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Abstract 

  Air Mobility Command’s (AMC) airlift assets that transit airfields in Afghanistan 

are given only a small variety of ground times in order to accomplish their mission. These 

ground times are based on overarching categories of missions that aircraft execute, such 

as cargo upload, cargo download, passenger upload, passenger download, or a 

combination of these.  The current mission planning system uses these overarching 

categories to plan ground times and does not account for the exact amount of cargo or 

passengers. This leads to longer or shorter ground times than planned. In order to increase 

stability at these fields and better account for the number of sorties that can be planned 

into Afghanistan, a method to calculate optimal or near optimal ground times is needed.  

 This research creates a linear regression model that accounts for the size of cargo 

upload, cargo download, passenger upload, and passenger download known by the 

mission planner. This model can be used by the mission planners at AMC’s Tanker 

Airlift Control Center (TACC) to increase the efficiency of planning sorties into 

Afghanistan. Six months of historical data is filtered and categorized and then analysis is 

accomplished using the JMP linear regression program. Eight scenarios are analyzed to 

account for C-17, C-130 and C-5 missions to Bagram AB, Kandahar AB and Camp 

Bastion airfields in Afghanistan. Analysis is concluded and insights are drawn regarding 

how to stabilize planned ground times. 

 Three of the scenario models are found to be significant and are validated with 

split data from a separate month’s worth of data. All C-130 models are not significant due 

to many factors. The remaining insignificant models can be attributed to data system 

errors and unexplained variance. The use of the three significant models will increase 

stability in AMC planning and efficiency. In turn, our overall wartime effectiveness will 

be enhanced.     
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OPTIMIZING GROUND TIMES FOR AMC AIRCRAFT IN AFGHANISTAN 

 
 
 

1. Introduction 
 

 

1.1. Background 

Air Mobility Command’s (AMC) mission statement is “Provide Global Air 

Mobility ... Right Effects, Right Place, Right Time” (www.amc.af.mil). Since the 

beginning of Operation Enduring Freedom, AMC has tried to accomplish this and has 

airlifted “approximately 12.5 million passengers, delivered more than 4.5 million tons of 

cargo, distributed more than 1.5 billion gallons of fuel, and performed nearly 133,000 

patient movements” (Wilson). AMC accomplishes its airlift prowess with aircraft such as 

the C-17, C-5, C-130, KC-10 and KC-135.  These aircraft have specific missions. The C-

17, C-5 and C-130’s primary missions are to deliver cargo, in many different forms, to 

areas around the World. The KC-135 and KC-10’s primary mission is air refueling with a 

secondary mission of moving cargo.  

This research focuses on the cargo delivered into Afghanistan. Since the bulk of 

the cargo is delivered from the C-17, C-5 and the C-130, the focus is on these aircraft. 

The C-17 can carry 102 troops/paratroops (188 troops with palletized seating), 36 litter 

and 54 ambulatory patients and attendants, 170,900 pounds of cargo with up to 18 pallets 

positions and can fly between 2,400-6,000 nautical miles (dependent on cargo weight) 

http://www.amc.af.mil/�
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without air refueling. The C-5 can carry 73 passengers, 270,000 pounds of cargo with up 

to 36 pallet positions and can fly up to 6,320 nautical miles (dependent on cargo weight) 

without air refueling. Both aircraft have a virtually unlimited range when utilizing in-

flight refueling. The C-130 can carry 40,000 pounds of cargo with 6-8 pallets or 74-97 

litters or 16-24 CDS bundles or 92-128 combat troops or 64-92 paratroopers, or a 

combination of any of these up to the cargo compartment capacity or maximum 

allowable weight and can fly 1200-2000 nautical miles (dependent on cargo weight) 

(AFPAM10-1403, Air Force Aircraft Fact Sheets).  

All of these aircraft have operational restrictions in order to land at certain 

airfields. These restrictions are mainly determined by the size of the available runway and 

if the runway is stressed for a specific type of aircraft. These restrictions keep the C-5 out 

of many airfields in Afghanistan. It only lands at Bagram, Kandahar, and Kabul airfields. 

The C-17 can land on more runways, due it its smaller size and capability to land on 

unprepared surfaces. The C-130 is the most versatile of the three cargo aircraft and can 

land at almost any airfield in Afghanistan.  

1.2. Problem Statement 

Air Mobility Command’s (AMC) airlift assets, that transit airfields in 

Afghanistan, are given only a small variety of ground times (slot times) in order to 

accomplish their mission. These are based on what overarching type of mission the 

aircraft are executing, i.e. cargo upload, cargo download, passenger upload, passenger 

download, refueling, or a combination of these missions.  The current mission planning 

system uses these overarching categories to plan ground times and does not account for 
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how much cargo or how many passengers are to be loaded or unloaded. This can be seen 

in Table 1.1. If an aircraft has only a download or an upload, then the ground time is 

shorter, i.e. 1+45 for the C-17 with one event (one hour and forty five minutes). If the 

aircraft has both a download and an upload, then the ground time is increased, i.e. 3+15 

for the C-5 with two events. These numbers were received from current Tanker Airlift 

Control Center mission planners and Air Force Pamphlet 10-1403.  

Table 1.1 Event Planning Ground Time 

Acft 1 EVENT (hours) 2 EVENTS (hours) 

C-17 1+45 2+15 

C-130 0+45 1+30 

C-5 2+15 3+15 

 

 The use of these generic times leads to much longer or shorter ground times than 

planned. In order to stabilize airflow at these fields and better account for the number of 

sorties that can be planned into Afghanistan, a method to calculate optimal or near 

optimal slot times is needed. This should increase the efficiency of how troops and cargo 

are delivered to downrange locations. In turn, our overall wartime operations will be 

enhanced.   

1.3. Methodology 

A retrospective study is accomplished to address the problem statement. This 

includes historical data synchronization and linear regression methods. These are used to 

build a suitable model for AMC to use and more reliably predict ground times.  Data 
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synchronization is used to merge database information into a usable format. This format 

is then used in linear regression software (JMP) to develop models to fit different 

scenarios. These scenarios include each airfield and each jet individually; therefore, there 

are eight models developed based on each scenario. 

Table 1.2 Scenario Matrix 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 Scenario 1 Scenario 2 Scenario 3 

C-130 Scenario 4 Scenario 5 Scenario 6 

C-5 Scenario 7 Scenario 8 C-5s do not transit 

The different models are needed because each jet has different ramps, parking spaces, 

aerial port capabilities and other variables per airfield. These other variables are set to 

remain constant at these fields. 

 The linear regression analysis checks for model adequacies, significance, 

multicollinearity, influence points, outliers, and other factors such as VIF, CP, R2 and 

adjusted R2 that are defined in Chapter 2. This should satisfy the need to understand if the 

historical information is usable in the regression model. Following these tests, and based 

on the regression coefficients; a regression equation is computed and used to predict how 

long jets should be planned to stay on the ground per cargo and passenger loads. The 

cargo is accounted for in pallet positions and the passengers are counted individually.  

1.4. Assumptions/Limitations 

There are many assumptions and limitations that could impact this analysis and 

mission success. These lie within the aircraft, the aircrew operating the aircraft, the Aerial 
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Port crews (crews that upload and download cargo), the airspace over and on the way to 

the airfield, and the airfield itself. These are standard assumptions that are sometimes 

taken for granted, but could severely impact mission success.  

The assumptions are: 

• Aircrew operating the same type of aircraft have the same abilities to 

download all different types of cargo 

• No engine running offloads or onloads are accomplished for C-17 or C-5 

aircraft 

• Aerial ports have the needed equipment to download and upload all types 

of cargo from each specific aircraft sent to its airfield 

• Aerial port members have the same ability to download and upload cargo 

• Airspace is open over and leading to the specific landing runway  

• Runways are open without major implications to inbound or outbound 

aircraft, i.e. the runway is open and the taxiways to the parking spots are 

usable  

• Weather conditions at the airport during landing windows satisfy basic Air 

Force Instruction 11-202V3 weather requirements  

• Time to transit from landing to parking is always constant per airfield 

• Time to transit from parking to takeoff  is always constant per airfield 

• Parking spots per aircraft are constant 

• Crew planning and inspection times are constant 

• Concurrent servicing of cargo and fuel is approved  
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Limitations impacting this study mainly come from acquiring the data to analyze the 

ground times of different aircraft. The major limitations are listed below: 

• Not all aircrew and aerial port members have the same ability to download 

and upload equipment 

• Data systems from which  information is pulled, i.e. GDSSII and GATES 

are not perfect and rely on Airmen to input data correctly  

o Data is not kept for all different types of delays on the ground 

o Delay codes are considered inaccurate within GDSSII 

o Changes to the scheduled ground times are made within GDSSII 

while the mission is active, the schedule ground time should 

remain the same throughout the mission 

o Numerous data points (i.e. mission information) have more pallet 

positions or passengers than are possible for the aircraft to hold 

o Numerous data points have no cargo or passenger data 

• No database known at this time keeps track of how much fuel each jet has 

uploaded and the time required for fueling 

1.5. Research Objectives 

The objective of this research is to build a model that accounts for the amount of 

cargo uploaded, cargo downloaded, passengers uploaded, and passengers downloaded.  

Other known delays such as a Medical Evacuation, refueling, and any other known length 

of delays are added separately based on specific mission requirements by the mission 
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planner. This model is instantiated in an EXCEL program that the mission planners at 

AMC’s Tanker Airlift Control Center (TACC) can use to increase the efficiency of 

planning sorties into Afghanistan.   

 In order to build this model, data is needed from TACC. This data consists of how 

long it takes to upload and download certain amounts and types of cargo and passengers. 

This data can be taken from two different systems, Global Decision Support System 2 

(GDSS II) and Global Air Transportation and Execution System (GATES).  

 GDSS II is used by every Air Force command post at airfields in Afghanistan and 

by the TACC.  Airmen at these centers input data including: the scheduled and actual 

land times, take off times, and, if applicable, reasons for delay. GDSS II can be accessed 

by most Airmen who operate in the AMC environment to tell when incoming planes will 

be landing, how much cargo they have, if there is a delay, and to prepare their field for 

the incoming aircraft. This is an essential tool for Airmen to accomplish their jobs.  

 GATES is a system used by Aerial Port members to track passenger and cargo 

uploads and downloads. This system records cargo movement per mission identification 

numbers into and out of individual airports. This system tracks where cargo is currently, 

where it came from and where it is going.  

The GATES system is used to pull information about how much cargo and how 

many passengers were downloaded and uploaded onto specific aircraft with specific 

mission numbers. This information is cross referenced with information from GDSSII of 

scheduled and actual ground times. A model is developed based on this information and 

used to improve the ground time planning system. 
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In order to test this model, six months of historical data are run through the model  

and insight is drawn as to how much the ground time planning has changed and how 

many more or less aircraft can be planned downrange in a given day and month.   The 

model based on six months of historical data is then used on subsequent historical months 

to see if the model predicted ground times were closer to the actual ground times than the 

originally scheduled ground times.  

 1.6. Summary 

Chapter one presented the background for the research, problem statement and a 

way ahead. This topic is very important to the future of AMC planning in theater 

operations. Chapter two discusses the literature for this research and focuses on 

applicable areas of linear regression with additional review for future research. Chapter 

three contains a discussion and explanation of the methodology. Chapter four captures 

the analysis of the information generated by the methodology. Chapter five discusses 

conclusions and recommendations for AMC and future research.  
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2. Literature Review 

This chapter contains many techniques and areas of focus to analyze airflow 

problems and cargo loading planning techniques. Initially this problem was thought to 

have more of a focus on the need to understand actual airflow into and out of the 

Afghanistan Theater of Operations. After much study and analyzing, this problem proved 

amenable to analysis using a simple linear regression. This literature review has a limited 

discussion on the airflow into and out of the theater to enlighten future scholars on 

possible ways to proceed if requested or needed by AMC or other affiliates.  

2.1. Linear Regression 

Linear regression is a commonly used statistical technique to analyze a 

relationship between variables. This type of study can and is used in almost every type of 

field. The results have been proven and the methodology is sound. Two books are used in 

this review. One is “Introduction to Linear Regression Analysis” (Montgomery, Peck, 

Vining, 2001) and the other is “Design and Analysis of Experiments” (Montgomery, 

2009).  Both of these books have many good points to focus on in this analysis, but the 

main focus in the review is on the “Introduction to Linear Regression Analysis”.    

 Initially, Montgomery et al. (2001) talks about data collection techniques. There 

are three basic methods of collecting data: a retrospective study based on historical data, 

an observational study, and a designed experiment (Montgomery, Peck, Vining, 2001). A 

historical data collection is needed in this analysis; therefore, a retrospective study is 

needed. There are several disadvantages of a retrospective study.  
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Some of the relevant data often are missing. The reliability and quality of the data 
are often highly questionable. The nature of the data often may not allow us to 
address the problem at hand. The analyst often tries to use the data in ways they 
were never intended to be used. Logs, notebooks, and memories may not explain 
interesting phenomena identified by the data analysis (Montgomery, Peck, 
Vining, 2001, p.8).  
 

These shortcomings are not all apparent in every historical observation but need to be 

kept in mind while conducting an analysis. Some of these problems could lead to outliers.  

  

Simple linear regression is based on one regressor (x) and its relationship with a 

response variable (y). The point is to try and fit a line by using the data to show 

relationships and predict outcomes. This leads to the simple linear regression model: 

     

 

The technique used to find β0 and β1 is the method of least squares; estimate the β0 and β1 

so that the sum of the squares of the differences between the observations yi and the 

straight line is a minimum (Montgomery, Peck, Vining, 2001).  

2.2. Multiple Linear Regression 

Multiple linear regression is a focus for this study. This is because many different 

regressors are needed to understand a complicated system. A simple form of this equation 

would be  

This is called a multiple linear regression model with k regressors. The 
parameters βj (j=0,1,...,k) are called the regression coefficients. This model 
describes a hyperplane in the k-dimensional space of the regressor variables xj. 
The parameter βj represents the expected change in the response y per unit change 
in xj when all of the remaining regressor variables are held constant 
(Montgomery, Peck, Vining, p.68, 2001).   
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Any regression model that is linear in its parameters is a linear regression model, 

regardless of the shape of the surface it generates.   

Multiple linear regression also uses the method of least squares to determine the 

regression coefficients as in the simple linear regression. After accomplishing this, there 

needs to be a check of statistical significance in the regression model. The test for 

significance determines if there is a linear relationship between the response and any 

regressor variables. For this, an F test can be used to test the hypothesis Ho: β1= β2 =…= 

βk =0, and rejection criteria would be if Fo>Fα,1,n-2 (Montgomery, Peck, Vining, 2001).  

2.3. Checking Model Adequacy  

 The major assumptions in regression are that 1) the observations are adequately 

described by the model, 2) the errors are normally distributed, 3) the errors are 

independently distributed, 4) the errors have a constant, but unknown, variance and 5) 

that the errors have a mean of zero (Montgomery 2009).  These are very important 

assumptions that need to be checked to legitimately make statistical inferences. 

Montgomery also discusses ways to work around some of these areas if they are not 

adequate.  

 To find if the observations are adequately encapsulated in the model, R2 and 

adjusted R2 are computed (Montgomery 2009). The coefficient of determination, R2:  

 .  “SST is a measure of the variability in y without considering the 

effect of the regressor variable x and SSres is a measure of the variability in y remaining 

after x has been considered” (Montgomery, Peck, Vining, p. 39, 2001). R2 could be 

considered the proportion of variation explained by x. R2 is between 0 and 1 and the 
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higher the number, the more the variability is explained with 1.0 being a perfect fit. The 

R2 equation can falter with numerous regressors (over fit the model and inflates R2); 

therefore, adjusted R2 was developed.  The adjusted R2 statistic penalizes the model for 

using many regressors.  , where n is the number of observations 

and p is the number of regressors (Montgomery 2009).  

 To check for normally distributed errors, a simple test of the normal probability 

plot of residuals is accomplished. If the residuals fall within a specific distance from a 

straight line through their center, they are assumed to be normally distributed. Also, the 

average value for the residuals should be approximately zero (Montgomery 2009).  

 Checking for independently distributed error requires a plot of the residuals in 

time sequence. If no pattern is visible, they are assumed independent (Montgomery 

2009).  Historical data can be assumed to be independent due to the lack of ability to plan 

or record information.  

 To verify that the errors have a constant, but unknown, variance, a plot of 

residuals verses fitted (or predicted) values is used. The model is correct and the 

assumption holds if the residuals do not follow any pattern. The magnitude of the 

residuals versus the predicted values should be relatively constant across the observations 

and the average value of the residuals should be approximately zero (Montgomery 2009).  

If this is not confirmed, variance stabilizing transformations can be applied to the Y 

variable to try and correct the problem. This is seen when, after the transformation, the 

data is more symmetric and does not have a funnel or bow shape.  
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There are many different types of transformations. Montgomery (2009) discusses 

the square root, logarithmic, arcsine, reciprocal square root, reciprocal, and rank 

transformations.  He also discusses the use of the Box-Cox Method to estimate the 

transformation parameter (Montgomery 2009).  One additional method that he employs 

in his earlier work is a method of weighted least squares (Montgomery, Peck, Vining 

2001). All of these methods can work for different sets of data based on their individual 

relationships. Finding a useful transformation can make all the difference in a good 

analysis.  

2.4. Outliers & Multicollinearity 

 Detecting outliers and multicollinearity are important to any linear regression 

analysis. These areas can point to fundamental flaws or further areas to analyze. This 

additional analysis could consist of eliminating the specific data point, or could lead to 

information that sheds light on additional areas of interest.  

 Outliers are extreme observations. These points have residuals that are much 

larger than others. Typically they are three to four standard deviations from the mean 

(Montgomery, Peck, Vining 2001). These points are not representative of the rest of the 

data and could possibly have serious effects on the regression model. Montgomery 

suggests using scaled residuals, such as the studentized and R-student residuals. Once 

found, these points need to be investigated. Hopefully the reason for their curious 

behavior can be established. If there was an error in collecting the observation, this error 

should be fixed or the data point should be thrown out (Montgomery, Peck, Vining 

2001). If no error is found and the point is just unusual, then it should be kept in the 
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model. “Deleting these points to ‘improve the fit of the equation’ can be dangerous, as it 

can give the user a false sense of precision in estimation or prediction” (Montgomery, 

Peck, Vining, p.154, 2001).  

 Specific types of outliers can be seen as leverage or influence points. These points 

are explicit outliers in that they affect the model differently and in a relatively exact 

manner. Leverage points are points that lie on the regression line and do not affect the 

regression equation, but will have an impact on statistics such as R2. Influence points pull 

the regression equation in its direction. Therefore, it is 

significantly above or below the majority of the points. 

The knowledge of a leverage or influence point does not 

mean to discard, but as with other outliers, more 

investigation of those points needs to be made and a final 

determination on whether to leave in or discard should be 

made judiciously.  Cook’s Distance test can be used to consider both the location of the 

point in the x-space and the response variable in measuring influence. This “uses a 

measure of the squared distance between the least-squares estimate based on all n points 

 and the estimate obtained by deleting the ith point, say ” (Montgomery, Peck, 

Vining, p.212, 2001). 

 Multicollinearity occurs when two or more regressors in a multiple regression are 

highly correlated. Montgomery states when “there are near linear dependencies among 

the regressors the problem of multicollinearity exists” (p. 325, 2001). This can cause the 

inferences based on the regression model to be flawed or misleading.   

Figure 2.1 Leverage and 
Influence Points 
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There are four primary sources of multicollinearity: “the data collection method 

employed, constraints on the model or in the population, model specification and an over 

defined model” (Montgomery, Peck, Vining, 2001, p. 326).  The data collection method 

can cause this to occur if only a subspace of the samples is taken. Constraints on the 

model or in the population can also cause multicollinearity by using regressors that are 

correlated. Montgomery uses a reference between family income and house size as two 

regressors that would cause multicollinearity (2001). Model specification by the choice of 

model can cause multicollinearity. If this occurs, look at the specific reasons a model was 

chosen. An over defined model has more regressors than observations (Montgomery, 

Peck, Vining 2001).  

Multicollinearity is one reason why large variances and covariances can occur for 

the least-squares estimators of the regression coefficients. “This implies that different 

samples taken at the same x levels could lead to widely different estimates of the model 

parameters” (Montgomery, Peck, Vining, 2001, p.329).  This can also produce least-

squares estimates that are too large in absolute value.  

Detecting multicollinearity is essential to understanding the multiple regression 

model. Montgomery et al. (2001) discusses several techniques to include, the 

examination of the correlation matrix, variance inflation factors (VIF), and the 

eigensystem analysis of X′X. The examination of the correlation matrix involves looking 

at the off diagonal elements of the X′X matrix. If the absolute value is close to 1.0, then 

there is a strong linear dependence. “The VIF for each term in the model measures the 

combined effect of the dependencies among the regressors on the variance of that term” 

(Montgomery, Peck, Vining, 2001, p.337).   One or more large 
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VIFs indicate multicollinearity. Montgomery et al. (2001) states from practical 

experience that if a VIF exceeds 5 or 10, then the associated regression coefficient is 

poorly estimated because of multicollinearity. The eigensystem analysis of the X′X 

matrix measures the extent of multicollinearity in the data. “If there are one or more near-

linear dependencies in the data, then one or more of the eigenvalues will be small” 

(Montgomery, Peck, Vining, 2001, p.339).  

Montgomery et al. (2001) discusses multiple ways to deal with multicollinearity. 

This can be accomplished by collecting additional data, model respecification, or ridge 

regression. Collecting additional data has been suggested as the best method to combat 

multicollinearity (Montgomery, Peck, Vining 2001).  This should be collected in order to 

break up the multicollinearity in the model.  

Although multicollinearity can produce poor estimates of the individual model 

parameters, it does not necessarily imply that the fitted model is a poor predictor. “If 

predictions are confined to regions of the x-space where the multicollinearity holds 

approximately, the fitted model often produces satisfactory predictions” (Montgomery, 

Peck, Vining, 2001, p.330).  

2.5. Variable Selection & Model Building 

 Variable selection and model building are integral to analysis. There are many 

methods that Montgomery discusses to find the best regression equation, and there are 

advantages to all of them. Some of the ways to measure and determine the best fit and 

build the model are by using the coefficient of determination (R2), adjusted R2, residual 
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mean square (MSres), Mallows’s Cp statistic, and AICc.  R2 and adjusted R2 were 

previously discussed.  

 The residual mean square is . The goal of this is to minimize 

MSres and this also coincides with adjusted R2 when it is at its maximum. Mallow’s Cp 

statistic is related to the mean square error of a fitted value and looks for bias in the 

model, . Montgomery et al. (2001) states small values of Cp are 

desirable. Mallow (1973) states that minimizing Cp is similar to a stepwise regression 

algorithm and that the smallest or negative Cp – p is a good fit. Azen and Budescu (2009) 

show that Cp ≈ p and that a small difference shows a good fit with no bias and models 

with Cp >  p have some bias.  

 Akaike’s corrected information criterion (AICc) is a biased corrected version of 

Akaike’s information criterion (AIC) (Lindsey and Sheather, 2010). 

;

As the criterion decreases, the model becomes more desirable. This is measured by the 

maximized log likelihood of the predictor coefficients and error variance (Lindsey and 

Sheather, 2010). This number does not have a value in magnitude that is sought-after, but 

the lowest value of all the AICc is the most desirable.  

 There are many computational techniques for variable selection. Montgomery 

discusses trying all possible regressions and stepwise regression. The all possible 

regression method is made easier with strong computer programs such as JMP and 
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efficient algorithms. Montgomery et al. (2001) discusses that with less than 30 regressors, 

the solve time is relatively easy with the all possible regressions approach.   

Stepwise regression breaks down into three specific areas: forward selection, 

backward elimination and stepwise regression (a combination of the first two) 

(Montgomery, Peck, Vining, 2001). Forward regression starts with zero regressors in the 

model. One regressor is added to the model at a time. The first regressor selected for 

entry is the one with the largest simple correlation with the response variable.  This 

regressor is entered if its F statistic exceeds a specified F value. The second regressor 

picked for entry is the one with the largest correlation with the response after adjusting 

for the effect of the first regressor, and if its F statistic exceeds the specified F value, it is 

also added (Montgomery, Peck, Vining, 2001). This continues until the next regressor 

with the largest correlation does not surpass the specified F value.  

Backward elimination uses the partial F statistic as well. The partial F statistic is 

computed for each regressor as if it were the last variable to enter the model. The smallest 

of these partial F statistics is compared with a preselected F value, and if it is less than 

that value it is removed. This continues until one regressor’s F value is not below the 

specified F value for elimination (Montgomery, Peck, Vining, 2001). Stepwise regression 

combines both of these methods and needs an F value for including and another F value 

for eliminating from the model. This is a modification of forward selection in that it starts 

with zero regressors and adds them as in the forward selection method. But following the 

inclusion, the backwards method is checked to see if the previous regressor should be 

eliminated. Frequently the choice of the F value to enter is higher than the F value to 
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leave; therefore, it is “more difficult to add a regressor than to delete one” (Montgomery, 

Peck, Vining, 2001, p.314).  

2.6. Model Validity 

 Montgomery discusses three validation techniques for regression models. These 

are, 1) “analysis of the model coefficients and predicted values including comparisons 

with prior experience, physical theory, and other analytical models or simulation results.  

2) Collection of new (or fresh) data with which to investigate the model’s predictive 

performance. 3) Data splitting, that is, setting aside some of the original data and using 

these observations to investigate the model’s predictive performance” (Montgomery, 

Peck, Vining, 2001, p.530).  

 Analysis of the model coefficients and predicted values should be studied to 

determine if they are stable and their signs and magnitudes are reasonable. “Previous 

experience, theoretical considerations, or an analytical model can often provide 

information concerning the direction and relative size of the effects of the regressors” 

(Montgomery, Peck, Vining, 2001, p.531). The VIF can also be used as a guideline as 

discusses previously.  

 Collecting fresh data is the most effective way of validating a regression model 

with respect to its predictive performance (Montgomery, Peck, Vining, 2001). If the 

model gives accurate predictions of the new data, these confirmatory runs will be seen as 

evidence that the model works. Montgomery et al. (2001) recommends at least 15-20 new 

observations to get a reliable assessment of performance.  



20 

 Splitting the data is acceptable if collecting new data is not possible. When this 

happens, the data needs to be split into two parts, the estimation data and the prediction 

data (Montgomery, Peck, Vining, 2001). Careful consideration as to what data goes into 

each category is needed. A disadvantage of this method is that it reduces the precision 

with which the regression coefficients are estimated (Montgomery, Peck, Vining, 2001, 

p.537). 

 

2.7. Integer Programming Techniques 

Integer programming techniques to solve air traffic flow management problems 

have been studied and published in many journals. Integer programming has advantages 

in this type of study. One is that, most of the time, a closed form solution can be found. 

Another is that the known constraints can usually be accounted for accurately and 

updated in a timely manner. A drawback is that, due to the size of the network and 

problem, not all constraints can be accounted for.  

Bertsimas and Stock (1998) considered the air traffic flow management problem 

for commercial aircraft and used an integer programming method to increase 

optimization of air traffic.  They built a model that accounted for the capacities of the 

National Airspace System as well as capacities at individual airports. Then, they solved a 

large scale realistic sized problem with several thousand flights which significantly 

improved the state of the system.  

This study included a reduced problem specific to a ground holding problem.  

This special case involved only the departure and arrival airport and had significant 
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computational advantages over the larger problem. The ground hold problem is in line 

with optimizing ground times in Afghanistan.  

Baker et al.’s (2001) article on optimizing military airlift used the same premise 

and included a mathematical formulation with very specific constraints. One of these 

constraints dealt with airfield parking and servicing capacity constraints. These mainly 

deal with the number of parking spots at the airfield and if fuel or other services are 

available. Their technique and constraining process are useful for minimizing ground 

times in Afghanistan.  

One of the most recent and notable articles is “An integer programming approach 

to support the US Air Force’s air mobility network” by Koepke et. all (2008). This 

research extended Bertsimas and Stock’s study to the Air Force. Koepke et al. used a 

maximum number of jets on the ground  compliance formula (MCF) in order to suggest 

how to delay aircraft on the ground to avoid a violation of multiple constraints. This 

formulation takes into account constraints based on the priority of the mission, diplomatic 

clearances, hazardous cargo, and time delays. 

2.8. Simulations 

Simulation methods that deal with the mobility airlift problem mostly encompass 

the entire flow of cargo and aircraft from the point of embarkation to the point of 

debarkation. These simulations are very intricate, but do not delve into the preciseness of 

the exact amount of time one aircraft should spend on the ground at a specified location. 
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Examples of these simulations are MASS (Mobility Analysis Support System) and 

AMOS (Air Mobility Operations Simulator).  

 The main simulation used predominantly by AMC is the AMOS.  This is a 

discrete-event worldwide airlift simulation model used in strategic and theater operations 

to deploy military and commercial airlift assets (Wu et al., 2009). It is favored because of 

its tremendous flexibility and ability to handle uncertainty. But, this simulation method 

requires significant input by the user to specify a series of rules to obtain realistic 

behaviors. 

2.9. Stochastic Models 
 

Ball et al. (2003) developed a stochastic integer program with dual network 

structure and applied it to the ground holding problem. This paper analyzed a 

generalization of the classic network flow model. It also shows that the matrix underlying 

the stochastic model is a dual network. “Thus the integer program associated with the 

stochastic model can be solved efficiently using network flow or linear programming 

techniques” (Ball et al., 2003).  

Mukherjee and Hansen (2007) developed a dynamic stochastic model for the 

single airport ground handling problem.  Their stochastic model has the ability to account 

for uncertainty and is able to update information based on evolving forecasts. Basically, it 

is an optimization model that assigns ground delays to individual aircraft to optimize 

some objective related to quantities of airborne and ground delays. This allows for 

revised ground delays for flights that have not taken off to their next location. The 

uncertainty in this model is addressed by considering a finite set of potential scenarios of 
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how the airfield arrival capacity may develop. This uncertainty is easier to understand in 

the commercial environment where weather is the major uncertainty. In a combat 

situation, there are many more uncertainties that will arise as aircraft come into and out of 

theater. 

 2.10. Summary 
 
 Chapter two summarized literature used in this field and what is used in this 

research. The main topics included linear regression and applicable themes in that area of 

study. Additional areas of study are incorporated and can be used in future research. 

Chapter three uses the linear regression topics and expounds on how they are used for 

this specific research.   
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3. Methodology 

3.1. Data Synchronization  
 

Two data bases are used to gather needed information and incorporate all of the 

data to analyze the problem. These data bases include the Global Decision Support 

System 2 (GDSS II) and the Global Air Transportation and Execution System (GATES).  

These two data bases are independent systems that are integrated for this analysis. 

GDSSII provides an enormous amount of information to the Air Force about 

specific missions that are accomplished around the world. A subset of this information 

includes the scheduled arrival time per mission, scheduled departure time per mission, 

actual arrival time per mission, actual departure time per mission, mission identification 

number, arrival location (International Civil Aviation Organization, ICAO), previous 

location (ICAO), next location (ICAO), aircraft type (Mission Design Series, MDS), 

Total Passengers (Pax), Total Cargo, and delay remarks. All of this information is 

important for this analysis and was pulled from the system for the months of January-July 

2010.  

GATES also provides a plethora of information to the Air Force and DoD 

partners about specific loads on aircraft throughout the world. The subset of GATES 

information that is needed for this analysis includes: mission identification number 

(Aerial Port of Debarkation Number (APOD) mission number), aircraft type (Mission 

Design Series, MDS), APOD ICAO, number of passengers, Pallet net Weights, Pallet 

Type, and Equivalent Pallet Positions. This critical information was pulled from the 

system for the months of January-July 2010.  
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These two databases are synchronized using EXCEL databases. GDSSII has the 

ability to download directly into EXCEL, and GATES uses a MSACCESS format that is 

downloaded into EXCEL. These databases are merged using the mission identification 

number from GDSSII and the APOD mission number from GATES. Pivot tables and 

lookup functions in EXCEL make the process easier, but this process still requires a very 

large number of data tables in EXCEL to properly separate and merge data.  These final 

spreadsheets include 36 columns of information consisting of information from GDSSII 

and GATES.  GDSSII information includes the Mission number, aircraft type, airfield, 

actual departure time of day (Greenwich Mean Time), scheduled time on the ground 

(mins), actual time on the ground (mins), total passengers and total cargo in lbs, delay 

codes and delay remark. GATES information includes: equivalent pallet positions for the 

offload (10 columns) and onload (10 columns) of basic cargo, loose stock, palletized 

cargo,  rolling stock, standard cargo, and pallet trains of size 2, 3, 4, 5, and 6, total cargo 

offloaded in equivalent pallet positions, total cargo onloaded in equivalent pallet 

positions, passengers offloaded, passengers onloaded, total passengers, and total cargo in 

equivalent pallet positions.  

The merging of GATES and GDSSII databases shows substantial error. Although 

these systems are required to be used by the Air Force and DoD, they do not match 

during the period studied. For example, GDSSII recorded 8687 mission numbers while 

GATES pulled 8369 mission numbers from January-July 2010. (GDSSII does include 

minor cargo and passenger information, but does not include the specific cargo and 

passenger data needed to accomplish this analysis). The information from Gates is broken 

into 6528 missions with cargo information and 4682 missions with passenger 
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information, where 2841 missions have both cargo and passenger information.   When 

these databases are merged, the data must be limited to missions that are in both 

databases. This yields an overlap of 7342 mission numbers from GDSSII and GATES 

that have cargo or passenger information.  This can be seen in Figure 3.1.  

 

Figure 3.1 Data Base Merging 
This data is broken down by aircraft type and airfield. This reduces variance 

based on taxi time, cargo capacity, aircraft capabilities, aerial port capabilities at each 

airfield, and other basic mission issues that are specific to each jet at each airfield. 

Therefore, eight sets of data are analyzed.  These sets included three aircraft types (C-17, 

C-5 and C-130) at three airfields (Bagram AB, Kandahar AB, and Camp Bastion 

Afghanistan). Note, C-5s do not transit Camp Bastion. Table 3.1 lists the data sets.  

 

 

8687 8369

7342
6528

4682

2841

GDSSII GATES OVERLAP CARGO PAX CARGO & PAX

Jan-Jul 2010 OEF Missions
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Table 3.1 Data Base Description 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 Data Base 1 Data Base 2 Data Base 3 

C-130 Data Base 4 Data Base 5 Data Base 6 

C-5 Data Base 7 Data Base 8 C-5s do not transit 

 

Data splitting is used because all data are historical and there are seven months of 

data with thousands of data points. Six months of data, January through June, are used to 

build the model. The seventh month is used to validate the models. 6541 total lines of 

data from January through June are sifted through for useful mission information. The 

initial data statistics are shown in Table 3.2. 

Table 3.2 Lines of data per airfield per aircraft type 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 895 839 789 

C-130 2132 1275 419 

C-5 78 114 C-5s do not transit 

 

Further pruning is accomplished based on delay codes and delay remarks of 

missions in GDSSII. Delay codes are numbers that should correspond with different 

reasons for late departures. After analyzing thousands of lines of data, this set of 

supposedly easy to use information is deemed unusable. This is due to hundreds of the 

same delay codes being used with conflicting delay remarks, i.e. delay code 201 would 

have a delay remark of “no delay” or delay from “previous station”. Therefore, each 
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individual delay remark needed to be reviewed and filtered for usefulness. If the subject 

matter expert (SME) thinks the delay remarks cause a significant delay, then that line of 

data is unusable. Many of the delay remarks include delays for maintenance, human 

remains movement, weather, flight planning delays/HHQ taskings, ramp freezes, 

MEDEVACs, double blocking, fueling, ATC congestion, specific user delays to include 

distinguished visitor movements, closure of the runway for hostile fire and many other 

reasons.  

Table 3.3 Lines of data without delays 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 635 673 649 

C-130 1456 822 323 

C-5 52 79 C-5s do not transit 

 

 Additional pruning needs to occur for lines that do not have cargo or passenger 

information (e.g. the mission shows zero cargo and zero passengers moved).  This 

requires sorting by total cargo and then sorting by total passengers. This further lowers 

our usable data as shown in Table 3.4.   

Table 3.4 Lines of data with cargo/passenger information without delays 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 529 565 589 

C-130 1251 728 287 

C-5 27 48 C-5s do not transit 
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 Other areas where pruning is needed are data lines showing more pallet positions 

or passengers carried than the specific airframes can actually carry and duplicate mission 

numbers. Data lines with more cargo or passengers are easily deleted. Some duplicate 

mission numbers also have duplicate cargo information, but different ground times. 

These missions are individually examined and eliminated based on delay remarks. This 

subsequently lowers the available data to the numbers in Table 3.5. 

Table 3.5 Lines of data with cargo/passenger information without delays 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 439 485 570 

C-130 736 429 195 

C-5 27 48 C-5s do not transit 

  

 Supplementary pruning is also accomplished based on actual ground times. It is 

observed that many mission numbers are associated with very small ground times but still 

offload and onload a significant amount of passengers and/or cargo. These missions are 

intertwined with engine running offload and onloads. It is also observed that many 

missions with typical offloads and onloads are on the ground for an extended period of 

time with no remarks or delays. These missions are deemed by the SME to be unrealistic 

and to have an error that is unexplained or undocumented.  

Therefore, C-17 missions are not used with times on the ground below 60 minutes 

or above 360 minutes (6 hours). The SME considers 60 minutes the lowest value that a 

crew can taxi in, perform normal crew duties involving engine shutdown and startup, taxi 

out and takeoff. The SME also considers the time of 360 minutes to be the upper limit of 
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cargo offloading and on loading for extreme cases. One of these cases could involve the 

downloading and uploading a major sized helicopter. In order to use the same rational 

with the C-130 and C-5, the upper time limit for C-17 is used as a base to eliminate 

erroneous data. The C-17 upper limit is close to 2 standard deviations away from the 

mean for the three airfields. Therefore, for C-5s and C-130s times above two standard 

deviations away from the mean are considered too long on the ground and therefore have 

either undocumented delays or planned ground times for other reasons than cargo.   

Table 3.6 Two Standard Deviations above the mean (minutes) 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-130 246 284 157 

C-5 628 455 C-5s do not transit 

 

For C-5s, the shortest ground time is only a factor for one mission (40 mins on the ground 

is unrealistic for a C-5 considering taxi and crew operations) and this point is eliminated. 

For C-130s, the shortest ground time is considered 20 minutes as the minimum time to 

taxi, offload or onload, and takeoff. This is used instead of 60 minutes due to the C-130s 

consistent use of engine running offloads and onloads. This takes the total numbers for 

the six month period down to where they can be introduced into JMP, see Table 3.7. The 

amount of data lost due to error and or delays is significant. See Table 3.8 for the 

percentage of usable data from January to June 2010.  
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Table 3.7 Lines of data after final pruning 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 374 383 388 

C-130 574 383 173 

C-5 24 43 C-5s do not transit 

Table 3.8 Percent of usable data from original set from Jan-Jun 2010 

 Bagram Air Base Kandahar Air Base Camp Bastion 

C-17 41.79% 45.65% 49.18% 

C-130 26.92% 30.04% 41.29% 

C-5 30.77% 37.72% C-5s do not transit 

3.2. Regression 
 
 Multiple linear regression is used to determine the optimum ground time for 

specific aircraft at specific airfields in Afghanistan. This is based on a retrospective study 

with historical data from January – July 2010. While using a retrospective study, it is 

known that some relevant data is often missing and the reliability and quality could be 

questionable. This can be seen with the GDSSII and GATES databases not matching 

perfectly and some data missing or not considered valid by the subject matter expert.   

The JMP program is used in order to accomplish regression due to the number of 

regressors applied to this complicated system. This is considered a linear problem due to 

the time it takes to offload cargo and the time on the ground in Afghanistan being 

considered linear.  
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JMP’s multiple linear regression has many steps to accomplish. First, the data 

must be collected and entered into a new data table. This is accomplished for all eight 

data sets. The data is first taken out of the 36 columns from the GDSSII and GATES 

merged EXCEL spreadsheets. Both columns of time on the ground in minutes are entered 

into the data table, with the actual times on the ground used as the Y variable.  

This problem uses 22 regressors. They include varying types of cargo offloaded 

and onloaded at each location, along with the number of passengers offloaded and then 

onloaded at each station. There are ten different types of cargo that is categorized by the 

GATES system. They include, belly cargo (BC), loose stock (LS), rolling stock (RS), 

palletized cargo (PC), skid cargo (SD), and pallet trains consisting of two – six pallets 

tied together as one pallet (T2, T3, T4, T5, T6). This makes up 20 of the regressors (ten 

during offload and ten during onload), each taking a different amount of time to 

accomplish. Each one of these types of cargo is given an equivalent pallet position in 

GATES. This means that for a certain type of cargo, e.g. a HMMWV as rolling stock 

taking up two pallet positions on an airframe, it is counted as the number of pallet 

positions it displaces on each aircraft. This is the number that is used to analyze the 

system. Weight was initially used, but due to the variance in weight per pallet position, 

number of pallet positions is a much better factor for time on the ground. For example, it 

takes the same time, manpower and equipment to push a pallet that weighs 100 lbs as it 

does to push one that weighs 2000lbs. Finally, passengers offloaded and passengers 

onloaded are the last two regressors, each taking a different amount of time to 

accomplish.  Passengers are counted individually. 
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The labels used in JMP, and for the actual columns in the EXCEL database, 

include the following: Sched Time on Ground mins, Actual Time on Ground mins (Y 

variable), BC off, LS off, PC off, RS off, SD off, T2 off, T3 off, T4 off, T5 off, T6 off, 

BC on, LS on, PC on, RS on, SD on, T2 on, T3 on, T4 on, T5 on, T6 on, pax offloaded, 

and pax onloaded. Any type of cargo followed by an “off” is considered occurring in the 

offload phase of operations and any type of cargo followed by an “on” is considered 

occurring in the onload phase of the mission.  

Once the data are collected into a new data table in JMP, the computational 

technique of stepwise regression is used for all eight scenarios. This is accomplished by 

selecting the Analyze tab, then Fit Model. Then, actual time on the ground in mins is 

selected as the Y variable and the 22 regressors are selected as construct model effects. 

Next, stepwise is selected and run with p-value thresholds of 0.1 for the probability to 

enter and 0.05 for the probability to leave. Mixed stepwise is selected and run. Interaction 

of these regressors were examined initially and found to have no significance, therefore 

they are not considered in this analysis. 

The mixed stepwise regression uses the forward selection and backward 

elimination together to select only the best regressors that create the strongest model. 

This starts with zero regressors in the model. One regressor is added to the model at a 

time and then checked to make sure it stays in the model. The first regressor selected for 

entry is the one with the largest simple correlation with the response variable.  This 

regressor is entered if its F statistic exceeds the specified p-value threshold (0.1). 

Following the inclusion, the model is changed and then backwards method is checked to 

see if the previous regressor should be eliminated. If the F statistic is below 0.05, it 
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should then be eliminated. This is based on the new model; therefore, the F statistic for 

this new model is needed. This continues until neither the selection p-value threshold or 

elimination p-value thresholds are met. This creates the strongest model. This stepwise 

regression produces a Sum of Squares Error, Degrees of Freedom for Error, the 

coefficient of determination (R2), adjusted R2, Mallows’s Cp statistic and AICc.  Adjusted 

R2 is closely analyzed due to the large number of regressors.  

From the stepwise fit screen, Make Model is selected. This keeps actual time on 

the ground as the Y variable and uses the regressors selected in the stepwise regression to 

construct the model effects. Then, least squares is run to find the following information: 

Summary of fit to include, the coefficient of determination (R2), adjusted R2, Root Mean 

Square Error, Mean of the Response, Observations, an ANOVA table, parameter 

estimates, Residuals by Predicted plot, actual by predicted plot, leverage plots and lack of 

fit table.  

3.3. Checking Model Adequacy  

 Checking the models adequacy is accomplished next. The major assumptions of 

regression are checked: 1) the observations are adequately described by the model; 2) the 

errors are normally distributed; 3) the errors are independently distributed; 4) the errors 

have a constant, but unknown, variance;  and 5) the errors have a mean of zero 

(Montgomery 2009).   

 Checking for normally distributed errors, a simple test of the normal probability 

plot of residuals, is accomplished. In JMP, the Normal Quantile Plot is used as the normal 

probability plot of residuals. These two plots are the same, but use different scales. If the 
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residuals fall within a specific distance from a straight line through their center, they are 

assumed to be normally distributed. Also, the average value for the residuals should be 

approximately zero (Montgomery 2009). The specific distance is called the “fat pencil 

test”. If the data points fall within a pencil thickness distance, then they will be assumed 

normal with slight divergence at the lower and upper ends. This chart is accessed in JMP 

by saving the residuals as a column in the original data table. After returning to the 

original data table, analysis of the distribution of the new regression column is conducted 

and the normal quantile plot is analyzed. The residuals are examined for a mean of zero. 

 Checking for independently distributed error requires a plot of the residuals in 

time sequence. If no pattern is visible, they are assumed independent (Montgomery 

2009).  In this analysis, historical data is assumed to be independent due to the lack of 

ability to plan or record information.  

 To satisfy that the errors have a constant, but unknown, variance, a plot of 

residuals verses fitted (or predicted) values is used. The model is correct and the 

assumption holds if the residuals do not follow any pattern. The magnitude of the 

residuals versus the predicted values should be relatively constant across the observations 

and the average value of the residuals should be approximately zero (Montgomery 2009).  

This is seen in the fit of the least squares with the residuals by predicted plot. A pattern in 

all of the scenarios is not readily apparent. Still, transformations are accomplished to 

attempt to alleviate any possible patterns. The transformations discussed in Montgomery 

(2009) and available in JMP are the square root, logarithmic and reciprocal.  
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3.4. Outliers  

 Upon initial review there many outliers in this data. These points have residuals 

that are much larger than others. Typically they are three to four standard deviations from 

the mean (Montgomery, Peck, Vining 2001). The residuals in each scenario are analyzed 

and standard deviations between three and four are considered. The studentized residuals 

are also plotted versus predicted values to look for outliers. These points are not 

representative of the rest of the data and could possibly have serious effects on the 

regression model.  

If no error is found and the point is just unusual, then it should be kept in the 

model. “Deleting these points to ‘improve the fit of the equation’ can be dangerous, as it 

can give the user a false sense of precision in estimation or prediction” (Montgomery, 

Peck, Vining, p.154, 2001). The SME decides if these points should stay in the model or 

be eliminated.  

3.5. Multicollinearity  

 Multicollinearity is examined to find correlation between regressors. When “there 

are near linear dependencies among the regressors the problem of multicollinearity 

exists” (Montgomery, Peck, Vining, p. 325, 2001). This can cause the inferences based 

on the regression model to be flawed or misleading.   

Areas for this study that are looked into are the data collection method employed 

and model specification. The data collection method can cause multicollinearity to occur 

if only a subspace of the samples is taken (Montgomery, Peck, Vining, 2001). This 

definitely occurs in the data due to GATES and GDSSII not matching. Therefore, some 
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data are lost creating a subset of the population. Therefore, some multicollinearity may be 

present.  Model specification is also a possible source of multicollinearity and is looked 

at if strong correlations exist between variables.  

Detecting multicollinearity is based on the examination of the factor correlation 

matrix and studying the variance inflation factors (VIF). The examination of the 

correlation matrix involves looking at the off diagonal elements of the X′X matrix 

(Montgomery, Peck, Vining, 2001). If the absolute value is close to 1.0 then there is a 

strong linear dependence. In JMP, this is accomplished by using the regressors found 

from the stepwise regression in each scenario in JMP’s multivariate analysis tool. This 

yields a correlation matrix and scatterplot matrix for all used regressors and the Y 

variable.  

The VIF was examined for each scenario.  One or more large VIFs indicate 

multicollinearity. JMP finds the VIF by using the inverse correlation matrix. This is 

accomplished using the same multivariate tools as in the correlation matrix and 

scatterplot. The diagonal elements of (X’X)-1 are the VIF values. Values below five are 

considered not to have multicollinearity.  

3.6. Model Validity 

 JMP creates a prediction expression for each scenario. This prediction expression 

uses the intercept and parameter estimates for the regressors found during the stepwise 

regression. This model is then checked using the predicted value functionality of JMP as 

compared to the actual times on the ground. The prediction error sum of squares (PRESS 

statistic) is analyzed. The PRESS statistic is the sum of the squared PRESS residuals and 
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measures model quality (Montgomery, Peck, Vining, 2001). Small values of PRESS are 

desired.   

The Box-Cox transformation is used to stabilize variance issues in the data. This 

is accomplished by applying the Box-Cox transformation to the Y variable to correct for 

any possible non-constant variance. JMP allows this by selecting the Box Cox Y 

transformation after the regression is run. This shows a plot of the Sum of Squares Error 

by λ. After viewing the table of estimates, the best transformation is saved to the initial 

data table and reviewed.  

 Next, the model is analyzed with the seventh month of data that was split from the 

original data. This prediction expression is with each scenario’s data. This results in a 

predicted time on the ground for each aircraft at each field. The predicted times are then 

compared with the actual times on the ground. A paired t test of both sets of data is 

accomplished to gain understanding and determine if the model is valid. Results that 

show no statistical difference in the predicted and actual times yield a regression model 

that can be applied to real world operations.   

3.7. Summary  

The next chapter presents results and analysis. The statistical techniques presented in 

this chapter are applied. Results are shown and the predictive capabilities of the various 

models are tested. Additional impact to AMC’s worldwide airlift operations are analyzed 

and shown.  
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4. Results and Analysis 
 

This chapter describes the results found and analysis conducted for each of the 

eight scenarios. First, the stepwise regression is shown, and the Sum of Squares Error, 

Degrees of Freedom for Error, the coefficient of determination (R2), adjusted R2, and 

Mallows’s Cp statistic are reported. Next, the model is built and checked for adequacy. 

Then, outliers and multicollinearity are considered. Finally, each scenario’s model is 

checked for validity.  

4.1. Stepwise Regression 

 Stepwise regression is conducted in all eight scenarios. This is accomplished 

using JMP and the mixed method of stepwise regression. This gives the most suitable 

model based on the p-value of 0.1 for inclusion and 0.05 for exclusion. Appendix A 

provides the output for all eight scenarios. Table 4.1 summarizes the stepwise findings 

for each scenario. 

Table 4.1 Stepwise Regression Results 

 

Information in Table 4.1 illustrates that some of the models are initially better 

than the others. All models that are more closely examined have a R2 above 0.25; the 

R2 adj R2 Intercept # Parameters Cp AICc min AICc
1 C-17 OAIX 0.257 0.249 172.7 5 5.3 4034 4032
2 C-17 OAKN 0.532 0.525 167.5 7 5.2 4147 4145
3 C-17 OAZI 0.305 0.301 161.1 4 3.7 4965 4965
4 C-130 OAIX 0.109 0.102 57.9 5 -2.5 5682 5682
5 C-130 OAKN 0.144 0.135 105.5 5 7.9 4332 4330
6 C-130 OAZI 0.091 0.08 51 3 4.7 1557 1557
7 C-5 OAIX 0.487 0.438 364.4 3 1.7 272 272
8 C-5 OAKN 0 0 266.1 1 -4.7 475 475

Scenario
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other models are not continued in the data analysis. The C-130 scenarios were not 

continued due to low variance in their ground time based on cargo. This is based on C-

130s use of engine running cargo operations and their small and quick cargo offload and 

onloads.  Model eight is not a good model due to zero regressors making the stepwise 

significance for inclusion.  

Adjusted R2 is provided at in Table 4.1. In all scenarios, the adjusted R2 closely 

matches the R2. The adjusted R2 values penalize for the addition of multiple regressors 

that inflate R2. Therefore, based on the R2 and adjusted R2, and the eliminated scenarios 

for this research, models 1, 2, 3 and 7 are continued.  

Next, Mallow’s Cp statistic is reviewed from Table 4.1. As Montgomery et al. 

(2001) stated, small values of Cp are desirable.  This statistic should be close to p for a 

good model and favorably lower in value than p.  All scenarios meet this qualification 

with the exceptions of 1, 5, and 6, but all of the scenarios fall under the 2p to be an 

acceptable level of bias (Mallows, 1973). Therefore all scenarios are acceptable in regard 

to Mallow’s Cp statistic.  

Finally, AICc is evaluated as a measure of goodness of fit. All of the scenarios 

fall within 1-2 of the minimum AICc. This shows that there is relatively no difference 

between the AICc of the model and the minimum AICc. Therefore, each model can be 

used to make inferences on the scenarios.  

4.2. Normal Standard Least Squares 

The stepwise regression outcomes are put into the actual standard least squares 

model in JMP. This is accomplished by confirming the Y variable and regressors and 
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selecting the standard least squares, make model option in the stepwise regression screen. 

The output can be seen in Appendix B. Figures B1-B8 represent scenarios 1-8. This 

output includes the Actual by Predicted Plots, Summary of Fit, Analysis of Variance, 

Lack of Fit, Parameter Estimates and Residual by Predicted Plot. Figure B8 is blank due 

to the lack of regressors chosen to enter from the stepwise regression.  

4.3. Model Adequacy 

 The information provided by JMP in the normal standard least squares is used to 

determine model adequacy. This is accomplished to see that: 1) the observations are 

adequately described by the model, 2) the errors are normally distributed, 3) the errors are 

independently distributed (assumed due to historical data), 4) the errors have a constant, 

but unknown, variance, and 5) the errors have a mean of zero. 

To determine if the observations are adequately described by the model, adjusted 

R2 is reviewed. Each model has specific constants that create longer or shorter times on 

the ground and create an environment where more variance can be explained by the 

model. Therefore these scenarios cannot be compared to each other based on purely R2. 

The initial R2 values for the scenarios continued are above 0.25. This is adequate for each 

model.   

Errors that are normally distributed can be seen using the normal quantile plot 

from JMP. This is accomplished for models 1, 2, 3, and 7 in Figures 4.1 thru 4.4. All 

normal quantile plots fall within a reasonable distance from a straight line through their 

center (pass the fat pencil test) with allowable trailing data on the extremities. Therefore, 

all are assumed to be normally distributed.  
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Figure 4.1 C-17 OAIX Normal Plot 

 

Figure 4.2 C-17 OAKN Normal Plot 

 

Figure 4.3 C-17 OAZI Normal Plot 

 

Figure 4.4 C-5 OAIX Normal Plot 

 JMP produces the plot of residuals versus predicted values to examine constant, 

but unknown, variance.  This can be seen in Figures 4.5 thru 4.8.  The residuals do not 

follow any real particular pattern such as a funnel, megaphone or bowing. There does 

appear to be evidence of missing data. This is inevitable when using historical data that is 

highly erroneous. There is also evidence of possible split data set. Looking through the 

data intensely, there is no evidence or similarities that are observed to split the data in 
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order to separate the two data sets as in Figure 4.5. Anything nonlinear should be 

addressed and a transformation should be accomplished to alleviate any non-constant 

variance. Due to the erroneous nature of the data and the slight downward trend in the 

data, transformations are accomplished in order to alleviate any non-constant variances.  

 
Figure 4.5 C-17 OAIX Residuals by 
Predicted Plot 

 
Figure 4.6 C-17 OAKN Residuals by 
Predicted Plot 
       
 

 
Figure 4.7 C-17 OAZI Residuals by 
Predicted Plot 

 
Figure 4.8 C-5 OAIX Residuals by 
Predicted Plot 
  

 
 Transformations used include the square root, logarithmic, and reciprocal. These 

transformations are shown below for the C-17 at OAZI. This is the case with the most 

variance resembling a semi-funnel shape. From looking at Figures 4.9-4.11 and 
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reviewing the data from the regression using the transformations, the square root 

transformation reduced the variance the greatest amount. Therefore, the square root 

transformation is used on all four remaining models.  

 

 

Figure 4.9 C-17 Square Root 
Transformation 

 

 

Figure 4.10 C-17 Log Transformation 
  

 

Figure 4.11 C-17 Reciprocal Transformation 
 The square root transformation output is displayed in Appendix C. A summary of 

this data is presented in Table 4.2. This table shows slight increases and decreases in R2 
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and adjusted R2 and the charts show less funneling or bowing effects. Therefore, constant 

variance is mostly achieved.  

Table 4.2 Square Root Transformation 

 

Determining the residual errors mean is accomplished by saving the residuals in a 

column in the JMP spreadsheet. Then, the column is transferred into the EXCEL program 

and averaged. In all cases, the average is zero or an extremely small number that 

approximates zero. The JMP distribution fitting tool also shows a mean of zero. 

Therefore, the last assumption holds for the four remaining scenarios and these models 

check for adequacy.  

4.4. Outliers 
  

Outliers are reviewed using the above three standard deviations method and 

studentized residuals. When residuals fall more than three standard deviations from the 

mean, or they are shown as outliers on the plot of studentized residuals, the actual data 

points are looked at for errors. If the SME believes an error has occurred, the point is 

eliminated. Table 4.3 shows the summary of data points found to be potential outliers 

from both methods. Figures 4.12-4.15 show the actual studentized residuals versus 

predicted values with the outliers in grey and circled.  

R2 adj R2 Intercept # Parameters RMSE Obs Variance
1 C-17 OAIX 0.271 0.263 12.89 5 2.1 374 Constant
2 C-17 OAKN 0.512 0.505 12.82 7 1.9 383 Constant
3 C-17 OAZI 0.266 0.258 12.65 4 2 457 Constant
7 C-5 OAIX 0.605 0.567 18.99 3 1.5 24 Constant

Scenario
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Table 4.3 Summary of Outlier Detection 

 

 

Figure 4.12 C-17 OAIX Outliers 
 

 

Figure 4.13 C-17 OAKN Outliers 

 

Figure 4.14 C-17 OAZI Outliers 
 

 

Figure 4.15 C-5 OAIX Outliers 

> 3 Std Dev Studentized Plot SME deteremined Error new R2 new adj R2

1 C-17 OAIX 0 0 0 N/A N/A
2 C-17 OAKN 2 0 1 0.504 0.498
3 C-17 OAZI 2 2 0 N/A N/A
7 C-5 OAIX 0 1 0 N/A N/A

Scenario
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There are no outliers found for Scenario 1 in either method. In Scenario 2, there 

are 2 outliers found using the standard deviation method and none found using the plot of 

studentized residuals verse predicted values. The SME determined that one point is 

erroneous and the other is unusual. The point that is erroneous listed that it had 11 

equivalent pallet positions offloaded. These consisted of one T-2 and three T3 pallet 

trains. This is not a possible combination in the C-17 and therefore the data points are 

erroneous and the point should be excluded. The second point was on the ground for an 

extended amount of time with 135 passengers offloaded and 95 onloaded. This is slightly 

unusual, but not erroneous so this point is kept. 

The same two potential outliers for Scenario 3 were found in both methods. These 

both had minimal ground times of 60 and 61 minutes with a large PC offload of 18 and 

17 pallets, respectively, and no onload. The SME determined that this is not an unusual 

occurrence to have a large offload and no onload at OAZI and no errors were found in the 

data or delay remarks.  Therefore, these points were maintained in the model.  

The potential outlier for Scenario 7 was only found using the studentized residuals 

versus the predicted values. This point is deemed unusual but not erroneous by the SME. 

This point had a small ground time (108 minutes) and a relatively small offload (17 

equivalent pallet positions) with no onload; therefore, it is slightly unusual but not 

erroneous. 

4.5. Multicollinearity 

In order to look for possible multicollinearity, the remaining four scenarios’ 

correlation matrix, and variance inflation factors (VIF) are reviewed. The correlation 
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matrices are shown in Tables 4.4-4.7. The largest VIFs, taken from the diagonal of the 

inverse correlation matrices are listed in Table 4.8. The matrices only involve the 

regressors found in the stepwise regression.  

Table 4.4 Scenario 1 C-17 OAIX 
 ACTUAL TIME 

ON GROUND  
PC off RS off T6 on pax offloaded 

Act Time on Gnd  1.0000 0.1618 0.2414 -0.0663 -0.4689 
PC off 0.1618 1.0000 -0.3048 0.0001 -0.1308 
RS off 0.2414 -0.3048 1.0000 0.1043 -0.3477 
T6 on -0.0663 0.0001 0.1043 1.0000 -0.0354 
pax offloaded -0.4689 -0.1308 -0.3477 -0.0354 1.0000 
 

Table 4.5 Scenario 2 C-17 OAKN 
 ACTUAL TIME 

ON GROUND  
PC off T2 off PC on RS on T3 on pax offloaded 

Act Time on Gnd 1.0000 0.6710 0.1105 -0.1823 -0.1803 -0.0782 -0.2826 
PC off 0.6710 1.0000 -0.0194 -0.0771 -0.0766 0.1207 -0.2991 
T2 off 0.1105 -0.0194 1.0000 0.0796 -0.0021 -0.0239 -0.0831 
PC on -0.1823 -0.0771 0.0796 1.0000 0.0204 -0.0070 -0.1211 
RS on -0.1803 -0.0766 -0.0021 0.0204 1.0000 -0.0277 -0.0804 
T3 on -0.0782 0.1207 -0.0239 -0.0070 -0.0277 1.0000 -0.0584 
pax offloaded -0.2826 -0.2991 -0.0831 -0.1211 -0.0804 -0.0584 1.0000 
 

Table 4.6 Scenario 3 C-17 OAZI 
 ACTUAL TIME 

ON GROUND  
PC off RS on pax offloaded 

Act Time on Gnd 1.0000 0.5360 -0.1222 -0.2273 
PC off 0.5360 1.0000 -0.0348 -0.2801 
RS on -0.1222 -0.0348 1.0000 -0.0256 
pax offloaded -0.2273 -0.2801 -0.0256 1.0000 
 

Table 4.7 Scenario 7 C-5 OAIX 
 ACTUAL TIME 

ON GROUND  
BC off PC off 

Act Time on Gnd 1.0000 -0.5851 -0.2957 
BC off -0.5851 1.0000 -0.1376 
PC off -0.2957 -0.1376 1.0000 
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Table 4.8 VIF Scenarios 1, 2, 3, and 7 

 Scenario 1  
C-17 OAIX 

Scenario  2  
C-17 OAKN 

Scenario  3  
C-17 OAZI 

Scenario  7  
C-5 OAIX 

Largest VIF 1.4332 2.1747 1.4581 1.9475 
 Multicollinearity is not seen from either the correlation matrices or inverse 

correlation matrices. This is seen in the correlation matrices with no regressor 

correlations greater than 0.34. The inverse correlation matrices show no value greater 

than 2.1747. Any values lower than five are not considered to show multicollinearity. 

Therefore, there is no evidence of multicollinearity in any of the remaining scenarios. 

4.6. Model Validity 

 Model validity is checked in three manners. First, the prediction expression is 

checked using the predicted values from the test data versus the actual values using a 

paired t test and a 95% confidence interval. Next, the prediction error sum of squares 

(PRESS) statistic is analyzed for each regression scenario. Finally, the regression 

equation is used with the split data to compare the means of the actual versus the 

predicted values. A Box-Cox transformation is also attempted to increase prediction 

capability.  

The first step involves testing the regression equations against the actual values 

that derived the equation.  (This is similar to the residuals from the regression.) The 

hypothesis is that the means should be the same. The prediction expression found in the 

final standard least squares run for each scenario is run using the actual cargo and 

passenger numbers from the initial data to show the predicted values. These values are 

compared to the actual ground times using a paired t test with an alpha level of 0.05. 

They are also compared using a 95% confidence interval (CI). The 95% CI should 
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encapsulate zero. If there is a significant difference or the 95% CI does not encapsulate 

zero, the regression equation is not useful. The results from the paired t tests are 

displayed in Table 4.9, where H0: μ = 0 and Ha: μ ≠ 0.  

Table 4.9 Paired t test and 95% CI for original data using regression equations 

Scenario  t Stat P( T ≤ t) two-
tail 

Mean 
difference 

95% Confidence 
Interval 

1 C-17 
OAIX 

1.228 0.2199 -4.35 (-9.68 , 0.98) 

2 C-17 
OAKN 

0.703 0.4825 -3.40 (-8.69 , 1.88) 

3 C-17 
OAZI 

1.189 0.2352 -4.09 (-9.12 , 0.92) 

7 C-5 OAIX 0.103 0.9187 -2.05 (-26.5 , 22.4) 
From the paired t-test performed to determine if the means are different, it can be 

surmised that the null hypothesis is not rejected. Also, each 95% CI included zero; 

therefore, the mean difference between the two data sets is not significantly greater than 

zero. This was a good result and should have occurred because the prediction data was 

used to derive the regression equation.  

 Next, the prediction error sum of squares (PRESS) statistic is analyzed. The 

PRESS statistic is found in the output of each scenario in JMP. This is chosen using the 

response selection. The PRESS value for each model is shown in Table 4.10. Small 

values of PRESS are favorable. From the PRESS statistics in Table 4.10, it is seen that all 

are very close to SSE. Therefore, all models have a good PRESS statistic. 

Table 4.10 PRESS Statistic 

Scenario  PRESS statistic SSE 
1 C-17 OAIX 1657 1626 
2 C-17 OAKN 1361 1303 
3 C-17 OAZI 1908 1878 
7 C-5 OAIX 58 49 
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 The final step includes using the derived prediction expressions with the split data 

for the month of July 2010. The regression equations should result in planned ground 

times that are not significantly different from the actual ground times. The hypothesis is 

that the means should be the same. The prediction expression found in the final standard 

least squares run for each scenario is run using the actual cargo and passenger numbers 

from the July data to show the predicted values. These values are compared to the actual 

times using a paired t test with an alpha level of 0.05. They are also compared using a 

95% confidence interval (CI). The 95% CI should encapsulate zero. If there is a 

significant difference and the 95% CI does not encapsulate zero, the prediction 

expression is not useful. The distribution of the actual ground time in July was also 

analyzed and is similar to the original data. The prediction expression for each scenario is 

shown in Table 4.11. The results from the paired t tests are displayed in Table 4.12, 

where H0: μ = 0 and Ha: μ ≠ 0. 

Table 4.11 Prediction Expressions Square Root Transformation 

 Intercept  
(minutes) 

BC off PC off RS off T2 off PC on RS on T3 on T6 on Pax off 

C-17 
OAIX 

12.89  0.0739 0.1002     -0.796 -0.0161 

= 12.89 + 0.07387 * PC off + 0.1002 * RS off - 0.7955 * T6 on - 0.01606 * Pax off 
C-17 

OAKN 
12.82  0.2382  0.2657 -0.119 -0.1962 -0.848  -0.0066 

= 12.82 + 0.2382 * PC off + 0.2657 * T2 off - 0.119 * PC on - 0.1962 * RS on – 0.848*T3 on - 0.0066 Pax off 
C-17 
OAZI 

12.65  0.1762    -0.4077   -0.0052 

= 12.648 + 0.1762 * PC off - 0.4077 * RS on - 0.00516 * Pax off 
C-5 

OAIX 
18.99 -0.532 -0.092        

= 18.99 - 0.5318 * BC off - 0.092 * PC off 
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Table 4.12 Paired t test and 95% CI for Prediction Expressions with July data 

Scenario Aircraft 
Airfield 

Obs t Stat P( T ≤ t) 
two-tail 

Mean 
difference 

95% Confidence 
Interval 

1 C-17 
OAIX 

197 4.3 0.00002 -21.3 (-29.2 , -13.3) 

2 C-17 
OAKN 

185 -1.8 0.07 12.24 (2.5 , 21.98) 

3 C-17 
OAZI 

65 0.14 0.89 1.48 (-17.2 , 20.2) 

7 C-5 
OAIX 

13 -2.1 0.057 80.78 (-1.8 , 163.4) 

 
 From these results, it is apparent that models for Scenarios 3 and 7 are the only 

two models that have significance with both the t test and the 95% CI. This is displayed 

by both the two-tail being above 0.05 and the 95% CI including zero. Scenario 2 shows 

significance in the t test, but not in the 95% CI. 

 Next, a Box Cox transformation is conducted to alleviate more variance and 

increase the predictability of the models. This is accomplished through JMP using the 

best Box Cox transformation that JMP produces. Table 4.13 shows the results from using 

a Box Cox transformation instead of the Square Root transformation.  

Table 4.13 Paired t test and 95% CI using Box Cos Transformation 

Scenario Aircraft 
Airfield 

Obs t Stat p( T ≤ t) 
two-tail 

Mean 
difference 

95% Confidence 
Interval 

1 C-17 
OAIX 

197 4.24 0.000028 -21.02 (-29.0 , -13.04) 

2 C-17 
OAKN 

185 -1.51 0.13 10.25 (0.38 , 20.13) 

3 C-17 
OAZI 

65 -0.29 0.77 3.05 (-15.6 , 21.7) 

7 C-5 
OAIX 

13 -1.57 0.14 61.46 (-23.4 , 146) 

 
The Box Cox slightly increases the significance in Scenarios 2 and 7, but decreased in 

Scenario 3.   
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 The prediction expression values for Scenarios 2, 3, and 7 are also compared with 

the actual ground times in July to realize potential savings in ground time. During the 

months of January-June 2010, the average early and late times over all missions were 36 

minutes early and 45 minutes late.  The models predicted values over the month of July 

decreases the minutes early to 28 and the minutes late to 39. This does not look like a 

significant change, but over the course of a month, with around 200 C-17 and C-5 

missions through the Scenarios, this equates to lowering the error in planning by 4445 

minutes or 74.1 hours.  

 This does not necessarily mean that throughput will be increased or decreased. As 

seen with the prediction expressions in Table 4.9, the intercept (once squared) for the C-

17 is averaging 2.73 hours ± regressors and the C-5 is averaging 6 hours ± regressors on 

the ground. This is an increase from the maximum planning ground times of 2.25 for C-

17s and 3.25 for C-5s. Actual values for throughput follow: C-17s at Camp Bastion 

average 3 C-17s per day with a maximum in 2010 of 9 C-17s in one day, C-17s at 

Kandahar AB average 4 C-17s per day with a maximum in 2010 of 13 C-17s in one day, 

and C-5s at Bagram AB average 1.4 C-5s per day with a maximum in 2010 of 5 C-5s in 

one day. The average and maximum amount of aircraft transiting these airfields on any 

given day leave room for the possible increased ground time. Using the models with 

maximum on the ground values at each location, it is seen that the maximum throughput 

for a given day for C-17s at Camp Bastion is 18 C-17s, for C-17s at Kandahar AB is 26 

C-17s, and for C-5s at Bagram AB is 8 C-5s. These numbers are almost all over double 

the maximum amount of aircraft throughput in 2010. Therefore, throughput should not be 
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affected by the new model and the entire process should become more predictable and 

stable. 

4.7. Summary 
  
 The results from Chapter 4 show that ground times can be accurately predicted 

using historical cargo data and ground times in three of the eight scenarios.  The 

remaining five scenarios do not have significance to predict ground times.  Scenarios 3 

and 7 hold the strongest significance with both the t test and the 95% CI showing 

accurate prediction capability. Scenario 2 shows significance in the t test but not the 95% 

CI. This result is suitable to be used in future predictions. Therefore, the linear regression 

model built for Scenario 2 could be used to accurately predict C-17 ground times at 

OAKN.  Chapter 5 summarizes the conclusions drawn from this research, outlines the 

obstacles to implementation of results, and suggests future areas of research that broaden 

the scope of this research effort. 
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5. Discussion 

5.1. Conclusion 
 
Cargo aircraft provide essential military supplies to Afghanistan around the clock. 

Accurate scheduling of ground times in theater is critical to providing needed supplies to 

combat troops in an orderly manner. While focusing on historical data from the GATES 

and GDSSII data systems, a linear regression model was developed to model accurate 

ground time prediction using three different aircraft and airfields, with eight total 

scenarios. Three of these scenarios resulted in useful models that were validated using 

split historical data. These scenarios give the mission planners at TACC a more accurate 

tool to predict ground times. These can be used in the future to stabilize ground times in 

theater and schedule aircraft in a more accurate and efficient manner. 

5.2. Unexplained Variance 

Throughout this study, there were some factors during some phases of the mission 

from landing to takeoff that were assumed constant. These factors may not have been 

exactly constant and therefore could have led to unexplained variance. The phases 

include landing, taxiing into park, offloading, onloading, taxiing for takeoff, and takeoff, 

that led to unexplained variance that impacted some scenarios.  Some of the factors could 

include motivation in either aerial port crews or aircraft crews, aerial port overtasking, 

and deployment rotations to name a few.  

Motivation by an aerial port crew or an aircraft crew can lead to significant 

variance. For example, if the aerial port and the crew are very motivated, the ground time 

could be minimal. This is especially the case if the crew requests an early takeoff from 
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TACC. Conversely, a not so motivated port crew and aircraft crew could lead to much 

longer ground time than is expected. Any combination of these factors will lead to 

unexplained variance that definitely affects the outcome of this type of model.  

Aerial port overtasking is another factor of unexplained variance. This could 

result from numerous complications. One factor is not enough ground time for one 

aircraft on the ground. Another is a severe maintenance problem. Both of these can back 

up the entire field for hours or days. Other factors could include under manning or over 

manning of aerial port crews.  

Deployments are a constant cause of variance in theater. Four to six month 

deployments result in a learning curve for all Airmen that handle this process. Great 

lengths are taken to alleviate any of this learning curve, but it still occurs in the system 

and is mostly unknown during this analysis.   

5.3. Errors in Data Bases  

 The GATES and GDSSII data bases have a large amount of error. This can be 

seen in almost all aspects of the system. Main areas of error were due to controllers 

changing scheduled times in GDSSII, GATES not accurately depicting significant 

differences in cargo type, or erroneous or missing delay remarks.  

Some results were not able to be drawn due to controllers changing scheduled 

takeoff times in the system. If the mission is slipped for some reason while on the ground, 

the scheduled takeoff time should not be changed. The actual takeoff time will reflect this 

and the delay codes or remarks should give the reason for the change. This is a large 
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source of error and eliminated a potential avenue to explore scheduled ground times 

versus actual ground times in regards to the cargo on board. 

The cargo needs to be better defined in GATES. The rolling stock data should be 

changed to include three significantly different types of cargo as well as particular 

outsized cargo, which takes a significantly longer amount of time to offload and upload. 

This would eliminate a large amount of variance in offload and upload times.  

 Rolling stock needs to account for drivable rolling stock, rolling stock that needs 

to be winched on and off the aircraft, and rolling stock that needs shoring.  All three of 

these types of rolling stock take significantly different amounts of time to onload and 

offload. For example, drivable rolling stock (i.e. cars) can be easily offloaded, while a 

heavy power cart may need to be winched or towed onto the aircraft. Shoring is needed 

when the clearance of the vehicle going on or off the aircraft is too low for the angle of 

the ramp, therefore pieces of wood are needed to decrease the angle of the cargo ramp. 

This takes a longer time to organize and put together. Therefore, clumping all of these 

items into one category is not useful for this analysis.  

Helicopters and other outsized cargo known to have a longer onload or offload 

time also need to be categorized differently. This is due to the increased amount of time 

needed to safely move such cargo. This would reduce error and variance in the system.  

5.4. Limitations 

 The significant models should be used by experienced mission planners. Not all 

scenarios are derived and tested throughout the results.  For example, there is an error 

bound that needs to be assessed by the individual mission planner that they see as 
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acceptable for the mission at hand. Some ground times from these equations may seem 

very long due to certain regressors that add significant time if the aircraft is entirely full 

of one type of cargo. This should be scrutinized by AMC/A9 in the accreditation phase.  

There are definitely many more factors that the mission planners may need to 

consider when determining ground time. The results from the models should be used as a 

base from which the mission planner can expound. Some factors may occur 

simultaneously, while others may require additional ground time when cargo loading and 

unloading are completed. This is up to the individual mission planner, and eventually, up 

to the aircraft commander to implement the appropriate ground time in a safe manner.  

5.5. Recommendations 

 This analysis resulted in many recommendations. They range from improving the 

accuracy of data collection, additional items for data collection, method of inputting data, 

method to schedule C-130 ground times specifically, and the use of the resulting models. 

All of these recommendations would enhance USTRANSCOM operations around the 

world. 

Throughout this study, it was noted that many improvements in the data collection 

process would have led to more significant results. This can be seen from inaccurate data 

points throughout both databases. A more stringent approach to accurate data collection 

needs to be made by USTRANSCOM. The amount of erroneous data in the system, at a 

minimum, cost the tax payers millions each year. Effective data collection could reduce 

the amount of Aircraft needed in theater by helping to build more accurate models and 

analytical tools.  
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Additional data needs to be collected. This data includes the time Aerial Port 

begins offload, finishes offload, begins onload, and finishes onload. These times, along 

with relatively constant times for taxi and crew duties, could be analyzed with total time 

on the ground to determine a better fit for the ground time model.  

Data collection should be improved using a more reliable system. This should 

involve some type of electronic device tied to the current system. Alternatively, a more 

updated data system that is taken with aerial port crews on every offload and onload 

could be used. The port crews could verify all cargo present and record the start and stop 

times of the offloads and onloads. This device could transfer the data electronically into 

the database and therefore alleviate the current transfer error. This type of technology can 

be seen on the C-17. The C-17 is equipped with a computer system that can automatically 

report land times, fuel on board, and takeoff times to TACC. This data collection 

capability and emphasis needs to be transferred to all aspects of the Air Mobility 

Command process to include port crews.  

C-130s should use the current system they have in place. The current C-130 

system uses a historical database of how long specific types of cargo loads have taken. 

The Combined Air Operations Center C-130 mission planners apply these times to 

predict relatively accurate ground times. This success is also due to the C-130’s small 

cargo loads. C-130s generally have short and almost identical ground times no matter 

what type or how much cargo is offloaded or onloaded. This resulted in no significance in 

the linear regression models. The other components of ground time and the C-130’s 

tendency to conduct engine running offloads and onloads are more influential in 

determining ground times. Since these times are mostly constant for actions not including 
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loading and unloading, ground times are mostly identical for all types of cargo. 

Therefore, the current system already creates a stable environment with the subject matter 

experts planning missions.   

The significant models should be used by AMC/A9. Once accredited by 

AMC/A9, these models should be used by TACC in a test manner. The results of these 

models should create a more accurate account for ground times for C-17s at Kandahar 

and Camp Bastion and C-5s at Bagram. Although significance was not found in all 

models, they should be used when applicable to create a more stable air mobility system. 

Not counting the C-130s, there were a total of five scenarios. Three of the models for 

these scenarios were found to be significant.  

5.6. EXCEL Based Tool 

 An EXCEL based tool was designed and built for AMC/A9 and TACC planners. 

This tool is used to predict ground times based on the regression expressions found from 

the models of three scenarios with significance. Easy to use operations are critical to 

quickly and effectively planning operations in a wartime environment. The “AMC OEF 

Ground Time Predictor” has an easy to use interface in the EXCEL program. Any TACC 

planner can use this tool to predict C-17 ground times at Kandahar AB and Camp Bastion 

or C-5 ground time at Bagram. The only inputs that are required are the type of aircraft, 

location, and the equivalent pallet positions for the regressors used in each equation. The 

remaining regressors are not used and therefore are not included in the tool. This tool is 

shown in Appendix D.  
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5.7. Future Research 

 Proper data collection with a linear regression analysis and models that fits the 

data more accurately could be re-accomplished for these airfields and aircraft. The 

research could also be expanded to include all Afghanistan airfields and other airfields in 

Iraq. This data could also be placed into a much larger model for aircraft throughput. This 

research could expound on past and current integer programming, simulation, and 

stochastic techniques. The output from these updated models would yield more accurate 

airflow through USTRANSCOM’s combat and global environment.  
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Appendix A: Stepwise Regression Output 
 
 
Figure A.1. Stepwise Regression Scenario 1 
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Figure A.2. Stepwise Regression Scenario 2 
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Figure A.3. Stepwise Regression Scenario 3 
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Figure A.4. Stepwise Regression Scenario 4 
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Figure A.5. Stepwise Regression Scenario 5 
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Figure A.6. Stepwise Regression Scenario 6 
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Figure A.7. Stepwise Regression Scenario 7 
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Figure A.8. Stepwise Regression Scenario 8 
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Appendix B: Standard Least Squares Output 
 
Figure B.1. Scenario 1 
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Figure B.2. Scenario 2 
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Figure B.3. Scenario 3 
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Figure B.4. Scenario 4 
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Figure B.5. Scenario 5 
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Figure B.6. Scenario 6 
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Figure B.7. Scenario 7 

 
 
 
Figure B.8. Scenario 8 
No regressors included in stepwise regression.  
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APPENDIX C: Square Root Transformation on Y variable 
 
Standard Least Squares Output applied with the square root transformation on Y variable 
 
Figure C.1. Scenario 1 
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Figure C.2. Scenario 2 
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Figure C.3. Scenario 3 
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Figure C.4. Scenario 7 
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APPENDIX D: EXCEL BASED TACC TOOL 
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APPENDIX E: Blue Dart 
 

OPTIMIZING GROUND TIMES FOR AMC AIRCRAFT IN AFGHANISTAN 

 
  Air Mobility Command’s (AMC) airlift assets that transit airfields in Afghanistan 

are given only a small variety of ground times in order to accomplish their mission. These 

ground times are based on overarching categories of missions that aircraft execute, such 

as cargo upload, cargo download, passenger upload, passenger download, or a 

combination of these.  The current mission planning system uses these overarching 

categories to plan ground times and does not account for the exact amount of cargo or 

passengers. This leads to longer or shorter ground times than planned. In order to increase 

stability at these fields and better account for the number of sorties that can be planned 

into Afghanistan, a method to calculate optimal or near optimal ground times is needed.  

 This research creates a linear regression model that accounts for the size of cargo 

upload, cargo download, passenger upload, and passenger download known by the 

mission planner. This model can be used by the mission planners at AMC’s Tanker 

Airlift Control Center (TACC) to increase the efficiency at which they plan sorties. Eight 

scenarios are analyzed to account for C-17, C-130 and C-5 missions to Bagram AB, 

Kandahar AB and Camp Bastion airfields in Afghanistan.  Three of the scenario models 

are found to be significant and are validated with split data from a separate months worth 

of data. The use of the three significant models will increase stability in AMC planning 

and efficiency. This occurs by reducing early and late times by an average of seven 

minutes per mission. This increases stability planning by 74.1 hours per month. In turn, 

our overall wartime effectiveness will be enhanced.  
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APPENDIX F: Summary Chart 
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