Sulfur mustard induced cytokine production and cell death: Investigating the potential roles of the p38, p53, and NF-kappaB signaling pathways with RNA interference.

Ruff, AL and Dillman, JF III

US Army Medical Research Institute of Chemical Defense
ATTN: MCMR-CDR-C
3100 Ricketts Point Road

Aberdeen Proving Ground, MD 21010-5400

US Army Medical Research Institute of Institute of Chemical Defense
ATTN: MCMR-CMDZ-P
3100 Ricketts Point Road

US Army Medical Research Institute of Chemical Defense
ATTN: MCMR-CMDZ-P
3100 Ricketts Point Road

Aberdeen Proving Ground, MD 21010-5400

Approved for public release; distribution unlimited

Sulfur mustard; Inflammation; p38MAPK; NF-κB; p53; Cell death

James F. Dillman III

410-436-1723
Sulfur Mustard Induced Cytokine Production and Cell Death: Investigating the Potential Roles of the p38, p53, and NF-κB Signaling Pathways with RNA Interference

Albert L. Ruff and James F. Dillman III

ABSTRACT: Cutaneous and ocular injuries caused by sulfur mustard (SM; bis-(2-chloroethyl) sulfide) are characterized by severe inflammation and death of exposed cells. Given the known roles of p38MAPK and NF-κB in inflammatory cytokine production, and the known roles of NF-κB and p53 in cell fate, these pathways are of particular interest in the study of SM injury. In this study, we utilized inhibitory RNA (RNAi) targeted against p38α, the p50 subunit of NF-κB, or p53 to characterize their role in SM-induced inflammation and cell death in normal human epidermal keratinocytes (NHEK). Analysis of culture supernatant from 200 μM SM-exposed cells showed that inflammatory cytokine production was inhibited by p38α RNAi but not by NF-κB p50 RNAi. These findings further support a critical role for p38 in SM-induced inflammatory cytokine production in NHEK and suggest that NF-κB may not play a role in the SM-induced inflammatory response of this cell type. Inhibition of NF-κB by p50 RNAi did, however, partially inhibit SM-induced cell death, suggesting a role for NF-κB in SM-induced apoptosis or necrosis. Interestingly, inhibition of p53 by RNAi potentiated SM-induced cell death, suggesting that the role of p53 in SM injury, may be complex and not simply prodeath.

INTRODUCTION

Sulfur mustard (SM; bis-(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent that covalently modifies DNA, protein, and other biological molecules. This compound is potently toxic and has been used as a vesicant in military campaigns since the First World War. Skin is a major target tissue, and clinical presentations of SM cutaneous injuries are characterized by vesication and severe inflammation [1]. The molecular mechanisms that lead to these signs and symptoms are not well understood; however, the known roles of p38 [2,3], p53 [4], and NF-κB [5] in cell physiology have made these pathways of particular interest in the study of the cellular response to SM.

Inflammatory cytokines shown to be induced by SM, IL-1β, IL-6, IL-8, and TNFα [6–8], are known to be modulated by p38 and/or NF-κB in other systems [3,5]. Both p38 and NF-κB are activated in SM-exposed cells [7,9–11], but it is NF-κB that has long been implicated as playing a primary role in SM-induced inflammatory cytokine production [9,12–14]. These implications have been based on the observations that (1) SM- or SM analog-induced modulation of NF-κB activity in gel shift assays correlates with inflammatory or protection events, and (2) NF-κB exhibits proinflammatory activity in other systems [15,16]. Less has been reported regarding the role of p38 in SM injury. A previous study by our laboratory showed that SB203580, a small molecule inhibitor of p38, substantially and significantly decreased inflammatory cytokine production [7]. This suggests that p38 may play a more critical role in SM-induced inflammation.
role than NF-κB in SM-induced inflammatory cytokine production. However, experiments that would more clearly define the roles of p38 and NF-κB in SM-induced cytokine production and inflammation have not been published.

Another characteristic of SM cutaneous injury is extensive death of basal keratinocytes [17,18]. This presents another possible role for NF-κB in SM injury since NF-κB is known to play a role in cell fate following injury or stress in other systems [19–22]. However, p53 is also activated in SM injury [10,23–25]. Given that SM is known to damage DNA and the classical role of p53 is in cell cycle arrest and apoptosis, p53 has been widely implicated in SM-induced cell death [10,23,24,26,27].

Although p38, p53, and NF-κB have been implicated in the response of cells to SM, the roles of these major pathways in SM injury remain unclear. To further our understanding of these molecules in SM injury, we have surveyed the effects of RNAi against p38α, p53, and NF-κB1 (the p50 subunit of NF-κB) on SM-induced inflammation, cell death, and phenotypic changes in normal human epidermal keratinocytes (NHEK).

MATERIALS AND METHODS

Cell Culture

NHEK were obtained as cryopreserved stocks from Cascade Biologics (a division of Invitrogen, Carlsbad, CA). All studies included the use of NHEK from two different donors. Cells were seeded at 2.5 × 10^3 cells/cm² into 75 cm² flasks. Cells were grown in serum-free supplemented keratinocyte growth medium (EpiLife, Cascade Biologics) to 80%–90% density prior to passaging and reseeding at 2.5 × 10^3 cells/cm² into T-25 flasks, 6-well plates, or 24-well plates. The cells were grown at 37°C with 5% CO₂.

RNAi Transfection

Target genes p38α, p53, and NF-κB1 (the p50 subunit of NF-κB) were silenced using Validated Stealth RNAi DuoPaks (Invitrogen). Each target was silenced using a mixture of both sequences from the DuoPak in equal molar amounts. Lipofectamine RNAiMAX transfection reagent (Invitrogen) was used to transfect the RNAi. RNAi and transfection reagent were diluted using a mixture of both sequences from the DuoPak independently. Results with p38α RNAi were confirmed by testing the effects for these molecules were confirmed by testing the two RNAi sequences in each DuoPak independently.

Similar to other studies that have surveyed the effects of RNAi against p38α, p53, and NF-κB1, the p50 subunit of NF-κB, we have tested the effects of RNAi against these molecules on SM-induced inflammation, cell death, and phenotypic changes in normal human epidermal keratinocytes (NHEK).

SM Exposures

SM was obtained from the U.S. Army Edgewood Chemical Biological Center (Aberdeen Proving Ground, MD). All SM exposures were performed in a certified chemical surety fume hood. A frozen aliquot of neat (undiluted) SM in keratinocyte growth medium was thawed and vortexed to generate a 4-mM SM stock solution. This stock solution was placed on ice and immediately diluted into medium to expose cells to SM. The exposure dose was 200 μM SM for all experiments. Cells were maintained at 37°C with 5% CO₂ during pretreatments. For SM exposures, cells were left at 37°C with room CO₂ concentrations for a maximum of 30 min and returned to 37°C with 5% CO₂ for the remainder of the postexposure time period.

Membrane Integrity Assay

Lactate dehydrogenase (LDH) activity in cell medium was used as a correlate of membrane integrity
and cell viability [28,29] and measured with the CytoTox-ONE Homogeneous Membrane Integrity Assay Kit (Promega, Madison, WI). Culture medium was collected to measure spontaneous release of LDH, and cells were lysed for total LDH. Samples were transferred to a 96-well black plate and mixed with an equal volume of assay buffer. After 10 min of incubation at room temperature, stop solution was added to each well. Fluorescence was recorded with a Genios (TECAN US, Research Triangle Park, NC) plate reader equipped with a 535-nm excitation wavelength filter and a 595-nm emission filter. The data are expressed as the percent membrane integrity over time (average of three biological replicates ± standard error (SD)). Each biological replicate was analyzed in triplicate (three technical replicates for each biological replicate).

Cytokine Analysis

The levels of cytokines in culture medium samples were measured using the Beadlyte Human Multi-Cytokine Detection System 2 (Millipore, Billerica, MA). Culture medium was removed from each vessel and immediately stored at −80°C for subsequent analysis. The samples were briefly centrifuged in a refrigerated microfuge to remove cellular debris. The assay was performed according to the manufacturer’s instructions and analyzed using a Bio-Plex System array reader with Bio-Plex Manager 4.0 software (Bio-Rad Laboratories, Hercules, CA). The data are expressed as the average of the number of biological replicates ± standard deviation (SD). Each biological replicate was a separate plating, and each biological replicate was analyzed in triplicate (three technical replicates for each biological replicate).

Isolation of Proteins and Gel Electrophoresis

The culture medium was removed from the cells, and the cells were washed with PBS. The cells were lysed with 350 μL SDS lysis buffer (125 mM Tris, 4% SDS, 20% glycerol, pH 6.8), scraped from the culture vessel, and collected into 0.5 mL tubes containing 100 μL of 0.5 mm glass beads. The lysates were then homogenized at 4°C for 30 s in a mini-bead beater (BioSpec Products Inc., Bartlesville, OK). SM exposure has been shown to induce changes in the expression of housekeeping genes, making normalization to a housekeeping gene inaccurate [26]. To address this issue, we normalized to total protein content by precisely quantifying the amount of total protein in each sample using the EZQ Protein Quantitation kit (Invitrogen) prior to gel loading. The samples were then resolved on 10% criterion precast Bis-Tris SDS polyacrylamide gels (BioRad, Hercules, CA) with 50 μg of protein loaded per lane.

Immunoblotting

Resolved proteins were transferred from polyacrylamide gels to polyvinylidene fluoride membranes (PVDF; Hybond, Amersham Pharmacia Biotech, Piscataway, NJ) by electroblotting. The membranes were blocked with 5% nonfat dry milk in TBST (60 mM Tris, pH 7.5, 0.9% sodium chloride, 0.1% Tween 20). The blots were probed with primary antibodies diluted in 5% bovine serum albumin (Sigma Aldrich, St. Louis, MO). All primary antibodies were obtained from Cell Signaling Technology (Beverly, MA) and diluted 1:2000 in blocking buffer for blotting. Primary antibodies were rabbit polyclonal phospho-p53 (ser 15) antibody (Cat# 9284), rabbit polyclonal p53 antibody (Cat# 9282), rabbit polyclonal IκBα antibody (Cat# 9242), rabbit polyclonal p38α antibody (Cat# 9218), rabbit polyclonal NF-κB1 p105/p50 antibody (Cat# 3035), mouse monoclonal antibody phospho-p38 MAPK antibody (Thr180/Tyr182) (Cat# 9216), and rabbit polyclonal p38 antibody (Cat# 9212). Primary antibody was detected via an alkaline phosphatase conjugated mouse antirabbit secondary antibody (Zymed Laboratories, Invitrogen) and enhanced chemiluminescence (ECL; Amersham Pharmacia Biotech, Piscataway, NJ). The fluorescent signal was detected and visualized using a Typhoon scanner (Molecular Dynamics, Sunnyvale, CA) and analyzed using ImageQuant software Version II (Molecular Dynamics).

Statistical Analyses

Cytokine production in pg/mL is expressed as the average ± SD (n = 5 for p53 and NF-κB1 RNAi groups, n = 6 for p38α groups, and n = 8 for all other groups). The percent loss of membrane integrity is expressed as the mean ± SD (n = 3). Data were analyzed for statistical significance using a one-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison tests.

Microscopy

Digital image microscopy was performed using an Olympus CKX41 culture microscope (WHB10X eyepiece with a 10 × objective) and DP12 microscope digital camera system (Olympus America, Inc., Melville, NY). Images were compiled using Adobe Photoshop Elements version 6.0 (San Jose, CA).
RESULTS

Target Knockdown by RNAi

We investigated p38, p53, and NF-κB to clarify their roles in the cellular response to SM injury. We utilized RNAi for target inhibition because, relative to many pharmacologic inhibitors, RNAi has greater target specificity, and negative controls can be employed. RNAi targeting p38α was chosen because it is the major p38 isoform involved in the immune response and inflammatory cytokine production [30] and the major p38 isoform in NHEK (data not shown). Our intent for NF-κB was to assess the role of the classical activation pathway in cytokine production in SM-exposed NHEK. Although there are some exceptions, the classical NF-κB activation pathway with the p50–p65 heterodimer is implicated in the NF-κB-driven expression of the inflammatory cytokines of interest in this study [5,31]. Our selection of p50 was based on this data that inhibition of p50 should interfere with NF-κB-driven expression of genes in response to SM. This is consistent with the finding of Rebholz et al. that the canonical NF-κB pathway is involved in the response to SM [11].

To assess and confirm target knockdown by RNAi, target expression was evaluated by Western blot analysis (Figure 1). Western blot densitometry analysis showed that RNAi knocked down p38α protein expression 89% relative to the average of the naïve and control RNAi-treated cells. Western blot analysis for total p38 showed that p38α RNAi knocked down total p38 expression 79% (data not shown). These results suggest that p38α is the major isoform of p38 in NHEK, comprising approximately 90% of the total p38 in the cell. Western blot densitometry analysis showed that p50, p105, and p53 expression was knocked down 78%, 82%, and 92%, respectively. These data also show that knock down of any one of the proteins of interest (p38α, p53, NF-κB1) did not alter the expression levels of the other targets. Knockdown of p50, p105, and p53 expression by the independent sequences of the NF-κB1 and p53 duplexes RNAi was within 10% of the expression levels described above (data not shown).

Inflammatory Cytokine Production

NHEK were treated with RNAi and exposed to 200 μM SM. Inflammatory cytokines secreted by NHEK into the culture medium were measured 24 h after exposure. Production of cytokines by unexposed RNAi-treated NHEK was similar to naïve cells (data not shown). SM exposure induced NHEK to produce IL-8, IL-6, TNFα, and IL-1β (Figure 2). p38α RNAi was the only treatment that inhibited the production of IL-8, IL-6, and TNFα. This inhibition was significant relative to both the SM and SM control RNAi groups. SB203580 produced the same effects as p38α RNAi with the exception that cytokine inhibition was generally greater with SB203580 (data not shown). NF-κB1 RNAi did not inhibit the SM-induced production of these cytokines, but rather significantly elevated the production of IL-8 and IL-6 relative to the SM group. Similar results were obtained with each of the NF-κB1 RNAi DuoPak sequences when tested separately (data not shown). The production of IL-8, IL-6, and TNFα by p53 RNAi-treated SM-exposed cells was equivalent with the SM group and not significantly different from the SM-exposed control RNAi group, which had slightly elevated levels of these cytokines. Similar results were obtained with each of the p53 RNAi duplex sequences when tested separately (data not shown). All RNAi treatment groups significantly decreased the production of IL-1β by SM-exposed cells to about half the level of the SM group. Further inhibition of SM-induced production of IL-1β was observed with p38α and NF-κB1 RNAi treatment; however, neither was significant relative to the SM-exposed control RNAi group. IL-1β production by SM-exposed p53 RNAi-treated cells was similar to that of SM-exposed control RNAi-treated cells.

Cell Viability and Cell Morphology

LDH activity in cell medium was used as a correlate of membrane integrity and cell viability. NHEK were treated with RNAi and exposed to 200 μM SM; LDH in cell medium was then assayed at 1, 2, 4, 8, and 24 h after exposure. Membrane integrity of all unexposed RNAi-treated NHEK was similar to naïve cells at all time points, with the exception of unexposed p53 RNAi-treated cells, which was 1%–2% lower at each time point. SM exposure induces only a small
FIGURE 2. Analysis of inflammatory cytokines IL-6, IL-8, TNFα, and IL-1β in culture medium from RNAi-treated SM-exposed NHEK. NHEK were treated with RNAi for 48 h and exposed to 200 μM SM. Culture medium was collected 24 h postexposure and briefly centrifuged prior to multiplex assay for inflammatory cytokines. Each biological replicate was a separate plating, and each was analyzed in triplicate (three technical replicates for each biological replicate). The data are expressed as pg/mL of the average ± SD (n = 5 for p53 and NF-κB1 RNAi groups, n = 6 for p38α RNAi groups, and n = 8 all other groups). Cytokine production significantly less than the SM-exposed group and SM-exposed control RNAi-treated group is indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). Cytokine production significantly greater than the SM-exposed group is indicated by symbol †(†p < 0.05, ††p < 0.001).

At 24 h after exposure, the loss of membrane integrity is greater. Treatment with p38α or control RNAi does not adversely affect nor improve the membrane integrity of exposed cells at 0–8 h. However, the membrane integrity of these groups at 24 h was slightly less, presumably due to transfection-related stress. Treatment with p53 RNAi significantly accelerated and potentiated the SM-induced loss of membrane integrity. This loss was first observable just 4 h after exposure and significantly greater than in all other experimental groups at the 8- and 24-h time points. SM-exposed NF-κB1 RNAi-treated cells had modest, but significantly better, membrane integrity than did all other SM-exposed groups at the 24-h time point.

The effects of RNAi treatment on the SM-induced loss of membrane integrity correlated with SM-induced changes in cell morphology observed by microscopy. It should be noted that any possible relationship between early phenotypic changes and ultimate death by necrosis has not been established. Thus, the assessment of general cell health by phenotypic appearance and assessment of necrosis by LDH release are
FIGURE 3. Analysis of membrane integrity by LDH assay. LDH activity in cell medium was used as an indicator of membrane integrity. NHEK were treated with RNAi for 48 h and exposed to 200 μM SM for 24 h. Culture medium was collected to measure spontaneous release of LDH, and cells were lysed for total LDH. LDH release was assessed at 1, 2, 4, 8, and 24 h post-SM exposure. The data are expressed as percent membrane integrity over time of the average of three biological replicates ± SD. Each biological replicate was analyzed in triplicate (three technical replicates for each biological replicate). Membrane integrity significantly less than all SM-exposed groups is indicated by (*p < 0.001). Membrane integrity significantly greater than all SM-exposed groups is indicated by symbol (†p < 0.001).

complimentary, but not necessarily related, analyses. Photomicrographs of naïve cells and SM-exposed cells that have been treated with control, NF-κB1, or p53 RNAi at 4 h postexposure are shown in Figure 4 (panel a). The morphology changes seen in the SM-exposed control RNAi group (Figure 4, panel a2) are representative of the SM-exposed cells, SM-exposed p38α RNAi-treated cells, SM-exposed SB203580-treated cells, and SM-exposed DMSO vehicle control cells (data not shown). The edges of virtually all the cells have a jagged appearance possibly due to early events of cell detachment related to condensation. In contrast, the SM-exposed NF-κB1 RNAi-treated cells (Figure 4, panel a3) had very smooth edges and were virtually indistinguishable from naïve cells (Figure 4, panel a1) at the 4-h point. At 8 h, SM-exposed NF-κB1 RNAi-treated cells (Figure 4, panel b3) have a larger fraction of detached cells relative to the 4-h time point, but those that remained attached looked very similar to naïve cells (Figure 4, panel b1). Similar results were obtained with each of the independently tested NF-κB1 RNAi duplex sequences (data not shown). The most pronounced SM-induced changes in cell morphology were seen in the SM-exposed p53 RNAi group. At just 4 h, the majority of these cells were condensed, and those that remained attached to the culture flask had jagged edges (Figure 4, panel a4). At 8 h after SM exposure, virtually all the cells in the SM-exposed p53 RNAi group were condensed (Figure 4, panel b4). In contrast, most cells in the 8-h SM-exposed control RNAi group (Figure 4, panel b2) remained attached, and only a fraction of the cells had condensed. The 8-h SM exposed p53 RNAi group appeared most similar to the 24-h SM group in which the majority of the cells had condensed (see supplemental data). Similar results were obtained with each of the independently tested p53 RNAi duplex sequences (data not shown). At 24 h postexposure, there appeared to be extensive cell death (cell condensation) in all the SM-exposed groups and virtually no difference in cell morphology between any of the SM-exposed treatment groups at this time point (see panel c of Figure 4 in supplemental data). Thus, the modest improvement in membrane integrity of NF-κB1 RNAi-treated cells seen by LDH assay was not observable by cell morphology. None of the SM-induced morphology changes were
FIGURE 5. Western blot analyses of p38 phosphorylation (panel a), p53 phosphorylation (panel b), total p53 (panel c), and IκBα (panel d) in SM-exposed NHEK. NHEK were treated with RNAi for 48 h and exposed to 200 μM SM for the indicated time. Whole cell lysates were prepared, resolved by SDS-PAGE, immunoblotted, and probed with antibodies for phospho p38 (threonine180/tyrosine182), phospho p53 (serine 15), total p53, or IκBα. The data shown are representative of three biological replicates.

observed in any of the unexposed RNAi-transfected groups (data not shown).

p38, p53, and NF-κB Signaling

The roles of p38, p53, and NF-κB in SM-induced signaling were also investigated by Western blot analysis. NHEK were treated with RNAi and exposed to 200 μM SM, and whole cell lysates were collected at 1, 2, 4, and 8 h after exposure. Samples were normalized by total protein content, then resolved and blotted. p38 phosphorylation appeared maximal at the earliest time point of 1 h, and there was no apparent increase over the 8-h time course (Figure 5, panel a). p38 phosphorylation was roughly equivalent among the SM-exposed experimental groups, with the exception of p38 RNAi-treated cells. SM exposure also induced the phosphorylation of p53 (Figure 5, panel b). p53 phosphorylation was observable at 1 h, but increased over the 8-h time course. Phosphorylation of p53 was equivalent among the SM-exposed experimental groups at each time point with the exception of p53 RNAi-treated cells. We also evaluated activation of p53 by analyzing the accumulation of total p53. SM did not appear to induce the accumulation of p53 in NHEK (Figure 5, panel c), and the levels of p53 in NHEK appeared to be equivalent among both SM-exposed and unexposed groups at all time points; again with the exception of cells treated with p53 RNAi. Since degradation of IκBα occurs during the activation of NF-κB, we analyzed the degradation of IκBα as a surrogate marker of NF-κB activation (Figure 5, panel d). Unlike p53, which is activated early in SM-exposed cells, IκBα degradation was not apparent until 2 h after SM exposure. IκBα degradation was equivalent among the SM-exposed experimental groups at the 8-h time point. IκBα degradation was slightly less in SM-exposed NF-κB1 RNAi-treated cells at the 2- and 4-h time points relative to the other SM-exposed experimental groups.

DISCUSSION

p38 RNAi significantly inhibited the SM-induced production of IL-8, IL-6, and TNFα by NHEK. These findings are consistent with a previous report from our laboratory investigating p38 signaling in SM-exposed NHEK [7]. In that study, we used the p38 inhibitor SB203580 and demonstrated substantial and significant inhibition of inflammatory cytokine production (IL-1β, IL-6, IL-8, and TNFα) by SM-exposed NHEK. Taken together, these studies suggest that p38 may play a critical role in signaling inflammatory cytokine production in SM-exposed NHEK. p38 RNAi did not appear to affect SM-induced loss of membrane integrity or phenotypic changes, which suggests that p38 may not play a role in the fate of cells exposed to SM. p38 activation was apparent at our earliest time point analyzed, which was 1 h postexposure. This is consistent with previous reports that p38 is activated early in SM-exposed cells [7,11].

NF-κB1 RNAi (which targets the canonical NF-κB p50 subunit) did not inhibit the SM-induced production of IL-8, IL-6, and TNFα by NHEK. These findings are consistent with a previous report from our laboratory investigating p38 signaling in SM-exposed NHEK [7]. In that study, we used the p38 inhibitor SB203580 and demonstrated substantial and significant inhibition of inflammatory cytokine production (IL-1β, IL-6, IL-8, and TNFα) by SM-exposed NHEK. Taken together, these studies suggest that p38 may play a critical role in signaling inflammatory cytokine production in SM-exposed NHEK. p38 RNAi did not appear to affect SM-induced loss of membrane integrity or phenotypic changes, which suggests that p38 may not play a role in the fate of cells exposed to SM. p38 activation was apparent at our earliest time point analyzed, which was 1 h postexposure. This is consistent with previous reports that p38 is activated early in SM-exposed cells [7,11].

NF-κB1 RNAi (which targets the canonical NF-κB p50 subunit) did not inhibit the SM-induced production of IL-8, IL-6, and TNFα by NHEK. These findings are consistent with a previous report from our laboratory investigating p38 signaling in SM-exposed NHEK [7]. In that study, we used the p38 inhibitor SB203580 and demonstrated substantial and significant inhibition of inflammatory cytokine production (IL-1β, IL-6, IL-8, and TNFα) by SM-exposed NHEK. Taken together, these studies suggest that p38 may play a critical role in signaling inflammatory cytokine production in SM-exposed NHEK. p38 RNAi did not appear to affect SM-induced loss of membrane integrity or phenotypic changes, which suggests that p38 may not play a role in the fate of cells exposed to SM. p38 activation was apparent at our earliest time point analyzed, which was 1 h postexposure. This is consistent with previous reports that p38 is activated early in SM-exposed cells [7,11].

NF-κB1 RNAi (which targets the canonical NF-κB p50 subunit) did not inhibit the SM-induced production of IL-8, IL-6, and TNFα by NHEK. These findings are consistent with a previous report from our laboratory investigating p38 signaling in SM-exposed NHEK [7]. In that study, we used the p38 inhibitor SB203580 and demonstrated substantial and significant inhibition of inflammatory cytokine production (IL-1β, IL-6, IL-8, and TNFα) by SM-exposed NHEK. Taken together, these studies suggest that p38 may play a critical role in signaling inflammatory cytokine production in SM-exposed NHEK. p38 RNAi did not appear to affect SM-induced loss of membrane integrity or phenotypic changes, which suggests that p38 may not play a role in the fate of cells exposed to SM. p38 activation was apparent at our earliest time point analyzed, which was 1 h postexposure. This is consistent with previous reports that p38 is activated early in SM-exposed cells [7,11].
not play a major role in SM-induced inflammatory cytokine production by this cell type, with the exception of a partial role in IL-1β. This possibility may be supported by recent findings of Rebholz et al. [11] investigating the SM-induced activation of MAPK and NF-κB/RelA pathways in keratinocytes. Utilizing wild type and RelA-knockout cells, they showed by electrophoretic mobility-shift assays that only the canonical NF-κB pathway is activated by SM (no binding activity of p52, RelB, or c-Rel was observed). This activation was dependent on RelA and other NF-κB family members could not substitute in cells lacking RelA. Our observations with p50 RNAi suggest that other NF-κB family members, namely p52, may not be able to substitute for the role of p50 in the SM-induced NF-κB response. However, it is important to note that RelA may have activities that are independent of p50 [31,32]; therefore, future studies will be performed using RNAi to target RelA, as well as the noncanonical NF-κB family members p52, RelB, and c-Rel to further elucidate the role of NF-κB in SM-injury in our system. Our results do suggest a role for NF-κB in the fate of cells exposed to SM in that NF-κB1 RNAi moderately delays and diminishes SM-induced phenotypic changes and loss of membrane integrity. NF-κB may play a prodeath role given the trend toward improved cell viability with p50 inhibition. This would be consistent with reports of a correlation between decreased NF-κB activity and improved viability with SM-exposed cells [9,10,13]; however, firm comparisons to these previous reports are difficult due to broad activity of the inhibitors and therapeutics used in those studies.

Our results do not support a role for p53 in SM-induced inflammatory cytokine production. p53 has been implicated in the fate of cells exposed to SM [10,23,24,26,27]. Upregulation of p53 by HPV E7 was observed to sensitize cells to SM-induced death [23,25]. Considering these previous studies, we anticipated that p53 RNAi would attenuate SM-induced apoptosis in our system and result in improved markers of cell viability. Interestingly, p53 RNAi treatment had the opposite effect. However surprising these findings may be, they are not unprecedented. Chaturvedi et al. [33] also observed that p53 RNAi treatment of primary human keratinocytes enhanced cell death in their model of UV light-induced apoptosis. The authors suggested that the vulnerability of p53 RNAi-treated cells may be due to a reduced capacity for DNA repair; if cells cannot efficiently repair their damaged DNA, they will more rapidly progress to apoptosis. Adding to the difficulty of understanding the role of p53 in the fate of cells exposed to SM is the caveat that there may not be a simple relationship between cellular levels of p53 and apoptotic responses [34,35]. While the effects of p53 RNAi inhibition by RNAi were surprising, the kinetics of p53 activation was not. We observed p53 activation at our earliest time point analyzed which was 1 h post-exposure. This is consistent with previous reports that p53 is activated early in SM-exposed cells [7,10,11,24]. We did not observe accumulation of p53 in SM-exposed NHEK, which can occur since p53 is a positive regulator of its own transcription [4].

Several studies have shown crosstalk between the p38, p53, and NF-κB pathways in other systems [36–40]. Any potential crosstalk between these pathways in SM-exposed cells would be relevant in understanding the molecular mechanisms of SM-induced injury. Our Western blot analyses show that RNAi inhibition of any one of these molecules does not ultimately affect the SM-induced activation of any of the others. These results suggest that there may be no crosstalk between these pathways in SM-induced signaling or that any crosstalk that may occur is downstream of these molecules. These observations are similar to those recently reported by Rebholz et al. [11]. They observed that SM-induced activation of the p38 pathway was no different in RelA-deficient and wild type cells indicating that NF-κB signaling in SM exposure was independent of p38 signaling. The apparent lack of crosstalk between these molecules in their system is consistent with our observations that RNAi against each of these molecules each had very different effects on SM-exposed cells: (1) p38 inhibition attenuates inflammatory cytokine production, (2) NF-κB inhibition modestly improves markers of cell viability, and (3) p53 inhibition accelerates and potentiates cell death.

This is the first report suggesting that NF-κB may not play a primary role in the inflammatory response of SM-exposed cells. Furthermore, a primary role for p38 in SM-induced cytokine production has now been demonstrated using two different approaches; RNAi and SB203580. These findings have important implications for future research given that NF-κB has long been implicated as playing a primary role in SM-induced inflammatory cytokine production [9,12–14]. Similarly, p53 is widely believed to play a prodeath role in SM-exposed cells [10,23,24,26,27]. However, our findings with p53 RNAi demonstrate the complexities of understanding the role of this molecule in the fate of cells exposed to SM. Given that p38, NF-κB, and p53 have been implicated as important pathways involved in the cellular response to SM, our findings provide relevant direction for future SM research.

SUPPLEMENTARY DATA

A supplement to Figure 4 showing panel c:24 h postexposure is available from the corresponding author on request.
ACKNOWLEDGMENTS

We thank Dr. Patrick Everley and Dr. Tamara Otto for critical reading of the article.

REFERENCES

