The phenomenon of extraordinary optical transmission (EOT) through thin slits or apertures in a thick metal screen has been widely analyzed in the past decade [1]. The ratio of optical energy tunneling through an otherwise opaque screen versus the energy effectively impinging on the apertures may be made dramatically larger than unity, in particular, for smaller apertures and larger periods. This anomalous transmission is based on multiple factors, including the excitation of plasmonic and Fabry-Perot (FP) resonances and other resonant effects supported by the periodicity of the corrugations [1]. A new class of optical devices based on EOT has been envisioned, such as light-emitting diodes, selective polarization filters, and energy concentrators. One of the drawbacks of EOT for several of these applications is associated with the inherently narrow bandwidth of operation, which is directly associated with the resonant mechanisms on which it is based, in particular, with the excitation of plasmonic and FP resonances. This becomes particularly relevant for smaller apertures and thicker screens, which are usually associated with larger Q-factor resonances. On the contrary, as long as the array period is rather small (below the first Bragg resonance), the EOT response is rather independent on the incidence angle. Here we introduce a dual EOT mechanism, inherently nonresonant, which may provide analogous levels of transmission enhancement over ultrabroad bandwidths, but for specific incidence angles. We show that this phenomenon is the analog of Brewster transmission for corrugated plasmonic screens, providing minimized reflection for transverse-magnetic (TM) polarization, weakly dependent on frequency and on the screen thickness but selective to the incidence angle. Independent of our findings, a recent Letter has reported broadband transmission through narrow slits in the IR regime, based on spoof-surface plasmons [2]. Our results extend these findings, showing that ultrabroadband transmission may be achieved without necessarily relying on plasmon resonances but rather exploiting a nonresonant Brewster-like effect based on impedance matching.

Consider the geometry of Fig. 1: A metallic screen of thickness \(l\), corrugated by slits of width \(w\) and period \(d\), is illuminated by a TM wave. The scattering from such a periodic structure is modeled here by using a transmission-line (TL) approach, analogous to Ref. [3]. Because of the array periodicity, we can model the diffraction problem as its circuit analog depicted in the bottom of Fig. 1, in which the free-space regions are modeled as semi-infinite TL and the slit region is treated as a TL segment of length \(l\). For a given angle of incidence \(\theta\) with respect to the \(z\) axis, the effective vacuum wave number is \(\beta_0 = k_0 \cos \theta\), i.e., the longitudinal component of the incoming wave vector, the characteristic impedance per unit length is \(Z_0 = \eta_0 d \cos \theta\), calculated as the ratio between the voltage across one period \(V_0 = \int_0^d \mathbf{E}_x dx = |\mathbf{E}| d \cos \theta\) and the current per unit length \(I_0 = H_y = |\mathbf{E}| / \eta_0\), and \(\eta_0 = \sqrt{\mu_0 / \varepsilon_0}\) is the vacuum impedance. Inside each slit, modal propagation does not depend on the incidence angle. The wave number \(\beta_s\) and characteristic impedance per unit length \(Z_s\) satisfy the equations [4]

\[
\tanh[\sqrt{\beta_s^2 - k_0^2} w / 2] \sqrt{\beta_s^2 - k_0^2} = -\sqrt{\beta_s^2 - k_0^2} e_m / e_m, \\
Z_s = w \beta_s / (\omega \varepsilon_0),
\]

FIG. 1 (color online). The geometry of interest and its equivalent TL model.
Extraordinary optical transmission through metallic gratings is a well established effect based on the collective resonance of corrugated screens. Being based on plasmonic resonances, its bandwidth is inherently narrow, in particular, for thick screens and narrow apertures. We introduce here a different mechanism to achieve total transmission through an otherwise opaque screen, based on an ultrabroadband tunneling that can span from dc to the visible range at a given incidence angle. This phenomenon effectively represents the equivalent of Brewster transmission for plasmonic and opaque screens.
where ε_m is the relative permittivity of the metal and Z_s is the ratio between $V_s = \int_0^l E_s dx = E_s l$ and $I_s = H_s = \omega \varepsilon_0 E_s / \beta_s$. In deriving Eq. (1), we have assumed that the field penetration in the metal is very small, but we fully take into account the finite conductivity of the plasmonic material, its frequency dispersion, and possible absorption. This TL model holds as long as only the dominant TM mode propagates inside the slit and only the zero diffraction order radiates in free space, i.e., $w \ll d < \lambda_0 = 2\pi / k_0$. In such circumstances, with good approximation the boundary conditions at the grating entrance and exit require that the equivalent voltages and currents are continuous, as in the circuit model in Fig. 1. More refined TL models may consider also the presence of parasitic reactive elements at the two interfaces, taking into account the finite conductivity of the plasmonic material, its frequency dispersion, and possible absorption.

In the limit of ultranarrow slits $w \ll d$, the effective slit impedance Z_s is inherently small compared to Z_0 for normal incidence, which physically corresponds to expectedly large reflections from such a grating. The reflection coefficient at the grating entrance is generally written as

$$R = \frac{[Z_s^2 - Z_0^2]\tan(\beta_s l)}{[Z_s^2 + Z_0^2]\tan(\beta_s l) + 2iZ_s Z_0}. \quad (2)$$

In the lossless limit, zero reflection and EOT are obtained at the usual FP resonances $\beta_s l = n\pi$, with n being an integer, consistent with the findings in Ref. [1]. EOT resonances are also achieved when the grating period allows coupling to surface plasmons or spoof-surface plasmons for corrugated conducting screens [5]. This phenomenon is not captured by Eq. (2), since it involves higher-order propagating diffraction orders, which arise only for periods comparable to or larger than λ_0. Yet, Eq. (2) admits another peculiar condition for zero reflection, which arises when $Z_s = Z_0$, i.e., when the grating is anomalously impedance matched with free space. For normal incidence this condition is hardly met, due to the opaqueness of metal, but, by increasing the angle of incidence θ, Z_0 is smoothly reduced to zero as the tangential component of the electric field is reduced. From Eq. (1), the anomalous matching condition is achieved at the incidence angle θ_B:

$$\cos \theta_B = (\beta_s w)/(k_0 d), \quad (3)$$

which represents the effective plasmonic Brewster angle. This anomalous matching phenomenon is totally independent of the grating thickness, since the effective slit impedance matches the impinging wave at each interface, producing anomalous total tunneling and energy squeezing through each slit. This strikingly simple formula captures to a large degree a novel tunneling phenomenon. Different from FP and plasmon resonances [1,2], minimum reflection is achieved even when significant absorption is present in the slits, of great interest for energy concentration and harvesting. In addition, condition (3) is weakly dependent on frequency, ensuring that this Brewster-like transmission provides an ultrabroadband response, effectively extending from zero frequencies (dc) to the breakdown of this model $d \approx \lambda_0$. For lower frequencies, the metal tends to become a perfect conductor, for which $\beta_s = k_0$ and $\theta_B = \cos^{-1}(w/d)$, close to the grazing angle for small w/d. For higher frequencies, the plasmonic features of metal come into play, increasing β_s and correspondingly reducing θ_B.

It is important to stress that this effect is based on the modal propagation in ultranarrow slits, and it is therefore limited to 2D apertures (slits). In some sense, this phenomenon is the dual of the energy squeezing and total transmission mechanism through ultranarrow channels filled with zero-permittivity materials [6]. In Ref. [7], this effect was proven to be based on an analogous matching phenomenon, for which the inherently low impedance in an ultranarrow channel may be matched to a much thicker waveguide by using zero-permittivity fillings. Here, we can equivalently describe the wave interaction with the narrow slits as the one of an homogenized metamaterial slab with relative effective parameters $\varepsilon^{(s)}_{\text{eff}} = d/w$ and $\mu^{(s)}_{\text{eff}} = w(\beta_s^2/k_0^2 + \sin^2 \theta)/d$. Small ratios w/d, $\varepsilon^{(s)}_{\text{eff}}$ is very large while $\mu^{(s)}_{\text{eff}}$ is comparably low. However, at the plasmonic Brewster angle (3), the effective impedance $\sqrt{\mu^{(s)}_{\text{eff}} / \varepsilon^{(s)}_{\text{eff}}} \cos \theta_r = Z_s / d$ (where θ_r is the refracted angle in the effective material) coincides with the one in vacuum Z_0/d, producing unitary transmission. Different from Refs. [6,7], here we do not need to fill the slits with zero-permittivity metamaterials, as the outside medium naturally holds a very low impedance for large angles. This tunneling mechanism is the exact physical analog of what happens in a dielectric slab with $\varepsilon > \varepsilon_0$ at the Brewster angle condition, for which the lower impedance of a dielectric etalon may be matched to free space for TM incidence at an oblique angle. Brewster-like effects for metallic gratings have been discussed in the literature [8] but referring to quite different transmission mechanisms, mainly based on collective plasmonic resonances, largely frequency-dependent. Here, due to the absence of a resonance, this matching mechanism is inherently ultrabroadband, as we verify in the following with full-wave simulations.

In Fig. 2, we show the calculated angular TM power transmission spectra for a grating with $l = 200$ nm, $d = 96$ nm, and various slits widths, as indicated in each panel. The left column shows full-wave simulations based on the Fourier modal method [9], compared in the right to our analytical model. We consider realistic experimental dispersion and loss of silver permittivity [10]. It is noticed how the TL model captures with extreme accuracy the
fundamental physical mechanisms behind the transmission resonances of the grating. At normal incidence ($\theta = 0$), typical EOT peaks based on FP resonances are visible in all panels. For narrower slits (top row), such resonances are shifted to lower frequencies, due to their plasmonic features that ensure a larger $\text{Re}[\beta_z]$ for smaller w in (1). These resonances reflect in horizontal bands in the plots in Fig. 2, since this EOT mechanism is inherently narrowband in frequency but weakly dependent on the incidence angle.

In contrast, the plasmonic Brewster transmission arises in all plots as a vertical band, confirming weak dependence on frequency but strong selectivity to the transmission angle. Each plot reports, as a dashed line, the dispersion of the predicted Brewster angle (or, better, its real part, since losses are considered here), as in Eq. (3). For smaller ratios w/d the plasmonic Brewster angle is closer to grazing, whereas for larger widths it moves towards smaller angles. The weak dispersion of the dashed line is due to the variation of $\text{Re}[\beta_z]$ with frequency, which somehow limits the bandwidth of this effect, and is followed with excellent precision by the transmission peak in the calculated full-wave spectra. For higher frequencies, the effect of absorption in the slit is evident, in particular, for narrower widths, which reduces the transmission maxima. In any case, an ultrabroadband EOT phenomenon is verified by our full-wave simulations precisely at the angle θ_B. We have verified that, by further increasing the slit aperture for a fixed period, the vertical transmission band shifts to smaller θ_B.

Anomalous transmission would be available even if, at some section along the slit, we would add a matched absorbing material or an energy harvesting device, converting the tunneled energy into other forms. On the contrary, FP or plasmon resonances, based on multiple reflections or coupling between the slit entrance and exit [1,2], would be completely dampened under such a condition. This provides interesting venues to apply this matching phenomenon for energy concentration and harvesting.

In order to further highlight the anomalous features of this phenomenon, Fig. 4(a) shows the electric field amplitude (transverse to the slit) for the geometry of Fig. 3 (bottom row) at the frequency $f = 395$ THz, which represents the frequency of the second FP resonance of the
Similar to a dielectric etalon, total transmission is obtained despite the opaqueness of the material forming the screen. Analogous features to the usual Brewster phenomenon, plasmonic screen provide a tunneling mechanism that has "analogous behavior," allowing energy rerouting [6]. Moreover, by relaxing the requirements on the slit width and period, analogously broadband transmission mechanisms may be verified from dc to terahertz frequencies. In preparation for an experimental proof of concept of this anomalous phenomenon, we have also considered the presence of a glass substrate at the grating exit, verifying that its presence does not significantly influence the previous results.

This work has been supported by ARO with STTR W31P4Q-09-C-0652, by NSF with CAREER Grant No. ECCS-0953311 to A. A., by an AFOSR YIP grant to A. A., and by ONR MURI No. N00014-10-1-0942 to A. A.

*alu@mail.utexas.edu

[11] See supplemental material at http://link.aps.org/supplemental/10.1103/PhysRevLett.106.123902 for a figure similar to Fig. 2, but for double period $d = 192$ nm.