
MULTIPLE INTEGRATED NAVIGATION SENSORS
FOR IMPROVED OCCUPANCY GRID FASTSLAM

THESIS

Christopher P. Weyers, Second Lieutenant, USAF

AFIT/GCE/ENG/11-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GCE/ENG/11-08

MULTIPLE INTEGRATED NAVIGATION SENSORS

FOR IMPROVED OCCUPANCY GRID FASTSLAM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Christopher P. Weyers, BSCSE

Second Lieutenant, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/11-08

MULTIPLE INTEGRATED NAVIGATION SENSORS

FOR IMPROVED OCCUPANCY GRID FASTSLAM

Christopher P. Weyers, BSCSE
Second Lieutenant, USAF

Approved:

//signed// March 2011

Gilbert L. Peterson (Chairman) Date

//signed// March 2011

John F. Raquet (Member) Date

//signed// March 2011

Kenneth A. Fisher (Member) Date

AFIT/GCE/ENG/11-08

Abstract

An autonomous vehicle must accurately observe its location within the environ-

ment to interact with objects and accomplish its mission. When its environment is

unknown, the vehicle must construct a map detailing its surroundings while using it

to maintain an accurate location. Such a vehicle is faced with the circularly defined

Simultaneous Localization and Mapping (SLAM) problem. However difficult, SLAM

is a critical component of autonomous vehicle exploration with applications to search

and rescue. To current knowledge, this research presents the first SLAM solution to

integrate stereo cameras, inertial measurements, and vehicle odometry into a Mul-

tiple Integrated Navigation Sensor (MINS) path. The implementation combines the

MINS path with LIDAR to observe and map the environment using the FastSLAM

algorithm. In real-world tests, a mobile ground vehicle equipped with these sensors

completed a 140 meter loop around indoor hallways. This SLAM solution produces

a path that closes the loop and remains within 1 meter of truth, reducing the error

92% from an image-inertial navigation system and 79% from odometry FastSLAM.

iv

AFIT/GCE/ENG/11-08

To my family, who unknowingly carried me through each success and each failure.

v

Acknowledgements

First of all, I would like to thank my advisor for having patience with me in

learning and for believing in my abilities before I could. I would like to express my

appreciation to committee members for providing a much needed perspective from

their backgrounds. I am also deeply grateful to the staff of the Advanced Navigation

Technology Center without whose extensive help, I would be inexplicably lost. The

support of the Sensors Directorate has been crucial as the sponsor for this research.

I would also like to thank my group members for their dependable teamwork in

class, and the rest of my computer and electrical engineering classmates for their

support. Lastly, I must thank my housemate and lab-mates for their presence and

company as we each labored through our difficulties. You have all made this great

opportunity worthwhile.

Christopher P. Weyers

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . xi

List of Symbols . xii

List of Abbreviations . xiii

I. Introduction . 1

1.1 Motivation . 2
1.2 Problem Definition . 3
1.3 Research Goals . 6
1.4 Vision Navigation & Mapping . 6
1.5 Research Applications & Summary . 8

II. Background & Related Work . 10

2.1 Representing Maps . 10
2.2 Representing Positions . 11
2.3 Vehicle Localization . 13
2.4 Simultaneous Localization & Mapping . 14

2.4.1 Particle Filtering . 16
2.4.2 Filter Models . 20
2.4.3 Alternative Map Representation . 25
2.4.4 Comparing Results . 28
2.4.5 Advanced Techniques . 28

2.5 Machine Vision Localization & Mapping . 31
2.5.1 Feature Tracking . 31
2.5.2 Image Feature Egomotion . 33
2.5.3 Additional Approaches & Applications . 34

III. Methodology . 37

3.1 Overview . 37
3.2 Camera Input . 40

3.2.1 Image-Inertial Navigation . 40
3.2.2 Feature Tracking & Stereopsis . 42
3.2.3 Stereo Egomotion . 46

vii

Page

3.3 Inertial Input . 48
3.4 Control Input Kalman Filter . 51
3.5 FastSLAM Implementation . 54

3.5.1 Motion Model . 54
3.5.2 Measurement Model . 56
3.5.3 Map Construction . 60
3.5.4 Particle Weighting . 61
3.5.5 Resampling . 63

3.6 Summary . 63

IV. Results & Analysis . 66

4.1 Testing Procedure . 66
4.2 Implementation Details . 68
4.3 Algorithm Parameter Settings . 70

4.3.1 Camera Model . 70
4.3.2 Egomotion Model . 71
4.3.3 Inertial Model . 72
4.3.4 Motion Model . 73
4.3.5 Measurement Model . 73

4.4 Path Comparison . 74
4.5 Map Comparison . 78

4.5.1 The Occupancy Grid . 79
4.5.2 Output Comparison . 80
4.5.3 Particle Filter Output . 83
4.5.4 Additional Testing . 87

4.6 Summary . 90

V. Conclusion & Future Work . 92

5.1 Conclusions . 92
5.2 Future Work . 94

5.2.1 Mapping for Accuracy . 94
5.2.2 Mapping for Speed . 96

Bibliography . 98
Vita . 104

viii

List of Figures

Figure Page

1. Landmark SLAM as a DBN . 4, 16

2. Hallway Environment . 8

3. Sampling and Weighting Example . 19

4. Odometry Motion Model . 22

5. Motion Model Example . 24

6. Example Large Data Set Map . 26

7. Hybrid Map Example . 27

8. Common Mapping Scenarios . 30

9. Grid Map SLAM as a DBN . 38

10. Novel System Diagram . 39

11. FV-SIFT Operation . 41

12. Data Collection Vehicle . 67

13. Sensor Input Paths . 75

14. Filtered Paths . 77

15. Odometry Grid Map . 81

16. FV-SIFT Grid Map . 82

17. MINS Grid Map . 83

18. Odometry FastSLAM Map . 84

19. FV-SIFT FastSLAM Map . 85

20. MINS FastSLAM Map . 86

21. Additional Filtered Paths . 88

22. Additional MINS FastSLAM Map . 89

ix

List of Tables

Table Page

1. Camera Parameters . 71

2. Egomotion Parameters . 71

3. Inertial Parameters . 72

4. Motion Parameters . 73

5. Measurement Parameters . 74

6. Navigation Filter Error . 78

7. Map Memory Requirements . 79

8. FastSLAM Error . 87

9. Additional Data Error . 90

x

List of Symbols

Symbol Page

t current time step . 3

ut control input at t . 3

zt observation input at t . 3

st vehicle pose at t . 13

Θ environment map . 14

K number of landmarks . 15

M number of particles . 17

[m] particle index . 17

P set of particles . 17

δs vehicle pose difference . 21

N normal distribution . 22

x̂t Kalman filter state prior at t . 52

Σ̂t Kalman filter covariance prior at t . 52

xt Kalman filter state posterior at t . 53

Σt Kalman filter covariance posterior at t . 54

e
[m]
t map error of [m] at t . 58

w
[m]
t weight of [m] at t . 61

U uniform distribution . 63

xi

List of Abbreviations

Abbreviation Page

GPS Global Positioning System . 2

SLAM Simultaneous Localization and Mapping . 3

DBN Dynamic Bayes Network . 3

EKF Extended Kalman Filter . 15

UKF Unscented Kalman Filter . 15

RBPF Rao-Blackwellized Particle Filter . 17

SIS Sequential Importance Sampling . 18

SIR Sampling Importance Resampling . 18

LIDAR Light Detection and Ranging . 28

SIFT Scale-Invariant Feature Transform . 32

SURF Speeded-Up Robust Features . 32

HOG Histogram of Oriented Gradients . 33

MER Mars Exploration Rovers . 33

MINS Multiple Integrated Navigation Sensors . 37

DOF Degrees of Freedom . 40

IMU Inertial Measurement Unit . 40

DCM Direction Cosine Matrix . 44

MEMS MicroElectricalMechanical Systems . 67

SIMD Single Instruction Multiple Data . 67

GPU Graphics Processing Unit . 67

xii

MULTIPLE INTEGRATED NAVIGATION SENSORS

FOR IMPROVED OCCUPANCY GRID FASTSLAM

I. Introduction

As the environment of warfare shifts from open fields to urban cities, it becomes

increasingly difficult and dangerous for human forces to occupy and control the bat-

tlefield. Recent increases in vehicle autonomy have allowed the warfighter to take

a step away from the danger. Pilots and soldiers now extensively control Remotely

Piloted Aircraft (RPA) and Explosive Ordinance Disposal (EOD) robots to remove

themselves from some of the most vulnerable situations [2].

While their use is undisputedly saving lives, these existing systems often require a

large team to operate and lack the autonomy that is often associated with robots [2].

Increasing autonomy in these vehicles would alleviate the need for such a large support

team. Reducing the number of people involved allows the military to deploy more

vehicles where they are needed and require less human operators and maintainers.

Additional situations in future operations also benefit from the use of autonomous

vehicles. Existing platforms are incapable of target identification or Combat Search

and Rescue (CSAR) missions in environments that demand ground transportation.

An urban area CSAR mission requires that a vehicle maintain an accurate position

of itself while navigating around obstacles to its eventual goal.

To increase the autonomy of these vehicles, they must be able to navigate without

the direct control of a driver. Each of these applications requires the vehicle to observe

its environment and store a representation to pinpoint the location of a target within

the environment and act on it. Whether the vehicle must report on an adversary,

1

handle explosives, or rescue a casualty, it needs to use a map to accomplish its mission.

In addition to external sensors, this requires a precise navigation position.

The warfighter of today navigates almost exclusively through the use of the Global

Positioning System (GPS) network. Since the advent of the GPS satellite constel-

lation, GPS receivers have afforded the military an invaluable resource for precise

navigation. This technology has a vast number of applications for both military and

commercial users, and has enabled wildly accurate global navigation.

However, this capability has also created a significant dependence on accurate

navigation. Over time, many systems and many people have come to rely on GPS

to accomplish their mission. Without a signal, not only would many drivers end up

lost, but many military weapon systems would also be unable to function.

Unfortunately, although the GPS signal is global, it is not available everywhere. In

bad weather, inside most building, between tall structures, and underground, a GPS

signal is unreliable and often too attenuated to be usable. An additional consideration

is the adversaries ability to jam the GPS signal and render it unusable. Because of

the number of capabilities now defined by their accuracy, the military needs other

means to achieve similar precision navigation in all operating environments.

1.1 Motivation

A vehicle operating in areas without GPS requires a navigation method that

functions without using external signals. This means the vehicle must rely on its own

sensors to explore an environment while maintaining an accurate position. Current

missions demand an accurate position to always be available, especially when a vehicle

relays that location to its own operators or to an allied vehicle.

If the concept of internal navigation sounds unlikely, consider comparing current

technology to biological systems. Humans and other animals are able to navigate

2

in both known and unknown environments with incredible accuracy. From a design

standpoint, biological navigation amounts chiefly to stereo vision coupled with touch

and inertial sensors.

Since the goal is to obtain a similar level of navigation, consider sensor config-

urations attempts at mimicking the abilities of animals. That is, using cameras to

see and an inertial unit to sense movement. Combine these sensors and the result

is an artificial navigation vehicle. When external signals are unavailable due to the

physical environment or the actions of adversaries, the scenario demands the use of

local sensors. An autonomous vehicle of this kind can be used to explore and collect

information or even take action if necessary. Even in hostile environments, an in-

ternally navigating vehicle can accomplish its mission without relying on vulnerable

external means.

1.2 Problem Definition

In mobile robotics, the Simultaneous Localization and Mapping (SLAM) problem

addresses where a vehicle is and what its environment contains [60]. A functional

SLAM solution is a key component of an autonomous vehicle, especially one whose

mission involves gaining knowledge of unknown areas. It provides the ability to

explore unknown environments without prior knowledge and report on its findings.

Because of the sensors involved, the solution does not rely on any external signals

commonly used for navigation or communication.

The SLAM problem is often represented as a Dynamic Bayes Network (DBN)

from time 0 to time t consisting of the vehicle state, control inputs ut, measurement

observations zt, and external landmarks θ [46]. Figure 1 illustrates their relationship

in a DBN.

At time 0, the vehicle maintains x0 and makes observation z0, which corresponds

3

Figure 1. The SLAM problem as a dynamic Bayes network. Vehicle states x0:t, controls
u1:t, and observations z0:t, have subscripts denoting time, with states x0:t highlighted to
show conditional independence. Landmarks θ are numbered arbitrarily [8, 46].

to a physical landmark θ1. The vehicle is then given a control command u1, which

results in a new state x1 where z1 observes the same landmark. After receiving u2,

the new vehicle observation z2 corresponds to a different landmark θ2. In this way,

ut results in new positions and zt can observe previous landmarks in addition to new

ones.

This DBN arrangement results in an important property of the network. Because

each node x1 to xt of the vehicle path x0:t is a parent to each observation z0:t, the

observations are independent from each other given the vehicle path and physical

landmark locations [52]. Algorithms make use of this independence property when

producing SLAM solutions by using only the current path node and separating ob-

served landmarks [46].

The DBN also illustrates another important aspect of the SLAM problem. State

xt increments with ut and zt, depending only on xt−1 and external landmarks θ.

Thus, the illustration makes the Markov assumption that all relevant information is

captured in the current state [52]. A SLAM algorithm that makes this assumption

is called an online solution [61] and only uses the current ut and zt. This research

is focused on online solutions, treating the problem as illustrated in Figure 1, and

4

maintaining a current belief at each time t, an important property of a mapping

vehicle.

Alternatively, algorithms that store previous measurement and state data to cal-

culate together are offline solutions. They do not make the Markov assumption and

thus store all observed data and state information. Therefore, offline solutions re-

quire more memory then online solutions and make calculations once all data has

been gathered [61].

SLAM is often described fundamentally as a paradoxical problem. In order for a

vehicle to answer what an environment looks like, it must know where it is relative

to its surroundings. Likewise, in order to answer the question of where it is, the

vehicle must know its environment to place itself. This description presents the SLAM

problem to require an iterative solution. To remain an online solution, a probabilistic

method accounts for errors and compensates in an attempt to minimize them.

Many current SLAM algorithms use two sensors to take measurements. The first

uses encoders on the motors and wheels to measure its position. This is called vehicle

odometry, and due to its nature, it produces a path subject to compounding error

the solution seeks to reduce. The second sensor is any that measures ranges from

the vehicle to objects in the environment. These errors do not compound as they are

relative to the vehicle. Because of this disparity in measurement accuracy, the most

common source of error is that in the path.

A straightforward SLAM implementation approaches the problem by measuring

position, then applying ranges to this position. In this approach, path errors become

map errors when incorporating range observations and go uncorrected. This strategy

of not correcting position only satisfies half of the fundamental SLAM description and

is called a loose coupling of the sensors. For accuracy, the SLAM problem demands

more tightly coupled sensors in a solution.

5

1.3 Research Goals

Previous researchers have already developed an internal navigation system using

vision and inertial data without mapping [65]. One arrangement consists of stereo

cameras tightly coupled with an inertial sensor to produce an accurate position on

many different platforms in real-time [23]. From here on, it is called the Fletcher-

Veth Scale-Invariant Feature Transform (FV-SIFT), named after its developers and

the SIFT feature tracking algorithm [40].

It uses a Kalman filtering method to achieve a functional path. Specific situations

adversely affect the system due to its dependence on good images and smooth move-

ment to achieve its path [64]. A wheeled ground vehicle can mitigate such problems

by using inputs from the vehicle itself, but this previous system does not incorporate

additional input sensors.

The goal of this research is to introduce two dimensional mapping capability to

FV-SIFT. A vehicle carries the operating navigation hardware and a novel solution

incorporates the inputs from stereo cameras, an inertial sensor, and vehicle odometry

into a single path.

This work requires any mobile robotic vehicle that has the required computational

and sensory equipment. This includes all FV-SIFT hardware, a laser range finder,

and wheeled odometry. The indoor hallway environment provides real test data

comparable to popular data sets from recent research [29].

1.4 Vision Navigation & Mapping

This research combines the sensory inputs of two prominent strategies into a single

solution. It makes use of the odometry and laser ranges of the vehicle with stereo

images and inertial measurements of the FV-SIFT hardware into a two dimensional

mapping algorithm. The solution combines motion from integrated inertial data,

6

extracted from stereo camera images, and measured by odometry together in a linear

Kalman filter to create a single path. A particle filter then uses that path with laser

ranges to produce a map of the traveled environment.

This research builds on the earlier work that developed FV-SIFT with the addi-

tion of mapping functionality to improve its navigation capabilities. This work also

supports current research in SLAM by providing a method to combine inertial, op-

tical (camera), and mechanical (odometry) sensors into a single solution and apply

known mapping techniques for multiple inputs.

With more sensors to estimate a position, this research produced a more accurate

path with 92% less error than FV-SIFT and 79% less error than mapping with vehicle

odometry in conducted tests. The paths compare to a building floor plan since the

vehicle operator knows the approximate path taken. The operator measures the

accuracy of a path by determining the distance from known locations. Figure 2

displays a floor plan of the hallway environment with the approximate true path

taken. Certain points have been surveyed to serve as the reference points for this true

path.

Unfortunately, the operator cannot know exact truth values at every point, as

existing external systems like GPS are unavailable in the testing environment. This

serves to reinforce the purpose of the research and illustrates the need for internal

navigation.

In addition to an accurate path, the solution also constructs a map of the environ-

ment traveled. It implements a particle filtering technique to further adjust the path.

The algorithm incorporates laser range scans to observe obstacles such as walls or

doorways and place them in the map. The overall strategy maintains many different

maps that represent different beliefs of the environment. The particle filter incorpo-

rates the second half of the SLAM problem description by duplicating maps with the

7

Figure 2. A floor plan of the building environment with surveyed locations. The desired
path of an accurate solution is the approximate truth looping around the hallways.

highest chances of being correct and removing ones inconsistent with measurements.

1.5 Research Applications & Summary

A vehicle equipped with this system is capable of independently exploring an un-

known location and reporting on that environment. It can return from an exploration

mission having produced a current, accurate map of the area. This map would provide

decision makers with the most current information for immediate planning decisions.

Such a ground vehicle provides new search and rescue capabilities in multiple

environments. The implementation presented only discusses testing indoors, but the

same solution applies in any relatively flat area. Future research will likely extend

SLAM capabilities to three dimensions, building an even more complete picture of

the unknown environment.

8

An autonomous ground vehicle would be able to explore dangerous locations where

the safety of personnel warrants the use of unmanned vehicles. It allows operators

the ability to remove themselves from potentially hazardous situations and lowers the

risk to human life.

This research also applies to environments where GPS is unavailable either tem-

porarily or permanently. Deploying a map-building autonomous vehicle gives its op-

erators a platform that does not rely on GPS or external signals to explore unknown

areas of interest. In this way, a map can serve to measure distances and navigate

without requiring external communication.

The following chapter provides a background on work related to this topic that

has been researched or demonstrated previously. Chapter 3 presents details of the

algorithms and implementations used in the research to produce paths and maps from

sensor inputs. Chapter 4 describes the specific parameters used, data collected, results

of this research, and comparison to alternate methods. The final chapter comments

on what can be done to further this research area with potential topics to explore.

9

II. Background & Related Work

This work builds on existing algorithms for using camera images and other sensors

for navigation and mapping. In addition to the field of robotic mapping, this includes

the fields of vehicle navigation, image processing, and machine vision. Recent research

in each of these areas has resulted in significant progress. This research extends this

work by combining these research areas.

The metholodology presented in Chapter 3 uses most but not all of the concepts,

techniques, and strategies of this chapter. The implementation combines odometry,

a camera path, and inertial measurements in a linear Kalman filter that produces the

path necessary for localization. It also implements a particle filter that uses the path

and a range sensor to build a grid map of the environment. This chapter explains the

map representation and the particle filter separately.

The first sections of this chapter describe different strategies for storing the map

and representing position. This is followed by foundations in localization algorithms

as the first component of the SLAM problem. Next, this chapter discusses mapping

algorithms and more recent methods to improve them. Following the presentation

of machine vision algorithms used to generate and track image features, the core of

image navigation solutions are discussed. Finally, this chapter covers techniques used

to construct maps from inputs gathered by camera hardware.

2.1 Representing Maps

A common decision a SLAM solution must make is how to represent the environ-

ment internally. The map itself is the most important result, as this serves as both the

most visible output and the environment for later navigation. Although this chapter

discusses more advanced strategies later, there are two basic ways to represent a map

10

of the environment; metric and topological maps.

One method to represent the map is metric, where objects are stored by their

absolute position. This is commonly done by maintaining an occupancy grid of which

locations are open and which contain obstacles. Grid squares may have centimeter

resolution, which adds up when map sizes approach the kilometer range. Storing a

global metric map such as this carries a significant memory requirement which can

affect computation as much as complexity, so several algorithms have been proposed

to reduce this requirement [46].

Instead of the common metric map, another strategy is the topological map rep-

resentation. One solution takes an approach similar to early research but changes

its map representation [12]. This means that landmarks are placed based on their

location relative to others. This difference in maps continues to be a divided area,

with solutions using both methods of representation.

This research uses an occupancy grid metric map, as displayed in several successful

implementations [28, 29]. A metric map is easy to interpret and measure, and the

grid arrangement allows a straightforward implementation on a computer [33].

Even with a fast algorithm, any solution must represent and update its map,

especially if one is maintained for each particle as presented in this research. Because

larger maps demand more particles for consistency, this memory requirement grows,

and is most often the most significant contribution to computation time.

2.2 Representing Positions

To represent vehicle position, both a location and an orientation are needed. A two

dimensional coordinate system requires three variables, whereas a three dimensional

system requires six variables. In matrix representation, six variables means a 62 =

36 element matrix multiplication, so keeping the dimension low reduces the data

11

requirements to 32 = 9 elements.

A two dimensional position consists of an x and a y coordinate. Because orienta-

tion is desired, the vehicle must also track a heading angle θ. Together, these three

elements make up a vehicle pose. A two dimensional pose is represented by vector s

in Equation 1.

s ≡


x

y

θ

 (1)

Due to the geometric nature of the pose definition, the two dimensional trigonom-

etry of the pose determines their addition and subtraction. To add a pose sa to

another sb, the result is not straightforward vector addition but instead defined by

the product of a rotation matrix in Equation 2.

sa + sb ≡


xa

ya

θa

+


cos(θa) − sin(θa) 0

sin(θa) cos(θa) 0

0 0 1



xb

yb

θb

 (2)

For notation purposes, pose superscripts transfer to its elements. In the same

manner as addition, subtraction of a second pose sb from an initial pose sa uses

another rotation matrix product as expressed in Equation 3.

sa − sb ≡


cos(θb) sin(θb) 0

− sin(θb) cos(θb) 0

0 0 1



xa − xb

ya − yb

θa − θb

 (3)

In subsequent equations, all pose additions and subtractions use their respective

operation from Equations 2 and 3. This pose definition allows for easy communica-

tion with the environment as represented in a two dimensional grid. This research

12

leverages this useful property as it applies to the occupancy grid for mapping.

2.3 Vehicle Localization

Vehicle localization focuses on determining where a vehicle is within a defined area.

It is often difficult for humans to do this given a blueprint of a building or a map of a

cave, and autonomous vehicles have many of the same problems. The most prevalent

solutions approach this problem from a probabilistic point of view [15]. Probabilistic

localization algorithms redefine the localization solution to be the probability that a

vehicle occupies any given location.

To localize in an environment at time t, the current vehicle pose st is combined

with all measurements z0:t as a Bayesian filtering problem [15]. The filter represents

an estimate of the posterior probability p(st|z0:t) at each time t. With each new time

t, it updates st with a motion model discussed later in this chapter, then an update

phase finds the posterior by the Bayes theorem:

p(st|z0:t) =
p(zt|st) p(st|z0:t−1)

p(st|z0:t−1)
. (4)

In this way, the sensor measurements are incorporated to obtain a pose estimate. It

is important to note that the above calculation is only possible under the assumption

that zt is conditionally independent of all previous observations z0:t−1 [52].

For comparison, consider how humans navigate a building with a map but without

a location marked. One would have to use their senses to narrow down a location;

if eyesight is unavailable, the situation is the same for the blind. Related research

details how the same concepts discussed for vehicles can successfully be used to create

a solution humans can use for themselves [31].

For these strategies, localization requires previous knowledge of the environment,

such as the floor plan of a building or map of a park. If designing a vehicle to operate

13

in another location, it needs a map for the new environment to localize to. If a current

map of the building or area exists, this would not be possible, because there is no

way of knowing the correctness of a provided map. A solution can only assume it is

accurate and result in a false solution if the map has errors.

2.4 Simultaneous Localization & Mapping

Because localization suffers from any inaccuracies in the map provided, most re-

search extends the problem to include map building [57]. The challenge is therefore

to perform Concurrent Mapping and Localization (CML), more commonly called the

Simultaneous Localization and Mapping (SLAM) problem [39].

Perhaps the most difficult aspect of SLAM is its cyclical solution. In order for a

vehicle to build a map of its surroundings, an accurate position is required. However,

as stated in the last section, localization is only possible when a map is available [60].

This explains why solutions have only been presented recently, as they rely on prob-

abilistic methods combined with accurate hardware and fast computation [18]. This

has been the case for early methods and more recent algorithms alike [58].

SLAM solutions iterate by first estimating a pose within an existing map, and

then updating the map to incorporate new measurements. This is the general ap-

proach taken after an early solution proved that a SLAM solution both exists and

converges [16]. Its estimation approach to representing vehicle state is a principle

that nearly all subsequent methods use.

The SLAM posterior at time t is similar to the localization posterior, but includes

more variables. SLAM requires the current pose st, all measurements z0:t, the map

Θ, and all control inputs u1:t. Equation 5 shows the posterior calculation as that of

a Bayes filter, where η is a normalization constant.

14

p(st,Θ|z0:t, u1:t) = η p(zt|st,Θ)

∫
p(st|st−1, ut)p(st−1,Θ|z0:t−1, u1:t−1)dst−1 (5)

The posterior typically includes a term for data association, but this research

removes it due to differences in map representation. The data association problem

requires the algorithm to correctly map each observation zt to each landmark θ ∈ Θ

for an accurate solution. Because this research saves Θ as a metric map rather than a

set of landmarks, this association can be considered part of the measurement model

presented later.

Because evaluating the integral in Equation 5 is computationally prohibitive,

SLAM solutions use statistical estimating techniques to approximate the filter [45].

A common approach to estimate Equation 5 uses an Extended Kalman Filter (EKF),

which linearizes differences in vehicle motion to estimate a current pose and an asso-

ciated error [16]. The primary issue with an EKF algorithm is its K2 matrix storage

requirement for an area with K landmarks, with up to a O(K3) time complexity for

matrix operations.

This does not scale well in areas that produce large maps if many landmarks are

used. Concerned about the consistency of results, a newer algorithm was introduced

to reduce EKF linearization errors, producing a slightly more accurate estimate [11].

Other algorithms attempt to further reduce this error by using an UKF to produce

better results [19].

Some critical examination of the filters finds limitations to the linearization as

well as the tendency for the estimate to become overly optimistic [3]. This results

in less error than needed, resulting in an increasingly inaccurate estimate. This flaw

is present regardless of whether an EKF, an iterated version of the EKF, or a UKF

is used. Neither improvement makes any change to the complexity from the K ×K

15

error matrix in a solution with K landmarks.

An improved EKF SLAM solution uses incremental matrix factorization [36]. It

seeks to keep the information matrix in an upper triangular form and the useful data

together, reducing the effective complexity. The reduced computation allowed for a

better map when the vehicle returned to the same location multiple times, closing

the loop in the path.

Some EKF based SLAM implementations take many hours to compute a simple

vehicle path on modern machines. Simply due to its quadratic running time, this

removes any considerations of a real-time implementation. For this reason, the EKF

strategy for landmark mapping is abandoned in this research for a different approach

using a particle filter.

2.4.1 Particle Filtering.

To take a different approach to the SLAM problem, recall its DBN representation

in Figure 1. Its structure allows each state to represent all information at the current

time t, and each observation zt and control ut to be conditionally independent [52].

Because of the conditional probabilities of the DBN, the integral in Equation 5

can be rewritten as the product shown in Equation 6 [52]. This factors the SLAM

Figure 1. SLAM as a DBN, repeated from Chapter 1 [8, 46].

16

posterior into one pose posterior and K landmark estimates [45].

p(st,Θ|z0:t, u1:t) = p(st|zt, ut)
K∏
k=1

p(θk|st, z0:t, u1:t) (6)

A different approach to approximating this posterior is to use a particle filter. A

particle filter maintains the error distribution through many samples, or particles,

each storing a pose estimate and landmark locations. This is in contrast to the large

error matrix in an EKF. Instead of maintaining one estimate with covariances, many

particles each keep one estimate, creating a discrete distribution of the desired error.

Sampling M independent particles [m] from the posterior results in an empir-

ical estimate given in Equation 7, where δ is the Dirac delta function at location

{s[m],Θ[m]} [17]. This sampling removes the conditional probabilities on z and u,

while covering the desired distribution by the law of large numbers.

p(s,Θ|z, u) = 1

M

M∑
m=1

δ{s[m],Θ[m]} ds dΘ (7)

The very first presentation of the particle filter notes its application to SLAM,

performing better than exact inference [17]. The basic strategy to include many

particles [m] works well initially, but each time error is added, the distribution spreads

further apart and becomes less accurate [61]. This potential complication is mitigated

through resampling, the key aspect of this filter. Resampling affects the distribution

by deleting lowly weighted (high error) particles and copying highly weighted (low

error) ones in a similar manner to genetic algorithms.

The specific filter discussed in this work is a Rao-Blackwellized Particle Filter

(RBPF), named after the factorization method of marginalizing out variables. Using

this factorization with resampling reduces the number of particles required to main-

tain the desired distribution. The RBPF maintains the set P of M particles to be

17

distributed across the location posterior [17]. Each step of the RBPF is listed in

Algorithm 1 for each time t.

Algorithm 1 Generic RBPF Operation

for all times t do
// sequential importance sampling
for all particles [m] ∈ P do

Sample r
[m]
t from a simple distribution

Include r
[m]
t in the set of previous samples

Calculate and normalize the importance weight w
[m]
t

end for
// selection step

Reproduce r
[m]
t with high w

[m]
t , and suppress r

[m]
t with low w

[m]
t

M samples are now distributed along the posterior
// markov chain monte carlo

Apply transition probabilities to obtain each r
[m]
t

end for

A RBPF first performs Sequential Importance Sampling (SIS) by drawing from a

Gaussian proposal distribution. It then calculates an importance weight w
[m]
t for each

particle [m] and uses a Sampling Importance Resampling (SIR) algorithm to select a

new set of samples in Figure 3 [45]. In terms of the SLAM posterior, w
[m]
t is the ratio

of distributions at each sample location as shown in Equation 8.

w
[m]
t =

target distribution

proposal distribution
=

p(s
[m]
t |zt, ut)

p(s
[m]
t |zt−1, ut)

(8)

Researchers soon applied the RBPF to SLAM seeking to reduce the computational

complexity of the EKF sensor update [46]. This method is appropriately named Fast-

SLAM and achieves a running time of O(M logK) for M particles and K landmarks.

This makes it able to handle much larger environments and still be feasibly compu-

tational. The FastSLAM algorithm completes three parts for each particle in each

time step t [45]. This process is shown with resampling in Algorithm 2.

To map larger environments, the strategy simply increases the number of particles

18

Figure 3. An example of sampling and weighting. The algorithm draws from a proposal
Gaussian distribution (dashed line), then weights each sample to achieve the target
posterior distribution (solid line) [45].

Algorithm 2 Basic FastSLAM Procedure

for all times t do
for all particles [m] ∈ P do

Sample new pose s
[m]
t given control ut // motion model

Update landmarks corresponding to observation zt // measurement model

Assign weight w
[m]
t to each [m] // weighting

end for
Resample P according to each weight w

[m]
t

end for

in the RBPF to produce a consistently accurate map. FastSLAM is not without fault,

as a large number of particles slows computation time. Some analysis further explains

that increasing the map size will eventually cause any number of particles to become

inconsistent [4].

FastSLAM therefore contains a balance between speed and quality, dependent on

how many particles are used. Although an improved version incorporates a smaller

particle distribution closer to the measurement, it still must determine a required

number of particles [47]. Even as they show the second version converges with a

single particle, note that many particles are still required for a consistent practical

implementation. Its quality also depends greatly on the accuracy of the sensors and

19

models within it. Regardless, FastSLAM remains a scalable implementation.

One problem with RBPF solutions is that a large enough path results in mea-

surement errors outside the particle distribution. This results in a map unable to

close large loops and perhaps intersecting its path at an incorrect location. Other

algorithms have been presented to combat this effect, one method using distributed

particles within a different filter [20]. It has a complicated running time and requires

a comparable number of particles, yet produces a robust map. A later publication

improves the algorithm complexity to a level not greater than a localization solu-

tion [21].

Another SLAM solution, GraphSLAM, seeks to use past measurement and path

data to update the map, instead of just the most recent [62]. By representing the

posterior as a graph of nodes, this algorithm performs better in large-scale environ-

ments. However, because it uses previous data, it is a full SLAM solution where a

map can only be computed after all measurements have been taken. This is useful for

building a reference map at a later time, but cannot compute a map as the vehicle

explores the environment.

The authoritative book on the subject reviews both versions of FastSLAM and

other popular methods in great detail [61]. Its authors compare each method us-

ing various data sets and present their results, finding that all SLAM methods pro-

vide different advantages but none have demonstrated themselves to be better than

FastSLAM in all situations. As such, FastSLAM provides the foundation for the

implementation used in this research.

2.4.2 Filter Models.

As described, FastSLAM is not a single algorithm; rather, it is a framework for

solving the SLAM problem. It specifies each of its steps in terms of input and ef-

20

fect and than the implementation details. These steps are generally separate, and

replaceable with different system models [61].

Because the resampling process is dictated by the RBPF, FastSLAM requires two

models. The first is the motion model, to incorporate a probabilistic pose distribution

using control input ut, and the second is the measurement model, to update the map

and weight this distribution using observation zt.

2.4.2.1 Motion Model.

Of particular note is the development of a motion model for vehicle odometry [61].

This model bases vehicle motion upon the mechanics of a wheeled ground vehicle as

is commonly used for mapping. Odometry records poses directly at a measurement

interval, denoted by different times t. During this time, the vehicle moves to its

current pose st from previous pose st−1. Equation 9 depicts the difference between

poses δs of interest in the motion model.

δs = st − st−1 =


δx

δy

δθ

 (9)

The purpose of the motion model is to represent this movement from time t − 1

to t and record an updated location and heading. Figure 4 shows an example of pose

difference δs graphically.

The motion model describes δs as a rotation from the old pose to the new one, a

translation toward it, and second rotation to the new heading [61]. This allows the

model to add Gaussian noise to the rotation and translation components rather than

a multidimensional oval. Equation 10 define how the three motion components are

calculated from δs.

21

Figure 4. The odometry motion model expresses movement as rotation δrot1 toward a
new pose, translation δtrans in that direction, and rotation δrot2 to a new heading [61].


δrot1

δtrans

δrot2

 =


∣∣atan2(δy, δx)− θ

∣∣√
δx2 + δy2∣∣δθ − δrot1

∣∣

 (10)

Since these parameters are treated as a measurement, they remain the same for

each particle. To represent the distribution, four parameters α represent the expected

error between various movement. Each particle then uses each α value to calculate

the error applied to its new pose. This is shown in Equation 11, where N samples a

zero-mean normalized Gaussian distribution and multiplication is element-wise.


drot1

dtrans

drot2

 =


δrot1

δtrans

δrot2

−


N

N

N




α1|δrot1|+ α2|δtrans|

α3|δtrans|+ α4|δrot1 + δrot2|

α1|δrot2|+ α2|δtrans|

 (11)

Each particle [m] then adds the sampled difference to its previous pose s
[m]
t−1 to

obtain its new s
[m]
t in Equation 12. This results in particle set P being distributed

to represent the desired pose error. The goal of the particle filter is that one particle

22

retains the correct vehicle path.

s
[m]
t = s

[m]
t−1 +


d
[m]
trans cos(d

[m]
rot1)

d
[m]
trans sin(d

[m]
rot1)∣∣d[m]

rot1 + d
[m]
rot2 + θ[m]

∣∣

 (12)

All together, the motion model propagates vehicle pose separately for each par-

ticle [m] using the same odometry measurement δs. The complete motion model is

described in Algorithm 3, where odometry measures the most recent pose difference

δs and current heading θ.

Algorithm 3 Odometry Motion Model

δrot1 = |atan2(δy, δx)− θ|
δtrans =

√
δx2 + δy2

δrot2 = |δθ − δrot1|
for all particles [m] ∈ P do

d
[m]
rot1 = δrot1 −N (α1δrot1 + α2δtrans)

d
[m]
trans = δtrans −N (α3δtrans + α4|δrot1 + δrot2|)
d
[m]
rot2 = δrot2 −N (α1δrot2 + α2δtrans)

δx[m] = d
[m]
trans cos(d

[m]
rot1)

δy[m] = d
[m]
trans sin(d

[m]
rot1)

δθ[m] =
∣∣d[m]

rot1 + d
[m]
rot2 + θ[m]

∣∣
end for

The four α values exist to vary the size and shape of this distribution to model

the anticipated odometry error. A researcher sets the α parameters to adjust this

variance. A different vehicle often demands different α parameters resulting in a

different distribution [61].

The distribution must be large enough to cover the actual measurement error and

small enough to require few particles. In practice, this distribution is often bean-

shaped to represent the error. This reflects the model being more confident in δtrans

and less in δrot1 or δrot2.

Regardless of its shape, the odometry motion model distribution grows with each

23

time t. As the vehicle travels a certain distance, the pose uncertainty grows and

the distribution models this accordingly. Figure 5 displays the effect of this growing

distribution on a simulated path that travels a fixed distance forward and makes two

left turns.

Figure 5. An example path showing a particle distribution spread using the odometry
motion model. The vehicle begins at the arrow and travels along the path [61].

This motion model continues unchanged in this research, as described in the follow-

ing chapter. Its α parameters allow the same process to create a plethora of different

distributions depending on the specific odometry and environmental settings. This

motion model does not describe the inertial or image inputs by themselves well, but

remains effective in creating a desired distribution when combined with odometry.

2.4.2.2 Measurement Model.

The motion model only considers control input ut to propagate the particles, and

does not differentiate between accurate and inaccurate ones. To do this, FastSLAM

24

needs a measurement model to incorporate observation zt. Regardless of the specific

details, the measurement model must stratify particle set P by incorporating current

map knowledge, usually through zt [61].

The measurement model distinguishes each particle [m] by computing an error

value for each one. FastSLAM uses this error to weight particle set P for resampling.

Thus, the measurement model is the critical process to transition P from the prior

to the posterior pose distribution [28]. This implementation uses a range scan model

that observes each grid cell along each scan line. If a cell of map Θ[m] is not consistent

with current scan zt, the model accumulates error for particle [m] [33]. It builds up

error in this manner for each [m] at each time t to ensure the pose distribution of P

maintains consistency with observation zt.

Measurement models are less direct than the odometry motion model, reflecting

the vast differences in observation sensors [61]. This research uses a range scan mea-

surement model that builds error by occupancy grid cells [33]. However, a scanning

technique that uses different sensor types, amounts, or placement must change its

measurement model to factor this new physical arrangement. Another difference is

in the map representation, where changing the occupancy grid also requires a dif-

ferent measurement model to observe map Θ. Details of the measurement model

implemented in this research is presented in Chapter 3.

2.4.3 Alternative Map Representation.

While computational complexity between EKF based SLAM and FastSLAM is a

common issue, the most significant contribution to running time is often associated

with storing the map [20]. Especially when many particles each store their own copy,

a large environment can require gigabytes of memory. Much research focuses on

reducing this cost by making use of different map representation methods [6, 8, 24, 25].

25

An algorithm for dividing the global map into smaller regions allows those regions

to be represented in a tree structure [25]. This reduces the number of landmarks to

calculate at each step, and only consists of several more calculations to move between

regions. The primary focus of this strategy is to close loops in the vehicle path. This

means that returning to a previous location is successfully mapped to the same spot.

To prove the effect of this storage implementation, this strategy is used on an

enormous data set of one million landmarks [24]. Such a data set is simply too large

for an EKF to finish calculating, especially considering that memory was still the

primary contributor in the improved implementation presented. The true map and

constructed map of these tests are shown in Figure 6.

Figure 6. Maps from a million landmark data set. (a) is the true map of four buildings
explored, (b) is a closeup of one building, (c) is the map estimate before closing the
loop, and (d) is the final map estimate [24].

While the map generated from the algorithm in (d) does not completely replicate

truth (a), it is able to improve itself from (c) by using landmark information. Even by

visual inspection, (d) appears good enough to navigate with and succeeds in closing

the loops to previous locations.

Most implementations store a single map type, but others maintain several local

metric maps roughly the size of the sensor range. These are combined by maintaining

an overall topological map and placing the local metric maps within it [8]. This results

in less of a storage requirement and helps to keep local areas correctly placed relative

26

to each other. Such a hybrid approach can also be used to separate the map into

a hierarchy, updating one level at a time to produce one metric map at the end [6].

Figure 7 depicts the many steps involved in this process.

Figure 7. Maps built from a hybrid sequential process. The algorithm stores local
metric maps (a) while building an overall topological map (b). It then finds offsets
between poses (c) and places local maps into a global one (d). Finally, it corrects the
vehicle path (e) to produce a final map (f) [6].

Such map representations are effective at computing large data sets and closing

loops. Landmark storage is not the immediate focus of this work, which seeks to

simplify the mapping process, not complicate it. This research holds both of these

strategies as potential strategies to be applied later.

27

2.4.4 Comparing Results.

Due to the number of different outputs obtained from algorithms with different

storage mechanisms, it is often difficult to compare them. Different algorithms use

the same range sensors to interpret objects as occupied cells or separate landmarks.

In the resulting maps, a metric occupancy grid does not resemble a topological map

and both are different from a scatter plot of landmarks. Visual inspection of different

representations can distinguish what looks like a believable map from one full of

errors, but cannot distinguish between more similar results and is subject to human

interpretation.

One paper presents a more precise method to compare the results of several dif-

ferent solutions [10]. This method considers vehicle path, one pose after another, to

determine which output is closer to ground-truth. Not only is this a more quantitative

measure than visual inspection, but it is more effective as well.

Because most algorithms first estimate each pose then build the map, comparing

the poses of each algorithm results in a more significant difference. This work does not

implement the specific method outlined, but instead uses a similar path comparison

rather than simply discussing the differences in produced maps.

2.4.5 Advanced Techniques.

One significant factor that affects SLAM research significantly is the available

hardware. Many solutions make use of a range finder to detect obstacles, either

through RADAR, SONAR, or Light Detection and Ranging (LIDAR). While often

expensive, these sensors are also incredibly accurate with LIDAR units maintaining

millimeter to centimeter error resolution at distances up to tens of meters. A solution

can detect distinct differences in adjacent readings to extract landmarks as done in

early SLAM solutions. Alternatively, it can apply each scan to a metric grid map as

28

done in this research.

The advantage of using such an accurate sensor comes from the small LIDAR

error relative to the sensor. This is much different from the error of a pose estimate

obtained through vehicle odometry or velocity measurements. Movement error from

odometry or inertial measurements is not only much larger than the range errors but

is also cumulative, often compounding quickly. In nearly all tests, the sensor ranges

have much less error than vehicle measurements meaning the pose estimates cause

map inconsistencies, not the sensor ranges.

To leverage this fact is the strategy of scan matching. By matching the proposal

distribution to scan points, the solution incorporates range measurements into the

pose estimate before the map is built. Scan matching is an adaptive technique that

computes a more accurate proposal distribution by considering range inputs in the

motion model to reduce pose uncertainty [28].

Presented scan matching research has improved path accuracy and reduced the

pose distribution to require less particles [30]. This method succeeds in complicated

environments using three dimensional scanners. The additional dimension generates

a significant amount of data, but the principle applies to smaller and two dimensional

environments as well [9].

The effect of scan matching is best illustrated by example situations. Around

environment obstacles, situations arise where the algorithm incorporates the accurate

ranges to narrow the pose distribution [28]. Less variance benefits the motion model

by reducing pose error and allowing for fewer particles. Three map areas are pictured

in Figure 8, each producing a different effect on the pose distribution.

By implementing scan matching improvements to a RBPF algorithm, researchers

could reduce the number of particles required, cutting memory requirements and

computation time [29]. Using the principle of scan matching, the most recent mea-

29

Figure 8. Mapping scenarios. In an open corridor (a), ranges detect walls on either
side and shape the pose distribution. In a corner (b), more walls mean a more accurate
estimate. Without walls (c), the motion model distribution is much larger [28].

surement is considered in addition to vehicle movement, resulting in a particle distri-

bution with less variance. The RBPF then preceeds with weighting particle set P by

comparing the current scan to each map.

As this work uses an accurate LIDAR, scan matching is certainly applicable.

However, scan matching is used to decrease the particle distribution as an added

improvement. It is not a necessary aspect of FastSLAM, so this research completes

a functional SLAM solution before considering a scan matching application to the

results.

Used in combination with scan matching, this research implements an adaptive

resampling process to reduce the risk of removing accurate particles [29]. The re-

sampling adapts by only resampling P once the weighting indicates a need, rather

than at every time or after a fixed interval. This strategy is also implemented in this

research, as both the RBPF and metric map techniques are similar.

Other algorithms correct the vehicle path separately from the map in an iterative

process [50]. This improves the path of an otherwise incorrectly aligned map, but

can only be calculated after the path is calculated, making it an offline solution. This

work also dismisses this iterative strategy, as it focuses on an online implementation

only.

30

There are many different SLAM algorithms, each with certain advantages in spe-

cific scenarios. The area of concern in this work is indoor, two dimensional environ-

ments. This simplifies the implementation of the algorithm and decreases complexity

of the sensors. The result is less overall computation and memory requirement, al-

lowing more tests to be conducted.

2.5 Machine Vision Localization & Mapping

Machine vision is a critical component of artificial intelligence and robotics re-

search for same reason eyesight is a critical component of biological life. Image

processing techniques can be applied immediately to accomplish navigation and po-

sitioning tasks just as humans and animals detect objects and movement through

our vision. This section presents some recent research in tracking image features and

using them for navigation and mapping.

This section discusses the tracking algorithms that provide a basis for FV-SIFT

and cover its operation. It also presents recent research efforts in mapping using

cameras, most of which is currently unavailable. The details of the image processing

techniques in this work are discussed in the next chapter.

In this document, the word “feature” specifically refers to a spot of an image,

whereas “landmark” is an important navigation point. An algorithm recognizes a

physical object as a feature before interpreting it as a landmark in later steps.

2.5.1 Feature Tracking.

To save only relevant information, machine vision systems often use the concept

of feature extraction, the process of finding points of interest in an image, called

features [54]. Feature tracking finds the set of features FA in one image and the

set of features FB in another image. It then matches a subset of FA ∩ FB to those

31

features it finds between images. This process implies several difficult steps, such

as recognizing what features were previously identified and tracking their movement

between images.

Determining how well an algorithm recognizes features is difficult, as features can

change in any combination of position, rotation, or size from one image to another [40].

In addition, features appear different under changing lighting conditions and from

different perspectives.

The feature tracking problem is the first step in using vision for an application such

as navigation. When computation hardware became available, researchers presented

a process to determine which features to find and track [54]. The critical method

is to select a limited number of features based on how well they will be tracked in

subsequent images.

Subsequent methods in image feature extraction were shown to be more robust

to change. One extraction method named the Scale-Invariant Feature Transform

(SIFT) produces features that are more distinctive and less likely to be mistaken for

others [40]. It focuses on the property of scale invariance, or how well the points

being tracked are recognized as their scale changes. These good features are essential

to the performance of the system, whose goal is to correctly label as many as possible

in the next image. Although first shown to be effective for static object recognition,

it has also been used for image navigation applications like SLAM [53].

SIFT produces accurate results, although subsequent research presents two suc-

cessful alternatives, both aiming to reduce the required computation time when

considering real-time applications. One method is Speeded-Up Robust Features

(SURF) [5]. It works by approximating the features detection and description, de-

creasing the number of calculations and time required. Another method uses a differ-

ent feature description by calculating differences in pixel bins, and is called Histogram

32

of Oriented Gradients (HOG) [14]. Even though HOG is introduced for human de-

tection, it achieves similar results as SURF for feature extraction and also requires

much less time than SIFT.

The applicable navigation implementation was designed for SIFT to track features

for use in navigation [65]. This work describes using a filter discussed in a later section

to estimate a vehicle path. The algorithm has been used with both SIFT features and

more recently faster SURF features, which provides the basis for the vision system

used in this research. The implementation presented in the following chapter contains

many of the same hardware components.

2.5.2 Image Feature Egomotion.

Many SLAM implementations have presented results using odometry and LIDAR,

but others present the use of other input sensors. Some use vision cameras for hard-

ware and algorithms to extract movement. The process of using sequential images

for navigation is called egomotion, as used extensively for rover navigation when

paired with odometry [48, 49]. Two of the Mars Exploration Rovers (MER) utilize

this strategy, carrying stereo cameras to estimate an alternate path when traversing

rough terrain where odometry is less accurate [41].

Perhaps the first published article using only vision features as input for the

SLAM problem utilized SIFT and was presented at a similar time [53]. Alternative to

filtering techniques, an iterative algorithm presents a reasonable method to generate

a path [44]. Until recently, however, the application of these methods to SLAM has

not been extensively explored.

A motivation for alternative inputs emerges as solutions become more accurate

and computation speeds increase. This allows more experiments to be done using

existing techniques with different sensors. For example, a RBPF SLAM solution

33

using visual features as input can result in a more accurate map than pose estimates

from odometry measurements [26, 55, 56]. These papers explain cost as a significant

factor, as highly-accurate LIDAR units are often several thousands of dollars. While

some can afford a limited number of such sensors, the application of SLAM capabilities

often demands a cheaper solution.

Another consideration is the size and practicality of large sensor equipment.

Money is not the only design cost, as LIDAR units often require more power than

motors and computers and contribute significantly to weight. Machine vision may

require more computation, but for a smaller application it also requires much less

hardware. Cameras used have been as small as two lenses mounted onto a moni-

tor, which produces clear enough images to create a map similar to odometry based

poses [51, 22]. Other vehicles can be built with complicated rigs of several cameras

taking a full panoramic view of the surroundings [35]. This allows for features to be

tracked from one camera to another as the vehicle turns or revisits a location at a

different orientation. This implementation results in a map with more obstacles de-

fined, but requiring complicated software and significant memory to operate so many

cameras at once.

The details of egomotion algorithms are often not provided in the presented re-

search. The basic process relies on epipolar geometry to calculate focal points from

stereo cameras [1]. The algorithms match image features between cameras and be-

tween time steps, then translate their movement into sensor motion. All egomotion

calculations are discussed in the Methodology.

2.5.3 Additional Approaches & Applications.

Most research has focused on indoor or urban environments, seeking to create a

floor plan or street layout. However, the SLAM problem applies outdoors just as easily

34

with many of the same solutions. One stereo vision SLAM solution uses an EKF to

map underwater [59]. The presented system is unique as it maps in three dimensions

and calculates in real-time; most solutions ignore these otherwise applicable aspects.

A ground example presents a method of map storage specifically for environments

where landmarks and obstacles have different heights [42]. This is not as applicable in

hallways, where flat walls are restricted by a ceiling, but does significantly distinguish

rocks from trees from buildings. Another difference in this research from others is

that it uses a metric grid for map storage as many LIDAR solutions find it easy to

do. This is in comparison to storing landmark locations as is otherwise done in vision

solutions. This corresponds more closely to common RBPF solutions, implying their

integration is possible.

A different approach beginning to emerge is that of machine learning. One could

consider every SLAM solution to be an agent that learns the map with each subse-

quent measurement, but the presented solutions do not build upon this. Approaching

SLAM from a machine learning perspective yields a solution that requires much less

vision hardware and successfully navigates [32]. This implementation makes use of

only a single camera, which observes the floor as opposed to walls. Its primary suc-

cess was the determination that cameras are subject to blur effects not seen by other

measurements, and mitigating this effect results in more accurate image data.

One approach using symmetric regions based on the HOG descriptor suggests that

feature extraction methods are an effective option in further research [38]. Other

recent research uses inertial data combined with egomotion to show that a calibrated

system can perform in multiple environments with minimal drift [34]. In both cases,

the results show that camera based methods are promising sensors for SLAM solutions

where maintaining an accurate path and landmark locations are critical.

SLAM is still a relatively recent problem, and there is certainly more work that

35

will be devoted to algorithms making use of different combinations of new sensor

technologies and solution strategies. As more environments are explored and more

applications are considered, additional algorithms work to provide them with func-

tional solutions. It is likely that only few of the potential SLAM solutions have been

presented, and there is a significant amount of robotic mapping yet to be done.

36

III. Methodology

This chapter presents a modified FastSLAM implementation that incorporates a

novel combination of multiple input sensors. Where previous research used separate

sensors to create separate paths, this work combines stereo image egomotion, inte-

grated inertial measurements, and odometry to create a single path using a linear

Kalman filter. This path combination will be referred to as the Multiple Integrated

Navigation Sensors (MINS) system.

The MINS system sends its path to a FastSLAM implementation as its input

path. FastSLAM uses this state to propagates its particles, then uses LIDAR ranges

to measure error and generate occupancy grid maps. Lastly, it weights its particles

based on the error and resamples them if necessary.

This chapter first begins with an overview of the novel MINS system as extended

from principals in Chapter 1. The following sections cover the process of extracting

motion from a set of stereo images, and a description of inertial data integration.

Next is a description of how MINS filters pose estimates from egomotion, inertial

movement, and odometry together. Following this, this chapter describes the process

for integrating the combined poses into a RBPF implementation.

3.1 Overview

The inputs and outputs of a SLAM solution conform to a DBN on a fundamental

level. Because this research stores the environment in a single map rather than a set of

landmarks, it demands a different DBN representation than the one discussed in the

first two chapters. Figure 9 depicts a DBN representing map Θ as a single hidden node

rather than several landmarks. The single map condenses the desired solution into

one object that affects each observation, instead of maintaining associations between

37

every landmark at each time step t.

Figure 9. The SLAM problem as a dynamic Bayes network storing a single map. A
vehicle travels through hidden states x0:t, observing controls u1:t and observations z0:t.
A single hidden map Θ affects all observations [8].

In this implementation with a single map, vehicle odometry acts as the controls

u1:t, driving the vehicle along its path. The vehicle takes LIDAR measurements as

observations zt of the environment Θ at each pose st within the state xt. Thus, a

SLAM solution gives the values for the hidden nodes of the map Θ and current state

xt.

When equipped with stereo cameras at equal height and inertial measurements

in two dimensions, the vehicle gains additional input through image egomotion and

numeric integration respectively, as discussed in detail later. The novel aspect of this

research combines these inputs with odometry in a linear Kalman filter as the MINS

system. MINS provides a navigation solution, leaving map construction to a separate

FastSLAM implementation.

The linear Kalman filter takes a pose change measurement δs from each sensor as

input. It uses these to maintain a state x and covariance Σ of a combined pose with

associated accuracy. A separate particle filter then takes Kalman filter state x as

its control input u to process a SLAM solution. The particle filter also incorporates

the LIDAR scan z to construct maps, separating this functionality from the MINS

38

sensor integration. An overall system diagram of MINS and FastSLAM is shown in

Figure 10. It has four inputs from the four sensors, and maintains the particle filter

states of a pose s and map Θ as system output.

Figure 10. System diagram of the novel SLAM solution. A Kalman filter takes twice-
integrated IMU measurements, egomotion from stereo images, and vehicle odometry
as input. It then provides u to a particle filter that also takes LIDAR ranges z.

As the IMU records accelerations, MINS integrates each measurement to a ve-

locity, then again to a position. These positions provide the Kalman filter with its

prediction step. Each time an image pair is available, MINS calculates an egomotion

pose and provides it to the Kalman filter as an observation step. Each odometry mea-

surement is also a pose that provides another Kalman filter observation. Iterating

over the series of prediction and observation steps updates the Kalman filter state x

and covariance Σ.

After each odometry observation, at which time there may or may not have been

an egomotion update, the Kalman filter sends its output to the particle filter as

the control input u. Combined with LIDAR measurement z, FastSLAM maintains

particle states each with a pose s and map Θ. These states are the hidden variables

of the DBN, thus providing the SLAM solution.

39

3.2 Camera Input

This section first discusses FV-SIFT in more detail as it motivates this work. The

hardware arrangement and data collection processes are identical for both systems,

although this research only uses FV-SIFT as a comparison to previous methods. Fol-

lowing FV-SIFT, this section describes the process for extracting feature locations

and egomotion algorithms. MINS calculates all image and inertial components inde-

pendent of the FV-SIFT methods.

3.2.1 Image-Inertial Navigation.

This research begins with the FV-SIFT navigation system as presented in previous

work [65]. Designed to use an EKF to estimate poses, a solution is also valid using an

alternative UKF implementation [19]. The UKF version succeeds in navigating but

does not reduce the position error of the original EKF solution and takes a longer time

to compute. Regardless of its filtering technique, the system functions as depicted in

Figure 11, resulting in a six Degrees of Freedom (DOF) pose change, with positions

δpn and rotations ψ in three dimensional space.

While an Inertial Measurement Unit (IMU) integrates its acceleration measure-

ments to position data, two stereo cameras save images. An algorithm (either SIFT [40]

or SURF [5]) extracts features from both images attempting to match and locate each

feature. The system saves the best twelve features as landmarks to be matched in

subsequent images. It continues to track matched landmarks and use their observed

locations to update the pose from integrated IMU measurements.

FV-SIFT performs much better on aircraft than it does on a small indoor vehicle,

but operates in either environment [65]. Additionally, it is highly subject to the

accuracy of the IMU, resulting in a large error difference depending on the unit used.

The path quality of the navigation system is also subject to feature loss, which results

40

Figure 11. Operation of the FV-SIFT system. It detects image features, predicts their
future location, and attempts to match them in subsequent images with movement [65].

in unrecoverable errors after only a few seconds without observing some or all of its

twelve landmarks. As a result of this loss, it relies completely on its IMU and rapidly

drifts away.

Too much reliance on one system, either image features or inertial data, is mo-

tivation to seek more consistent navigation sensors. Sudden movements, collisions,

and vibrations greatly affect an IMU but do not affect odometry as much. As this re-

search concerns indoor ground vehicles, it assumes odometry is available as an input.

A system with stereo cameras can adjust vehicle odometry and IMU measurements

with its own path. Even if each of the inputs are not particularly accurate, filtering

with an EKF or RBPF improves raw odometry using egomotion to calculate a path

of its own [55].

The problems with FV-SIFT are the reason for the implementation decisions that

follow in this chapter. It tightly couples the images and inertial data, but also tightly

integrates itself to its EKF and cannot be easily extended due to specifics of its

41

implementation. MINS separates the cameras from the IMU data until it combines

them with odometry in a linear Kalman filter. This way, each input sensor does not

rely on another and MINS is robust in areas that are problematic for FV-SIFT.

3.2.2 Feature Tracking & Stereopsis.

Camera egomotion is an older problem than SLAM, and researchers now seek to

combine the separate fields [26, 55]. Several algorithms exist for calculating three di-

mensional motion can be applied to mobile robotics operating on a planar surface [1].

The mathematical solution using the epipolar geometry presented in this paper pro-

vides the basis for the feature processing used in this research. The implementation

is based on stereopsis, the ability to approximate distances through stereo images.

To take advantage of stereopsis, MINS matches the SIFT features from the left

camera image to those from the right camera image at the same time. The most

straightforward way to compare two SIFT descriptors and determine a match between

them is to take their Euclidean distance; however, the descriptor for each feature

consists of 128 values. For computational purposes, MINS calculates the inverse

cosine of the dot products of each pair of left camera descriptors dL and right camera

descriptors dR to find a distance D between each descriptor pair. This is a similar

measure to Euclidean distance but faster to calculate as shown in Equation 13.

D = arccos(dL · dR) (13)

MINS then finds the minimum distance value dj for each feature i, where feature

index j the closest match to i in the other image. If dj is less than ϱ times the second

smallest distance value in D that is not dj, MINS matches the feature and saves its

pixel coordinates in PL and PR. The elements of each are assigned as described in

Equation 14.

42

PL, PR =
{
pL
i , p

R
j : min(D) < ϱ min(D − dj)

}
(14)

Because the vehicle travels on a flat surface with cameras at equal height, the

stereo images should detect only horizontal differences and not vertical ones. There-

fore, to reduce the number of false matches, MINS discards feature matches in the

other image that measure greater than ϑ from horizontal. This adds an additional

condition to the elements of PL and PR, which is described in Equation 15 where nC

is horizontal image resolution.

PL, PR =
{
pL
i , p

R
j : |atan2(yRj − yLi , x

R
j − xLi + nC)| ≤ ϑ

}
(15)

At this point, MINS has a set of features correctly matched in the current image

pair. The complete process for matching left and right features is shown in Algo-

rithm 4.

Algorithm 4 Feature Matching

for all features i at pL
i in the left image do

D = arccos(dL
i · dR)

j = argmin(D)
remove dj from D
if dj < ϱ min(D) then
add pL

i to PL and pR
j to PR

end if
x∆ = xRj − xLi + nC

y∆ = yRj − yLi
if |atan2(y∆, x∆)| > ϑ then
remove pL

i from PL and pR
j from PR

end if
end for
return PL, PR

The result of feature matching are the pixel coordinates PL and PR of the set

of features to track in the left and right images, respectively. Before the coordinates

43

can be accurately used, MINS removes lens distortion effects by performing twenty

iterations through the CalTech distortion model procedure [65].

To do this, models for each camera contain calibrated parameters for these calcu-

lations. These include the principal point pL
C and focal length fLC values, each with x

and y components. Additional parameters include five values kL
C indexed by brack-

ets. Algorithm 5 uses this model to remove lens distortion from each pL ∈ PL; the

algorithm is identical for the right camera, substituting superscript R for each L.

Algorithm 5 Removing Lens Distortion

hdistort = (pL − pL
C)/f

L
C

n = hdistort

for 1 to 20 do
r = nxnx + nyny

kradial = 1 + kL
C [1]r + kL

C [2]r
2 + kL

C [5]r
3

hy = 2kL
C [3]nxny + kL

C [4](r + 2n2
y)

hx = kL
C [3](r + 2n2

x) + 2kL
C [4]nxny

n = (hdistort − h)/kradial
end for
return pL = TL

C [−nx ny 1]

After MINS executes Algorithm 5 to remove distortion effects from PL and PR, it

can use their true coordinates as obtained through the last line. As measured, feature

coordinates within camera pixels are unhelpful until projected into actual locations

outside the cameras. To be useful for navigation, MINS uses epipolar geometry to

measure the physical location of each feature [1].

Epipolar geometry calculations require information from models of both cameras,

which have saved images atmC×nC pixel resolution. The first step in determining the

physical location is to transform the coordinates of the features. This is done using

a Direction Cosine Matrix (DCM) to convert pixels to locations TL
C and another to

convert locations to the correct reference frame CL
C . Equation 16 expresses a feature

in coordinates appropriate to the left camera. MINS performs the same calculations

for each feature using the models for the left and right camera.

44

oL = CL
C

(
TL

C

)−1


xLp − ⌈mC/2⌉

yLp − ⌈nC/2⌉

1


T

(16)

The algorithm then combines transformed coordinates oL and oR to take advan-

tage of stereopsis by using the distance from the right to the left camera oC . MINS

computes this using multiple inner products in Equation 17 to obtain the location fL

as seen from the left side.

fL =
(oL · oR)(oR · oC)− (oR · oR)(oL · oC)

(oL · oL)(oR · oR)− (oL · oR)2
(17)

A similar calculation in Equation 18 gives the location fR of one feature with

respect to the right side.

fR =
(oL · oL)(oR · oC)− (oL · oR)(oL · oC)

(oL · oL)(oR · oR)− (oL · oR)2
(18)

With both fL and fR, MINS simply averages the two values to obtain feature

location l. Each l is expressed relative to the vehicle cameras and thus relative to the

current vehicle pose. This allows MINS to maintain a record of all image features

seen in both images with their observed locations.

The overall process for obtaining each location l from PL and PR is described

in Algorithm 6. Vectors are denoted by bold lowercase letters and matrices by bold

uppercase letters; multiplication and dot products are written explicitly.

Each location l must be rotated from its value in Algorithm 6 to match the

coordinate system of the vehicle. With all two dimensional tracked feature locations l,

MINS considers the these feature locations landmarks. It then uses them to construct

an estimate of vehicle motion independent of other common inputs such as inertial

45

Algorithm 6 Feature Locations from Pixel Coordinates

oL = CL
C(T

L
C)

−1
[
xLp − ⌈mC/2⌉ yLp − ⌈nC/2⌉ 1

]
oR = CR

C(T
R
C)

−1
[
xRp − ⌈mC/2⌉ yRp − ⌈nC/2⌉ 1

]
a = oL · oL

b = oL · oR

c = oR · oR

d = oL · oC

e = oR · oC

fL = (b e− c d)/(a c− b2)
fR = (a e− b d)/(a c− b2)
return l = (fLoL + fRoR)/2

or odometry measurements.

3.2.3 Stereo Egomotion.

MINS uses each landmark location lit, where i is the landmark index and t is the

current time step. It consists of rectangular position xit and y
i
t as measured from the

current pose of the vehicle, as defined in Equation 19.

lit ≡

xit
yit

 (19)

The algorithm assumes that the only thing moving in the environment is the ve-

hicle and not the landmarks. Therefore, it measures motion from landmark i tracked

at time t as it has a current location lit and a previous location lit−1. This makes it

possible to extract a vehicle pose change, because the algorithm interprets motion in

each landmark to be a result of vehicle motion.

There are K tracked landmarks, which changes at each time t. MINS attempts

to reduce the number of bad matches by eliminating those that travel more than

σl standard deviations from the mean distance d̄. The calculation in Equation 20

removes outliers from corrupting observed motion, where σd is the statistical standard

deviation of the numerator for each landmark i.

46

di =

∣∣|xit − xit−1|+ |yit − yit−1| − d̄
∣∣

(σd)2
(20)

MINS then uses a polar representation to measure movement. The rectangular

coordinates of li are an angle and a radius calculated in Equation 21.

θi
ri

 ≡

 atan2(yi, xi)√
(xi)2 + (yi)2

 (21)

Finally, MINS measures the vehicle change from t− 1 to t by subtracting lit from

lit−1 in polar form. Note that this is the negative of typical motion, as the algorithm

is translating landmark movement in one direction as vehicle movement in the other.

This subtraction results in a position difference for each landmark i is Equation 22.

δθi
δri

 =

θit−1

rit−1

−

θit
rit

 (22)

As a final step, the algorithm takes the mean of each landmark difference repre-

sented by elements θ̄ and r̄, then converts the coordinates back to rectangular form.

This creates egomotion pose difference δsegot , computed in Equation 23.

δsegot =


r̄ cos(θ̄)

r̄ sin(θ̄)

θ̄

 (23)

The overall process for extracting pose change δsegot from the set Lt of all locations

l at time t is described in Algorithm 7. A bar over a variable indicates its mean and

σ indicates a statistical standard deviation.

As MINS tracks K landmarks, Algorithm 7 calculates the angle θi and distance ri

of each landmark i for both t− 1 and t. It then calculates each difference di between

47

Algorithm 7 Landmark Egomotion

for all time steps t do
for i = 1 to K do
n = |xit − xit−1|+ |yit − yit−1|
di = |n− d̄|/(σn)2
if di > σd then
remove li from Lt and from Lt−1 // this decreases K

end if
end for
for i = 1 to K do
θit =atan2(yit, x

i
t)

rit =
√
(xit)

2 + (yit)
2

θit−1 =atan2(yit−1, x
i
t−1)

rit−1 =
√
(xit−1)

2 + (yit−1)
2

end for
δθ = θt−1 − θt
δr = rt−1 − rt
δsegot = [r̄ cos(θ̄) r̄ sin(θ̄) θ̄]T

end for

the landmark locations in the most recent interval. MINS calculates means r̄ and θ̄

as the total movement of all landmarks.

Assuming the landmarks are stationary, MINS interprets their movement relative

to the vehicle as vehicle movement. It converts r̄ and θ̄ back to rectangular coordi-

nates, which is the difference in vehicle pose. This difference δsegot serves as the pose

difference between t− 1 and t as observed by egomotion.

3.3 Inertial Input

Simply calculating δsegot is not a viable navigation path by itself. As mentioned

earlier in this chapter, a navigation solution takes a risk when relying on a single

input due to specific disadvantages in the sensor and the errors that arise from them.

The reason for the success of the image aided inertial navigation system discussed is

indeed the combination of its two inputs [65].

The MINS system presented in this research also uses an IMU to obtain a similar

48

inertial input pose difference δsimu
t . With comparable estimate from the cameras in

δsegot , it seeks a similar estimate from the IMU in δsimu
t , and as measured by odometry

in δsodomt . Vehicle odometry records data directly, but MINS must calculate δsimu
t

from raw IMU measurements before combining the pose differences.

The IMU contains an accelerometer and a gyroscope that measure specific forces

and rotational velocities [63]. With these instruments, the IMU records accelerations

due to gravity and external forces that cause movement. In three dimensions, it

records measurements in six DOF. This research only concerns movement in two

dimensions, or three DOF, with a stationary IMU. Because this research limits the

area of interest to flat surfaces, it assumes zero vertical movement, roll, and pitch.

These other values are ignored and MINS is left with three orthogonal forces,

one of which is due to gravity and is discarded. MINS only considers the other two

accelerations ẍ, ÿ, and yaw velocity ω. Therefore, the IMU measures two dimensional

instantaneous acceleration at at time t in Equation 24.

at ≡

ẍt
ÿt

 (24)

Because navigating requires a position, IMU measurements at must be integrated

twice, and ωt must be integrated once between each time interval from t− 1 to t [63].

To limit the effect of drifting due to this integration, programs interfacing with an

IMU commonly track a bias [65]. The vehicle in this research always begins stationary,

so MINS leverages information from the available initial data to correct this.

Until the odometry indicates any vehicle movement, MINS calculates IMU mea-

surement bias bt by taking a moving average of ωt. This is shown in Equation 25,

where τ is the total number of measurements included in bt−1 [65].

49

bt =
ωt + τbt−1

τ + 1
(25)

With bt calculated, MINS tracks dt, the time interval since previous IMU measure-

ment at−1. It uses each of these values to approximates a three DOF instantaneous

velocity vt in Equation 26 [63].

vt ≡


ẋt

ẏt

θ̇t

 =


ẋt−1 + dt ẍt

ẏt−1 + dt ÿt

ωt − bt

 (26)

To mitigate further acceleration errors from producing unrealistic velocities, MINS

includes a novel step. Because it knows the physical limits of the vehicle, it limits its

speed vt to the known vehicle maximum vmax. By computing speed as the magnitude

of linear velocity, MINS scales the elements of vt by integrated overall speed vt at

time t without affecting the angle of travel. This calculation, shown in Equation 27,

is only applied if vt is greater than vmax.

vt =


ẋt/
√
(ẋt)2 + (ẋt)2

ẏt/
√
(ẋt)2 + (ẏt)2

θ̇t

 (27)

A similar process to the velocity calculation performs numeric integration to bring

velocity to position [63]. Equation 28 approximates the current IMU estimate of the

pose difference δsimu
t .

δsimu
t =

dt

2

(
vt−1 + vt

)
(28)

MINS handles tracking bt and limiting vt for each time step t of IMU data at time

interval dt. MINS must store only the current bias bt, the number of time steps τ ,

the previous velocity vt−1, and nothing more. The full process for obtaining δsimu
t

50

from at is shown in Algorithm 8.

Algorithm 8 IMU Integration

if no odometry movement then
bt = (ωt + τbt−1)/(τ + 1)
increment τ

end if
vt = vt−1 + dt at

θ̇ = ωt − bt
vt =

√
(ẋt)2 + (ẏt)2

if vt > vmax then
ẋt = ẋt/vt
ẏt = ẏt/vt

end if
δsimu

t = dt(vt + vt−1)/2

Even with the corrections applied, the most noticeable issue with integrating twice

is that minor errors in at cause δs
imu
t to grow with each measurement, and the path

obtained using this difference drifts more rapidly with each measurement.

3.4 Control Input Kalman Filter

The MINS system combines three separately obtained pose differences to deter-

mine the final control input δst at each time t. It combines δsimu
t from the IMU,

δsegot from the cameras, and δsodomt from odometry in a linear Kalman filter. In the

same manner as previously demonstrated, a Kalman filter allows the three inputs

to produce a combined pose difference δst. Each of these inputs have different un-

certainties that vary between measurements, as changing environments affect each

sensor differently.

Kalman filtering is advantageous to a simpler combination because MINS can

update the filter with different inputs at different time steps. This is critical because

each sensor measures at its own interval and is not always constant. A Kalman filter

continues to approximate the pose with any combination of the sensors available.

51

This means the filter continues to estimate given only one input, even if both of the

other inputs are unavailable or untrusted. The filter carries only its current pose st

as its state xt, with covariance Σt.

Kalman filters are often described as a series of predictions and observations that

maintain xt and Σt [43]. The IMU collects data fast, so MINS offers δsimu
t to the

linear Kalman filter as the prediction. After finishing each inertial integration, the

filter prediction updates the state prior x̂t in Equation 29. Here, 3 × 3 matrix F

directly relates the prediction δsimu
t to state variables x̂t as an identity.

x̂t = F
(
xt−1 + δsimu

t

)
, where F = I3 (29)

To obtain the covariance prior Σ̂t, the Kalman filter considers the variances of

the inertial measurements σacc and σgyro along the diagonal of Q. The Kalman filter

propagates these variances to Σ̂t in Equation 30, where G relates the variances in Q

to the values in prior covariance matrix Σ̂t.

Σ̂t = GQGT =


1 0

1 0

0 1


σacc 0

0 σgyro


1 1 0

0 0 1

 =


σacc σacc 0

σacc σacc 0

0 0 σgyro

 (30)

Prior state x̂t produces a path that considers only measurements from the IMU.

When odometry or egomotion inputs are available, MINS provides the Kalman filter

with δsodomt and δsegot as observations. Each observation brings the prior state and

covariance to their posterior values. The Kalman filter performs the same process

for odometry and image updates, but maintains a different error model Rt for the

different inputs at time t.

For odometry, the Kalman filter scales the measured pose difference by the time

52

δt since the last odometry update. Equation 31 displays the observation variance of

odometry Rodom
t with a constant heading variance of 2π radians.

Rodom
t =


δt
∣∣δxodom∣∣ 0 0

0 δt
∣∣δyodom∣∣ 0

0 0 2π

 (31)

For image updates, the Kalman filter uses the number of landmarks k tracked in

the current image pair as a basis the variance, both position coordinates and heading.

Equation 32 displays the observation variance of an egomotion update Rego
t .

Rego
t =


10/k 0 0

0 10/k 0

0 0 100π/k

 (32)

The Kalman filter uses δst and Rt for the appropriate sensor to make an obser-

vation of current state xt. Just as F relates the prediction directly to the state, 3× 3

matrix H relates the observation to the state and is also an identity. Equation 33

shows the Kalman gain Kt and posterior covariance Σt obtained from a function call

to a U-D decomposition method [7]. This function exists within the filtering library.

⟨
Kt, Σt

⟩
= ObserveUD

(
Σ̂t, H = I3, Rt

)
(33)

To observe its state, the Kalman filter multiplies each element of Kt by each

element of a measurement residual. The residual is the pose difference between the

prior state and the observed pose. Equation 34 describes the calculation for obtaining

the posterior state xt from the prior state x̂t.

xt = x̂t +Kt

(
δst − x̂t

)
(34)

53

With the observation equations completed, the Kalman filter stores a posterior

state xt and covariance Σt for time t. As MINS repeatedly updates its filter with

desired output xt always available, it becomes the total pose difference δst. In this

way, the linear Kalman filter generates a localization path for mapping. The path

created by each δst is considered the output of the MINS system.

3.5 FastSLAM Implementation

MINS provides its pose difference δst to the particle filter as control input ut

with an associated 3 × 3 covariance Σt. With xt ≡ δst ≡ ut, the RBPF has a two

dimensional path to use for its FastSLAM implementation.

3.5.1 Motion Model.

The first FastSLAM step dictates the particles be propagated according to the

control input ut from the MINS path. This control input corresponds to pose change

δst in the odometry motion model from previous work [61]. By using the Kalman

filter, FastSLAM gains covariance Σt, containing values not available when using a

single sensor. Since the goal of particle propagation is to model the pose uncertainty,

FastSLAM incorporates covariance matrix Σt into the odometry motion model.

Due to the error models of the Kalman filter inputs, each Σ is block-diagonal in

addition to being symmetric. It separates the coordinates from the heading standard

deviation, taking the values shown in Equation 35.

Σ =


σ2
x σxy 0

σxy σ2
y 0

0 0 σ2
θ

 (35)

The least intrusive manner to incorporate the values in Σ is to modify the motion

54

model parameters. This does not affect the odometry motion model operation, which

remains useful as it continues to accurately describe wheeled vehicle movement. The

uncertainty in rotation by translation α2 and translation by rotation α4 model ex-

pected vehicle error, but correspond with the zeros of Σ. Because of this, FastSLAM

does not modify these but uses configured constants instead.

Uncertainty in translation by translation α3 and rotation by rotation α1 corre-

spond respectively with the upper and lower blocks of Σ. Therefore, FastSLAM

obtains its four motion model parameters in Equation 36 by modifying new parame-

ters, a1 through a4.



α1

α2

α3

α4


=



(
σ2
θ

)
a1

a2(
σ2
x + σ2

y + σxy
)
a3

a4


(36)

It is worth noting that the units are not consistent using this method. The ele-

ments of Σ have units of distance and heading, corresponding to those of its state,

which is a pose. The motion model uses each of its α parameters as uncertainty in

pose change, which has units of change in distance and change in heading. The spe-

cific elements of Σ could be subtracted between times t and t−1 to obtain comparable

values, but FastSLAM uses Equations 35 and 36 due to implementation details.

FastSLAM operates the motion model forM particles as described in the previous

chapter using each of these α parameters. The difference is that configured parameters

a1 and a3 are modified by covariance Σ. After each particle [m] propagates its current

pose s
[m]
t , the FastSLAM algorithm then builds the corresponding map Θ[m] and

weights particle [m] within particle set P .

55

3.5.2 Measurement Model.

After the motion model discussed in the last chapter propagates each particle, the

RBPF must rank particle set P using the available sensor data combined with the

current state. Thus, the RBPF applies a sensor measurement model to calculate an

error for each particle [33]. A more correct pose propagation should reflect a better

match to the current range scan when compared to the map stored by that particle.

FastSLAM then uses the error accumulated through the current time t to resample

the particle distribution.

The measurement model is a significant contributor to the FastSLAM running

time, requiring one iteration for each range scan for each particle [m]. This is more

of a factor than the motion model or resampling operations, which do not consider

the LIDAR range scans.

In this implementation, the sensor data consists of LIDAR scans and each parti-

cle maintains a current state of the map. A different sensor or map representation

technique requires a different algorithm that provides the same measurement func-

tionality. As an intuitive approach, each particle in this implementation stores the

map as an occupancy grid, a large matrix with each cell of size gres containing a

probability of that area being occupied by an object.

The measurement model compares the current LIDAR scan to each particle map,

measuring consistency with the environment. Observing the environment is the nec-

essary function of the measurement model, but its accuracy is limited by the map

resolution gres.

Each LIDAR scan consists of a range rs at an angle θs, where each particle has

a pose s
[m]
t and map Θ[m] used in this model. If the current range rs is within

valid measurements rmin to rmax, the measurement model calculations begin with

Equation 37 by determining the current scanned position qt by pose addition.

56

qt = s
[m]
t +


rs cos(θs)

rs sin(θs)

0

 (37)

The model then makes similar calculations to those used for applying the current

ranges to the map. It begins by calculating the ratio ρ of range scan rs to the

occupancy grid resolution gres in Equation 38. The measurement model uses ρ as a

step count as it traces each scan the same way each map uses ρ in to build its grid.

ρ =

⌈
rs
gres

⌉
(38)

The measurement model uses ρ to calculate position difference coordinates d in

Equation 39. To do this, it scales the difference between s
[m]
t and qt by

d ≡

xd
yd

 =
1

ρ

xq − x
[m]
t

yq − y
[m]
t

 (39)

Because the map uses difference d as an interval to apply scans, the measurement

model does the same calculations to observe the map. To step from s
[m]
t to qt along the

grid, it steps along the scanned line using coordinates p in Equation 40. FastSLAM

builds the map locations along the scan line from 0 to ρ + 1 using index j, so the

model uses these positions to view the same grid coordinates.

p ≡

xp
yp

 =

x[m]
t + (j)xd

y
[m]
t + (j)yd

 (40)

To incorporate the map, the model peeks at the current particle occupancy grid

value Θ[m] at each location p. If the cell has been previously observed as occupied

when the current scan is not at its end, the measurement model updates map error

57

e
[m]
t for particle [m] in Equation 41. Here, the model scales e

[m]
t by occupancy range

gpr and calculates an approximate distance from index j.

e
[m]
t = e

[m]
t +Θ[xp][yp][m]

(
(ρ+ 1− j)gres

gpr

)
(41)

When j reaches ρ + 1, the model expects location p to be occupied. If this cell

has been previously observed as unoccupied, it updates the map error e
[m]
t for particle

[m] using Equation 42. The model scales e
[m]
t by occupancy range gpr and uses grid

resolution gres for a minimum distance.

e
[m]
t = e

[m]
t −Θ[xp][yp][m]

(
gres
gpr

)
(42)

To keep error values e
[m]
t low and factor recent observations more than earlier

ones, the measurement model decays the previous error at each time [52]. It does this

by multiplying constant discount factor γ to the previous error e
[m]
t−1 before adding

current error e
[m]
t in Equation 43.

e
[m]
t = γe

[m]
t−1 + e

[m]
t (43)

Each particle error e
[m]
t is calculated given the current range scans in Algorithm 9.

Particle pose s
[m]
t has already been propagated for time t, where its occupancy grid

Θ[m] contains range scans through t− 1. This model uses several predefined param-

eters, including the minimum and maximum scan ranges rmin and rmax, as well as

occupancy grid resolution gres and discount factor γ.

Once the measurement model calculates the current map error e
[m]
t for each par-

ticle, it is finished. The RBPF accumulates decayed error over time, to capture some

errors over the length of the path including but not just the most recent measurement.

58

Algorithm 9 Range Scan Measurement Model

for all particles [m] ∈ P do
for all scans with range rs at angle θs do
if rs < rmin or rs > rmax then
continue

end if
xqt = rs cos(θs)
yqt = rs sin(θs)

qt = s
[m]
t + [xqt y

q
t 0]T

ρ = ⌈rs/gres⌉
xd = (xq − x

[m]
t)/ρ

yd = (yq − y
[m]
t)/ρ

for j = 0 to ρ+ 1 do
xp = x

[m]
t + (j)xd

yp = y
[m]
t + (j)yd

if j ≤ ρ and Θ[xp][yp][m] > 0 then

increase e
[m]
t by Θ[xp][yp][m](ρ+ 1− j)(gres/gpr)

break
else if j > ρ and Θ[xp][yp][m] < 0 then

increase e
[m]
t by −Θ[xp][yp][m](gres/gpr)

end if
end for
e
[m]
t = γe

[m]
t−1 + e

[m]
t

end for
end for

59

3.5.3 Map Construction.

Before FastSLAM computes the weighting and resamples, each particle [m] applies

the current set of ranges to its map Θ[m] [33]. This process is similar to the structure

of the measurement model, as it calculates Equations 37, 39, and 40, then steps along

each scan. It limits scan ranges to rmax when calculating qt until it reaches the

interior loop. When applying scans, each occupancy grid value is decreased along the

path until the scan stops at qt, where it increases the occupancy value. The process

for applying the current range scan to each map Θ[m] is shown in Algorithm 10.

Algorithm 10 Map Construction

for all particles [m] ∈ P do
for all scans with range rs at angle θs do
if rs > rmax then
xq = rmax cos(θs)
yq = rmax sin(θs)

else if rs > rmin then
xq = rs cos(θs)
yq = rs sin(θs)

end if
q = s

[m]
t + [xq yq 0]T

ρ = ⌈rs/gres⌉
xd = (xq − x

[m]
t)/ρ

yd = (yq − y
[m]
t)/ρ

for j = 0 to ρ+ 1 do
xp = x

[m]
t + j xd

yp = y
[m]
t + j yd

if j ≤ ρ then
decrease Θ[xp][yp][m] by (4/gpr)

else if j > ρ and rs < rmax then
increase Θ[xp][yp][m] by (8/gpr)

end if
end for

end for
end for

Instead of measurement model error calculations, the particle decreases its Θ[m]

cell values along each coordinate p and increases its cell value at the last scanned

60

coordinate p. Each cell has gpr possible occupancy values, so the grid requires several

scans to indicate a clear value. After Algorithm 10, cell values correspond to a

likelihood of being occupied.

This algorithm is the most significant contribution to the computation time of

the FastSLAM implementation. This is due first to the loop for each time step for

each particle for each range scan. This is the same requirement as the measurement

model, but applying scans to maps also requires an additional loop as the algorithm

walks down the length of each scan. At each point, one cell of the current particle

map Θ[m] must be accessed and written, resulting in additional time for the significant

memory requirement. The FastSLAM creators have presented a method to reduce

this requirement by sharing map storage possible through resampling, though this is

not implemented here [46].

Because there are M particles, the set of all maps represents Θ in the same way

the poses of P represent the pose distribution. As some particles are more accurate

than others, FastSLAM weights and resamples P to achieve a better distribution over

its current pose st and map Θ.

3.5.4 Particle Weighting.

Before the RBPF can resample, it must assign a weight w
[m]
t to each particle

[m] at time t. The RBPF is compatible with any method used to weight each par-

ticle, as long as the weights are normalized such that they sum to 1. FastSLAM

begins by subtracting the minimum values from each map error e
[m]
t as calculated

by the measurement model. In doing this, it distinguishes small errors from large

errors appropriately. Their difference results in a total particle error ϵ
[m]
t shown in

Equation 44.

61

ϵ
[m]
t =

(
e
[m]
t −min(et)

)
(44)

To ensure a balance of low error particles, FastSLAM limits ϵ
[m]
t to a minimum

value of 2. This prevents particles from having an error much lower than the rest and

a resultant undesired spike in the posterior distribution. Limiting the error value, and

thus the weighting, discourages the resampling algorithm from replacing too many

particles with a copy of the same single particle.

FastSLAM then creates the weight w
[m]
t for each particle from ϵ

[m]
t . Equation 45

calculates the weight of each particle, taking the reciprocal of ϵ
[m]
t and normalizing

the result. This process assigns each particle [m] a weight w
[m]
t at time t.

w
[m]
t =

1

ϵ
[m]
t

(
M∑

m=1

1

ϵ
[m]
t

)−1

(45)

Once FastSLAM weights the set of particles P , the final step is to resample the

particle distribution. FastSLAM uses an adaptive resampling technique as done in

similar research successful with grid mapping [29]. FastSLAM executes a test after

each weighting to determine if a resampling step is needed. This not only reduces the

required computation, but also reduces the chances of a good particle being replaced

from resampling too often.

FastSLAM tests for resampling using each particle weight w
[m]
t . It calculates the

number of effective particles meff by determining a sum of the squared weights.

The weights are normalized, but their squares allow FastSLAM to find how different

the highly weighted particles are from the lower ones. Equation 46 describes the

calculation for number of effective particles meff .

meff =
1∑M

m=1 (w
[m]
t)

2 (46)

62

FastSLAM then performs the resampling test. If meff is less than half the par-

ticles M/2, then it carries out the resampling process. If meff is greater than M/2,

FastSLAM does not resample P and all steps are finished for time t.

3.5.5 Resampling.

FastSLAM uses the resampling process to adjust its particle distribution. This

implementation uses a standard SIR process in a way that is both nonlinear and non-

Gaussian [27]. It begins by finding a normalized cumulative sum of likelihood weights

wcum using the Kahan algorithm designed for this purpose [37]. It then chooses a

particle once for each time its cumulative weight intersects with a random draw ur

from a uniform distribution U from 0 to 1. The algorithm carries a O(M logM)

complexity from sorting ur.

With the number of times to resample each particle prs, FastSLAM replaces each

state x and map Θ for lower weighted particles with those from higher weighted ones.

The total process for updating the RBPF is shown in Algorithm 11.

Once FastSLAM resamples particle set P it updates the RBPF, completing all

necessary FastSLAM steps. An attractive aspect of an online SLAM implementation

is that a mapped solution makes itself available at any time t. Here, FastSLAM

provides x[m] and map Θ[m] at all times, where particle [m] ∈ P has the lowest error

ϵ
[m]
t and thus highest weight w

[m]
t .

3.6 Summary

With all calculations at time t complete, MINS and FastSLAM proceed to the

next time t + 1 accepting the subsequent sensor inputs. The next time step begins

by reading IMU data, integrating its accelerations to velocities, removing the angular

bias, then integrating velocities to IMU pose change δsimu
t+1 . This pose change pro-

63

Algorithm 11 RBPF Resampling
wcum, c, j, us, urs = 0
for all particles [m] do
y = w[m] − c // Kahan algorithm
t = wcum + y
c = t− wcum − y
wcum = w[m] = t

end for
ur =M sorted samples from U(0, 1)
ur = (wcum)ur

for all particles [m] do
pres = 0 // assume not resampled until found

if us < M and u
[u]
r < w[m] then

increment urs
repeat
increment pres and us // count resamples

until us < M and u
[u]
r < w[m]

end if
p
[j]
rs = pres
increment j

end for
j =M // update particle set based on resampling
for i =M to 1 do
if p

[i]
rs > 0 then

decrement j
x[j] = x[i]

Θ[j] = Θ[i]

end if
end for
for all particles [m] do

k = p
[m]
rs // replicate live samples

if k > 0 then
repeat
x[i] = x[j]

Θ[i] = Θ[j]

increment i, decrement k
until k > 0
increment j

end if
end for

64

vides the prediction update the linear Kalman filter maintaining position state xt+1

and covariance Σt+1. This continues until an egomotion or an odometry update is

available.

When an image is available, MINS extracts image features from stereo cameras.

It then matches features in both images at t+ 1 with those in both images at t, and

calculates an egomotion pose difference δsegot+1. The linear Kalman filter accepts δsegot+1

as an observation update. When an odometry update is available, MINS measures

the odometry difference as δsodot+1 directly from the sensor. It provides δsodot+1 to the

linear Kalman filter as an observation update as it does for an egomotion update.

Once the Kalman filter has been updated, its state xt+1 becomes the current pose

of the MINS system st+1. This research then uses this pose as the control input ut+1

and the current LIDAR range scan as the measurement input zt+1 to a FastSLAM

implementation.

The FastSLAM implementation carries out the odometry motion model using the

Kalman filter covariance Σt+1 within its error parameters. This creates a distribu-

tion of particle set P , representing M proposed current poses st+1. FastSLAM then

executes a measurement model, incorporating LIDAR measurement scan zt+1 and

each map Θ[m] for each particle [m]. The measurement model calculates a map error

e
[m]
t+1 for each particle, which the FastSLAM converts into a normalized weight w

[m]
t+1.

Finally, if meff does not reach M/2, FastSLAM resamples particle set P using the

SIR method. This completes the steps for time t+ 1.

Each subsequent step follows the same procedure with new sensor data, mapping

the data at each new time t. MINS and FastSLAM continue this cycle until all inputs

are exhausted. At this point, FastSLAM produces map Θ[m] from the particle [m]

with the highest weight as its current belief of the environment.

65

IV. Results & Analysis

This research seeks to execute the implementation on real data gathered by a

mobile ground vehicle. The MINS system operates by design on two dimensional

data gathered by stereo cameras, an inertial unit, and wheeled odometry. In the

same way, FastSLAM desires two dimensional LIDAR scans corresponding to points

on the MINS output path.

To accomplish this, a vehicle outfitted with all sensors explores an indoor hallway

environment and stores all input data for the implementation. The implementation

configures the various algorithms within MINS and FastSLAM to produce paths and

occupancy grid maps as the SLAM solution of this research.

This chapter discusses the specifics of the data gathering and values used in ex-

periments. Next, it presents the results of the feature extraction and sensor input

paths used as MINS input. Following this, it compares the path output from the

MINS system to the similar FV-SIFT navigation system. Lastly, it displays grid

maps produced by FastSLAM and discusses their differences.

4.1 Testing Procedure

The test data is collected from the Pioneer P2-AT8 vehicle shown in Figure 12.

The P2-AT8 provides internal odometry on skid steering wheels fitted with indoor

tires. Mounted on the vehicle are a SICK LMS 200 LIDAR unit, which measures

ranges in a 180◦ horizontal sweep at 1◦ increments, giving it centimeter resolution at

a distance up to rmax.

The vehicle also carries the necessary hardware for FV-SIFT to operate. This

hardware consists of two PixeLINK PL-A741 machine vision cameras with 1280×960

resolution fitted with Pentax lenses giving a 90◦ field of view. This is combined

66

Figure 12. The Pioneer P2-AT8 vehicle used in testing. It carries stereo cameras and
an IMU above the LIDAR, with an external computer toward the rear of the chassis.

with a MicroRobotics MIDG II consumer grade MicroElectricalMechanical Systems

(MEMS) IMU to provide the measurement data.

Due to the intensive requirements of image processing, an external computer with

a 2.0 GHz Core2Duo processor and 4 GB of memory can process the left and right

images. The machine is capable of executing a parallelized SURF feature extraction

algorithm for FV-SIFT as it collects data by utilizing Single Instruction Multiple Data

(SIMD) calculations on an Nvidia 9800GTX+ Graphics Processing Unit (GPU) [64].

This computer configuration records images and IMU data; it is implemented for the

FV-SIFT path but not the MINS path presented in the remainder of this chapter.

67

The internal vehicle machine, a 1.6 GHz Pentium M with 1.5 GB of memory,

records odometry and laser ranges simultaneously on a VersaLogic EBX-12 board.

The external computer connects to the internal one via Ethernet cable to communi-

cate FV-SIFT output for comparison and to synchronize time between the sensors.

This arrangement allows each computer to collect the desired input data into log files

for future use.

The vehicle path resulting from a manually driven test run serves as the data set

presented in the remainder of this chapter. The vehicle records data for 9 minutes

and 47 seconds while both stationary and moving in this run, and for 10 minutes and

42 seconds in the additional data collection run presented at the end of this chapter.

For both runs, the environment consists of an indoor hallway with a tile floor that

measures 2.5 meters wide. The vehicle begins in the northeast corner before traveling

left around a rectangle approximately 30 × 40 meters in size. After returning to its

starting location, the vehicle makes a right turn into a room and stops, ending the

first run.

This run creates a classic SLAM situation of closing a large loop. The sensors

must be accurate enough and the number of particles must be high enough to ensure

the position may be resolved correctly once the vehicle returns. A highly trusted pose

estimate allows the RBPF to use a minimal number of particles to cover a smaller

distribution, but a larger loops require more particles to cover a constantly growing

distribution. This is true for any FastSLAM implementation, regardless of input

sensors available or map storage strategy.

4.2 Implementation Details

The hardware saves all camera images for later use as portable graymap files in

Netpbm format, and saves all other collected sensor data in text files. With data

68

from all sensors available, the physical implementation consists of two main phases.

The first phase deals strictly with the image processing, feature extraction, and

egomotion within MINS. This process is done using Matlabr script files and running

a compiled executable to extract SIFT features, not yet implemented on the GPU.

This produces a text file consisting of egomotion positions.

The second phase reads all text files, implements the linear Kalman filter and

FastSLAM, storing the occupancy grid maps as Netpbm graymap format files. This

phase is a standalone Win32 application built on the Bayes++ filtering library using

Microsoft Visual Studio 2005 in the C++ language.

The implementation reads one set of stereo images, inertial measurements, odom-

etry data, and laser ranges simultaneously. Even though the computers synchronize

their clocks, the sensors collect and store data at different rates. Operating at a con-

stant 50 Hz, the IMU is the fastest sensor and updates the Kalman filter prediction

at this frequency.

The vehicle stores its odometry and LIDAR log files at an average of 12 Hz.

MINS first provides its Kalman filter with an odometry observation at this frequency.

Because the measurement model applies the range scan, FastSLAM then performs

the sequential steps described in the previous chapter. To restate, MINS predicts

its Kalman filter with each IMU measurement until there is an odometry reading

available, when it observes the Kalman filter and continues with one time step of

FastSLAM operation.

Because of the time required to calculate and save them, images are only available

at 2 Hz. While the IMU and odometry predict and observe for the linear Kalman

filter at a higher frequency, the feature extraction and egomotion algorithms only

update the Kalman filter when available. The filter design prevents this difference in

update frequencies from adversely affecting its operation.

69

4.3 Algorithm Parameter Settings

The methodology discussed many values that either model the hardware used or

affect the output as desired. Thus, the MINS and FastSLAM implementations contain

many unique parameters, which must be set. These include models of the cameras,

egomotion settings, inertial integration settings, and parameters for the motion and

measurement models within FastSLAM.

4.3.1 Camera Model.

The model of the stereo cameras contains many values specific to the hardware

used in the feature tracking and egomotion implementation. All are properties of the

model and settings of the cameras on the left L and right R sides. This research

does not seek to modify the camera model, as it does not change any hardware

settings [23, 65].

These values include the nC ×mC camera pixel resolution and offset oC from the

central IMU position. It also includes the principal point pC and focal length fC

vectors, each with an x and y value, and the five CalTech distortion model values

kC without units. Square matrices CC and TC are both Direction Cosine Matricies

(DCMs) in three dimensions used to relate image position to a coordinates as done

in the previous chapter. Table 1 provides the camera model parameters used in the

feature tracking algorithms.

All values in Table 1 are unchanged from earlier findings [65]. The models for the

left L and right R cameras include the same parameters, and each is used to find the

feature locations from each stereo image pair.

70

Table 1. Camera Parameters

Parameter Value Units
mC 960 pixels
nC 1280 pixels
oC [0.0 -0.442 0.0] meters
pL
C [647.0628 483.6622] pixels

fLC [698.0197 697.9811] pixels
kL
C [-0.283 0.0778 -0.000563 -0.00132 0.0] none

CL
C

 1.0 −0.0025 0.0
0.0025 1.0 −0.006
0.0 0.006 1.0

 meters

TL
C

−593.224 0.0 485.2222
0.0 531.882 643.0426
0.0 0.0 1.0

 pixels

pR
C [618.1513 476.1207] pixels

fRC [698.8774 699.5389] pixels
kR
C [-0.2888 0.0817 -0.00166 0.000128 0.0] none

CR
C

 0.99988 0.00539 −0.01474
−0.00573 0.9997 −0.02314
0.0146 0.02323 0.9996

 meters

TR
C

−592.8576 0.0 472.558
0.0 535.8046 624.392
0.0 0.0 1.0

 pixels

4.3.2 Egomotion Model.

In addition to existing hardware models, the previous chapter also contains several

manually set parameters. Each affects a different aspect of MINS operation in the

egomotion calculations. This includes the ratio ϱ between the best and second best

feature matches, the maximum allowable angle difference ϑ for a feature match, and

the fraction of standard deviations σl a feature location may move within to remain

a tracked landmark. Table 2 lists each of these values.

Table 2. Egomotion Parameters

Parameter Value Units
ϱ 0.6 none
ϑ 1.5 deg
σl 0.75 m

71

Each of these values was manually tuned to remove all detectable false matches in

sample images, and maintain at least one tracked feature between each image pair.

These parameters result in the egomotion path used as an observation input to the

MINS linear Kalman filter.

4.3.3 Inertial Model.

For inertial integration, the IMU operates at a constant frequency of 50 Hz. Thus,

MINS models this with time period dt as the it processes each IMU measurement.

The vehicle maximum velocity vmax is known by the motor settings and the vehicle

operator while collecting data, so MINS uses parameter in the inertial integration.

The IMU standard deviations of its internal accelerometer σacc and gyroscope σgyro

for use within the Kalman filter are taken from the physical specifications of the

unit [65]. Table 3 lists each of these values as used in the previous chapter.

Table 3. Inertial Parameters

Parameter Value Units
dt 0.02 s
vmax 1.0 m/s
σacc 0.196 m/s2

σgyro 0.0087 rad/s

These parameters result in an integrated IMU path that provides the linear

Kalman filter prediction. This covers all parameters used through MINS operation.

In comparison to the egomotion and inertial parameters, the odometry hardware

measures its path directly and thus does not require any processing. MINS does not

model odometry error outside of the settings discussed in Chapter 3. The error in

combined input path ut is instead handled in FastSLAM by the motion model.

72

4.3.4 Motion Model.

Any FastSLAM solution contains several parameters that change calculations in

the motion and measurement models. In the motion model, the only parameters are

the four values, a2 and a4 directly, with a1 and a3 modified by the covariance values.

Table 4 displays the four motion model parameters, with units converting distances

to headings and back.

Table 4. Motion Parameters

Parameter Value Units
a1 0.005 rad/rad
a2 0.001 rad/m
a3 1.0 m/m
a4 0.05 m/rad

The operator changes these motion values to model the believed error in the

vehicle odometry. In this research, control input ut is the MINS system path, so

these parameters instead model the error of this system. The researcher selected

these values to attain the desired particle distribution given the error of the MINS

path.

4.3.5 Measurement Model.

The measurement model works with any range scan and any size grid. The LIDAR

range minimum rmin and maximum rmax come directly from the hardware specifica-

tions. However, the researcher sets occupancy grid values depending on the scale of

the data. In these results, the grid is gx×gy meters in size with resolution gres. Within

each cell, the occupancy grid stores a value within the range gpr as a probability of

being occupied. This and discount factor γ do not have units. Table 5 provides each

of the parameters used in the FastSLAM implementation measurement model and

map builder.

73

Table 5. Measurement Parameters

Parameter Value Units
rmin 0.01 m
rmax 8.10 m
gx 70.0 m
gy 70.0 m
gres 0.1 m
gpr 256 none
γ 0.99 none

Because rmin and rmax are specific to the sensor, the grid is the only entity that

affects the measurement model parameters. As discussed later in this chapter, the

occupancy grid settings depend primarily on computer memory available. This grid

resolution gres value was previously identified as the best tradeoff between detail and

effectiveness [61]. Discount factor γ values are typically large fractions, with this

value experimentally determined to result in the desired total error values [52]. Using

these parameters, FastSLAM produces the resulting maps presented in this chapter.

4.4 Path Comparison

All three linear Kalman filter input paths; stereo image egomotion, inertial integra-

tion, and vehicle odometry, are displayed in Figure 13. This visualizes the strengths

and weaknesses of each sensor and supports the efforts of this research to combine

the three paths.

The path obtained by egomotion does not initially appear to be particularly ac-

curate. Nonetheless, it displays motion when expected and travels in the known

direction when it tracks a reasonable number of features. When the vehicle reached

the southeast corner after traveling three quarters of the loop, it tracks one to four

features until facing north again. This results in a large discrepancy and is a visible

part of the egomotion path.

74

Figure 13. Egomotion, inertial integration, and odometry paths. They are plotted over
the building floor plan with an approximate true path for reference.

The IMU measures direction and overall motion with surprising consistently. How-

ever, it is much less capable of measuring distances as the integration results in a

slight exaggeration of velocity and a larger one in distance. Thus, the inertial path

is much larger than that actually traveled but appears similar in shape. This path

also contains a significant error, once the vehicle returns to the northeast corner. The

integration translates stationary rotations to the left then back to the right as motion,

resulting in false motion at this point in its path.

The odometry path appears to be the opposite to the inertial path. Whereas by

its nature it measures a very accurate distance traveled, it is subject to compounding

errors in heading. An uncorrected balance problem with the drive motors and steering

control of this specific test vehicle results in a pull to the left while driving forwards.

As a result, the odometry measures motion in a straight line while the vehicle keeps

a slight turn. The manufacturer provides a means to compensate the wheel encoders

75

and configure the odometry for this, but this configuration was inoperative and un-

available. The operator was forced to repeatedly correct the vehicle to the right as it

drove through the hallways, resulting in the path shown.

Knowledge of the sensor characteristics allows MINS to configure its linear Kalman

filter values to take advantage of the desired aspects of each sensor. The properties

discussed are as a result of the general sensor environment and the implementation

used. Because of this, they are not likely to change from one test to another and

show promise in future tests.

MINS provides the three motion estimates from previous time t−1 to current time

t as input to its linear Kalman filter. After it processes each observation as presented

in the previous chapter, its state xt produces the next step in the MINS path and

the FastSLAM control input ut. Figure 14 displays the MINS path alongside that

from FV-SIFT [23, 65], which operates in real-time using an EKF, but cannot access

odometry as MINS does.

Both MINS and FV-SIFT output values are suitable for navigation requirements

in local environments without using GPS. However, the differences between the paths

are worth noting. For this particular data set, environment noise affects the images

early in the path near the northeast corner. FV-SIFT tracks a limited number of

twelve image features, and with these covered, can only rely on the IMU for input

until it can rediscover features. It recovers from this error, but not after recording a

jagged, inaccurate path undesirable for a SLAM solution.

The MINS system presented in this research does not suffer the same consequences

given in the same input, as consistent odometry provides an additional input that

takes over the linear Kalman filter with the smallest variance. This result is also

displayed in other corners, where IMU integration measures false motion and feature

tracking finds a new set of features.

76

Figure 14. Paths from the MINS system and the FV-SIFT program. The background
is a building floor plan with approximate truth shown for reference.

Comparing the two paths to truth is the only way to obtain an error, as the survey

points are the only trusted data. The path start, finish, and each of the corners

correspond to numbered survey point locations within the hallway. The distance

between the current pose and the survey point gives the path error at that location

and time. Table 6 displays this error, in meters, at each known point, and includes a

mean of the distances.

Overall, the MINS path finished almost a half meter farther away than the FV-

SIFT one, but maintains a pose closer to truth through most of its path. The errors

in Table 6 do not include errors while traveling along hallways, including the largest

discrepancy in the existing system after the first pass of point 34.

When taking the northwest corner, the FV-SIFT path is over 4 meters away, and

approximately 10 meters from truth for the duration of the southern hallway. In fact,

its low error upon returning at the last two survey points is merely a coincidence of

77

Table 6. Navigation Filter Error

Map Survey FV-SIFT MINS
Location Point error (m) error (m)
Start 50 0.0 0.0
NE 34 0.548 0.261
NW 44 4.429 0.482
SW 83 10.003 3.716
SE 64 9.788 5.413
NE 34 2.931 5.311

Finish 23 5.709 6.185
mean 4.772 3.052

the path taken, and it could easily be farther away having taken another route.

As a comparison, the MINS path is well within one meter of truth through point

44. Its error appears to grow slowly over the course of the path, and finishes just over

6 meters from the final point. A mean of the point errors displays the novel path

improves on the existing system by over 1.5 meters, or 35 percent.

4.5 Map Comparison

Mapping uses the linear Kalman filter state and covariance as the control input

for use alongside the LIDAR range measurements in FastSLAM. Therefore, MINS

exists to provide FastSLAM with as accurate a pose estimate as possible, to reduce

the computation required to maintain many particles within the RBPF.

The purpose of the RBPF is to store the number of particles and associated maps

required to account for error in the control input. In previous research, the number

of particles is of great significance [47]. How it represents each of the particles and

maps is also important, as long paths desire a smaller number of particles to limit

computation time [28].

78

4.5.1 The Occupancy Grid.

The gx × gy meter grid with resolution gres is just large enough to capture the

hallway size. An important concern of this implementation is how to represent the

grid effectively while limiting the memory required. Equation 47 describes the total

memory required for M particle maps, where b is the number of bytes required for

each grid cell.

(M)(b)
gx × gy
(gres)2

(47)

This implementation first limits the map size by representing each cell as the

smallest basic data type available. This is a single byte (8 bit) character, leaving

28 = gpr values available for occupancy. Substituting b = 1 and the grid values from

Table 5 into Equation 47, each occupancy grid requires 70 × 70 over 0.12 bytes of

memory. Table 7 displays the memory requirements for the number of particles M

given by powers of ten.

Table 7. Map Memory Requirements

M memory
1 479 KB
10 4.67 MB
100 46.7 MB
1000 467 MB
10000 4.56 GB

Many particles still causes the memory requirement to grow out of feasibility for

such a small map. Even for 1000 particles, the total memory requirements for the

implementation remain on the order of megabytes. This amount of memory is hardly

a problem for modern computers. However, this means increasing the number of

particles to 10000 results in gigabytes of memory. Modern computers can handle this

much storage, but FastSLAM requires all maps to be readily accessible. This either

79

requires an expensive machine with significant memory in hardware or significant

increase in computation time as memory swaps.

Each cell of the occupancy grid contains a value that corresponds to the probability

that cell is occupied. As the majority of cells are never observed, the majority of maps

is typically an medium shade of gray. As the vehicle scans its environment, FastSLAM

decreases the probability of the grid cells it scanned through and increases those where

the scan stopped. The result is white space between black walls, with the area behind

it medium gray until the vehicle explores the area.

4.5.2 Output Comparison.

FastSLAM builds a map from any path and range scan it receives as input. The

occupancy grid map is an easily seen indication of accuracy, but it is difficult to com-

pare quantitatively without comparing the path as done in the previous section [10].

This is the case even after considering a visual comparison of the grid to a floor plan,

if a trusted one exists.

An occupancy grid image is straightforward to measure and easily interpreted by

an operator. It clearly displays hallways, rooms, obstacles, doorways, and even closing

doors [61]. The maps generated using this implementation clarify the problems with

a path, as heading errors are visible through applying range scans.

To illustrate the relative accuracy of the input paths, the implementation produces

maps given different possible input paths and the same range scans. Figures 15, 16,

and 17 display maps obtained given the various paths discussed from odometry, FV-

SIFT, and MINS, respectively. This implementation generated these maps without

using the RBPF to generate multiple noisy particles. This section compares these

maps to the FastSLAM output in Figure 20.

The odometry map in Figure 15 reflects the steering error of the wheels. Accurate

80

Figure 15. Map produced with the odometry path and range scans. The structure of
the hallway is clearly visible, but it appears skewed.

with respect to distance, its heading curves the hallways off the area. This would be

the input for a typical SLAM solution using only odometry.

It is theoretically possible for a RBPF to create an exact path from this odom-

etry input. However, it would require precisely tuned motion model α values to

account for the enormous odometry error. With accurate settings, such large param-

eter values would most likely demand millions of particles to represent a large enough

distribution. Any implementation using this number of particles would require an

unreasonable amount of calculation time to produce a consistent path.

FV-SIFT displays a more accurate heading in Figure 16. It suffers from different

problems not affecting the odometry path, such as each of its corners being uncertain.

Most significantly, the error in the northeast corner produces a false open area which

actually corresponds to the northern hallway. This error propagates to the rest of the

81

Figure 16. Map generated with the FV-SIFT path. It displays straight, slanted hallways
due to significant inaccuracies in the corners, especially the northeast [23, 65].

path, even if it returns close to the starting location.

The MINS path in Figure 17 is more believable. This reflects greater confidence

in the location of walls and corners, and is the desired result from a filtered solution

like FastSLAM. Slowly accumulating inaccuracies move the angles of later hallways

from closing the loop, so this path is also not free of errors.

These maps show the MINS path is far superior to a solution that uses just the

odometry. It is not subject all the problems of the existing system, and maintains a

much more accurate heading than skid steering odometry. The advantage of accurate

sensors such as the LIDAR and a good path is the ability to reduce the number of

particles and be able to process paths on loops such as these hallways.

82

Figure 17. Map generated using the MINS path. It displays more accurate hallways
than odometry, more accurate corners than FV-SIFT, and is close to closing the loop.

4.5.3 Particle Filter Output.

The design of the RBPF within a FastSLAM implementation introduces controlled

noise to correct its input path. When given control input u, each particle [m] ∈ P

carries a slightly different path from that of the input from the motion model. The

RBPF uses its measurement model to adjust the error and weights of particle set P

before it resamples. This maintains particles whose path matches closest to range

scan observations z.

An IBM laptop computer with 2 GHz Intelr Pentiumr M processor and 2 GB of

memory executes the second phase of the implementation, including the MINS and

FastSLAM algorithms. As FastSLAM scales linearly with respect to the number of

particles, this machine takes 4 to 5 minutes for every 10 particles used in executing

the 10 minute data set.

83

Figure 18. Map from the FastSLAM implementation using odometry as input. It
straightens the crooked hallways but not enough to be accurate or close the loop.

The final FastSLAM output is the map from the particle carrying the highest

weight, thus the particle most accurate to the true path. For comparison, when

control input u comes from odometry, FastSLAM produces the map in Figure 18.

FastSLAM generated this map using 100 particles.

The effects of the FastSLAMmotion and measurement models improves the odom-

etry path significantly. However, generating this map requires a larger number of par-

ticles to represent the odometry error, and FastSLAM cannot remove the rightwards

curve of the hallways. Thus, the path returns close to the starting location but is

unable to accurately close the loop.

The FV-SIFT path is more accurate in position than the odometry path, but is

also less consistent. To illustrate these effects, the FV-SIFT path is provides its path

to the FastSLAM implementation. When FastSLAM takes its control input u from

84

Figure 19. Map from the FastSLAM implementation using the FV-SIFT path as input.
Errors in the input path carry though FastSLAM with disastrous effects.

the FV-SIFT output path, it produces the map in Figure 19, also using 100 particles.

This map suffers from the FV-SIFT path errors in the northeast corner already

discussed. However, this error is much more difficult to predict than odometry error

as done in the motion model. The result is that FastSLAM is unable to correct these

errors and they result in a map that is less accurate than the input path depicted in

Figure 16.

Using the additional sensors in the MINS system improves the control input u

provided to FastSLAM as presented in this research. Figure 20 displays the map

generated by this implementation using all parameters and settings presented. Fast-

SLAM generated this map using only 30 particles.

This map is not perfect, most evident by the difference in the northeast corner as

the vehicle completes the loop. Unfortunately, early errors in the path adversely affect

85

Figure 20. Map from the highest weighted particle from the FastSLAM implementation
using MINS as input. It places its hallways straight and returns to the initial location.

each pose afterward, however subtle they are. However, the FastSLAM algorithm

using the MINS path closes the loop within a meter of error.

Even without being perfect, the FastSLAM output is a noticeable improvement to

the MINS output used to produce the map in Figure 17. Most importantly, FastSLAM

successfully matches scanned walls as it returns to the northeast corner. Both the

MINS position and the odometry FastSLAM position at this same time is farther away

and at an angle, failing to close the loop. Table 8 compares the current best particle

path from the odomery FastSLAM and the MINS FastSLAM implementations. Both

path errors are measured from the same hallway survey points displayed earlier.

At each point, the output path from the FastSLAM implementation decreases

the error of its input. The position of the best current particle is accurate to within

a meter at all measurable locations, with an average under half of a meter from

86

Table 8. FastSLAM Error

Odometry MINS
Map FastSLAM FastSLAM

Location error (m) error (m)
Start 0.0 0.0
NE 0.359 0.269
NW 0.128 0.584
SW 0.898 0.742
SE 2.452 0.863
NE 3.709 0.096

Finish 6.000 0.298
mean 1.935 0.408

the survey points. Using the MINS path not only requires 30% of the odometry

FastSLAM computation time by reducing the number of particles, but improves on

its path by reducing the error by 79 percent.

4.5.4 Additional Testing.

To validate both the MINS system and the FastSLAM implementation, the testing

procedure provides another data set collected by the same vehicle. All algorithm

settings are held to the same values, making the only change the input data. This

testing ensures the parameter settings and models used are not specific to one data

set and can be extended to other situations.

In this additional data, the same vehicle traveled the same environment taking a

different path. The vehicle begins in the same starting location and completes the

same loop. Instead of then turning off into the room, the vehicle begins another loop

retracing its path along the hallways before finishing in the southeast corner. This

collection lasts 10 minutes and 42 seconds due to farther distance traveled and less

time stopped.

The paths measured by egomotion, IMU integration, and odometry are similar

to the other data. The MINS path is also comparable as it uses these as input, but

87

Figure 21. Paths from the MINS system and the FV-SIFT program on the additional
data set, shown over the building floor plan. FV-SIFT provides a more accurate path,
but MINS provides a smoother path.

FV-SIFT is notably more accurate as it avoids the severe feature loss it experienced

in the previous run. Figure 21 shows the paths generated from the FV-SIFT and

MINS systems over the same floor plan.

There is no loss of features in the first corner, so the FV-SIFT path is closer

to truth than the MINS path at most points. This is not indicate a failure of the

MINS system, however, as closer inspection reveals that the FV-SIFT path is still

more jagged than the MINS path. This is often accepted for a navigation solution,

but results in significant motion model noise and thus a difficult path when used as

SLAM input.

88

Figure 22. Map from the highest weighted FastSLAM particle using the additional
data MINS path as input. It completes the loop then continues matching the map to
previously traveled environment.

Using the MINS path for FastSLAM input produces another map of the same area

from the additional data set. Figure 22 displays the map generated using 60 particles

and unchanged implementation settings.

This map shows that FastSLAM also closes the loop for this data, returning to

previously traveled areas before losing accuracy in the southwest corner. The windows

in this corner at the LIDAR height causes this problem, as the light transmits through

the glass and returns a maximum range value. This results in an open area visible

in the maps, but also results in a less certain measurement model. When the scan

distance is a maximum, the model does not use this scan as the sensor does not observe

any obstacles to construct particle weights from. Without the ability to properly

weight the particles, none are correct as the vehicle takes the corner a second time.

The additional data covers many of the same survey points in a slightly different

89

order. The primary difference is the number of repeated locations as the vehicle

travels around the loop a second time. Table 9 compares the error at the surveyed

points for the FV-SIFT, MINS, and FastSLAM paths.

Table 9. Additional Data Error

Map Survey FV-SIFT MINS FastSLAM
Location Point error (m) error (m) error (m)
Start 50 0.0 0.0 0.0
NE 34 0.763 0.527 0.503
NW 44 1.609 2.312 0.747
SW 83 3.772 5.786 1.599
SE 64 4.030 5.964 0.861
NE 34 2.549 2.833 0.471
NW 44 2.550 5.028 0.779
SW 83 6.014 9.912 1.107

Finish 63 5.235 9.103 5.506
mean 2.947 4.607 1.286

As discussed, the FV-SIFT path is closer to truth than the MINS path for this

data. This is partly due to Table 9 displaying only errors at specific points and not

differences in heading. FastSLAM produces a much more accurate path than both

when using MINS for input, decreasing MINS error by 72% to average 56% less error

than FV-SIFT.

4.6 Summary

The FastSLAM in this research does not produce the ideal path, but is remarkably

close and produces a much better map than any other presented. Most importantly,

the map in Figure 20 is suitable for mission planning and accurate enough for local

area navigation.

This FastSLAM map is achieved from the data gathered by a vehicle operating

stereo cameras, an IMU, odometry, and a LIDAR. This vehicle is driven manually

to gather all sensor data around an indoor environment consisting of a hallway loop.

90

The collection results in images and text files as input to the MINS and FastSLAM

implementations.

The implementation runs in two phases. The first phase processes the stereo

images and extracts an egomotion path. The second phase combines the egomotion

path with an integrated IMU path and vehicle odometry in the MINS system. It

then uses the MINS path and LIDAR ranges to execute FastSLAM and construct

occupancy grid maps of the environment.

91

V. Conclusion & Future Work

When the environment is unknown, the SLAM problem states that a vehicle must

construct a map detailing its surroundings while using the map it is building to

maintain an accurate location. Such a vehicle is faced with the fundamentally difficult,

and circularly defined SLAM problem. This research presents the first SLAM solution

to integrate stereo cameras, an IMU, and odometry into a MINS path, then combines

the MINS path with a LIDAR in a FastSLAM implementation. A P2-AT8 equipped

with these sensors completed an indoor hallway loop generated real data for testing.

The MINS path is more accurate than the FV-SIFT path for navigation, and the

FastSLAM map is more accurate than an implementation using only the odometry

and LIDAR.

Both the MINS and FastSLAM implementations presented in this document suc-

ceed in producing accurate maps, but remain a reach from being perfect. Accordingly,

this chapter discusses the various positive and negative components in the implemen-

tation. Later, it covers several related topics that may be used in the future to

improve on this implementation or in areas related to SLAM and navigation.

5.1 Conclusions

The MINS system presented in this research is effective at its purpose but is also

complicated to compute. Creating and operating Kalman filters requires a certain

area of expertise, separate from knowledge of robotics and mapping algorithms.

The Kalman filter implemented is remarkably simple compared to similar solutions

such as FV-SIFT [23, 65]. The MINS filter could most likely be replaced to similar

effect by a weighted average of inputs as this is the same process the filter carries out

with different computational requirements.

92

The most time consuming and intensive aspect of this research surrounds the fea-

ture tracking and egomotion aspects of using cameras for navigation. Interestingly

enough, the camera images are also the most difficult input to use and produce the

least recognizable path. This cannot simply be a difficulty of working with cameras,

as other research has presented egomotion more successfully [55, 56]. FV-SIFT ac-

complishes a mostly accurate path using just cameras and the IMU using either SIFT

or SURF, whereas this egomotion has only been attempted using SIFT. Instead, there

appears to be a rather significant improvement in the methods presented here that is

yet to be discovered.

In stark comparison, the odometry and IMU sensors both involve very simple cal-

culations to process compared to more complicated image methods. By its nature,

odometry records data in the exact format desired for navigation. The IMU integra-

tion requires only a handful of values and operations in O(1) constant time. Both are

feasible for a real-time online navigation solution, even on a very slow machine.

More interesting than their convenience is that the odometry and IMU paths in

this research ended up being more accurate than the egomotion path. Not only is

the IMU used to collect the data a small consumer grade unit, but the vehicle skid

steering is not the ideal odometry hardware. Other vehicles produce odometry that

is approximately accurate as the MINS path presented here without the additional

sensors or computation.

Accurate odometry provides a great improvement to the accuracy of a mapping

solution, but constant indoor conditions are not always available. A major success of

the research presented is the combination of inaccurate odometry that drifts and a

small, inexpensive IMU to achieve a path much more accurate in position than IMU

and more accurate heading than odometry. Based upon the sensor data, these two

sensors may be functional without using the images for egomotion.

93

This gives rise to the possibility that the cameras may be too much of a burden

in certain situations. If MINS can incorporate odometry and inertial measurements

together, it would not require the stereo cameras or all its associated calculations.

This arrangement may simplify the implementation, but it also removes one of the

sensors that provides an additional observation to sense the environment. Removing

this observation lowers the durability of the system by making it rely more heavily

on less sensors.

Experimenting with less or different sensors would be a good area for future SLAM

research to look into. Along these lines, the remainder of this chapter discusses this

possibility and several others for continuing this area of SLAM research and vehicle

navigation.

5.2 Future Work

There are two main goals when it comes to mobile navigation and SLAM solutions.

One is to improve on the accuracy and consistency of solutions, and the other is to

reduce the computation time. Suggestions for future SLAM research to improve one

or the other logically divide themselves into one of these areas. The remainder of this

chapter discusses the potential topics under these two research objectives.

5.2.1 Mapping for Accuracy.

To improve the accuracy of a SLAM solution, previous results lean toward use of

a RBPF regardless of sensors or map representation. Not only has it produced the

most accurate maps when compared to other strategies, but it allows the user to vary

the number of particles M , adjusting the algorithm to any anticipated situation [61].

The most accurate results are those that leverage the most accurate sensors. Use

of tuned odometry such as that be the PowerBot help, but a more important method

94

is to incorporate a scan matching algorithm [28, 29]. Regardless of the control input

path, scanner technology such as the LIDAR unit used is much more accurate than

the compounding error from any odometry or inertial path. Adjusting the motion

model by scan matching moves the particle distribution only to the most likely areas.

One way to achieve a similar effect would be to incorporate RBPF particle error

back into the MINS filter. This only applies to this implementation with an initial

sensor fusion filter and a following mapping filter, but would likely improve its par-

ticle distribution in the same manner as LIDAR scan matching. After the RBPF

weights each of its particles, those with higher weights form a new mean pose s̄t.

This mean could replace or affect Kalman filter state xt either before or after the

RBPF resamples.

An alternative to a more standard odometry and range scan approach would

consider different types of sensors. The previous section discussed the possibility of

removing the cameras from the MINS system, leaving odometry and an IMU for

control inputs that could be as effective as the solution presented here.

One might also consider using higher quality components to improve the raw data

keeping a similar algorithm. A larger IMU can have order of magnitude improvements

in measurement accuracy over the model used, so this advantage could certainly be

leveraged in this implementation [65]. One could also take the opposite approach,

using more cheap components to keep costs low. Using two inertial units on either side

of vehicle allows translation and rotation to be interpreted between both readings.

A different sensor arrangement would transfer a range scanner to a new platform

with cameras and an IMU, removing odometry as a sensor. The success of the im-

age aided inertial system has already been demonstrated for navigation on airborne

platforms [23, 65]. Incorporating a range scanner to a light aircraft brings SLAM

capability to a highly mobile platform bringing the advantages of an airborne vehicle

95

to the SLAM problem.

Much of the research using cameras for mapping seeks to bring the SLAM problem

down in scale. Rather than have a massive vehicle plotting areas the size of university

campuses, cameras seek to lower the cost and change the sensor type in potentially

hazardous environments. Future research done with passive sensors allows vehicles

to step away from range based solutions using expensive LIDAR scanners.

Cameras are passive sensors, those that do not project energy into the environ-

ment. Range scanners like radar, sonar, or LIDAR units do this by their operation.

The effect of shooting so much energy has unpredictable consequences depending on

what a vehicle encounters.

Testing environments generally consist of empty hallways or solid obstacles, but

this is not the case for SLAM application environments. The repetitive bursts of

light or sound can not only damage items around of the vehicle, but also affect the

environment and leave evidence of intrusion. In hostile environments, active sensors

reveal the presence vehicle as they are easily detected. An exploring vehicle equipped

with passive sensors does not suffer this vulnerability.

5.2.2 Mapping for Speed.

If the main goal of a RBPF is to represent each possible pose a vehicle can have,

the secondary goal of a RBPF implementation is to reduce the number of particles

and still do this [46]. Reducing the number of particles in a filter enables FastSLAM

to produce a map faster. Of course, dropping the number of particles down to 1 does

not represent any distribution other than a single belief as presented [47].

A nice aspect of FastSLAM is that a more accurate belief affords a faster solution,

as it requires less particles to cover a smaller distribution area. Researchers showed the

effectiveness of scan matching by reducing the RBPF to 10 or 30 particles for a variety

96

of different data sets [28, 29]. This allows them to compute the map much faster than if

the same implementation used hundreds of particles. With either number of particles,

the map may not be noticeably different. The challenging ground remains the balance

of speed versus maintaining enough to produce an accurate map consistently.

For the stereo vision piece, there are several ways to improve the speed of cal-

culation. One is to use a different feature tracking algorithm, as this contributes

significantly to the image processing time. Using HOG for feature extraction instead

of SIFT or SURF has been presented to take less time and achieve comparable re-

sults [14, 13]. Reducing feature extraction time would have a great affect on the time

to obtain egomotion.

Another implementation could also limit the region of feature extraction using

input from other sensors like the IMU [65]. This system also limits the number

of features tracked to speed processing time. As an effect, the system only seeks

matches to its tracked features and avoids unnecessary calculations. Implementation

on a specific computer also speeds this process, something not accomplished in this

research [23].

A common goal remains to implement a SLAM solution in real-time. Researchers

have already produced maps whose computation time is less than the data collec-

tion [29]. However, developments have yet to present an actively running SLAM test,

or market a vehicle featuring SLAM as part of its robotic capabilities.

97

Bibliography

[1] Armangué, Xavier, Helder Araújo, and Joaquim Salvi. “A review on egomotion
by means of differential epipolar geometry applied to the movement of a mobile
robot”. Pattern Recognition, 36(12):2927–2944, 2003.

[2] Axe, David. “One in 50 Troops in Afghanistan Is a Robot”. Wired Magazine
Danger Room, February 2011.

[3] Bailey, Tim, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo Nebot.
“Consistency of the EKF-SLAM Algorithm”. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 3562–3568. 2006.

[4] Bailey, Tim, Juan Nieto, and Eduardo Nebot. “Consistency of the FastSLAM
Algorithm”. IEEE International Conference on Robotics and Automation, 424–
429. 2006.

[5] Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust
Features”. European Conference on Computer Vision, 404–417. 2006.

[6] Beeson, Patrick, Joseph Modayil, and Benjamin Kuipers. “Factoring the Map-
ping Problem: Mobile Robot Map-Building in the Hybrid Spatial Semantic Hi-
erarchy”. International Journal of Robotics Research, 29(4):428–459, 2010.

[7] Bierman, Gerald. Factorization Methods for Discrete Sequential Estimation. Aca-
demic Press, 1977.

[8] Blanco, Jose-Luis, Juan-Antonio Fernández-Madrigal, and Javier Gonzalez. “To-
wards a Unified Bayesian Approach to Hybrid Metric-Topological SLAM”. IEEE
Transactions on Robotics, 24(2):259–270, 2008.

[9] Borrmann, Dorit, Jan Elseberg, Kai Lingemann, Andreas Nüchter, and Joachim
Hertzberg. “Globally Consistent 3D Mapping with Scan Matching”. Robotics
and Autonomous Systems, 56(2):130–142, 2008.

[10] Burgard, Wolfram, Cyrill Stachniss, Giorgio Grisetti, Bastian Steder, Rainer
Kümmerle, Christian Dornhege, Michael Ruhnke, Alexander Kleiner, and Juan
Tardós. “Trajectory-based Comparison of SLAM Algorithms”. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 2009.

[11] Castellanos, José, José Neira, and Juan Tardós. “Limits to the Consistency of
EKF-based SLAM”. International Federation of Automatic Control Symposium
on Intelligent Autonomous Vehicles, 1244–1249. 2004.

[12] Choset, Howie and Keiji Nagatani. “Topological Simultaneous Localization and
Mapping (SLAM): Toward Exact Localization Without Explicit Localization”.
IEEE Transactions on Robotics and Automation, 17(2):125–137, 2001.

98

[13] Dalal, Navneet. Finding People in Images and Videos. PhD Thesis, Institut
National Polytechnique de Grenoble, 2006.

[14] Dalal, Navneet and Bill Triggs. “Histograms of Oriented Gradients for Human
Detection”. International Conference on Computer Vision and Pattern Recog-
nition, 886–893. 2005.

[15] Dellaert, Frank, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “Monte
Carlo Localization for Mobile Robots”. IEEE International Conference on
Robotics and Automation, volume 2, 1322–1328. 1999.

[16] Dissanayake, M.W.M. Gamini, Paul Newman, Steven Clark, Hugh Durrant-
Whyte, and M. Csorba. “A Solution to the Simultaneous Localization and Map
Building (SLAM) Problem”. IEEE Transactions on Robotics and Automation,
17(3):229–241, 2001.

[17] Doucet, Arnaud, Nando de Freitas, Kevin Murphy, and Stuart Russell. “Rao-
Blackwellised Particle Filtering for Dynamic Bayesian Networks”. Conference
on Uncertainty in Artificial Intelligence, 176–183. 2000.

[18] Durrant-Whyte, Hugh and Tim Bailey. “Simultaneous Localisation and Mapping
(SLAM): Part I The Essential Algorithms”. IEEE Robotics and Automation
Magazine, 13(2):99–110, 2006.

[19] Ebcin, Sedat. Tightly Integrating Optical And Inertial Sensors For Navigation
Using The UKF. MS Thesis, Air Force Institute of Technology, 2008.

[20] Eliazar, Austin and Ronald Parr. “DP-SLAM: Fast, Robust Simultaneous Local-
ization and Mapping without Predetermined Landmarks”. International Joint
Conference on Artificial Intelligence, 1135–1142. 2003.

[21] Eliazar, Austin and Ronald Parr. “Hierarchical Linear/Constant Time SLAM
Using Particle Filters for Dense Maps”. Advances in Neural Information Pro-
cessing Systems, 339–346. 2006.

[22] Elinas, Pantelis, Robert Sim, and James Little. “σSLAM: Stereo Vision SLAM
Using the Rao-Blackwellised Particle Filter and a Novel Mixture Proposal Dis-
tribution”. International Conference on Robotics and Automation, 1564–1570.
2006.

[23] Fletcher, Jordan. Real-Time GPS-Alternative Navigation Using Commodity
Hardware. MS Thesis, Air Force Institute of Technology, 2007.

[24] Frese, Udo. “Closing a Million-landmarks Loop”. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 5032–5039. 2006.

[25] Frese, Udo. “Treemap: An O(log n) Algorithm for Indoor Simultaneous Local-
ization and Mapping”. Autonomous Robots, 21(2):103–122, 2006.

99

[26] Garcia, Miguel Angel and Agusti Solanas. “3D Simultaneous Localization and
Modeling from Stereo Vision”. IEEE International Conference on Robotics and
Automation, 847–853. 2004.

[27] Gordon, Neil, D.J. Salmond, and A.F.M. Smith. “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation”. IEEE Proceedings on
Radar and Signal Processing, 107–113. 1993.

[28] Grisetti, Giorgio. “Improving Grid-based SLAM with Rao-Blackwellized Particle
Filters by Adaptive Proposals and Selective Resampling”. IEEE International
Conference on Robotics and Automation, 2443–2448. 2005.

[29] Grisetti, Giorgio, Cyrill Stachniss, and Wolfram Burgard. “Improved Techniques
for Grid Mapping with Rao-Blackwellized Particle Filters”. IEEE Transactions
on Robotics, 23:34–46, 2007.

[30] Hähnel, Dirk, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. “An Efficient
FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments
from Raw Laser Range Measurements”. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 206–211. 2003.

[31] Hesch, Joel and Stergios Roumeliotis. “An Indoor Localization Aid for the Vi-
sually Impaired”. IEEE International Conference on Robotics and Automation,
3545–3551. 2007.

[32] Hornung, Armin, Hauke Strasdat, Maren Bennewitz, and Wolfram Burgard.
“Learning Efficient Policies for Vision-based Navigation”. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 4590–4595. 2009.

[33] Howard, Andrew. “Multi-Robot Simultaneous Localization and Mapping Using
Particle Filters”. International Journal of Robotics Research, 25(12):1243–1256,
2006.

[34] Jones, Eagle and Stefano Soatto. “Visual-Inertial Navigation, Mapping and
Localization: A Scalable Real-Time Causal Approach”. International Journal of
Robotics Research, 2010.

[35] Kaess, Michael and Frank Dellaert. “Probabilistic Structure Matching for Visual
SLAM with a Multi-Camera Rig”. Computer Vision and Image Understanding,
114(2):286–296, 2010.

[36] Kaess, Michael, Ananth Ranganathan, and Frank Dellaert. “iSAM: Fast incre-
mental Smoothing and Mapping with Efficient Data Association”. IEEE Inter-
national Conference on Robotics and Automation, 1670–1677. 2007.

[37] Kahan, William. “Pracniques: Further Remarks on Reducing Truncation Er-
rors”. Communications of the Association for Computing Machinery, 8(1):40–48,
1965.

100

[38] Kootstra, Gert and Lambert Schomaker. “Using symmetrical regions of interest
to improve visual SLAM”. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 930–935. 2009.

[39] Leonard, John and Hugh Durrant-Whyte. “Simultaneous Map Building and Lo-
calisation for an Autonomous Mobile Robot”. IEEE/RSJ International Work-
shop on Intelligent Robots and Systems, 1442–1447. 1991.

[40] Lowe, David. “Distinctive Image Features from Scale-Invariant Keypoints”. In-
ternational Journal of Computer Vision, 2(60):91–110, 2004.

[41] Maimone, Mark, Yang Cheng, and Larry Matthies. “Two Years of Visual Odom-
etry on the Mars Exploration Rovers”. Journal of Field Robotics, Special Issue
on Space Robotics, 24(3):169–186, 2007.

[42] Marks, Tim, Andrew Howard, Max Bajracharya, Garrison Cottrell, and Larry
Matthies. “Gamma-SLAM: Using Stereo Vision and Variance Grid Maps for
SLAM in Unstructured Environments”. Journal of Field Robotics, 26(1):26–51,
2009.

[43] Maybeck, Peter. Stochastic Models, Estimation, and Control, volume 1 and 2.
Academic Press, 1979.

[44] Milella, Annalisa and Roland Siegwart. “Stereo-Based Ego-Motion Estimation
Using Pixel Tracking and Iterative Closest Point”. IEEE International Confer-
ence on Computer Vision Systems, 21. 2006.

[45] Montemerlo, Michael. FastSLAM: A Factored Solution to the Simultaneous Lo-
calization and Mapping Problem with Unknown Data Association. PhD Thesis,
Carnegie Mellon University, 2003.

[46] Montemerlo, Michael, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.
“FastSLAM: A Factored Solution to the Simultaneous Localization and Map-
ping Problem”. AAAI National Conference on Artificial Intelligence, 593–598.
2002.

[47] Montemerlo, Michael, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.
“FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges”. International Joint Con-
ference on Artificial Intelligence, 1151–1156. 2003.

[48] Olson, Clark, Larry Matthies, Marcel Schoppers, and Mark Maimone. “Stereo
Ego-motion Improvements for Robust Rover Navigation”. IEEE International
Conference on Robotics and Automation, 1099–1104. 2001.

[49] Olson, Clark, Larry Matthies, Marcel Schoppers, and Mark Maimone. “Rover
Navigation Using Stereo Ego-Motion”. Robotics and Autonomous Systems,
43(4):215–229, 2003.

101

[50] Olson, Edwin, John Leonard, and Seth Teller. “Fast Iterative Optimization of
Pose Graphs with Poor Initial Estimates”. International Conference on Robotics
and Automation, 2262–2269. 2006.

[51] Paz, Lina Maria, Pedro Piniés, Juan Tardós, and Jose Neira. “6-DOF SLAM
With Stereo-in-Hand”. IEEE Transactions on Robotics, 24(5):946–957, 2008.

[52] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.

[53] Se, Stephen, David Lowe, and Jim Little. “Mobile Robot Localization and Map-
ping with Uncertainty using Scale-Invariant Visual Landmarks”. International
Journal of Robotics Research, 21(8):735–758, 2002.

[54] Shi, Jianbo and Carlo Tomasi. “Good Features to Track”. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 593–600. 1994.

[55] Sim, Robert, Pantelis Elinas, and Matt Griffin. “Vision-based SLAM Using the
Rao-Blackwellised Particle Filter”. IJCAI Workshop on Reasoning with Uncer-
tainty in Robotics, 9–16. 2005.

[56] Sim, Robert, Pantelis Elinas, and James Little. “A Study of the Rao-
Blackwellised Particle Filter for Efficient and Accurate Vision-Based SLAM”.
International Journal of Computer Vision, 74(3):303–318, 2007.

[57] Smith, Randall, Matthew Self, and Peter Cheeseman. “Estimating Uncertain
Spatial Relationships in Robotics”. IEEE International Conference on Uncer-
tainty in Artificial Intelligence, 267–288. 1986.

[58] Spero, Dorian and Ray Jarvis. A Review of Robotic SLAM. Technical Report
MECSE-4-2007, Monash University, 2007.

[59] Thomas, Stephen. Real-time Stereo Visual SLAM. MS Thesis, Heriot-Watt
University, 2008.

[60] Thrun, Sebastian. Robotic Mapping: A Survey. Technical Report CMU-CS-02-
111, Carnegie Mellon University, 2002.

[61] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The
MIT Press, 2005.

[62] Thrun, Sebastian and Michael Montemerlo. “The GraphSLAM Algorithm with
Applications to Large-scale Mapping of Urban Structures”. International Journal
of Robotics Research, 25(5-6):403–429, 2006.

[63] Titterton, David and John Weston. Strapdown Inertial Navigation Technology.
The Institution of Electrical Engineers, 2nd edition, 2004.

102

[64] Venable, Don, Jacob Campbell, Jared Kresge, Daylond Hooper, Gilbert Peter-
son, and Michael Veth. Performance Evaluation of Coupling Between Vehicle
Guidance and Vision Aided Navigation. Technical report, Air Force Institute of
Technology, 2009.

[65] Veth, Michael. Fusion of Image and Inertial Sensors for Navigation. PhD Thesis,
Air Force Institute of Technology, 2006.

103

Vita

2d Lt Christopher Weyers graduated in June 2005 from the Northfield Mount
Hermon School in Massachusetts. He then entered undergraduate studies at Rensse-
laer Polytechnic Institute in Troy, New York, where he graduated Cum Laude with
a Bachelor of Science degree in Computer & Systems Engineering. He was commis-
sioned in May 2009 through AFROTC Detachment 550.

After attending the Air and Space Basic Course, he was assigned to Wright-
Patterson AFB as a student in the Graduate School of Engineering and Management,
Air Force Institute of Technology. Upon graduation in March 2011, he will be assigned
to the Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB,
Ohio.

104

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2011 Master’s Thesis Sep 2009 — Mar 2011

Multiple Integrated Navigation Sensors for Improved Occupancy Grid
FastSLAM

ENG 11-194

Weyers, Christopher P, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/11-08

Dr. Jacob Campbell
Air Force Research Laboratory, Sensors Directorate, RF Reference Systems
2241 Avionics Circle
Wright-Patterson AFB, OH 45433
(937) 255-6127x4154, jacob.campbell@wpafb.af.mil

AFRL/RYRN

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

An autonomous vehicle must accurately observe its location within the environment to interact with objects and
accomplish its mission. When its environment is unknown, the vehicle must construct a map detailing its surroundings
while using it to maintain an accurate location. Such a vehicle is faced with the circularly defined Simultaneous
Localization and Mapping (SLAM) problem. However difficult, SLAM is a critical component of autonomous vehicle
exploration with applications to search and rescue. To current knowledge, this research presents the first SLAM solution
to integrate stereo cameras, inertial measurements, and vehicle odometry into a Multiple Integrated Navigation Sensor
(MINS) path. The implementation combines the MINS path with LIDAR to observe and map the environment using the
FastSLAM algorithm. In real-world tests, a mobile ground vehicle equipped with these sensors completed a 140 meter
loop around indoor hallways. This SLAM solution produces a path that closes the loop and remains within 1 meter of
truth, reducing the error 92% from an image-inertial navigation system and 79% from odometry FastSLAM.

Bayesian filtering, mobile robots, machine vision, simultaneous localization and mapping, vehicle navigation

U U U UU 118

Dr. Gilbert L. Peterson (ENG)

(937)255-3636x4281, gpeterson@afit.edu

