Therapeutic options to treat sulfur mustard poisoning—The road ahead

Smith, WJ

US Army Medical Research Institute of Chemical Defense
ATTN: MCMR-CDR
3100 Ricketts Point Road

Approved for public release; distribution unlimited

Sulfur mustard, HD, Therapeutics, Treatments, Acute injury, treatments, chemical warfare agent

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

UNLIMITED 4

William J. Smith
410-436-4255
Therapeutic options to treat sulfur mustard poisoning—The road ahead

William J. Smith

Research Division, US Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States

Abstract

For the past 15 years the international research community has conducted a basic and applied research program aimed at identifying a medical countermeasure against chemical threat vesicant, or blistering, agents. The primary emphasis of this program has been the development of therapeutic protection against sulfur mustard and its cutaneous pathology—blister formation. In addition to the work on a medical countermeasure, significant research has been conducted on the development of topical skin protectants and medical strategies for wound healing. This review will focus on the pharmacological strategies investigated, novel therapeutic targets currently under investigation and therapeutic approaches being considered for transition to advanced development. Additionally, we will review the expansion of our understanding of the pathophysiological mechanisms of mustard injury that has come from this research. While great strides have been made through these investigations, the complexity of the mustard insult demands that further studies extend the inroads made and point the way toward better understanding of cellular and tissue disruptions caused by sulfur mustard.

1. Introduction

Sulfur mustard (Army designation HD; mustard gas) is an alkylating agent with cytotoxic, mutagenic and vesicating properties. Its use on the battlefield results in debilitating injuries to skin, eyes and the respiratory system (Papirmeister et al., 1991; Smith and Dunn, 1991). While many of the toxic manifestations that follow HD exposure to cells and tissues have been defined, the underlying mechanisms of pathology remain elusive. Much of the research in this area has been conducted in the laboratories of the U.S. Army Medical Research Institute of Chemical Defense (USAMRDC), the laboratories of our NATO allies, and academic and industrial laboratories funded through Army and Department of Defense (DoD) extramural contract programs. Based on the technological database developed through this program, we have been able to generate a unifying hypothesis for cellular and tissue events that explains the formation of cutaneous blisters following exposure to HD. Studies of individual toxic events, such as alkylation of cellular macromolecules, formation of DNA strand breaks, activation of poly(ADP-ribose) polymerase (PARP or PADPRP), disruption of calcium regulation, proteolytic activation and tissue inflammation, have together led to the formulation of six strategies for therapeutic intervention (Smith et al., 1996, 1999). The proposed pharmaceutical strategies are intracellular scavengers, DNA cell cycle modulators, PARP inhibitors, calcium modulators, protease inhibitors and anti-inflammatory compounds.

These compound classes have been evaluated as medical countermeasures against HD dermatotoxicity. For in vivo screening, we have utilized the mouse ear vesicant model (MEVM) with...
associated histopathological evaluation (Casillas et al., 1997) and cutaneous HD vapor exposure in hairless guinea pigs (Yourick et al., 1991).

2. Basic research

After the introduction of HD onto the battlefield in World War I and through the 1940s, most of the research efforts directed toward HD focused on defining the histopathological sequelae of exposure in humans. Attempts were also made to establish relevant animal model systems. Beginning in the 1950s, research turned more toward the biochemical effects of HD, and empirical studies were conducted with the aim of identifying therapeutic modalities. While the biochemical studies led to significant inroads for our understanding of the toxic mechanisms, the therapeutic approaches were futile. During the 1960s and 1970s, HD research focused mostly on DNA damage and repair, cytotoxic mechanisms and mutagenesis. Around 1990, the U.S. Army decided to focus its efforts in developing medical intervention strategies for HD injury through the formulation of an Army Science and Technology Objective (STO) titled Medical Countermeasures Against Vesicant Agents. A STO is a focused research effort under Army funding that is directed toward attainment of specific target milestones for development of medical products. This STO required successful completion of three technical milestones: (1) define technological and pathophysiological databases and establish pharmacological intervention strategies for the HD injury; (2) show efficacy of a candidate medical countermeasure in an animal model; (3) prepare a Milestone 0 (terminology recently changed to Milestone A) drug development decision (the official decision to move a product from the technical base to the drug development process).

The first technical milestone was met through the research efforts of the USAMRICD, the extramural contract program of the U.S. Army Medical Research and Materiel Command, and the medical research programs of our allied nations. From this research, we were able to construct a schema of the major events of the pathological processes documented in cells and tissues exposed to HD (Fig. 1). This schema was presented at numerous Department of Defense and professional scientific forums, including the 20th Army Science Conference (Smith et al., 1996). The research findings of this program served as part of a NATO-sponsored monograph on HD research (Smith and Mol, 1997).

The latter part of this milestone, i.e., establish pharmacological intervention strategies for the HD injury, was met by utilizing the information developed for the mechanistic schema. We identified six specific areas of the pathologic mechanism that could serve as points of pharmacological intervention into the HD injury. These areas were presented along with the mechanistic schema at numerous meetings and are presented in Table 1 along with prototypic compounds that have been shown to be efficacious against HD toxicity in various model systems.

The second technical milestone called for the demonstration of efficacy by a candidate countermeasure in an animal model. This was first met by research in hairless guinea pigs (Yourick et al., 1991) and subsequently confirmed in the MEVM (Casillas et al., 1997; Smith et al., 1998).

3. Candidate compound screening

In FY97, the U.S. Medical Chemical Defense Research Program was converted from Army funding to Department of Defense funding. The development of a medical countermeasure against vesicant agents was placed under a Defense Technology Objective (DTO) [similar to a STO but signifying control by DoD rather than Army], and while the technical milestones remained intact, a new metric was imposed on the drug development effort. Rather than identifying compounds that just significantly reduced our pathological endpoints, we were required to attain at least a 50% reduction of the indicators of morbidity.

Over 700 candidate prophylactic or therapeutic compounds have been evaluated through the DTO. Sixty-two compounds demonstrated an ability to provide significant modulation of edema and/or histopathology caused by HD in vivo. Of these 62 compounds, 19 demonstrated at least 50% reduction of the pathological indicators of mustard injury (Table 2). All of these 19 successful candidates fall into four of our six original proposed strategies: anti-inflammatories \((n = 9)\), chemical scavengers \((n = 5)\), antiproteases \((n = 3)\), or PARP inhibitors \((n = 2)\).

The third milestone of the Technical Objective, pass a Milestone 0 drug development decision, was met when we received approval for transition to Concept Development in November 2000. A new DTO was approved with that transition, and research under that DTO drove the drug development process through Concept Exploration toward a transition to Advanced Development. A large effort under the DTO allowed the final selection of two pharmacological approaches to the vesicant injury, i.e., anti-inflammatory compounds and chemical scavengers, which were put forward to our drug development partners. Within each approach, we provided at least two

![Proposed Mechanism of HD Action](image)
candidate compounds for further down-selection based on drug development criteria.

4. Other countermeasure compounds of interest

A number of laboratories not specifically linked to the DTO program have provided research data pointing to therapeutic approaches to the vesicant injury produced by HD. Dr. Uri Wormser and colleagues at the Hebrew University of Jerusalem have published extensively on the efficacy of iodine formulations in protecting against the HD-induced cutaneous injury. While it was initially assumed that the protective effect of iodine was related to its ability to oxidize HD, this effect could not be shown. Wormser identified unusual peptides in the blood of iodine-treated HD-exposed guinea pigs that he suggests are involved in the protective mechanism. A recent paper from his laboratory by Brodsky et al. (2008) summarizes most of the early work and describes the latest studies with the peptides.

For ocular exposures by HD, Babin et al. (2004) from the USAMRICD demonstrated protection, in a rabbit model, against the early stages of HD-induced ocular injury using a sub-Tenons injection of steroid and antibiotic. Investigators from the Israel Institute for Biological Research have evaluated therapeutic candidates in both cutaneous and ocular models of HD exposure. They have seen protection against the cutaneous injury with a combination of anti-inflammatories, the steroid dexamethasone and the non-steroidal Cyclooxygenase inhibitor ibuprofen (Amir et al., 2000).

5. Future

Currently, the selected pharmacological approaches developed under the DTO are under evaluation by the drug developers and funding questions are being resolved. The dilemma faced by the medical chemical defense community is whether the need for protection against vesicant agent injury is still relevant. There is strong support in the military planning community for a decision that vesicants are no longer a concern for our Armed Forces. This is based on highly successful efforts in force protection, i.e., quality chemical protective equipment, sensors, topical skin protection, and military battlefield intelligence. Many in the research community, however, recognize that, while we have done a tremendous job in advancing our understanding of the pathophysiology of mustard, we have much that needs to be done. The following list identifies just a few of the unresolved scientific questions:

- Link cytotoxic mechanisms induced by mustard to production of tissue injury.
- Define novel mechanisms of cell or tissue injury induced by mustard.
- Critically define the chronological events active in cell and tissue injury following exposure to sulfur mustard (HD).
- Associate the histopathological observations in HD-exposed cells and tissues to specific biochemical alterations.
- Establish dose and time relationships for candidate compounds showing efficacy against cell and/or tissue injury induced by HD.
- Identify and study candidate compounds currently undergoing clinical or preclinical evaluations in human conditions that may have mechanistic relevancy to HD injury.
- Develop innovative proposals that will potentially accelerate progress toward the strategic plan objectives.

6. Conclusion

For the first time since the introduction of HD onto the battlefield more than 80 years ago, we have the true potential to protect our warfighters against this insidious chemical weapon through pharmacological therapy. Research cannot stop until we completely eradicate the threat of this agent from the military and civilian worlds.

Conflict of interest statement

None.

References


72 W.J. Smith / Toxicology 263 (2009) 70–73

Table 2 Candidate countermeasures with greater than 50% efficacy in mouse ear model (total significant compounds = 19).

<table>
<thead>
<tr>
<th>ICD #</th>
<th>% decrease in histopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-inflammatory drug</td>
<td></td>
</tr>
<tr>
<td>Fluphenazine dihydrochloride</td>
<td>2040 50</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>2066 96</td>
</tr>
<tr>
<td>Olvanil</td>
<td>2723 91</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>2842 71</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>2845 72</td>
</tr>
<tr>
<td>Olvanil (saturated)</td>
<td>2974 53</td>
</tr>
<tr>
<td>Retro olvanil</td>
<td>2976 84</td>
</tr>
<tr>
<td>Olvanil (urea analog)</td>
<td>2977 81</td>
</tr>
<tr>
<td>Octyl homovanillamide</td>
<td>2980 100</td>
</tr>
<tr>
<td>Scavenger drugs</td>
<td></td>
</tr>
<tr>
<td>2-Mercaptoypyridine-1-oxide</td>
<td>1304 66</td>
</tr>
<tr>
<td>6-Methyl-2-mercaptopyrindine-1-oxide</td>
<td>1307 56</td>
</tr>
<tr>
<td>4-Methyl-2-mercaptopyrindine-1-oxide</td>
<td>1308 94</td>
</tr>
<tr>
<td>Hydrogen peroxide gel, 3%</td>
<td>2828 58</td>
</tr>
<tr>
<td>Dimercaprol</td>
<td>2525 78</td>
</tr>
<tr>
<td>Protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>1-(40-Aminophenyl)-3-(4-chlorophenyl)urea</td>
<td>1883 54</td>
</tr>
<tr>
<td>2-Mercaptoypyridine-1-oxide</td>
<td>1304 66</td>
</tr>
<tr>
<td>N-(O-P)-L-Ala-L-Ala ester hydrate</td>
<td>2780 62</td>
</tr>
<tr>
<td>1(G-T)-4-(4-methyl phenylsemithiocarbazid</td>
<td>2812 50</td>
</tr>
<tr>
<td>PARP inhibitor</td>
<td></td>
</tr>
<tr>
<td>3′-(4′-Bromophenyl)ureidobenzamide</td>
<td>1548 74</td>
</tr>
<tr>
<td>1′-Bromophenyl)ureidobenzamide</td>
<td>1796 54</td>
</tr>
</tbody>
</table>


