
Welford C. Roberts, Ph.D. (Editor)

US Air Force, Office of the Surgeon General
5201 Leesburg Pike
Falls Church, VA 22041

Approved for Public Release; distribution is unlimited

The U.S. Air Force Medical Service presented the fifth annual Air Force Medical Research Symposium coordinated by the Air Force Medical Support Agency’s Research and Development Division (AFMSA/SGRS). The symposium was held 24-26 August 2010 at the Doubletree Hotel Washington DC – Crystal City, Arlington, VA. The symposium featured two half-days of plenary sessions, one and a half days of scientific presentations, and a poster session. It was organized into four tracks to include: Operational & Medical, Enroute Care, Force Health Protection, and Nursing. These proceedings are organized into five volumes to include one that provides a general overview and all presentation and poster abstracts; the other four each address a specific track. Volume 5 contains abstracts and presentation slides for the Nursing Track.

US Air Force, Medical Service, Medical Research, Nursing

SAR
Nereyda Sevilla
703-681-6383
Table of Contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan</td>
<td>2</td>
</tr>
<tr>
<td>Iron Status of Deployed Military Members</td>
<td>9</td>
</tr>
<tr>
<td>Air Force Nurse Transition Program</td>
<td>17</td>
</tr>
<tr>
<td>Inpatient Glycemic Management Team at Wilford Hall Medical Center</td>
<td>21</td>
</tr>
<tr>
<td>Diabetes Self-Management Education at a Military Hospital</td>
<td>29</td>
</tr>
</tbody>
</table>
Introduction

The U.S. Air Force Medical Service presented the fifth annual Air Force Medical Research Symposium coordinated by the Air Force Medical Support Agency’s Research and Development Division (AFMSA/SGRS). The symposium was held on 24-26 August 2010 in the Washington D.C. area at the Doubletree Hotel Washington DC – Crystal City in Arlington, VA. The symposium featured two half-days of plenary sessions, one and a half days of scientific presentations, and a poster session.

The symposium was organized into several tracks to include Operational & Medical, En-route Care, Force Health Protection, and Nursing, as follows:

- The Operational & Medical Track focused on patient care and treatment in garrison, expeditionary care during contingency operations, and enhancing performance of airman in challenging environments.
- The En-route Care Track addressed science and technology targeted at the continuum of care during transport from point of injury to definitive care to include medivac, aeromedical evacuation, critical care air transport, patient staging, and patient safety.
- The Force Health Protection Track focused on prevention of injury and illness and the early recognition or detection of emerging threats for in-garrison or deployed operations. Topics of interest include research in bio-surveillance, infectious disease, emerging threats (pandemic response), protective countermeasures, disaster response/consequence management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends, other areas of preventive medicine, public and environmental health relevant to the military workforce.
- The Nursing Track focused specifically on evidence based practice.

These proceedings are organized into five volumes, as follows:

- Volume 1. This volume is a general overview of the entire 2010 Air Force Medical Research Symposium and includes abstracts of all the oral presentations and posters. First presented is the symposium’s opening plenary session, followed by the abstracts from the four technical tracks, and then the closing plenary session. The abstracts associated with the poster session are in the last section of these proceedings. The agenda for the overall symposium is in Appendix A, attendees are listed in Appendix B, and continuing education information is in Appendix C of this volume. Appendices D-L are copies of presentation slides from the plenary sessions.
- Volume 2. This volume contains abstracts and presentation slides for the Operational & Medical Track.
- Volume 3. This volume contains abstracts and presentation slides for the En-route Care Track.
- Volume 4. This volume contains abstracts and presentation slides for the Force Health Protection Track.
- Volume 5. This volume contains abstracts and presentation slides for the Nursing Track.
Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan

United States Air Force (USAF), University of Maryland; Baltimore, MD

Maj Susan Dukes

BACKGROUND: Traumatic brain injury (TBI) patients are highly susceptible to secondary insults to the injured brain (e.g., hypoxia, hypotension, hyperthermia, hypothermia, and hyperglycemia). Over one third of the patients transported by Critical Care Air Transport Teams (CCATT) have had TBIs. Considering CCATT patients travel thousands of miles, pass through multiple hospital systems, and are exposed to the stresses of flight on military cargo aircraft, the occurrence and timing of these secondary insults need to be explored. PURPOSE: This study describes the occurrence of secondary insults in isolated TBI patients transported by CCATTs from the point of injury to arrival in the United States between 2001 and 2006. METHODS: A descriptive retrospective cohort design was used to conduct a secondary analysis of 64 CCATT patients with isolated TBI from the Wartime Critical Care Air Transport Database. Data elements in the database were abstracted from existing records including theater trauma registry, transport documents, flow sheets, and hospital medical records. RESULTS: Over half (52%) of the study patients developed at least one secondary insult before returning to the US. Hyperthermia (47%) followed by hypoxia (27%) occurred at the greatest rates. The greatest occurrence of hyperthermia was reported during the patients’ stay at Landstuhl Regional Medical Center (LRMC)(40%) and the CCATT transport from LRMC to the US (41%). The greatest occurrence of hypoxia was reported while the patients were still in theater (30%). Data analysis is ongoing.

Susan F. Dukes, PhD, CCRN, CCNS
LTC (sel), USAF, NC
24 August 2010

Background

- 1.5 million new cases of TBI/year (Hickey & Prater, 2009)
 - Highly susceptible to secondary insults
 - Those with secondary injury have worse outcomes

- Secondary Insults – later causes that can lead to additional insult to the injured brain
 - Include: hypoxia, hypotension, hyperthermia, hypothermia, hyperglycemia
 - Goal: prevention

- TBI “signature injury” of OIF/OEF (Hoge, et al., 2008)

A Patient’s Trip Home

1. Point of injury to theater hospital
2. Care at the theater hospital
 - "In theater" 28 hours (Pensak, 2008)
3. CCATT from theater hospital to Germany
 - Theater to Germany over 6 hours (Bridgel & Evens, 2009)
4. Care in Germany
 - ICU stay at Germany 72 hours (Farq et al., 2009)
5. CCATT from Germany to USA
 - Germany to USA 8–14 hours (Richardson, 2007)
 - Point of wounding to USA 8.5 days (Fox et al., 2005)

The CCATT Environment
Secondary Insults

- **Hypoxia**
 - Prevalence 11–57% (Jiang et al., 2002; Stocchetti et al., 1996)
- **Hypotension**
 - Prevalence 9–66% (Chu et al., 2006; Jeremiaszky et al., 2003)
- **Hyperthermia**
 - Accidental or intentional
 - Prevalence 5–10% on admission; 26% in first 24 hours (Wang et al., 2005; McGhee et al., 2007; Jeremiaszky et al., 2005)
- **Hyperthermia**
 - Prevalence 25–73% (Jiang et al., 2002; Stocchetti et al., 2002)
- **Hyperglycemia**
 - Prevalence 33–48% (Lam et al., 1991; Young et al., 1989)

Specific Aims

1. Describe the occurrence of secondary insults (hypoxia, hypotension, hyperthermia, hyperthermia, and hyperglycemia) in isolated TBI patients transported by CCATTs.

2. Determine if the occurrence of secondary insults in isolated TBI CCATT patients is associated with:
 - extent of injury (Injury Severity Score)
 - etiology of TBI (Blast vs. non-blast injury)
 - type of aircraft used for transport (C-17 vs. C-141)
 - year of occurrence (from beginning of OIF/OEF to most recent available data)

Methods

- **Design** – Retrospective cohort design using Wartime Critical Care Air Transport database
- **Sample** – isolated TBI CCATT patients
- **Measures**
 - Injury characteristics
 - Timing of injury and transport
 - Physiologic data
- **Human Subjects Protection**
 - De-identified secondary data with dates
 - UMD expedited IRB

Wartime Critical Care Air Transport Database

- Patients transported by CCATTs
- October 2001 through May 2006
- Multiple sources
- Point of injury to 7 days after arriving in U.S.
- Isolated TBI Patients
 - Population of 67
 - 3 no physiologic study variables recorded
 - Final N=64
 - 2,623 variables
 - Longitudinal record created for each study patient
- Missing data
Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD or N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>27 ± 8</td>
</tr>
<tr>
<td>Service</td>
<td>44 (69)</td>
</tr>
<tr>
<td>Marine Corp</td>
<td>12 (19)</td>
</tr>
<tr>
<td>Injury Severity Score</td>
<td>17 ± 8</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Blast</td>
</tr>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>7 (11)</td>
</tr>
<tr>
<td>2004</td>
<td>24 (38)</td>
</tr>
<tr>
<td>2005</td>
<td>25 (39)</td>
</tr>
<tr>
<td>2006 (thru May)</td>
<td>8 (13)</td>
</tr>
</tbody>
</table>

Characteristics over 4 Years

<table>
<thead>
<tr>
<th>DV</th>
<th>N</th>
<th>KW</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days from Injury to Germany</td>
<td>56</td>
<td>19.1</td>
<td>3</td>
<td><.001</td>
</tr>
<tr>
<td>Days from Injury to USA</td>
<td>43</td>
<td>18.5</td>
<td>3</td>
<td><.001</td>
</tr>
<tr>
<td>ISS</td>
<td>59</td>
<td>4.2</td>
<td>3</td>
<td>.241</td>
</tr>
<tr>
<td>Age</td>
<td>64</td>
<td>3.4</td>
<td>3</td>
<td>.335</td>
</tr>
</tbody>
</table>

- Injury to Germany
 - 2004 median time 2.5 days
 - 2005 and 2006 median time 1.0 days
- Injury to USA
 - 2003 and 2004 median time 8 days
 - 2006 median time 3.5 days
- Blast/Non-Blast - no change over the 4 years

Additional Demographic Findings

- Equal distribution of C-141 and C-17 aircraft for both legs of CCATT transports
- Significant correlation between year and type of aircraft used for both CCATT transport legs
 - Year by aircraft from theater to Germany
 τ = .56, p < .001
 - Year by aircraft from Germany to USA
 τ = .40, p < .01
 - C-141 most common early on
 - C-17 exclusively for both transport legs by 2006

Secondary Insults

<table>
<thead>
<tr>
<th>Secondary Insult</th>
<th>Pts with SI/Total Pts</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperthermia</td>
<td>29/62</td>
<td>47</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>13/51</td>
<td>25</td>
</tr>
<tr>
<td>Hypotension</td>
<td>11/64</td>
<td>17</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>6/47</td>
<td>13</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>5/62</td>
<td>8</td>
</tr>
<tr>
<td>None</td>
<td>30/64</td>
<td>47</td>
</tr>
</tbody>
</table>
Factors Predicting Secondary Insults

Determine if the occurrence of secondary insults in isolated TBI CCATT patients is associated with:
- extent of injury (ISS)
- etiology of TBI (blast vs. non-blast injury)
- type of aircraft used for transport (C-13 vs. C-14)
- year of occurrence (from beginning of OIF/ OEF to most recent available data)

- Hyperglycemia and combinations did not converge
- Model with hyperthermia as the DV was statistically significant

Factors Predicting Hyperthermia

<table>
<thead>
<tr>
<th>Variable</th>
<th>p</th>
<th>Odds Ratio</th>
<th>95%CI Lower</th>
<th>95%CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS</td>
<td>.002</td>
<td>1.16</td>
<td>1.06</td>
<td>1.27</td>
</tr>
<tr>
<td>Blast vs. Non-Blast</td>
<td>.455</td>
<td>1.65</td>
<td>0.45</td>
<td>6.06</td>
</tr>
<tr>
<td>Year of Injury</td>
<td>.221</td>
<td>2.03</td>
<td>0.65</td>
<td>6.31</td>
</tr>
<tr>
<td>CCATT Aircraft Theater to Germany</td>
<td>.428</td>
<td>0.53</td>
<td>0.11</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Summary of Findings

- Decrease in median days from point of injury to Germany and to the USA
- > ½ of the patients had at least one SI
- Hyperthermia most common with occurrence increasing
 - ISS significant predictor of hyperthermia
 - All other SI greatest occurrence while in theater
- No difference in SI by aircraft even with change in primary aircraft
- No difference in SI by year even with time from injury to Germany and USA decreasing

Implications

- Clinical
 - SI are prevalent – educate and prevent
 - Hyperthermia increasing in occurrence
 - Ever vigilant for signs of hypoxia and hypotension on CCATT flights
 - Cognoscente of all SI while still in theater
 - Insight can enhance continuity of care
 - Seek measures to reduce fever and infection explored in the context of the military environment

Implications (continued)

- Policy
 - Transporting pts earlier does not affect SI
 - SI do not vary between C-141 and C-17
 - Develop/implement documentation
 - Follow patients from theater through rehab
 - Include functional outcome measures

- Research
 - SI in polytrauma patients
 - Effects of various blast etiologies
 - Assess new aircraft used by CCATTs

Limitations

- Missing data
- Secondary data
 - No control over variables collected
 - Potential measurement error
- SI may have occurred but not recorded
- Small number of cases
 - Limits predictors
 - Only superficial subgroup analysis
 - Potential Type II error
- Limited outcome data
Strengths

- Wartime Critical Care Air Transport Database only one known of its kind
- Entire population of isolated TBI CCATT pts
- Allows assessment of variables over time
- New area of study - building the body of knowledge of military TBI patients and critical care air transport

Acknowledgements

- Committee
 - Meg Johantgen, PhD, RN – Chairperson
 - Erika Friedmann, PhD
 - Patricia Morton, PhD, FAAN, CRNP
 - George Zangaro, PhD, RN
 - Elizabeth Bridges, PhD, RN, CCNS
Iron Status of Deployed Military Members

59th CSPG/SGVUS

Maj Candy Wilson

The purpose of this study is to determine the iron status of deployed military personnel, specifically the prevalence of iron deficiency (ID)/iron deficiency anemia (IDA) while stationed at moderate altitude. Iron is a prerequisite for the production of new red blood cells. In the event of reduced availability or iron, one can develop ID and IDA. ID/IDA causes a reduced oxygen carrying capacity. The prevalence of women and men with ID in military training environments is between 11-44% and 3-33%, respectively. ID/IDA has been known to impair physical and cognitive functioning. The research questions are:

What is the iron status of a deployed sample at moderate altitude?

Is there a difference in the prevalence of ID/IDA between deployed men and women?

Is there an increased incidence of ID/IDA in deployed women who have menstruation as compared to deployed women who do not have menstruation?

This study is a descriptive correlational research design. The researchers will examine the relationships between home station altitude, history of anemia, recent blood donation, vegetarian diet choice, and multivitamin use to blood results. For women, researchers will determine if a correlation between menstrual history and iron status exists. Blood analysis will include hematocrit, hemoglobin, mean corpuscle volume, iron, total iron binding capacity, Ferritin, and soluble transferring receptor. The sample will consist of service members deployed greater than three months at Bagram Airfield Afghanistan. The projected sample size is 400 (200 mean, 200 women). ID/IDA is a significant impediment to a fit, healthy, and functioning military force. The identification of risk factors contributing to ID/IDA among active duty U.S. forces in a deployed environment will lead to interventions that improve the combat power and effectiveness of the U.S. military. This study will be completed 30 May 2010.
Iron Status of Deployed Military Members

Candy Wilson, Major, USAF, NC
Michael D. Brothers, Lt Col, USAF
James P. McClung, PhD

Disclaimer

- The views of this presentation are those of the author and not of the US Air Force, Department of Defense or the United States Government.

Thank you

- This study funded by:
 - TriService Nursing Research Program
 - Air Force Surgeon General
 - Institute of Surgical Research
 - Joint Combat Casualty Research Team

Background

- Iron is a prerequisite for production of RBCs
- Iron is stored in the liver, bone marrow, and spleen as ferritin
- Reduced availability results in iron deficiency (ID) and iron deficiency anemia (IDA) which impairs physical and cognitive functioning
- Losses occur through GI tract, skin, urine, and for females, menstruation
Purpose

The purpose of this study was to describe the prevalence of iron deficiency and iron deficiency anemia for military men and women deployed to a moderate altitude deployed location.

Research Questions

1. What is the iron status in a deployed sample at moderate altitude?
2. Is there a difference in the prevalence of iron deficiency and iron deficiency anemia between deployed men and women?
3. Is there an increased prevalence of iron deficiency and iron deficiency anemia in women who have menstruation as compared to women who do not have menstruation?

Significance

- Iron is the only micro deficiency in developed countries
- Prevalence of ID in military training
 - Men 3-33%
 - Women 11-44%
- Acclimatization and the demanding military deployed environment may result in poorer physical and cognitive performance

Study Design & Setting

[Image of a mountainous landscape]
Sampling Plan

- **Inclusion Criteria**
 - Men and Women deployed to Bagram Airfield, Afghanistan
 - Work at Bagram Airfield, Afghanistan
 - Stationed in theater for more than three months

- **Exclusion Criteria**
 - Subjects with known anemia from other diagnoses, such as sickle cell anemia, thalassemia, etc.
 - Military members less than 18 years of age

Instruments

- **Data Collection sheet:**
 - Time in theater
 - Age
 - Sex
 - Zip code deployed from
 - History of iron deficiency anemia
 - Blood donation history
 - Vegetarian status
 - Multivitamin and iron supplement use

- **Menstrual History questionnaire**
 - Have regular periods
 - Dates of last menstruation
 - Days menstruating
 - Days between menstruation
 - Days of heavy flow
 - Using birth control
 - Change in menstruation since deployment

- **Complete Blood Count**
 - Hematocrit
 - Hemoglobin
 - Mean corpuscular volume

- **Iron Indices**
 - Total Iron Binding Capacity
 - Ferritin
 - Iron
 - Soluble Transferrin Receptor
Data Analysis

- Descriptive
- T-test
- Chi-square
- Correlation
- Multivariate logistic regression models

Operational Definitions

<table>
<thead>
<tr>
<th>Laboratory Test</th>
<th>Normal Range</th>
<th>Iron Deficiency</th>
<th>Iron Deficiency Anemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit</td>
<td>38-65%</td>
<td>38-65%</td>
<td><54%</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>12-18 g/dL</td>
<td>12-19 g/dL</td>
<td><12 g/dL</td>
</tr>
<tr>
<td>Mean corpuscular volume</td>
<td>80-100 fl.</td>
<td>Normal range or <80 fl.</td>
<td><80 fl.</td>
</tr>
<tr>
<td>Total Iron Binding Capacity (TIBC)</td>
<td>330-350 mcg/dL</td>
<td>330-410 mcg/dL</td>
<td>>410 mcg/dL</td>
</tr>
<tr>
<td>Ferritin</td>
<td>10-25 ng/mL</td>
<td>125 ng/mL</td>
<td><125 ng/mL</td>
</tr>
<tr>
<td>Iron</td>
<td>115-500 µg/dL</td>
<td><115 µg/dL</td>
<td><49 µg/dL</td>
</tr>
<tr>
<td>Solute transferrin receptor</td>
<td><35 mg/dL</td>
<td>>35 mg/dL</td>
<td>≥ 35 mg/dL</td>
</tr>
</tbody>
</table>

Sample Demographics

Average Age Men: M = 35, SD = 9.5 (149 men)
Average Age Women: M = 33, SD = 10.2 (145 women)
Avg time in theater: M = 180 days, SD = 66
History of Anemia: 39 women (27%)
History of Blood Donation: 22 members (all platelets)
Vegetarian: 2 members (<1%)
Multivitamin Use: 67 members (29%)
Iron Supplements: 3 members (1%)
Menstrual Status

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular menses</td>
<td>109</td>
<td>75%</td>
</tr>
<tr>
<td>Using Birth Control</td>
<td>43</td>
<td>30%</td>
</tr>
<tr>
<td>Change in menses</td>
<td>54</td>
<td>36%</td>
</tr>
<tr>
<td>How stop menses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth control</td>
<td>19</td>
<td>54%</td>
</tr>
<tr>
<td>Surgery</td>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>Menopause</td>
<td>10</td>
<td>29%</td>
</tr>
</tbody>
</table>

Results

What is the iron status in a deployed sample at moderate altitude?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Men</th>
<th>Women</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hgb</td>
<td>15.3 ± 3.7</td>
<td>14.0 ± 2.8</td>
<td>p = 0.001</td>
</tr>
<tr>
<td>Hct</td>
<td>41.4 ± 6.4</td>
<td>38.9 ± 5.8</td>
<td>p = 0.001</td>
</tr>
<tr>
<td>MCV</td>
<td>88 ± 12</td>
<td>86 ± 13</td>
<td>p = 0.001</td>
</tr>
<tr>
<td>Iron</td>
<td>22 ± 4</td>
<td>19 ± 3</td>
<td>p = 0.001</td>
</tr>
<tr>
<td>TIBC</td>
<td>19 ± 3</td>
<td>16 ± 2</td>
<td>p = 0.001</td>
</tr>
<tr>
<td>ferritin</td>
<td>177 ± 17</td>
<td>193 ± 13</td>
<td>p = 0.001</td>
</tr>
</tbody>
</table>

Results

Is there a difference in the prevalence of iron deficiency and iron deficiency anemia between deployed men and women?

ID: 8 Women (6% women)

IDA: 1 man (<1%), 7 women (5%)

Is there an increased prevalence of ID and IDA in women who have menstruation as compared to women who do not have menstruation?

ID: 1 no menses, 7 with menses

IDA: 7 with menses

n = 145
Discussion

- The incidence of IDA is similar to US population statistics (CDC Reported Men <1%, Women 3-4%).
- It is possible that plasma volume shift occurred with acclimatization to moderate altitude. Moderate altitude normal range laboratory values are needed for clinical care.

Limitations

- The convenience sample limited the ability to analyze trends of iron depletion in specific career fields that require intense physical activity.
- Numerous obstacles delayed the shipment of plasma samples from the Afghanistan theater.

Implications

- Clinical care for military members with signs of symptoms of ID and IDA cannot be ignored.
- Future research needed to determine moderate altitude laboratory norms.
- Future studies need to compare iron status prior to deployment and during deployment within the same individuals to determine if there is an effect on iron stores during deployment.
Deployed Women’s Health

Questions or Comments

“Providing Great Care...Building Warrior Medics”

Nurses need to continue to advocate for menstrual suppression
Air Force Nurse Transition Program

88th MDG

Col Robie Hughes

BACKGROUND: The Air Force Nurse Transition program was established in 1977 for Air Force nurse accessions with less than one year of clinical experience as a registered nurse. Today the program is held at 8 military and 2 civilian training sites. The course length varies according to location. At military training sites the course length is 11 weeks long. At the civilian locations (Cincinnati and Scottsdale) the course has been reduced to 9 weeks because students completed clinical skills requirements quicker due improved access to patients. No research studies on the measurement of nursing performance related to the Air Force Nurse Transition program has been published. SPECIFIC AIMS: 1) Implement valid and reliable instruments to measure nurse transition student performance during medical simulation scenarios. 2) Establish base line data on new nurse accessions’ performance upon entrance to the military and prior to attending the Air Force Nurse Transition Program based on the simulation scenario evaluation instruments. 3) Determine the impact of the Air Force Nurse Transition Program on graduates’ performance during medical simulation scenarios based on the Simulation Evaluation Instrument. 4) Compare military nurses enrolled in the Air Force Nurse Transition Program at civilian training sites to those at the military training sites in terms of pre and post attendance subscale scores on the simulation scenario evaluation instruments. METHOD: Samples (multisite) Repeated Measurement Pre-test/Posttest Comparative design. Each group at one of 10 sites is evaluated using a simulated medical scenario prior to attending and upon completion of the Air Force Nurse Transition Program. No control group will be used for this study because it is not feasible to have a “no training” group, nor to have subjects act as their own control for the same length of time (9 to 11 weeks) as in the training program. Findings: To be determined. At the time of the AFMS Symposium, 8 classes of NTP students (28 total classes projected for FY 10) will have gone through the study pre and post NTP. Data collected from the 8 classes will be presented as findings during the presentation. DISCUSSION: Information will be discussed regarding the partial findings from this study. The data collection will continue through 17 Dec 10.
Headquarters U.S. Air Force

Integrity - Service - Excellence

Air Force Nurse Transition Program
Student Quantitative Medical Simulation Performance

Colonel Vickie Hughes
August 2010

History of AF NTP

- 1977
 - 20-week internship at 5 sites (Nurse Intern Program)
 - Nurses ‘selected’ to attend

- 1988
 - Centralized under direction of Sheppard AFB

- 1994
 - Major revision: 12-week transition at 6 sites

- 2004
 - 11-week transition at 9 sites
 - Med-Surg & OB tracks added

History of the AF NTP

- 2008
 - 2 Civilian training platforms approved
 - Cincinnati (activated 2008)
 - Scottsdale (activated 2009)
 - Gained higher acuity/complexity
 - Reduced to 9 weeks

- 2010
 - Andrews Phase II site closing
 - 10 sites active

Review of the Literature
... Disconnects!

- “According to the Nursing Executive Center research, nearly 90% of academic leaders believe their nursing students are fully prepared to provide safe and effective care, compared with only 10% of the hospital and health system nurse executives”
 - Berkow and Virkstis (2008)

- “Only 35% of new RN grads meet entry level expectations for clinical judgment The majority are unable to translate knowledge into practice.”
 - Dorothy del Bueno (2005)
Types of RN Transition Programs

- Nationwide Formal Training Programs
- University Health System Consortium (UHC)/American Association of Colleges of Nursing (AACN) Nurse Residency Program
- The Vassar RN Residency
- Vermont Nurses in Partnership

- Federal Sites
 - Air Force NTP 9 weeks civilian site/11 weeks MTF
 - Army 25.5 weeks
 - Navy 10 week program followed by a six week unit-based orientation

NTP Today

- Course Design/Description:
 - Instructional design — individual-paced, didactic/cClinical, seminar topics/AF NC officer role
 - Primary focus — gain experience & competence in direct patient care
 - Didactic & clinical components correlated w/ JCAHO, ANA, & AF directives

- NTP Pre-Requisites:
 - Successfully passed NCLEX
 - < 1 year of clinical experience
 - AD commissioned officer (possibly send civilian nurses also)

- # Graduates Annually: 158
- 2010-2011 Expected # NTP Students: 200

Aims of NTP Study

- Implement valid & reliable instruments to measure NTP student performance during medical simulation scenarios
- Establish baseline data on new nurses’ performance
- Determine impact of NTP on graduates’ performance during medical simulation scenarios
- Compare NTP graduate performance at civilian training sites to NTP graduates at military sites
 - Pre- and post-attendance subscale scores on SSEI

Statistical Analysis

- Inter Rater Reliability
 - Cohen’s Overall Kappa = 0.78 which is indicative of very good overall agreement among the raters, regardless of site, for pre-post ratings

- Raters were consistent across time and site
Significant Anaphylaxis

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Assess breathing: frequency and depth of chest, pattern, rate, depth accessory muscles: clavicles, sternum, intercostal spaces, symphysis pubis, lower back sounds</td>
</tr>
<tr>
<td>2.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
<tr>
<td>3.</td>
<td>Call for help, request emergency personnel, RN and assistant</td>
</tr>
<tr>
<td>4.</td>
<td>Apply ice pack to mouth and upper chest</td>
</tr>
<tr>
<td>5.</td>
<td>Identify anaphylaxis</td>
</tr>
<tr>
<td>6.</td>
<td>Notify medical director, call emergency services, commence CPR</td>
</tr>
<tr>
<td>7.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>8.</td>
<td>Administer EPI immediately, administer diphenhydramine, commence CPR</td>
</tr>
<tr>
<td>9.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>10.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
</tbody>
</table>

Significant Trauma

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Warm up before operation</td>
</tr>
<tr>
<td>2.</td>
<td>Assess breathing: frequency and depth of chest, pattern, rate, depth accessory muscles: clavicles, sternum, intercostal spaces, symphysis pubis, lower back sounds</td>
</tr>
<tr>
<td>3.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
<tr>
<td>4.</td>
<td>Call for help, request emergency personnel, RN and assistant</td>
</tr>
<tr>
<td>5.</td>
<td>Apply ice pack to mouth and upper chest</td>
</tr>
<tr>
<td>6.</td>
<td>Identify anaphylaxis</td>
</tr>
<tr>
<td>7.</td>
<td>Notify medical director, call emergency services, commence CPR</td>
</tr>
<tr>
<td>8.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>9.</td>
<td>Administer EPI immediately, administer diphenhydramine, commence CPR</td>
</tr>
<tr>
<td>10.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
</tbody>
</table>

Outdoor Environment Control

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Warm up before operation</td>
</tr>
<tr>
<td>12.</td>
<td>Assess breathing: frequency and depth of chest, pattern, rate, depth accessory muscles: clavicles, sternum, intercostal spaces, symphysis pubis, lower back sounds</td>
</tr>
<tr>
<td>13.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
<tr>
<td>14.</td>
<td>Call for help, request emergency personnel, RN and assistant</td>
</tr>
<tr>
<td>15.</td>
<td>Apply ice pack to mouth and upper chest</td>
</tr>
<tr>
<td>16.</td>
<td>Identify anaphylaxis</td>
</tr>
<tr>
<td>17.</td>
<td>Notify medical director, call emergency services, commence CPR</td>
</tr>
<tr>
<td>18.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>19.</td>
<td>Administer EPI immediately, administer diphenhydramine, commence CPR</td>
</tr>
<tr>
<td>20.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
</tbody>
</table>

Emergency Management

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Warm up before operation</td>
</tr>
<tr>
<td>22.</td>
<td>Assess breathing: frequency and depth of chest, pattern, rate, depth accessory muscles: clavicles, sternum, intercostal spaces, symphysis pubis, lower back sounds</td>
</tr>
<tr>
<td>23.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
<tr>
<td>24.</td>
<td>Call for help, request emergency personnel, RN and assistant</td>
</tr>
<tr>
<td>25.</td>
<td>Apply ice pack to mouth and upper chest</td>
</tr>
<tr>
<td>26.</td>
<td>Identify anaphylaxis</td>
</tr>
<tr>
<td>27.</td>
<td>Notify medical director, call emergency services, commence CPR</td>
</tr>
<tr>
<td>28.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>29.</td>
<td>Administer EPI immediately, administer diphenhydramine, commence CPR</td>
</tr>
<tr>
<td>30.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
</tbody>
</table>

Infection Control

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>Warm up before operation</td>
</tr>
<tr>
<td>32.</td>
<td>Assess breathing: frequency and depth of chest, pattern, rate, depth accessory muscles: clavicles, sternum, intercostal spaces, symphysis pubis, lower back sounds</td>
</tr>
<tr>
<td>33.</td>
<td>Take vital signs, pulse, pulse oximetry</td>
</tr>
<tr>
<td>34.</td>
<td>Call for help, request emergency personnel, RN and assistant</td>
</tr>
<tr>
<td>35.</td>
<td>Apply ice pack to mouth and upper chest</td>
</tr>
<tr>
<td>36.</td>
<td>Identify anaphylaxis</td>
</tr>
<tr>
<td>37.</td>
<td>Notify medical director, call emergency services, commence CPR</td>
</tr>
<tr>
<td>38.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
<tr>
<td>39.</td>
<td>Administer EPI immediately, administer diphenhydramine, commence CPR</td>
</tr>
<tr>
<td>40.</td>
<td>Monitor respiratory rate, heart rate, blood pressure</td>
</tr>
</tbody>
</table>

20
Inpatient Glycemic Management Team at Wilford Hall Medical Center

Wilford Hall Medical Center (WHMC)

Stacey Ward, MSN, RN, CNS-BC, BC-ADM, Lexa Rijos, MSN, RN, ACNP-BC, Linh Reeves, MPAS, PA-C, Joe Pollard, MPH, Mark W. True, MD, and Brian T. Allenbrand, MD

Best practices direct hyperglycemic management in the acute care setting to be at the forefront of providing quality care for either hospitalized diabetic or non-diabetic patients. As demonstrated by current research, sustained hyperglycemia results in increased hospital length of stays and infection rates. As part of the American Diabetes Association and The Joint Commission inpatient diabetes recognition program, an attribute for success is having an identified program champion team. In August, 2009 Wilford Hall Medical Center, an Air Force medical center in San Antonio, TX, formed an inpatient glycemic management team (IGMT) comprised of mid-level providers to include a nurse practitioner (NP), physician assistant (PA), and clinical nurse specialist (CNS). One role of the team is to consult and provide recommendations for glycemic management strategies in the critically and non-critically ill patients while monitoring blood glucose rates for hypoglycemia (< 70 mg/dl). From September 2009 to February 2010, the rate of acceptance of recommendations provided was 90.2%. Comparing September 2008- February 2009 to September 2009 -February 2010 for overall hypoglycemia in the non-critically ill was 2.4% and 1.7%, and hyperglycemia (> 180 mg/dl) was 31% and 30%, respectively while the critically ill population had an overall rate of hypoglycemia of 1.7% and 1.5%, respectively. As evidenced by an overall acceptance of recommendations demonstrating a decline in hypoglycemia and hyperglycemia rates, using an IGMT to direct inpatient hyperglycemic care is an effective methodology of providing best practices for this patient population.
59th Medical Wing
Providing Great Care – Building Warrior Medics!

Inpatient Glycemic Management Team at WHMC

Stacey Ward, MSN, RN, CNS-BC, BC-ADM
UPMC/WHMC Adult Inpatient Glycemic Management Team CNS
59th Medical Wing (WHMC)

Abstract Co-Authors

- Lexa Rijos, MSN, RN, ACNP-BC
- Linh Reeves, MPAS, PA-C
- Joc Pollard, MPH
- Mark W. True, MD
- Brian T. Allenbrand, MD

Disclosure

None of the faculty or planners of this presentation have any financial or other interest, arrangement, affiliation, or relationship with any organization that could be perceived as a real or apparent conflict of interest with the content of this activity.

Objectives

- Discuss current evidence & guidelines that direct glycemic management of the adult critically & non-critically ill patient population in the acute care setting
- Discuss implementation strategies and outcomes of using an inpatient glycemic management team in a military setting

Providing Great Care... Building Warrior Medics!
Introduction

Diabetes in the 21st Century

- Diabetes affects almost 23.6 million Americans
- 5.7 million people (or nearly one quarter) are unaware that they have diabetes
- 65% of deaths among people with diabetes result from heart disease and stroke
- Diabetes is the leading cause of nontraumatic amputation, new blindness and kidney failure

www.diabetes.org

Providing Great Care... Building Warrior Medicos!

Almost $1 of every $5 spent on health care in the U.S. is for a person with diabetes

Direct Costs	Indirect Costs	Total Cost
$82 | $109 | $192
$579 | $618 | $136
$547 | $54 | $132

Providing Great Care... Building Warrior Medicos!

Hyperglycemia Statistics

- Definition
- Present on 38% of admitted patients
- Further breakdown:
 - 26% had known hx of DM
 - 12% with no hx of DM

Providing Great Care... Building Warrior Medicos!
Background

- Multiple trials have shown a strong association between hyperglycemia and worsened patient outcomes

Hyperglycemia and ICU Mortality

Hyperglycemia and Non-Critically Ill Mortality

Organizations supporting Inpatient Glycemic Management

- American Diabetes Association
- Society of Hospital Medicine
- Veterans Health Administration
- American Association of Clinical Endocrinologists
 - Inpatient glycemic control resource center
- Texas Diabetes Council (Texas Department of State Health Services)
- The Diabetes Tool Kit 5th Ed.
Multidisciplinary Approach for Steering Committee

- Member composition:
 - Champion endocrinologist
 - Mid-level providers who may comprise glycemic team
 - Quality improvement
 - Administration
 - Various medical leaders from different services

- Nutrition
- Information Systems
- Pharmacy
- POC lab personnel
- Nursing:
 - Mid-level leadership
 - Clinical

Providing Great Care... Building Warrior Medics!

Various Models

- Consultant
- System-wide
- Diabetes

Model Used

- WHMC IGMT composition:
 - Champion endocrinologist
 - Mid-level providers
 - Clinical Nurse Specialist
 - Acute Care Nurse Practitioner
 - Physician Assistant

Providing Great Care... Building Warrior Medics!
Roles/Responsibilities of IGMT at WHMC

- Daily review of BGs <70mg/dl and > 180 mg/dl to identify patients who require evaluation
- Daily rounds on both critically and non-critically-ill settings who are included in above BG ranges & derive medical management strategies (i.e. insulin dosing regimens whether intravenous or subcutaneous)
- Daily reevaluates patient status for changes (i.e. dietary intake, renal function) in order to customize insulin dosing recommendations
- Collaborates with providers and nursing staff on medical management of each patient

Providing Great Care... Building Warrior Medics!

Roles/Responsibilities of IGMT at WHMC

- Identifies and provides discharge education to include diabetes survival skills for newly-diagnosed diabetics on home insulin use and any other patients requiring education
- Participates in the formatting and approval process of all policies and procedures directing use of all inpatient insulin protocols current & future
- Provides educational inservices to medical and nursing staff on a regular basis regarding inpatient insulin protocols
- Develops process-improvement strategies in response to issues related to protocol implementation and utilization

Providing Great Care... Building Warrior Medics!

Statistics of IGMT

IGMT Recommendations

- % not accepted: 10%
- % accepted: 90%

Providing Great Care... Building Warrior Medics!

Statistics of IGMT

Hypoglycemia (critically-ill)

Providing Great Care... Building Warrior Medics!
Statistics of IGMT

- **Hypoglycemia (non-critically-ill)**

 - Sept '08-Feb '09: 1.5
 - Sept '09-Feb '10: 2.0

- **Hyperglycemia (>180 mg/dl) non-critically ill**

 - Sept '08-Feb '09: 32
 - Sept '09-Feb '10: 22

Providing Great Care... Building Warrior Medics!

Barriers

- Fear of hypoglycemia
- Long-standing practice patterns (usage of sliding scale as sole means of glycemic management)
- Unpredictable patient eating patterns
- Deployment of large numbers of staff (medical, nursing, and medical technicians) every six months
- Alteration of administrative infrastructure related to deployments
- Paper charting system

Future Plans

- Protocols
 - Insulin pump
 - Steroid-induced hyperglycemia
 - Peri-operative
- Transition current process to SAMMC
 - Formerly known as Brooke Army Medical Center (BAMC)
- Continued process improvement of protocols

Providing Great Care... Building Warrior Medics!
Summary

- Overall acceptance of recommendations
- Demonstrated decreased hypoglycemia & hyperglycemia rates for critically & non-critically ill populations
- IGMT effective methodology for providing best practices of inpatient glycemic management

Contact Information

- E-mail:
 - Stacey.ward.ctr@lackland.af.mil

QUESTIONS?
Diabetes Self-Management Education at a Military Hospital

University of Pittsburgh Medical Center (UPMC)

Ellen Kilpatrick, RN, CDE, Nina Watson, RN, CDE, Joseph Pollard, MPH; Acknowledgements: Linda Siminerio*, RN, PhD, Kristine Ruppert*, DrPH

BACKGROUND: Diabetes self-management education (DSME) is considered to be an important part of management and has been directly associated with a decrease in HbA1c levels. Patients who do not receive DSME are found to be four times more likely to develop a major complication and incur higher diabetes-related hospital costs. Self-management is considered to be a key component of the Chronic Care Model (CCM). As part of our effort to deploy the CCM in a military environment, we established a Diabetes Center of Excellence (DCE) at Wilford Hall Medical Center (WHMC) for high risk diabetes patients. The DCE included an ADA recognized program. Our objective was to determine the impact of DCE patients who received DSME on HbA1c levels.

METHODS: Patient military beneficiaries who received DSME between January and December 2009 with at least 1 recorded baseline and follow-up HbA1c were included in the analysis. RESULTS: A total of 207 patients (mean age 58 years, 51% male, 43% Caucasian, 29% Hispanic, and 22% African American) participated. Prior to program 39.6%; post program 17.4% had HbA1C >8%, representing an overall 1.1% HbA1c reduction. 69.6% of patients showed improvements. After adjusting for pre HbA1c and race, completing the DSME classes showed a significant decrease (p=0.001).

CONCLUSIONS: These findings demonstrate the added benefit of integrating a formal DSME program in diabetes specialty clinics for military beneficiaries. DSME can be considered an important adjunct in diabetes specialty care.
Diabetes Self-Management Education at a Military Hospital

- Ellen Kilpatrick, RN, CDE
- Nina Watson, RN, CDE
- Joseph Pollard, MFH
- Linda Mavros, RN, PhD
- Norah S. Gourley, MD

Acknowledgments:

Disclosure:

- None of the faculty or planners of this presentation have any financial or other interest, arrangement, affiliation, or relationship with any organization that could be perceived as a real or apparent conflict of interest with the content of this activity.

Background

Diabetes Self-Management Education:

- Important part of management
- Directly associated with decreases in HbA1c levels (6.76%)
- Patients who do not receive DSME are 3 times more likely to develop a major complication and incur diabetes related hospital costs

References:

Objective

- Our objective was to renew ADA recognition
- Measured Auc values for Quality Assurance
- Developed content according to ADA requirements

Patient Population:

- Military Beneficiaries
- Type 1, 2 and pre-diabetes
- Age 18 and older
- San Antonio and Surrounding Areas
- Data is reported from:
 - January 2009 – December 2009
 - Patients with 1 baseline Auc and at least 1 follow up Auc were included

Methods

Setting and Program:

- Diabetes Self-Management Education
- Wilford Hall Medical Center
- Lackland AFB, San Antonio, TX
- ADA Recognized Program
- Series of 4 classes
 - Offer 1-3 classes weekly
 - 10 classes monthly
 - Total 10 hours of diabetes education

Program Content:

- Class 1
 - Type 1 and Type 2 Diabetes
 - Glucose Metabolism
 - Blood Glucose Monitoring
 - Pattern Management
 - Carbohydrate Counting
Program Content

Class 2
- Active Lifestyles
- Incorporating an Exercise Program
- Impact Exercise Has on Diabetes
- Hypoglycemia and Treatment
- Carbohydrate Counting and Label Reading

Program Content

Class 3
- Daily Foot Care
- Foot Exams
- Retinal Exams
- Long Term Complications
- Frequency and Interpretation of Labwork
- Goal Setting and Coping Skills

Program Content

Class 4
- Medications
- Insulin Receptors
- Advanced Carb Counting
- Managing Diabetes during Illness
- Restaurant Eating

On the Road to Better Managing Your Diabetes
This conversation map covers many of the basic concepts one needs to know as it relates to diabetes and managing diabetes.
Results

- A total of 207 patients participated
 - Mean Age: 48 years
 - Gender:
 - 53% Male
 - 47% Female
 - Race/Ethnicity:
 - 47% Caucasian
 - 30% Hispanic
 - 23% African American
- Overall 3.1% HbA1c reduction
- 69.6% showed improvements in A1c
 - 39.6% of participants had HbA1c > 8% prior to the program
 - 77.4% of participants had HbA1c > 8% post program
- After adjusting for pre HbA1c and Race, DSME classes showed a significant decrease (p=0.001)

Limitations

- Didn't account for other treatment effects on HbA1c, e.g. medication adjustment, nutrition changes
- Limited to two HbA1c measures
- Limited to measures of glycemia

Conclusion

- DSME is an important adjunct in diabetes specialty care in a military setting
- These findings demonstrate the potential added benefit of integrating a formal DSME program in diabetes specialty clinics for military beneficiaries
Future Research
- Study effect on self-care behaviors
- Expand to include metabolic outcomes (e.g. lipids, blood pressure)
- Evaluate long-term effect with follow-up education
- Assess cost
- Looking at other variables that might affect the improvements

Questions