is unusual. The point that is erroneous listed that it had 11
equivalent pallet positions offloaded. These consisted of one T-2 and three T3 pallet
trains. This is not a possible combination in the C-17 and therefore the data points are
erroneous and the point should be excluded. The second point was on the ground for an
extended amount of time with 135 passengers offloaded and 95 onloaded. This is slightly
unusual, but not erroneous so this point is kept.

The same two potential outliers for Scenario 3 were found in both methods. These
both had minimal ground times of 60 and 61 minutes with a large PC offload of 18 and
17 pallets, respectively, and no onload. The SME determined that this is not an unusual
occurrence to have a large offload and no onload at OAZI and no errors were found in the
data or delay remarks. Therefore, these points were maintained in the model.

The potential outlier for Scenario 7 was only found using the studentized residuals
versus the predicted values. This point is deemed unusual but not erroneous by the SME.
This point had a small ground time (108 minutes) and a relatively small offload (17
equivalent pallet positions) with no onload; therefore, it is slightly unusual but not

erroneous.

4.5. Multicollinearity

In order to look for possible multicollinearity, the remaining four scenarios’

correlation matrix, and variance inflation factors (VIF) are reviewed. The correlation
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matrices are shown in Tables 4.4-4.7. The largest VIFs, taken from the diagonal of the

inverse correlation matrices are listed in Table 4.8. The matrices only involve the

regressors found in the stepwise regression.

Table 4.4 Scenario 1 C-17 OAIX

ACTUAL TIME PC off RS off T6 on pax offloaded
ON GROUND
Act Time on Gnd 1.0000 0.1618 0.2414 -0.0663 -0.4689
PC off 0.1618 1.0000 -0.3048 0.0001 -0.1308
RS off 0.2414 -0.3048 1.0000 0.1043 -0.3477
T6 on -0.0663 0.0001 0.1043 1.0000 -0.0354
pax offloaded -0.4689 -0.1308 -0.3477 -0.0354 1.0000
Table 4.5 Scenario 2 C-17 OAKN
ACTUAL TIME PC off| T2 off PCon RS on T3 on pax offloaded
ON GROUND
Act Time on Gnd 1.0000 0.6710| 0.1105| -0.1823| -0.1803 -0.0782 -0.2826
PC off 0.6710 1.0000{ -0.0194| -0.0771| -0.0766 0.1207 -0.2991
T2 off 0.1105( -0.0194| 1.0000 0.0796( -0.0021 -0.0239 -0.0831
PC on -0.1823| -0.0771| 0.0796 1.0000 0.0204 -0.0070 -0.1211
RS on -0.1803( -0.0766( -0.0021 0.0204 1.0000 -0.0277 -0.0804
T3 on -0.0782 0.1207| -0.0239| -0.0070| -0.0277 1.0000 -0.0584
pax offloaded -0.2826| -0.2991| -0.0831] -0.1211] -0.0804 -0.0584 1.0000
Table 4.6 Scenario 3 C-17 OAZI
ACTUAL TIME PC off RS on pax offloaded
ON GROUND
Act Time on Gnd 1.0000 0.5360 -0.1222 -0.2273
PC off 0.5360 1.0000 -0.0348 -0.2801
RS on -0.1222 -0.0348 1.0000 -0.0256
pax offloaded -0.2273 -0.2801 -0.0256 1.0000
Table 4.7 Scenario 7 C-5 OAIX
ACTUAL TIME BC off PC off
ON GROUND
Act Time on Gnd 1.0000 -0.5851 -0.2957
BC off -0.5851 1.0000 -0.1376
PC off -0.2957 -0.1376 1.0000
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Table 4.8 VIF Scenarios 1, 2, 3, and 7

Scenario 1 Scenario 2 Scenario 3 Scenario 7
C-17 OAIX C-17 OAKN C-17 OAZI C-5 OAIX
Largest VIF 1.4332 2.1747 1.4581 1.9475

Multicollinearity is not seen from either the correlation matrices or inverse

correlation matrices. This is seen in the correlation matrices with no regressor

correlations greater than 0.34. The inverse correlation matrices show no value greater

than 2.1747. Any values lower than five are not considered to show multicollinearity.

Therefore, there is no evidence of multicollinearity in any of the remaining scenarios.

4.6. Model Validity

Model validity is checked in three manners. First, the prediction expression is

checked using the predicted values from the test data versus the actual values using a

paired t test and a 95% confidence interval. Next, the prediction error sum of squares

(PRESS) statistic is analyzed for each regression scenario. Finally, the regression

equation is used with the split data to compare the means of the actual versus the

predicted values. A Box-Cox transformation is also attempted to increase prediction

capability.

The first step involves testing the regression equations against the actual values

that derived the equation. (This is similar to the residuals from the regression.) The

hypothesis is that the means should be the same. The prediction expression found in the

final standard least squares run for each scenario is run using the actual cargo and

passenger numbers from the initial data to show the predicted values. These values are

compared to the actual ground times using a paired t test with an alpha level of 0.05.

They are also compared using a 95% confidence interval (Cl). The 95% CI should
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encapsulate zero. If there is a significant difference or the 95% CI does not encapsulate
zero, the regression equation is not useful. The results from the paired t tests are

displayed in Table 4.9, where Hop: = 0 and Ha: p #0.

Table 4.9 Paired t test and 95% CI for original data using regression equations

Scenario t Stat | P(T <t) two- Mean 95% Confidence
tail difference Interval

1 C-17 1.228 0.2199 -4.35 (-9.68, 0.98)
OAIX

2 C-17 0.703 0.4825 -3.40 (-8.69, 1.88)
OAKN

3 C-17 1.189 0.2352 -4.09 (-9.12, 0.92)
OAZI

7 C-5 OAIX | 0.103 0.9187 -2.05 (-26.5, 22.4)

From the paired t-test performed to determine if the means are different, it can be
surmised that the null hypothesis is not rejected. Also, each 95% CI included zero;
therefore, the mean difference between the two data sets is not significantly greater than
zero. This was a good result and should have occurred because the prediction data was
used to derive the regression equation.

Next, the prediction error sum of squares (PRESS) statistic is analyzed. The
PRESS statistic is found in the output of each scenario in JMP. This is chosen using the
response selection. The PRESS value for each model is shown in Table 4.10. Small
values of PRESS are favorable. From the PRESS statistics in Table 4.10, it is seen that all

are very close to SSE. Therefore, all models have a good PRESS statistic.

Table 4.10 PRESS Statistic

Scenario PRESS statistic SSE
1 C-17 OAIX 1657 1626
2 C-17 OAKN 1361 1303
3 C-17 OAZI 1908 1878
7 C-5 OAIX 58 49

50



The final step includes using the derived prediction expressions with the split data
for the month of July 2010. The regression equations should result in planned ground
times that are not significantly different from the actual ground times. The hypothesis is
that the means should be the same. The prediction expression found in the final standard
least squares run for each scenario is run using the actual cargo and passenger numbers
from the July data to show the predicted values. These values are compared to the actual
times using a paired t test with an alpha level of 0.05. They are also compared using a
95% confidence interval (CI). The 95% CI should encapsulate zero. If there is a
significant difference and the 95% CI does not encapsulate zero, the prediction
expression is not useful. The distribution of the actual ground time in July was also
analyzed and is similar to the original data. The prediction expression for each scenario is
shown in Table 4.11. The results from the paired t tests are displayed in Table 4.12,

where Hy: p =0 and Ha: p #0.

Table 4.11 Prediction Expressions Square Root Transformation

Intercept | BC off | PCoff | RSoff | T2off | PCon | RSon | T3on | T6on | Pax off
(minutes)
C-17 12.89 0.0739 | 0.1002 -0.796 | -0.0161
OAIX
=12.89 + 0.07387 * PC off + 0.1002 * RS off - 0.7955 * T6 on - 0.01606 * Pax off
C-17 12.82 0.2382 0.2657 | -0.119 | -0.1962 | -0.848 -0.0066
OAKN
=12.82 +0.2382 * PC off + 0.2657 * T2 off - 0.119 * PC on - 0.1962 * RS on — 0.848*T3 on - 0.0066 Pax off
C-17 12.65 0.1762 -0.4077 -0.0052
OAZI
=12.648 + 0.1762 * PC off - 0.4077 * RS on - 0.00516 * Pax off
C-5 18.99 -0.532 | -0.092
OAIX

=18.99 - 0.5318 * BC off - 0.092 * PC off

51




Table 4.12 Paired t test and 95% CI for Prediction Expressions with July data

Scenario | Aircraft | Obs |t Stat P(T<t) Mean 95% Confidence
Airfield two-tail difference Interval
1 C-17 197 4.3 0.00002 -21.3 (-29.2, -13.3)
OAIX
2 C-17 185 | -1.8 0.07 12.24 (2.5, 21.98)
OAKN
3 C-17 65 0.14 0.89 1.48 (-17.2,20.2)
OAZI
7 C-5 13 -2.1 0.057 80.78 (-1.8,163.4)
OAIX

From these results, it is apparent that models for Scenarios 3 and 7 are the only

two models that have significance with both the t test and the 95% CI. This is displayed

by both the two-tail being above 0.05 and the 95% CI including zero. Scenario 2 shows

significance in the t test, but not in the 95% CI.

Next, a Box Cox transformation is conducted to alleviate more variance and

increase the predictability of the models. This is accomplished through JMP using the

best Box Cox transformation that JMP produces. Table 4.13 shows the results from using

a Box Cox transformation instead of the Square Root transformation.

Table 4.13 Paired t test and 95% CI using Box Cos Transformation

Scenario | Aircraft | Obs |t Stat p(T<t) Mean 95% Confidence
Airfield two-tail difference Interval
1 C-17 197 | 4.24 0.000028 -21.02 (-29.0, -13.04)
OAIX
2 C-17 185 | -1.51 0.13 10.25 (0.38, 20.13)
OAKN
3 C-17 65 |-0.29 0.77 3.05 (-15.6, 21.7)
OAZI
7 C-5 13 -1.57 0.14 61.46 (-23.4, 146)
OAIX

The Box Cox slightly increases the significance in Scenarios 2 and 7, but decreased in

Scenario 3.
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The prediction expression values for Scenarios 2, 3, and 7 are also compared with
the actual ground times in July to realize potential savings in ground time. During the
months of January-June 2010, the average early and late times over all missions were 36
minutes early and 45 minutes late. The models predicted values over the month of July
decreases the minutes early to 28 and the minutes late to 39. This does not look like a
significant change, but over the course of a month, with around 200 C-17 and C-5
missions through the Scenarios, this equates to lowering the error in planning by 4445
minutes or 74.1 hours.

This does not necessarily mean that throughput will be increased or decreased. As
seen with the prediction expressions in Table 4.9, the intercept (once squared) for the C-
17 is averaging 2.73 hours = regressors and the C-5 is averaging 6 hours + regressors on
the ground. This is an increase from the maximum planning ground times of 2.25 for C-
17s and 3.25 for C-5s. Actual values for throughput follow: C-17s at Camp Bastion
average 3 C-17s per day with a maximum in 2010 of 9 C-17s in one day, C-17s at
Kandahar AB average 4 C-17s per day with a maximum in 2010 of 13 C-17s in one day,
and C-5s at Bagram AB average 1.4 C-5s per day with a maximum in 2010 of 5 C-5s in
one day. The average and maximum amount of aircraft transiting these airfields on any
given day leave room for the possible increased ground time. Using the models with
maximum on the ground values at each location, it is seen that the maximum throughput
for a given day for C-17s at Camp Bastion is 18 C-17s, for C-17s at Kandahar AB is 26
C-17s, and for C-5s at Bagram AB is 8 C-5s. These numbers are almost all over double

the maximum amount of aircraft throughput in 2010. Therefore, throughput should not be
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affected by the new model and the entire process should become more predictable and

stable.

4.7. Summary

The results from Chapter 4 show that ground times can be accurately predicted
using historical cargo data and ground times in three of the eight scenarios. The
remaining five scenarios do not have significance to predict ground times. Scenarios 3
and 7 hold the strongest significance with both the t test and the 95% CI showing
accurate prediction capability. Scenario 2 shows significance in the t test but not the 95%
ClI. This result is suitable to be used in future predictions. Therefore, the linear regression

model built for Scenario 2 could be used to accurately predict C-17 ground times at
OAKN. Chapter 5 summarizes the conclusions drawn from this research, outlines the

obstacles to implementation of results, and suggests future areas of research that broaden

the scope of this research effort.
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5. Discussion

5.1. Conclusion

Cargo aircraft provide essential military supplies to Afghanistan around the clock.
Accurate scheduling of ground times in theater is critical to providing needed supplies to
combat troops in an orderly manner. While focusing on historical data from the GATES
and GDSSII data systems, a linear regression model was developed to model accurate
ground time prediction using three different aircraft and airfields, with eight total
scenarios. Three of these scenarios resulted in useful models that were validated using
split historical data. These scenarios give the mission planners at TACC a more accurate
tool to predict ground times. These can be used in the future to stabilize ground times in

theater and schedule aircraft in a more accurate and efficient manner.

5.2. Unexplained Variance

Throughout this study, there were some factors during some phases of the mission
from landing to takeoff that were assumed constant. These factors may not have been
exactly constant and therefore could have led to unexplained variance. The phases
include landing, taxiing into park, offloading, onloading, taxiing for takeoff, and takeoff,
that led to unexplained variance that impacted some scenarios. Some of the factors could
include motivation in either aerial port crews or aircraft crews, aerial port overtasking,
and deployment rotations to name a few.

Motivation by an aerial port crew or an aircraft crew can lead to significant
variance. For example, if the aerial port and the crew are very motivated, the ground time

could be minimal. This is especially the case if the crew requests an early takeoff from
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TACC. Conversely, a not so motivated port crew and aircraft crew could lead to much
longer ground time than is expected. Any combination of these factors will lead to
unexplained variance that definitely affects the outcome of this type of model.

Aerial port overtasking is another factor of unexplained variance. This could
result from numerous complications. One factor is not enough ground time for one
aircraft on the ground. Another is a severe maintenance problem. Both of these can back
up the entire field for hours or days. Other factors could include under manning or over
manning of aerial port crews.

Deployments are a constant cause of variance in theater. Four to six month
deployments result in a learning curve for all Airmen that handle this process. Great
lengths are taken to alleviate any of this learning curve, but it still occurs in the system

and is mostly unknown during this analysis.

5.3. Errors in Data Bases

The GATES and GDSSII data bases have a large amount of error. This can be
seen in almost all aspects of the system. Main areas of error were due to controllers
changing scheduled times in GDSSII, GATES not accurately depicting significant
differences in cargo type, or erroneous or missing delay remarks.

Some results were not able to be drawn due to controllers changing scheduled
takeoff times in the system. If the mission is slipped for some reason while on the ground,
the scheduled takeoff time should not be changed. The actual takeoff time will reflect this

and the delay codes or remarks should give the reason for the change. This is a large
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source of error and eliminated a potential avenue to explore scheduled ground times
versus actual ground times in regards to the cargo on board.

The cargo needs to be better defined in GATES. The rolling stock data should be
changed to include three significantly different types of cargo as well as particular
outsized cargo, which takes a significantly longer amount of time to offload and upload.
This would eliminate a large amount of variance in offload and upload times.

Rolling stock needs to account for drivable rolling stock, rolling stock that needs
to be winched on and off the aircraft, and rolling stock that needs shoring. All three of
these types of rolling stock take significantly different amounts of time to onload and
offload. For example, drivable rolling stock (i.e. cars) can be easily offloaded, while a
heavy power cart may need to be winched or towed onto the aircraft. Shoring is needed
when the clearance of the vehicle going on or off the aircraft is too low for the angle of
the ramp, therefore pieces of wood are needed to decrease the angle of the cargo ramp.
This takes a longer time to organize and put together. Therefore, clumping all of these
items into one category is not useful for this analysis.

Helicopters and other outsized cargo known to have a longer onload or offload
time also need to be categorized differently. This is due to the increased amount of time

needed to safely move such cargo. This would reduce error and variance in the system.

5.4. Limitations

The significant models should be used by experienced mission planners. Not all
scenarios are derived and tested throughout the results. For example, there is an error

bound that needs to be assessed by the individual mission planner that they see as
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acceptable for the mission at hand. Some ground times from these equations may seem
very long due to certain regressors that add significant time if the aircraft is entirely full
of one type of cargo. This should be scrutinized by AMC/AQ9 in the accreditation phase.
There are definitely many more factors that the mission planners may need to

consider when determining ground time. The results from the models should be used as a
base from which the mission planner can expound. Some factors may occur
simultaneously, while others may require additional ground time when cargo loading and
unloading are completed. This is up to the individual mission planner, and eventually, up

to the aircraft commander to implement the appropriate ground time in a safe manner.

5.5. Recommendations

This analysis resulted in many recommendations. They range from improving the
accuracy of data collection, additional items for data collection, method of inputting data,
method to schedule C-130 ground times specifically, and the use of the resulting models.
All of these recommendations would enhance USTRANSCOM operations around the
world.

Throughout this study, it was noted that many improvements in the data collection
process would have led to more significant results. This can be seen from inaccurate data
points throughout both databases. A more stringent approach to accurate data collection
needs to be made by USTRANSCOM. The amount of erroneous data in the system, at a
minimum, cost the tax payers millions each year. Effective data collection could reduce
the amount of Aircraft needed in theater by helping to build more accurate models and

analytical tools.
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Additional data needs to be collected. This data includes the time Aerial Port
begins offload, finishes offload, begins onload, and finishes onload. These times, along
with relatively constant times for taxi and crew duties, could be analyzed with total time
on the ground to determine a better fit for the ground time model.

Data collection should be improved using a more reliable system. This should
involve some type of electronic device tied to the current system. Alternatively, a more
updated data system that is taken with aerial port crews on every offload and onload
could be used. The port crews could verify all cargo present and record the start and stop
times of the offloads and onloads. This device could transfer the data electronically into
the database and therefore alleviate the current transfer error. This type of technology can
be seen on the C-17. The C-17 is equipped with a computer system that can automatically
report land times, fuel on board, and takeoff times to TACC. This data collection
capability and emphasis needs to be transferred to all aspects of the Air Mobility
Command process to include port crews.

C-130s should use the current system they have in place. The current C-130
system uses a historical database of how long specific types of cargo loads have taken.
The Combined Air Operations Center C-130 mission planners apply these times to
predict relatively accurate ground times. This success is also due to the C-130’s small
cargo loads. C-130s generally have short and almost identical ground times no matter
what type or how much cargo is offloaded or onloaded. This resulted in no significance in
the linear regression models. The other components of ground time and the C-130’s
tendency to conduct engine running offloads and onloads are more influential in

determining ground times. Since these times are mostly constant for actions not including
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loading and unloading, ground times are mostly identical for all types of cargo.
Therefore, the current system already creates a stable environment with the subject matter
experts planning missions.

The significant models should be used by AMC/A9. Once accredited by
AMC/A9, these models should be used by TACC in a test manner. The results of these
models should create a more accurate account for ground times for C-17s at Kandahar
and Camp Bastion and C-5s at Bagram. Although significance was not found in all
models, they should be used when applicable to create a more stable air mobility system.
Not counting the C-130s, there were a total of five scenarios. Three of the models for

these scenarios were found to be significant.

5.6. EXCEL Based Tool

An EXCEL based tool was designed and built for AMC/A9 and TACC planners.
This tool is used to predict ground times based on the regression expressions found from
the models of three scenarios with significance. Easy to use operations are critical to
quickly and effectively planning operations in a wartime environment. The “AMC OEF
Ground Time Predictor” has an easy to use interface in the EXCEL program. Any TACC
planner can use this tool to predict C-17 ground times at Kandahar AB and Camp Bastion
or C-5 ground time at Bagram. The only inputs that are required are the type of aircraft,
location, and the equivalent pallet positions for the regressors used in each equation. The
remaining regressors are not used and therefore are not included in the tool. This tool is

shown in Appendix D.

60



5.7. Future Research

Proper data collection with a linear regression analysis and models that fits the
data more accurately could be re-accomplished for these airfields and aircraft. The
research could also be expanded to include all Afghanistan airfields and other airfields in
Irag. This data could also be placed into a much larger model for aircraft throughput. This
research could expound on past and current integer programming, simulation, and
stochastic techniques. The output from these updated models would yield more accurate

airflow through USTRANSCOM’s combat and global environment.
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Appendix A: Stepwise Regression Output

Figure A.1. Stepwise Regression Scenario 1
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Figure A.2. Stepwise Regression Scenario 2
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Figure A.3. Stepwise Regression Scenario 3
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Figure A.4. Stepwise Regression Scenario 4

38 C-130 OAIX ALL DATA SORTED - Fit Stepwise - JMP -_ =

4 1= Stepwise Fitfor ACTUAL TIME ON GROUND mins
4 Stepwise Regression Control [

Stopping Rule: [P-value Threshold v | [mb] [ Enter All | [Make Modell

E:gg :g Eg;ire — UUD; 4= | [Remove All| | Run Model |
Direction: @
I Go I[ Stop |[ Step |
162 rows not used due to excluded rows or missing values.
SSE DFE RMSE RSquare RSqguare Adj Cp p AlCc BIC
655053.26 569 33929868 01087 01024 -2.495334 5 5681.959 5707.927

4 Current Estimates |

LockEntered Parameter Estimate nDF 55 "F Ratio” "Prob>F"
[ [ Intercept 57.8537337 1 0 0.000 1
0 [ BC off 0 1 1711876 0.148 0.70014
B LS off 0 1 1476.92 1.284  0.25772
B B PC off 0 1 2071.804 1.802 0.17999
[ RS off -5.1807081 1 5196.358 4514 0.02405
O g SO off 0 1 3026989 0.263 0.60854
B E T2 off 0 1 394.3602 0.342 0.55882
B T2 off 0 1 1.780649 0.002 0.98867
B E T4 off 0 1 3589023 0.031 0.86003
B [ T5 off 0 1 BB.44212 0.077 078192
0 B T6 off 0 0 0 _ _
B H BC on 0 1 2392027 0.207 0.54892
8 O LS on i 0 0 _ _
] PC on -1.8926974 1 113864 9.891 0.00175
B RS on 0 1 743.1085 0.645 0.42221
B H 5D on i 0 0 : ;
[ ] T2 on 0 1 113.9792 0.099 075333
B E T3 on 0 1 B1.08095 0.053 0.81809
B B T4 an 0 1 379.9856 0.330 0.56608
1 T5 on 0 1 88.44212 0.077 078192
B E T6 on 0 0 0 . .
= pax offloaded 0.46657733 1 B44223 55.950  2.8e-13
E paxonloaded -0.2530624 1 2444898 21237 501e6

65



Figure A.5. Stepwise Regression Scenario 5
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Figure A.6. Stepwise Regression Scenario 6
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Figure A.7. Stepwise Regression Scenario 7
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Figure A.8. Stepwise Regression Scenario 8
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Appendix B: Standard Least Squares Output

Figure B.1. Scenario 1
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Figure B.2. Scenario 2

: m C-17 OAKN ALL DATA SORTED - Fit Least Squares - JMP

4= ResponseACT'UAL_TIME ON G_ROUND mins

4 Whole Model

4 Actual by Predicte;l Plot

350
300
250
200 .
150
100
50-]

ACTUALTIME ON
GROUND mins Actual

] P ) ) [
50 100 150 200 250 300 350

ACTUAL TIME ON GROUND mins
Predicted
P=.0001 RSq=0.53 RM3E=53.656

4 Summary of Fit

RSquare 0.532187
RSquare Adj 0.524721
Root Mean Square Errar 5365616
Mean of Response 191.624
Obsernvations (or Sum Wats) 383
4 Analysis of Variance
Sum of
Source DF Squares Mean Sguare
Model 6 12314541 205242
Error 376 10824977 2879
C. Total 382 23139519
4|Lack Of Fit
Sum of
Source DF Squares Mean Square
Lack Of Fit 226 6035142 2670.42
Pure Errar 150 4789836 319322
Total Error 376 10824977

F Ratio
71.2899
Prob > F
=0001*

F Ratio
0.8363
Prob > F
0.8879
Max RSq
0.7930

71



Figure B.3. Scenario 3
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Figure B.4. Scenario 4
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Figure B.5. Scenario 5
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Figure B.6. Scenario 6
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Figure B.7. Scenario 7
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APPENDIX C: Square Root Transformation on Y variable

Standard Least Squares Output applied with the square root transformation on Y variable

Figure C.1. Scenario 1
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Figure C.2. Scenario 2
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Figure C.3. Scenario 3

: m C-17 OAZI ALL DATA SORTED - Fit Least Squares 2 - JIMP

4|~ Response Sqrt(ACTUAL TIME ON GROUND mins)

4 Whole Model

4 Actual by Predicte;l Plot

350
300
250
200
150
100

50-]

ACTUALTIME ON
GROUND mins Actual

—T T T T T T
50 100 150 200 250 300 350

ACTUAL TIME ON GROUND mins
Predicted
P=0001 RSg=026 RM3E=2.0337

4| Summary of Fit

RSquare 0.263313
RSquare Adj 0.258435
Root Mean Square Error 2033715
Mean of Response 13.3258
Observations (or Sum Wgts) 457
4| Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 3 G69.6815 223227 539718
Error 453 18736071 4136 Prob=F
. Total 456 25432886 =.0001*
4| Lack Of Fit
Sum of F Ratio
Source DF Squares Mean Square 3.0961
Lack Of Fit 104 399.0958 8.64515 Prob=F
Pure Error 349 9745112 279230 =0001%
Total Errar 453 18736071 Max RSq
06168

79



Figure C.4. Scenario 7
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APPENDIX D: EXCEL BASED TACC TOOL

9
10
11
12
15

17

18

13
20

21

22
23
24
25
26
27
28
29
30
31
32
33

A C D E F G H | ] K
Ground time predictor
1) select aircraft and airfield from drop down box
2) input equivalent pallet positions and number of passengers {only needed types for prediction are included)
3) ground time appears in minutes and hours
Selection | BC off |PC off|RS off| T2 off|PC on|RS on|T3 on | T6 on|Pax off
C-17 OAZI 0 9 0 0 2 9 0 0 40

Ground Time

107.30 minutes

1.79

hours

Definitions

BC off = Belly cargo offloaded

PC off = Palletized cargo offloaded

RS off =Rolling stock cargo offloaded
T2 off = Pallet Train of 2 offloaded; 1 T2 =1 for model
PC on =Palletized cargo onloaded
RS on =Rolling Stock cargo onloaded
T3 on = Pallet Train of 3 onloaded; 1 T3 =1 for model
T6 on = Pallet Train of 6 onloaded; 1 T6 =1 for model
|Pax off = # of total passengers offloaded
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APPENDIX E: Blue Dart

OPTIMIZING GROUND TIMES FOR AMC AIRCRAFT IN AFGHANISTAN

Air Mobility Command’s (AMC) airlift assets that transit airfields in Afghanistan
are given only a small variety of ground times in order to accomplish their mission. These
ground times are based on overarching categories of missions that aircraft execute, such
as cargo upload, cargo download, passenger upload, passenger download, or a
combination of these. The current mission planning system uses these overarching
categories to plan ground times and does not account for the exact amount of cargo or
passengers. This leads to longer or shorter ground times than planned. In order to increase
stability at these fields and better account for the number of sorties that can be planned
into Afghanistan, a method to calculate optimal or near optimal ground times is needed.

This research creates a linear regression model that accounts for the size of cargo
upload, cargo download, passenger upload, and passenger download known by the
mission planner. This model can be used by the mission planners at AMC’s Tanker
Airlift Control Center (TACC) to increase the efficiency at which they plan sorties. Eight
scenarios are analyzed to account for C-17, C-130 and C-5 missions to Bagram AB,
Kandahar AB and Camp Bastion airfields in Afghanistan. Three of the scenario models
are found to be significant and are validated with split data from a separate months worth
of data. The use of the three significant models will increase stability in AMC planning
and efficiency. This occurs by reducing early and late times by an average of seven
minutes per mission. This increases stability planning by 74.1 hours per month. In turn,

our overall wartime effectiveness will be enhanced.
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: Summary Chart

APPENDIX F
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