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Abstract—We suggest a new interpretation of Woodward’s
ambiguity function as the expected value of an operator. The
operator represents the physics of the interaction of the waveform
with the object. This approach provides a new approach to un-
derstanding the return signal at the receiver and can reveal more
detailed understanding of the underlying interactions within the
return signal that are not usually brought out by standard signal
processing techniques.
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I. INTRODUCTION

Woodward introduced the ambiguity function in the seminal
book "Probability and Information Theory with Applications
to Radar"[1] as the means to solve the measurement problem
of radar. The measurement problem of radar is to design a
radar waveform to be broadcast by a radar or sonar, so as
to maximize the receiver response to the signal which has
interacted with an object. The means to accomplish this was
drawn from work by North[2] during WW II who invented the
"matched filter". A matched filter is obtained by correlating a
known signal template with an unknown signal to detect the
presence or absence of the template in the unknown signal.
This is exactly equivalent to convolving the unknown signal
with the complex conjugate of the time-reversed version of the
known signal template which; this is termed cross-correlation.
Therefore, the matched filter is the optimal linear filter for
maximizing the signal to noise ratio (SNR) in the presence of
additive noise as has been shown in many texts[3],[4],[5]. In
radar, a known signal is sent out and the reflected signal from
the object (which is a function of the distance to the object,

the relative speed of the object and the broadcast frequency
of the radar), can be examined at the radar receiver for the
common elements of the out-going signal in the return signal,
which, when optimized is a multi-dimensional matched filter
or ambiguity function. Formally, the form of the return signal
for a narrow band signal s(t) is s(t− τ) where τ is the delay
between the broadcast of the signal and the return time that the
signal is detected at the receiver. For the broadband form of
the signal, the form of the return signal is s(α (t− τ)) where
τ is the delay and

α =
c− v

c+ v
=

1 − β

1 + β
(1)

where c is the speed of light and v is the radial velocity of
the object.

Thus, there are two common forms of the ambiguity func-
tion: the narrowband ambiguity function, χN , (s∗(t) means
complex conjugate of the broadcast signal)

χN (ω, τ) =
∫ ∞

−∞
e−itω s∗(t)s(t− τ) dt, (2)

and the wideband ambiguity function, χWB ,

χWB(ω, τ) =
√
α

∫ ∞

−∞
s∗(t)s(α (t− τ))e−itω dt. (3)

For a discussion about how to design radar signals so that
their ambiguity functions have specific desirable properties
useful for various kinds of radars, Leavon is a current up to
date resource[7]. There is another way to think about at the
ambiguity function that is different than the way Woodward
presented it. This approach suggests the radar measurement
problem, can be cast in a more abstract setting, that treats
interaction between the waveform and the target can be treated
as an operator acting on the waveform. This approach can
be termed the operator approach, it can be viewed as an
abstraction of the quantum mechanical formalism to a classical
setting. This approach has been championed by Cohen[8] as
a way for recasting problems in signal processing.
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II. OPERATOR APPROACH

The notation for the inner product of two signals, r(t) and
s(t) that is used throughout the paper is

〈r(t), s(t)〉 =
∫ ∞

−∞
r∗(t) s(t) dt, (4)

while the Fourier transform,F , of a signal s(t) is[6]

S(ω) = Fs(t) =
∫ ∞

−∞
e−itω s(t) dt =

〈
eitω, s(t)

〉
, (5)

while the inverse Fourier transform, F−1, is

s(t) = F−1S(ω) =
1
2π

∫ ∞

−∞
eitω S(ω)dω =

〈
e−itω, S(ω)

〉
.

A function of time which is translated by amount, τ , can be
written as (using the Taylor expansion of function D = d

dt )

s(t+ τ) = eτDs(t) = ei(−iτ d
dt )s(t) = eiτWs(t) (6)

The form of χN (ω, τ), it can be recast as

χN (ω, τ) =
∫ ∞

−∞
e−itω s∗(t)s(t− τ) dt,

=
〈
s(t)eitω, s(t− τ)

〉
,

=
〈
s(t)eitω, e−iτWs(t)

〉
; (7)

From the Doppler effect perspective, translation is the opera-
tion of the frequency operator on the signal, where τ is the
total distance a signal travels to an object, is reflected, and
then returns to the receiver.

Using Cohen’s notation, we define the time operator, T , as

T = −1
i

d

dω
, (8)

while the frequency operator is

W =
1
i

d

dt
. (9)

It is understood that these operators act on signals and that

Wns (t) =
(

1
i

d

dt

)n

s (t) . (10)

A very useful calculation trick is based on a modification of
Parceval’s theorem for an unnormalized signal:

E = 〈s(t), s(t)〉 =
1
2π

〈〈
S(ω′)eiω′t, 1

〉
,
〈
S(ω)eiωt, 1

〉
, 1

〉
=

1
2π

〈
〈〈S(ω′), 1〉 , 〈S(ω), 1〉〉 eiω′t, eiωt

〉
= 〈〈S(ω′), S(ω)δ (ω − ω′)〉〉 = 〈S(ω), S(ω)〉 (11)

Now it follows that the expected value of the frequency of a
signal S (ω) can be written as

〈ω〉 =
∫ ∞

−∞
ω |S (ω)|2 dω

=
1
2π

〈
ω

〈
s(t)e−iωt, 1

〉
,
〈
s(t′)eiωt′ , 1

〉
, 1

〉
= ...

= 〈s(t′),Ws(t)〉 . (12)

From this result, it follows that

〈ωn〉 = 〈s(t′),Wns(t)〉 , (13)

which can be proved by induction. If g (t) is an analytical
function, it follows that

〈g (ω)〉 = 〈s(t′), g (W) s(t)〉 . (14)

Thus, to calculate the average frequency of a function, we do
not have to calculate the Fourier transform. Rather one simply
calculates derivatives of a function and then integrates. We
can thus interpret eiτW as a translation operation on function
s(t). A function of time that is translated by amount, τ , can
be written as (using the Taylor expansion of function D = d

dt )

s(t+ τ) = eτDs(t) = ei(−iτ d
dt )s(t) = eiτWs(t) (15)

The frequency translation operator has exactly the same effect:

eiθT S (ω) = S (ω + θ) . (16)

For a complex signal, s (t) = A (t) eiϑ(t),

eiτWs(t) =
(
ϑ′ (t) − i

A′ (t)
A (t)

)
s(t) (17)

so

〈ω〉 = 〈S (ω) , ωS (ω)〉

=
〈(

ϑ′ (t) + i
A′ (t)
A (t)

)
A (t) , A (t)

〉
=

〈
ϑ′ (t)A (t) , A (t)

〉
(18)

since the second term in the integral is a perfect differential.
The average frequency is the derivative of the phase, ϑ (t),
over the density over all time. Thus the phase at each time
must be instantaneous in some sense, i.e. ωi (t), so we can
make the identification that ωi (t) = ϑ′ (t). Similarly, we can
show that〈

ω2
〉

=
〈
S (ω) , ω2S (ω)

〉
=

〈
ϑ′2 (t)A (t) , A (t)

〉
+

〈(
A′ (t)
A (t)

)
A (t) ,

(
A′ (t)
A (t)

)
A (t)

〉
. (19)

The covariance of a signal might be thought of as the "average
time" multiplied by the instantaneous frequency or〈

tϑ′ (t)
〉

=
〈
tϑ′ (t)A (t) , A (t)

〉
. (20)

When time and frequency are uncorrelated with each other,
then it is reasonable to expect that

〈
tϑ′ (t)

〉
= 〈t〉 〈ω〉, so

the difference between the two is a measure of how time is
correlated to the instantaneous frequency. Thus, the covariance
of the signal is

Covtω =
〈
tϑ′ (t)

〉
− 〈t〉 〈ω〉 , (21)

while the correlation coefficient, r, is

r =
Covtω

σtσω
, (22)

which is the normalized covariance. Real signals have zero
correlation coefficients as do signals of the form A (t) eiω0t
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or S (ω) = A (ω) eiωt0 , so signals with complicated phase
modulation have a non-zero correlation coefficient.

When dealing with more than one operator acting on a
signal, we must be able to interpret the action of multiple
operators such as AB acting upon signals. Here AB is taken to
mean A acts on the signal followed by B acting on the signal.
When the order of operations does not matter, the operators
are said to commute, otherwise the operators don’t commute.
The commutator of A and B is

[A,B] = AB − BA, (23)

while the anti-commutator of A and B is

[A,B]+ = AB + BA. (24)

The properties of [A,B] are:

1) [A,A] = 0,
2) [A,B] = − [B,A] ,
3) [cA,B] = c [A,B] ,
4) [A,B + C] = [A,B] + [A, C] .
We have adapted the notation of Cohen to define these

operators[8]. For example, the action of the time and frequency
commutator on a signal is

[T ,W] s (t) = (T W −WT ) s (t) = [T ,W] s (t) = is (t) .
(25)

The scale operator C is defined as

C =
1
2

[T ,W]+ =
1
2

(
t
d

dt
+
d

dt
t

)
, (26)

it can also be written as

C = T W +
i

2
. (27)

C has the property that it transforms a signal s (t) according
to

eiσCs(t) = eσ/2s(eσ/2t). (28)

Note that:

1 The effect of this function is to rescale s(t) by the
compression factor eσ/2.

2 We could also use lnσ in place of σ and achieve the
same effect: ei ln σCs(t) =

√
σs(

√
σt).

3 Either form preserves normalization.
4 This operator rescales the amplitude of the broad-

cast waveform, so it is equivalent to an amplitude
reduction of a signal that is measured at a receiver.

From the Doppler effect perspective, translation is the
operation of the frequency operator on the signal, where τ is
the total distance a signal travels to an object, is reflected, and
then returns to the receiver. The broadband ambiguity function
can be rewritten as

χWB(ω, τ) =
√
α

∫ ∞

−∞
s∗(t)s(α (t− τ))e−itω dt

=
√
α

〈
s(t)eitω, s(α (t− τ))

〉
=

√
α

〈
s(t)eitπf , e−iαCe−iτWs(t)e−itπf

〉
, (29)

which is the action of operators for scale change ei ln αC and
the operator for time shift eiτW on the signal. The narrowband
ambiguity function can be rewritten as a translation and a
scale change acting separately. These ‘mathematical operators’
change the functional form of the transmitted signal after
interaction with the scattering object so the return signal
at the receiver can be thought of as a series of operators
acting on the transmitted signal. Waveforms that interact with
the scattering object can be thought of as the means to
measure observables associated with targets. In a sense, we
are measuring the “expected value” of an observable when
both the transmission and reception portions of the sensor are
considered. Recall, the expected value is a concept that occurs
in quantum mechanics. In quantum mechanics, the normalized
signal is replaced with a function |Ψ (x)〉 with an associated
probability distribution |Ψ(x)|2 = P (x). The expected values
associated with observable, Â, is calculated as:〈
Â

〉
=

∫
Â P (x)dx =

∫
Ψ∗(x) ÂΨ(x) dx =

〈
Ψ(x)|̂AΨ(x)

〉
.

(30)
Classical probability has three essential characteristics related
to signals:

1) Random Variable x̂ with probability P (x).
2) Expected Value of Observable 〈α(x)〉 =

∫
α(x)P (x)dx.

3) Change of Variable α(x) given by: P (α) =
∫
δ(α −

α(x))P (x) dx.

Quantum probability has three essential characteristics re-
lated to signals:

1) Probability distribution is P (α) = |ϑ(α)|2

2) Expected Value of Observable
〈
Â

〉
=

〈
Ψ(x)|̂AΨ(x)

〉
.

3) Distribution of one variable from another is

P (α) = |ϑ(α)|2

where

ϑ (α) =
∫
u∗α(x)Ψ(x) dx

with uα(x) eigenfunctions of operator Â satisfying
Âuα(x) = αuα(x).

Thus, we define the expected value associated with observ-
able, Â, for a signal s (t) as〈
Â

〉
=

∫
Â |s (t)|2 dt =

∫
s∗ (t) Âs (t) dt =

〈
s (t) , Âs (t)

〉
.

(31)
Thus, the wideband ambiguity function can be written as

χWB(ω, τ) =
√
α

〈
e−iαCe−iτW〉

, (32)

the expected value of the scaling and translation operators for a
signal s(t)e−itπf , which is equivalent to maximizing the signal
to noise ratio (SNR) at the receiver. This way of considering
measurement in radar is a natural continuation of the viewpoint
that started with Gabour[11], extended by Woodward[1], and
Vaidman[10] for considering measurement in radar.
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III. EXAMPLES

The reason the ambiguity function is so important in radar
waveform analysis is that allows the mathematical engineer to
design a radar waveform that has properties which are specific
to a desired design criteria or can be used for system trade-
offs for conflicting design criteria. For interactions between the
radar signal and the target that extend beyond considerations
of position and velocity related criteria, the operator viewpoint
may hold some promise. Physical interaction with the target
can induce secondary characteristics into the return signal,
such as micro-Doppler, which can be incorporated into the
design of a receiver to maximize the possibility for detecting
these types of secondary target induced characteristics. In
additional to a scalar signal, higher dimensional waveforms
interactions can be considered as well, such as the polarization
of materials affect on the waveform. In addition, we intro-
duce a cross-ambiguity function from the operator perspective
which allows the consideration of a new approach to signal
amplification.

A. Single Dimensional Signals

The non-uniform Doppler effect can be used to illustrate this
operator viewpoint. The effect of non-uniform Doppler on the
radar waveform can be determined by the application of the
relativistic boundary conditions to the D’Alembert solution to
the wave equation[12]. The scattered waveform in terms of
the incident waveform becomes

g(τ) = −a(h(τ))f(2h(τ) − τ) (33)

so a(t) becomes a(h(τ) = 2h′(τ) − 1. The canonical repre-
sentation of the scattered waveform

g(τ) = − d

dτ
F (2h(τ) − τ), (34)

where F (y) =
∫ y

f(u) du.This equation is an exact expres-
sion for the scattered waveform independent of any bandwidth
assumptions. The effect of the derivative becomes a noticeable
effect on wideband waveforms, while it is not on narrowband
waveforms. By introducing the two definitions for τ , i.e.
τ = t + r(t)

c ,and h(τ) = t, as the functional equation
h(τ)+ r(h(τ))

c = τ which to this function form for the scattered
waveform. This change of variable redefines the time axis so
"time" starts at τ = 0 in the receiver time frame. Solving
the functional equation for h(τ) allows us to accomplish this
redefinition.) Micro-Doppler can occur when h(τ) is a non-
linear function.

For a dynamic system characterized by single parameter α,
then a dynamic variable u evolves along a path in configuration
space. The configuration of the system describes a curve along
α. Consider the commutator equation

du

dα
= [u,G] . (35)

Here, G generates the trajectory u = u(α) and α can be
viewed as geometrical parameter. Expanding u(α) in a Taylor

series yields [15]

u(α) = u0 + α
du

dα

∣∣∣∣
α=0

+
α2

2!
d2u

dα2

∣∣∣∣
α=0

+ ..., (36)

and using the generator equation to replace the dynamics gives

u(α) = u0 + α [u,G]|α=0 +
α2

2!
[[u,G] , G]|α=0 + ... . (37)

This can be written as the operator equation[14]

u(α) = exp
(
αĜ

)
u(α)|α=0 , (38)

where
Ĝf

.= [f,G] . (39)

For physical systems, it is evident that the generator of
dynamics is time, so any function of time can be thought of
as being generated by an operator acting on u (t):

u(t) = exp
(
tĜ

)
u(t)|t=0 = u0 + t [u,G]|t=0

+
t2

2!
[[u,G] , G]|t=0 + ... (40)

Now any function u(t) can be thought of being generated by
an operator G. Thus we see how to "generate" any function
of a parameter using operator methods[13]. For a given h(τ),
we can assume it is generated by a equation such as h(τ) =
exp

(
τĜ

)
x(τ)|τ=0, so

F (2h(τ)−τ) = F (2 exp
(
τĜ

)
x(τ)|τ=0−τ) = exp

(
τĤ

)
s (τ) ,

(41)
where Ĥ depends on the specifics of the interaction.

For example, Ĥ would be a comb operator in the frequency
domain for a periodic function. In this case, we are estimating
the expected value of

〈
exp

(
τĤ

)〉
at the receiver. Since any

scalar interaction on the waveform can be thought of as the
action of an operator on the broadcast waveform, a more
general ambiguity function can always be defined as

χO(ω, τ) =
A√
π

∫ ∞

−∞
e−itω s∗(t) exp

(
τĤ

)
s(t)dt, (42)

or
χO(ω, τ) =

〈
e−itω s∗(t), exp

(
τĤ

)
s(t)

〉
. (43)

The key to understanding measurement of more complicated
interactions is combining the kernel〈

s(t)eitω, ei ln σCeiτWs(t)
〉
. (44)

with additional signal interactions interpreted as the action of
additional operators in this kernel:〈
s(t)eitω, exp

(
τĤ1

)
exp

(
τĤ2

)
... exp

(
τĤn

)
eiσCeiτWs(t)

〉
,

(45)
thus for multiple interactions, the multiple interaction ambi-
guity function is

χO1,..n
(ω, τ)

=
〈
s(t)eitω, exp

(
τĤ1

)
exp

(
τĤ2

)
... exp

(
τĤn

)
eiσCeiτWs(t)

〉
.

(46)
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This approach may be the key to determining underlying
interactions that can be deeply buried within the return signal.

B. Cross Operator Ambiguity Functions

The cross ambiguity function (CFA) in its’ symmetric form
is defined as

χr,g(ω, τ) =
∫ ∞

−∞
e−itω r∗(t+

τ

2
)s(t− τ

2
) dt, (47)

where s(t) is the transmitted signal, while is the correla-
tion signal r(t). This is the traditional form for the CFA.
Instead of this form, a new type of CFA is proposed based
on quantum mechanics. Any signal can be expressed as a
complex vector. A new approach to signal amplification based
on work by Aharonov on amplification of the measurement
of some operators in quantum phenomena [16]. Since any
quantity that involves the usage of expected values of complex
signals can be expressed in the same mathematical form as
the quantum mechanical approach to signal amplification, the
Aharonov approach suggests a potential candidate for the
signal amplification that is similar to a CFA. The classical
equivalent to this is what we choose to call cross correlation
signal amplification. The definition of the cross correlation
amplification of an observable Â of a waveforms |Ψi〉 and
|Ψi〉 are:

f 〈Across〉i =

〈
Ψf |Â|Ψi

〉
〈Ψf |Ψi〉

(48)

One can think of this is that we are measuring observable with
Â waveform |Ψi〉 while we correlate the return signal Â |Ψi〉
with correlation waveform |Ψf 〉. As an example of amplifica-
tion, define two operators: the signal splitting operators

W+ =
[

1 0
0 ε

]
, and W− =

[
ε 0
0 1

]
, (49)

while the component selection operators are defined as

S+ =
[

1 0
0 0

]
, and S− =

[
0 0
0 1

]
. (50)

The input signals can be defined in two different ways, as∣∣ΨP (t)
〉+

in
= W+ |Ψ (t)〉P or

∣∣ΨP (t)
〉−

in
= W− |Ψ (t)〉P ,

(Form A)
or∣∣ΨIQ (t)

〉+

in
= W+ |Ψ (t)〉P or

∣∣ΨIQ (t)
〉−

in
= W− |Ψ (t)〉P .

(Form B)
The output signals are defined as∣∣ΨP (t)

〉+

out
= S+ |Ψ (t)〉P or

∣∣ΨP (t)
〉−

out
= S− |Ψ (t)〉P ,

(Form A’)
or∣∣ΨIQ (t)

〉+

out
= S+ |Ψ (t)〉P or

∣∣ΨIQ (t)
〉−

out
= S− |Ψ (t)〉P .

(Form B’)
Now on a purely theoretical level, if we assume that one of
the four possible |Ψ (t)〉in are used to make a measurement

M of some property of a distant object, the effect of the
measurement can be signal amplification.

We can define the cross correlation measurement amplifica-
tion of measurement operator as

f 〈Mcross〉i = out 〈Ψ (t)|M |Ψ (t)〉in

out 〈Ψ (t) |Ψ (t)〉in

. (weak)

There are 16 possible versions of weak, but one is sufficient
to illustrate the point. One achieves ε−phasor amplification of
M by the choice

f 〈Mcross〉i =
−
out

〈
ΨP (t)

∣∣M ∣∣ΨP (t)
〉+

in
−
out 〈ΨP (t) |ΨP (t)〉+in

. (51)

Carrying out the computation gives

f 〈Mcross〉i =
−
out

〈
ΨP (t)

∣∣M ∣∣ΨP (t)
〉+

in[
x (t) y (t)

] [
0

εy (t)

] (52)

=
−
out

〈
ΨP (t)

∣∣M ∣∣ΨP (t)
〉+

in

εy2 (t)
.

Thus, one gets amplification of −
out

〈
ΨP (t)

∣∣M ∣∣ΨP (t)
〉+

in
pro-

vided εy2 (t) < 1. This will not always be true so the
conditions under which it is true need to be investigated. One
achieves ε−I/Q amplification of M by the choice

f 〈Mcross〉i =
−
out

〈
ΨIQ (t)

∣∣M ∣∣ΨIQ (t)
〉+

in
−
out 〈ΨIQ (t) |ΨIQ (t)〉+in

=
−
out

〈
ΨIQ (t)

∣∣M ∣∣ΨIQ (t)
〉+

in

εQ2 (t)
.

Thus, one gets amplification of −
out

〈
ΨIQ (t)

∣∣M ∣∣ΨIQ (t)
〉+

in
provided εQ2 (t) < 1.

Another example to illustrate this is polarization. Polariza-
tion can only be measured with special radars, such as certain
types of SAR radars, none the less, the expectation value is
equivalent to that of taking the expected values of a spin matrix
in quantum mechanics. Shape and size are multi-dimensional
attributes of scattering objects that have multi-dimensional
versions of the delay operators. There is another aspect of the
operator formalism to discuss related to physics. Any non-
scalar return signal has components that can be written like
this. Consider a broadcast waveform of the form

|Ψi〉 =
1√
2

[
exp (iα/2)

exp (−iα/2)

]
, (53)

while the cross correlation waveform is

|Ψf 〉 =
1√
2

[
exp (−iα/2)
exp (iα/2)

]
. (54)

The operator we wish to observe is a polarization operator,
which can be represented by the matrix

Â = σ1 =
[

0 1
1 0

]
(55)
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〈
Â

〉
weak

=
〈Ψf | Â |Ψi〉
〈Ψf |Ψi〉

=

1
2

[
exp (iα/2)

exp (−iα/2)

]T [
exp (−iα/2)
exp (iα/2)

]
exp(iα)+exp(−iα)

2

=
1

cosα
(56)

which magnifies one particular polarization component by an
arbitrary amount. This example of amplification, which is
analogous to spin systems in quantum mechanics, can be found
polarimetric radars. The general form of a polarization matrix
can be written as the sum of the four polarization matrices

σ0 =
[

1 0
0 1

]
, σ1 =

[
1 0
0 −1

]
, (57)

σ2 =
[

0 1
1 0

]
, σ3 =

[
0 −i
i 0

]
. (58)

Amplification works for any of these operators as well. The
polarization matrix Ψ for an electromagnetic interaction can
be written as the sum of three matrices:

Ψ =
1
2

3∑
j

Sjσj (59)

where S0 = I , S1 = Ip cos 2ψ cos 2χ, S2 = Ip sin 2ψ cos 2χ,
S3 = Ip sin 2χ. Moderate power radars, which have a variety
of applications to the remote sensing and for search and rescue
applications, can be written as a superposition of these type
of operators, so the ability to amply would help detect hidden
objects in background.

This suggest that one could define an Aharonov cross
ambiguity function for an operator Â as

χA
r,s(ω, τ) =

〈
e−itω r∗(t), exp

(
τÂ

)
s(t)

〉
〈e−itω r∗(t), s(t)〉 , (60)

which can be readily generalized to vector signals. Note this
type of cross ambiguity function would lead to new ways to
design waveforms which are significantly different than might
be considered by traditional approaches to waveform design.
This new approach will be considered in a future paper.

IV. CONCLUSIONS

The viewpoint that an ambiguity function can be interpreted
as the expected value of an operator widens the horizon for
thinking about the waveform target interaction. The operator
method is a much richer way to look at the radar measurement
problem because of its ability to produce a wide variety of
distributions associated with the information contained in a
signal. In particular, it is possible to put the ambiguity function
in a wider context as part of a general theory of measurement.
There is a much greater freedom of description of the same
physical situation which suggests that we can find information
present in waveforms that a waveform designer would not
think to look for. This approach to incorporating quantum
mechanical ideas has been championed by Baraniuk[17],[18]

recently by extending the Hermitian operator approach in
quantum mechanics to unitary operators in signal processing.
The specifics of the type of operators matter relative to the
physics of the interaction of the target with the waveform, so
this may be important for future extensions of this work.

Acknowledgement 1: Thanks to Greg Coxson for encourag-
ing the writing of this paper. The concepts discussed in this
paper arose after hearing a talk by Y. Aharonov and latter
discussions with him about the concepts of weak amplification
of classical signals.
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