
 

 
  

TIME RESOLVED FILTERED RAYLEIGH SCATTERING MEASUREMENT OF A 
CENTRIFUGALLY LOADED BUOYANT JET 

 
 

THESIS 
 
 

Firas Benhassen, 1st

 
 Lt, TUNAF 

AFIT/GAE/ENY/11-M01 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 

 



 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official policy or  
position of the United States Air Force, Department of Defense, the United States Government, 
the Tunisian Air Force, nor the Tunisian Government.  This material is declared a work of the 
U.S. Government and is not subject to copyright protection in the United States.   
 

 

 

 

 

 

 

 

 

 

 

 



AFIT/GAE/ENY/11-M01 
 

 

TIME RESOLVED FILTERED RAYLEIGH SCATTERING MEASUREMENT OF A 
CENTRIFUGALLY LOADED BUOYANT JET 

 
 

THESIS 
 
 

Presented to the Faculty 

Department of Aeronautics and Astronautics  

Graduate School of Engineering and Management  

Air Force Institute of Technology  

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the  

Degree of Master of Science in Aeronautical Engineering  

 

 

Firas Benhassen, BS  

1st

 

 Lt, TUNAF 

March 2011  

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 





iv 
 

AFIT/GAE/ENY/11-M01  
 

Abstract 

 

The combustion process within the Ultra-Compact Combustor (UCC) occurs in the 

circumferential direction.  The presence of variable flow density within the circumferential 

cavity introduces significant buoyancy issues.  On the other hand, G-loading caused by the 

presence of centrifugal forces, ensures the circulation of the flow in the circumferential cavity 

and enhances the completion of the combustion process before allowing the exit of the hot gases 

to the main flow.  The coupling between buoyancy and high G-loading is what predominately 

influences the behavior of the flow within the UCC.  In order to better understand the 

combustion process within the UCC, three different experiments were run.  The overall objective 

of these experiments is to investigate the effects of both buoyancy and G-loading on the 

trajectory and the mixing of a jet in a co-flow. The first experiment involved setting up the 

Filtered Rayleigh scattering (FRS) technique to be used in this research.  Then, using horizontal 

and curved sections, two types of experiments were run to characterize and measure both G-

loading and buoyancy effects on the overall behavior of a jet in a co-flow of air.  Measurements 

were made using a FRS set up which involved a continuous wave laser and a high speed camera 

showing adequate signal to noise ratio at 400 Hz.  Collected time resolved images allowed for 

the investigation of the effects of G-loading and buoyancy on the mixing properties and 

trajectory of the jet.  
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TIME RESOLVED FILTERED RAYLEIGH SCATTERING MEASUREMENT OF A  
 

CENTRIFUGALLY LOADED BUOYANT JET 

 

I. Introduction 

I.1. Background 

The human life on earth is affected in many aspects by fluids.   It is, in fact, impossible to 

imagine life without air, water or blood which fuel most of the living organisms.  The oil and all 

its derivatives are the driving motors of technology and many industrial activities that sustain our 

economy and daily lives.  For hundreds of years, fluids have been the subject of continuous 

interest for physicians, biologists, environmentalists, physicists, chemists, and engineers.  The 

ultimate objective of investigating the characteristics of a fluid flow (whether at gaseous or liquid 

state) is to predict and possibly control its behavior.  When performing these investigations, 

scientists and engineers are interested in the mechanisms that trigger or prevent the occurrence of 

specific patterns or changes within the flow.  In fluid dynamics, the behavior of the fluid is 

studied in relation with inertial, viscous, thermal, and buoyancy effects.  This research will focus 

closely on the dynamics associated with buoyant effects and characterize their contribution in 

shaping the behavior of the fluid flow.   

A jet is considered buoyant when it is discharged into a medium where a large density 

gradient is present.  The jet effective density depends on whether it is hotter or cooler than its 

surrounding fluid.  The density gradient can also be due simply to the presence of different 

species in the medium [1].  Examples of situations or problems involving buoyant jets include 

but are not limited to: the emission of pollutant into the atmosphere or oceanic waters, safety and 

fire hazards associated with leakage of gases such as hydrogen into air [2], and heating issues 
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associated with an uneven temperature distribution within combustion systems.   Therefore, 

studying buoyancy effects proves to be of great importance when it comes to preventing 

environmental hazards, tracking pollutant plumes, or improving combustion efficiency.    

However, acquiring accurate analysis from these investigations is often a challenging task 

due to the sensitivity of the flow properties (velocity, pressure, temperature, etc) to the 

introduction of any intrusive probing device within the medium in question.  Examples of 

intrusive measuring devices include hot-wires, thermocouples, and pitot tubes.  In addition to 

their body influence on the flow, these devices cannot operate properly in harsh media of high 

temperature and pressure such as within a combustion environment [3].  Laser techniques 

however, are non-intrusive and prove to be capable of both high temporal and spatial resolution 

[4].  The non-intrusive aspect of these diagnostic techniques allows for the investigation of the 

flow properties within boundary layers or combustion zones [4].  Particle Image Velocimetry 

(PIV) and Filtered Rayleigh Scattering (FRS) are two of the most important laser techniques 

considered by the researches when studying flow properties.  PIV involves shining a laser sheet 

into a pre-seeded flow and taking a series of images using a camera at a known frame rate.  2D 

velocity is then calculated by comparing consecutive frames and dividing the traveled distance 

by the time difference between the frames [5].  On the other hand, FRS techniques do not require 

the presence of seeds within the flow.  This technique involves the use of a narrow-line 

bandwidth laser along with a camera and a molecular filter used to block unwanted background 

or dust particles interference.   

More specifically, for FRS when a flow is illuminated with a laser beam (or sheet), light is 

scattered due to the presence of particles within the flow.  The intensity of the scattered light is 

proportional to the cross section of the scattering particle or molecule and thus to the density of 
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the species [6].  Using a high speed camera, time resolved information can be obtained by 

capturing scattered light images and constructing density fields [7].  The molecular filter is used 

to absorb the scattered light resulting from the stationary particles and background noise while 

allowing the scattered signal shifted and broadened by thermal and Doppler effects to be 

transmitted [8].  In addition to density profiles, more flow properties can be obtained by relating 

the frequency shift and the broadening of the signal to respectively the velocity and the 

temperature of the scattering species [7] as it will be discussed in the literature review section. 

The FRS technique along with the use of a high speed camera constitutes the basis of this 

research and will be thoroughly described in the second chapter as part of the literature review.  

Now that the overall background of the research is laid out, let us delve into the essence of this 

study and start with its relevance from an aerospace engineering stand point.   

I.2. Problem Statement  

This research is initiated and sponsored by the Propulsion Directorate of the Air Force 

Institute of Technology (AFRL) located at Wright Patterson Air Force Base.  The global scope 

within which falls this study is ultimately integrating the Ultra Compact Combustor (UCC) 

concept with a Highly Efficient Embedded Turbine Engine (HEETE) program [9].  

 

Figure 1. Conceptual (Left) and Actual AFRL UCC Model (Right) 
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The concept of the UCC (shown in Figure 1) stems from the need to develop a more 

compact combustion unit that increases the engine’s thrust to weight ratio while maintaining a 

comparable fuel efficiency and structural robustness. The thrust to weight ratio is increased by 

the reduction of the overall weight of the engine as a direct result of the more compact design.  

The basic idea is to inject fuel and air into a circumferential cavity where combustion occurs in 

the presence of high G-loading caused by the spinning of the unit.  The centrifugal effect forces 

the unburned (cold/heavy) mixture to remain circulating within the cavity until combustion is 

completed.  The hot (light) combustion products are then driven by buoyancy effects out of the 

circumferential cavity, through the radial vane cavity (RVC), and back to the main flow [10]. 

Combustion occurs within the circumferential cavity which creates a large density gradient due 

to the presence of lighter than air hot products and heavier than air unburned reactants.  This 

density difference brings up buoyancy effects which are the driving forces of pushing the hot gas 

out of the circumferential cavity.  Buoyancy and G-loading effects are both important in the 

combustion process.  Hence, their unique interaction needs to be characterized as they both 

influence the direction of the flow within the circumferential cavity.  As it exits the 

circumferential cavity, the hot gas encounters the main flow.  Initially, this creates a jet in cross 

flow situation that quickly transforms to a hot jet in a relatively cold co-flow as the mixture is 

carried downstream by the main flow.  In order to create an even temperature profile across the 

turbine vanes and hence avoid burning the turbine blades, we need to understand the mechanism 

that ensures the migration of the hot gas from the exit of the circumferential cavity and radically 

down the turbine airfoils.  This migration ensures the mixture of the hot gas with the colder main 

flow and allows for cooling to occur [9].  As a result, it is apparent that buoyancy affects the 

flow direction, mixture, and cooling process within the UCC.  



5 
 

 

Figure 2. UCC Integration with Turbine Vanes (modified) 

Figure 2 shows a schematic of the UCC integration with turbine vanes.  Whether the UCC 

concept is integrated with a missile size engine, a fighter size engine, as an inter-stage turbine 

burner (ITB), or as a main combustion unit between the compressor and turbine, there are 

fundamental questions to be answered to ensure a successful integration [9].  These questions 

underline the objectives of this research.     

I.3. Objectives 

The objectives of this study can best be described by finding the answer to the following 

questions: 

1. How does buoyancy affect the direction of the flow within the circumferential cavity? 

2. Does G-loading work against or with buoyancy with respect to the mixing of the hot and 

cold flow in the main cavity?  

3. What is the trajectory of the exiting hot gas once it is co-flowing with the relatively 

colder main flow?  
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The answers to these questions will be sought simultaneously from two collaborating 

perspectives.  The first one, ties the relevance of these objectives to the UCC integration and the 

engineering aspect of the posed problems. The second set of objectives works towards 

strengthening of fundamental concepts involving buoyant jets and highlights the academic values 

of the investigation along with the use of time resolved FRS technique.    

I.4. Implications 

Knowing the direction of the flow at any sub-stage of the combustion will help optimize 

the integration of the UCC with a fighter size turbo jet engine while ensuring structural 

robustness of the turbine blades.  The study of centrifugally loaded buoyant jet in the presence of 

a co-flowing gas has not been thoroughly investigated by previous researchers which makes this 

work original.  The findings of this research will ensure a better understanding of the dynamics 

governing a buoyant jet’s behavior.   In addition, the use of the FRS techniques in conjunction 

with a high speed camera will allow for the acquisition of time resolved concentration profiles.  

In this manner, intermediate fluctuations and turbulence effects can be recorded, captured, and 

analyzed.  The contribution added by the time resolved aspect of the data acquisition in this 

research will help understand the interaction between the jet and the co-flow.  The time 

resolution difference in data acquisition has drastic implications in the way we interpret physical 

phenomena associated with the centrifugally loaded buoyant jet.  
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II. Literature Review 

The relevance of any research stems from the understanding of the problem in hands and 

the reported efforts put in to solve it.  It is therefore critical to present selected previous studies 

that put this work into context and strengthen its relevance.  Specifically, this literature review 

will be divided into three major parts.  First, a theoretical background of the Rayleigh scattering 

phenomenon and the Filtered Rayleigh scattering technique employed in this study is described.  

Second, results from major studies characterizing the behavior of buoyant jets are briefly 

presented.  Lastly, the relevance of this work to the UCC and the effects of G-loading on the 

buoyant jet behavior are introduced while referencing previous investigations.   

II.1. Rayleigh-Scattering 

The Rayleigh scattering phenomenon was first documented by the English physicist Lord 

Rayleigh in the 19th

6

 century.  His studies aimed to understand the origin of the intensity and 

color of the atmosphere [ ].  Rayleigh scattering pertains to the elastic scattering from molecules 

as opposed to Mie scattering which is attributed to the scattering from particles [11].  The 

analytical theory and model for Mie scattering was developed by Gustav Mie who distinguished 

between the scattering of light by small particles (with diameters less than the wavelength of 

light) and bigger particles and molecules [3].  Mie’s mathematical model indicated that the 

intensity of the scattered light (I) caused by a single particle is proportional to the particle’s 

diameter (d) and the inverse of the wavelength raised to the fourth as shown in Equation (1) [3].  

Equation (1) offers an explanation to the origin of the blue color of the sky.  Blue light has the 

shortest wavelength of all the visible light wavelengths and hence scatters more than the other 

lights such as red, green or yellow.  
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 Rayleigh scattering builds on these principles by realizing that when light goes through a 

gas, it is scattered by the molecules and particles present in the gas [11].  In order to formulate a 

full developed theory that includes scattering from molecules, the diameter (d) is replaced by a 

parameter called the total cross section and given the Greek symbol σss.  Equation (1) is then 

modified resulting in Equation (2) which relates the power of scattered (Ps) light to the incident 

light intensity (Io 6) [ ]:  

 

 
 

Figure 3. Rayleigh Scattering Spectrum (as inspired by Mielke et al.’s figure) 
 

The amount of scattered signal (area under the curve in Figure 3), is proportional to the 

cross section and hence to the density of the molecules.  Furthermore, when light is scattered, 
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two things occur.  First, the scattered light is shifted in frequency due to Doppler Effect.  Second, 

the scattered light line-width is broadened as shown in Figure 3 due to the increase of the kinetic 

energy driven by the particles’ motion.  Since the frequency shift is mainly due to the 

translational motion of the molecules [11], the flow velocity can be measured by processing the 

scattered light images at different locations.  Velocity can be calculated using the Yeh and 

Cummins equation (given by Equation (3) ) which relates the velocity V, the scattering angle θ, 

the frequency shift νD, 7and the incident light wavelength λ [ ].  

 

 

Figure 4. Diagram of a Typical Filtered Rayleigh Scattering Set Up (as inspired by Miles et 
al.’s figure) 

The velocity V is the scalar component of the vector velocity in the direction to which the FRS is 

sensitive as shown in Figure 4 [7].   Further discussion of the frequency shift and the Doppler 

Effect will be presented in fourth chapter of this report.  

In addition, the line width of the scattered signal turns out to be proportional to the flow 

temperature (as shown in Figure 3).  Quantitative values of temperature can be determined using 

Equation (4) below [12]: 
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Equation (4) allows for the calculation of the temperature T, given the angle between the 

illumination and detection (θ), the incident light wavelength (λ), the mass of the gas molecule 

(m), the linewidth (∆f), and the Boltzman constant (k).  

Different species have different molecular cross sections and hence different Rayleigh 

scattering spectra.  This outlines the utility of this concept as it allows for possible observation of 

the individual behavior of the species within the flow.  In fact, even the reverse task proves to be 

feasible.  In 2004, Sneep and Ubachs were able to back out the Rayleigh scattering cross sections 

of several species such as CO2, CO, CH4

Table 1

, and others by measuring the loss rate of the scattered 

light.  As shown in , the measured values were within 15% difference of the theoretical 

values.  The theoretical values were calculated using curve fit approximation and medium 

refractive index correction equations [13].   

Table 1. Measured vs Tabulated Cross Section Values (as given by Sneep et al.) 

Gas Measured σ (10-27cm2 Tabulated σ (10) -27cm2 Error (%) ) 
Ar 4.45 4.56 0.11 
N2 5.10 5.30 3.8% 
CO 6.19 6.82 9.2 
CO 12.4 2 13.39 7.5 
CH 12.47 4 14.69 15 
N2 15.9 O 18.19 12.6 
SF 32.3 6 34.1 5.2 

 

However, the presence of dust particles or any background noise in the medium in question 

distorts the scattered signal and gives false readings and analysis regarding the properties of the 

flow.  This drawback of the Rayleigh scattering application inspired the development of more 

robust techniques such as the Filtered Rayleigh Scattering (FRS).  
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In the FRS technique, a molecular filter is used to block scattered signal from walls, 

windows, and particles and transmit only scattered light from molecules of interest as shown in 

Figure 5 below.  A filter should have steep cut off edges and allow for an overlap of frequencies 

with the tunable laser in use [8].   

 
 

Figure 5.  Illustration of the FRS Concept (as inspired by Miles et al.’s figure) 
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The top graph of  Figure 5 shows the background/particle scattering signal and the 

molecular Rayleigh scattering signal. The bottom graph shows the absorption spectrum of the 

molecular filter along with the transmitted Rayleigh scattering signal [8].   

 
In their study on atomic and molecular notch filters, Miles et al. present three main criteria 

for the selection of the filter [8].  

a. Sharp cut off edges for high spectral resolution. 

b. Deep absorption well that translates into almost 0% transmittance in the blocking 

region and transmission close to 100% outside the absorption walls. 

c. Overlap with tunable laser in use. 

The molecular filter profile should be determined to optimize the collection of the scattered 

light by tuning the laser to an adequate frequency.  The goal is to make sure that most of the 

scattered light (broadened and shifted) fall outside the absorption well of the filter while ensuring 

near total absorbance of the incident signal itself, the background noise, and Mie scattering 

(scattering due to particles).  An iodine filter will be used for this research along with the 

Coherent Verdi V12 continuous wave (CW) laser at 532 nm.  The iodine filter is recognized for 

having many transitions throughout the visible portion of the frequency spectrum.   Figure 6 

below illustrates the transmission curve of an iodine filter using a 7W continuous wave Coherent 

Innova Sabre R Argon ion laser at 514 nm [14].  It is important to note that the higher the 

temperature of the cell, the deeper the absorption well gets.  In fact at 90o there is approximately 

100% blocking (0% transmission) for a small range of wavenumber.    



13 
 

 
 

Figure 6. Iodine Filter Absorption Well Characterization 

The equation for the intensity of light transmitted through a filter is given by Equation (5) : 

 

Where I is the transmitted intensity, Io

8

 the incident intensity, α is an absorption constant, l the 

length of the filter, and V(w) a line width function that depends on the incident wavelength and 

molecular collisions (i.e the temperature of the cell) [ ].  The take away of this equation is that 

the filter’s absorption well depends on the temperature of the filter and the wavelength of the 

incident light.  It is necessary therefore to characterize the filter’s absorption well at 532 nm 

before using it to ensure optimal Rayleigh scattering signal collection.  The goal is to determine 

the center line frequency of the absorption well as well as its width. As mentioned in the 

methodology section of the first chapter, the characterization of the iodine filter at 532 nm is the 

heart of the first experiment which will be fully discussed in Chapter Three of this report. 

The relevance of the present work stems from the need to characterize the effects of 

buoyancy and its governing parameters on the trajectory of a jet in a co-flow and its mixing 
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properties.  The present work is based on a Filtered Rayleigh scattering (FRS) set up that allows 

the capture of the intensity of the scattered light off of the molecules present in the testing area.  

The fundamentals of the FRS are discussed throughout this work.  This non intrusive technique 

involves the use of a laser source, an iodine filter to block unwanted signal, and a camera to 

capture the scattered light signal.  In previous work, the use of a laser light along with a 

molecular filter proved to be convenient when seeking either quantitative or qualitative mixing 

measurements of gaseous flows.  Jenkins and Desabrais used Planar Doppler Velocimetry (PDV) 

to resolve velocity measurements within a low speed flow field [15].  The set up involved the use 

of a tunable laser (Coherent Verdi V-18) in conjunction with three camera/iodine filter systems.  

The iodine filters were used to discriminate the Doppler shifted scattered light (due to the motion 

of the particles) from the un-shifted one.  PDV is similar to FRS in the way that data is extracted 

out of filtered scattered light using molecular cells such as the iodine cell used in this study.   

In addition, one of the most recent studies in the literature pertaining to the acquisition of 

time resolved concentration measurements in a gaseous flow is the work of Cheung and Hanson 

in 2009.  Using a tracer-based laser-induced fluorescence (LIF) diagnostic applied on a N2 jet 

with 4% toluene (by mole fraction) issuing into air, the authors were successfully able to obtain 

fluorescence signal time histories at a frame rate of 18.5 kHz using a continuous wave laser [16].   

II.2. Effects of Buoyancy and G-loading on a Jet’s Behavior 

 This section will highlight the dynamics and mechanisms associated with a centrifugally 

loaded buoyant jet as described in a collection of the most relevant reported efforts in this area.   

II.2.1. Buoyant Jets 

As mentioned in the introduction, the leading motive behind this research is to understand 

the dynamics of a buoyant jet subjected to a G-loading in a combustion environment such as in 
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the case of the UCC.  An important step toward understanding these dynamics deals with the 

study of the fundamental concept of buoyancy and the researches associated with the behavior of 

buoyant jets in different configurations (horizontal, vertical, G-loaded, etc) and various 

environments such as combustive or cold medium.   

In fluid dynamics, buoyancy is considered when a fluid with an initial momentum is 

discharged into a medium where a density gradient is present.  This gradient can be due to the 

presence of various species or a difference in the temperature of the present entities (thermal 

gradient) which alters their effective densities [17].  If we simply consider the behavior of an 

impinging horizontal low density jet into a higher density medium, we anticipate the trajectory of 

the jet to be influenced at least by inertial forces, body forces, density gradient, thermal gradient, 

molecular diffusion, viscosity, and turbulence.  Due to the coupling between all these physics, 

buoyancy is usually described in the literature in terms of different parameters such as Reynolds 

number, Froude number, Grashof number, and Richardson number.  These parameters are 

defined respectively as follows: 
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Where ρ is the jet density, D is the jet diameter, ν is the jet kinematic viscosity, V is the velocity 

of the jet, Q is the volumetric flow rate, g is the gravitational acceleration, T is the jet’s 

temperature, Ta

One effort in the literature that was fundamental to this research was the study performed 

by Reeder et al. at AFIT in 2008 [

 is the ambient temperature, and β  is the coefficient of thermal expansion of the 

jet.   

18].  Its relevance stems from the use of FRS to collect 

concentration measurements that allowed the investigation of the trajectory and the cross 

sectional shape of a buoyant jet in ambient air.  Both positive and negative buoyancy were 

investigated using respectively horizontal jets of helium and carbon dioxide.  In order to capture 

images of the jet’s cross section, the authors used a continuous wave laser operating at a nominal 

frequency of 514.5 nm wavelength, an iodine filter, and a PCO.4000 camera.  The Froude 

number was varied between 0.71 and 46 while the Reynolds number ranged from 50 to 1200.   

The study acquired data at five different stream-wise locations to track the trajectory of the jet.  

Figure 7 illustrates a sample raw picture of the helium jet cross section captured at x/D = 1.5 

location.  The helium jet is darker than the surrounding air spectrum since helium has a much 
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smaller cross section (only 1.4 % of that of air) than air [18] and hence scatters much less laser 

light.  Figure 8 and Figure 9, however, depict samples of the processed FRS images for both the 

helium and CO2

 

 jets. 

Figure 7.  Helium Jet Cross Section for Fr = 0.71 and Re = 100  

 

 
 

Figure 8. Filtered Rayleigh Scattering Data of a Buoyant Jet Flowing at 7.5 SLPM of He 
 

 

 
 

Figure 9. Filtered Rayleigh Scattering data of a Buoyant Jet Flowing at 1 SLPM of CO2 
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As expected, the lighter than air jet (helium) exhibited positive buoyancy while the heavier 

than air jet (CO2) had negative buoyancy.  In addition, it was noted that  for values of Froude 

number between 1.5 and 3 the jet’s cross section exhibits  the formation of a plume (a tear drop 

shape) ejecting from the core of the jet and directed upward for positive buoyancy (helium) and 

downward for negative buoyancy (CO2 Figure 7).  Raw images of these plumes are shown in  

and Figure 10 for respectively the helium and CO2 

 

jets.  

Figure 10. CO2

The formation of these plumes for specific ranges of Froude number was also documented 

by Arakeri et al. [

 Jet Cross Section for Fr = 0.71 and Re = 100  

19] in their study on buoyant horizontal laminar jet.  Their set up was based on 

“the injection of pure water jet in a brine solution.” The study showed that horizontal jets were 

subjected to a bifurcation (formation of plumes) at low Froude number conditions between 

values of 1 and 4.   

In addition, it was noted that at sufficiently low Froude number (less than unity), the cross 

section of the jet exhibited the formation of side lobes.  For Froude number values less than unity 

the tear drop shape was suppressed and two plumes (side lobes) emanated from the sides.  This 

behavior, which could clearly be seen in Figure 8 and Figure 9 above, was noted for both 

positive and negative buoyancy.  The formation of these lobes was more apparent at low values 
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of Froude number where buoyancy dominates inertia forces which underlines the effect 

buoyancy has in shaping the cross section of the jet.  In Reeder et al.’s study, the effect of inertia 

on the shape of the jet’s cross section was also investigated through the variation of Reynolds 

number.  The study showed that the change in the shape of the plumes was minimal as Reynolds 

number was changed.  This suggests that the shape of the jet’s cross section is driven by 

buoyancy rather than inertia [18].  Therefore, turbulence was not accounted for during these 

tests.  In fact, the sampling rate (1 Hz) was relatively low and would not have allowed for time 

resolved images where turbulent effects could be observed.   

Turbulence, however, was investigated by Subbarao in 1989 when he studied the behavior 

of a buoyant jet as a function of Richardson and Reynolds numbers. The study involved taking 

Schlieren photographs of a vertical helium jet as it was injected in a co-flowing air stream [1]. 

Cone-like structures were repeatedly seen in the Schlieren photographs and were essentially 

vortex rings.  These structures were the direct result of the interaction between buoyant forces 

and the jet’s momentum.  The vortex rings appeared to exhibit a constant periodicity for ranges 

of Richardson number values between 1 and 4 and Reynolds number values between 260 and 

900. The vortex rings became aperiodic for values of Richardson number greater than 5.  

Furthermore, the study concluded that the higher the Richardson number (greater buoyancy), the 

more accelerated the core jet (the cap of the cone) got and hence the more stretched out the cells 

(cones) were.  In addition, it was also noted that at higher Reynolds number the flow was more 

turbulent which was expected.  However, the transition from laminar to turbulent flow occurred 

at a point closer to the jet exit as either Richardson number or Reynolds number increased which 

indicated that the transition point was not solely affected by the Reynolds number but also by 

buoyancy effects [1].   
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On a side note, it was noted that Subbarao used an absolute expression for the jet velocity 

in the calculation of Richardson and Reynolds numbers even in the presence of a co-flowing air.  

As it was mentioned earlier, this study will investigate the importance of the relative velocity of 

the jet with respect to the co-flow when calculating buoyancy parameters.  This will attempt to 

understand how the Froude number should be defined in the presence of a co-flow since the 

traditional definition does not include any term associated with a co-flowing jet.  Testing will 

compare the impact of changing both the absolute velocity range and the relative velocity 

difference between the jet and the co-flow to understand the ongoing physics.   

As documented by the literature, numerical and experimental studies involving hot and 

cold impinging jets were carried out to characterize the effect of both aiding and opposing 

buoyancy on the flow behavior.  One of these investigations was the numerical study performed 

by Kumar and Yuan in 1988 which involved simulating an impinging jet (both hot and cold) in a 

rectangular cavity with constant wall temperatures.  The conclusion of this study is that an 

impinging cold jet encounters opposing buoyancy which prevents it from penetrating deeper 

down the cavity. On the other hand, a hot jet penetrates all the way to the bottom of the cavity 

due to the absence of opposing buoyancy (presence of aiding buoyancy).  It was noted in this 

analysis that a vortex was created on the bottom left corner of the cavity due to the presence of 

two opposing flows (upward and downward) in the case of the cold jet while no vortex was 

observed in the case of the hot jet [20].   

A similar investigation was performed by Sherif and Pletcher in 1988 on aqueous turbulent 

hot jet.  The investigation confirmed the presence of a “kidney shaped” structure of the jet cross 

section.  The behavior of the flow was analyzed using contours of mean and fluctuations of 

temperature across and along the jet.  The contours were generated at velocity ratios of 1, 2, 4, 
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and 7.  The authors discovered that the jet was more turbulent away from the centerline of the jet 

(where the jet lost some of its momentum).  In addition, the increase in the velocity ratio resulted 

in a more pronounced and effective mixing of the jet and the streamline flow [21].        

II.2.2. G-loaded jet 

For the purpose of this research and its application on the UCC, the effect of G-loading on 

the jet’s trajectory needs to be considered as well.  In general, the G-load is given by Equation 

(11) which is a relationship between the mass flow rate, the radius of curvature (r), the jet’s 

density (ρjet

 

), and its cross sectional area (A).  Within the UCC, the values of G-loading range 

between 500 and 2000.  The G-loading is controlled by varying the velocity of the jet or 

essentially the mass flow rate.  Equation (11) provides an expression for G-loading that will be 

used in this study.   

The U.S. Air Force Research Laboratory (AFRL) has been, since 2001, the leading party in 

the conduction of studies and investigations geared toward gaining a better understanding of the 

combustion process within the UCC.  In 2004, Armstrong used the concept of 

chemiluminescence to underline the effects of the centrifugal force on the combustion process 

using the UCC test rig located in the AFRL’s Atmospheric Combustion Research Laboratory 

[22].  The study involved running the UCC using the JP8+100 fuel and measuring the intensity 

of light emitted by the three excited radicals C2* (excited C2), OH* (excited OH), and 

CH*(excited CH) at eight different port locations in the inner and outer radius of the 

circumferential cavity.  The study showed that the intensities ratios CH*/OH* and C2*/OH* 

were at their highest values at the ports in the outer radius of the circumferential cavity.  This 
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indicated that the largest amount of fuel air mixture was reacting in the area of high G-loading 

(the outer radius).  Furthermore, it was noted that the intensity of C2* decreased as the G-loading 

increased (going from inner to outer radius of the cavity).  This trend indicated that the “higher 

G-loadings reduced the residence time” which “could quench the C2 22* production” [ ]. 

In an additional effort to characterize the effects of G-loading on the combustion process, 

the Air Force Institute of Technology’s Combustion Optimization and Analysis Laser (COAL) 

Laboratory conducted a series of studies involving both a straight and a curved section of the 

radial cavity as shown in 

  

Figure 11.  Using hydrogen as fuel, the G-loading was varied from 0 to 

15000 g’s by controlling the mass flow rate and equivalence ratio.  In order to capture the effects 

of G-loading on the completeness of the combustion process, turbulent intensity, and temperature 

profile,  Particle Image Velocimetry (PIV) along with single-line and two-line Planar Laser-

Induced Fluorescence (PLIF) were used.  The investigation revealed an increase in the turbulent 

intensity with respect to G-loading.  This led to the conclusion that the increase in centrifugal 

force results in a better mixing, a reduction in chemistry time, and hence an advancement of the 

combustion process.  This conclusion was also underlined via the reduction of the amount of OH 

in the main flow [23].  

 

Figure 11. UCC Sections: Curved (Left) and Straight (Right) 
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In 2009, Lapsa and Dahm investigated the effects of positive and negative high centripetal 

accelerations (up to 10,000 g’s) on both flame propagation and blowout limits using premixed 

propane –air flames stabilized by backward step. The results of their study could simply be 

summarized by Figure 12 which illustrates the chemiluminescence and shadow graph images 

they acquired [24].    

 

Figure 12. Chemiluminescence and Shadowgraph Images for ac=0, ac>0, and ac<0 

The authors noted that in the case of positive acceleration, the buoyancy forces drove the 

hot products (with lighter density) to the center of the turn and that the higher the centrifugal 



24 
 

force the better the mixing between hot and cold species was.   However, in the case of negative 

acceleration, the opposite scenario occurred.  At higher (in absolute value) centripetal 

acceleration, the separation between cold and hot gases was more pronounced which resulted in 

less mixing.  For both positive and negative acceleration, the study concluded an overall increase 

in the flame propagation across the channel.  Lastly, the authors discovered that the centripetal 

force prevented the formation of large scale distortion and turbulence (as can be seen clearly in 

Figure 12) which resulted in the stabilization of the flame and hence the increase of the blowout 

speeds [24].  

II.3. Literature Review Findings and Unanswered Questions 

We deduce from the literature review that a horizontal buoyant jet (whether for positive or 

negative buoyancy) is subjected to a bifurcation for a Froude number values between 1 and 4.  

On the other hand, the center plume is suppressed from the core jet and replaced by two side 

lobes for Froude number less than unity (Reeder et al.) [18].  These effects are less pronounced 

for high values of Froude number (Fr>7) where the jet is momentum driven.   Will these 

observations still hold when a co-flowing air is introduced to the flow field? How will the 

buoyant jet trajectory change when a co-flowing air stream is introduced?   These are some of 

the relevant and unanswered questions that the current research will attempt to answer.   

Based on Subbarao’s study [1], the jet’s trajectory is characterized by the formation of 

periodic and aperiodic vortex rings in the presence of a co-flowing air.  The periodicity of these 

structures is more apparent for 260 <Re<900 and 1 <Ri<4.  Subbarao, however, was 

investigating the classical case of a vertical jet.  This study will investigate similar parameters, 

however with initially a horizontal jet and later with a G-loaded jet. Will the horizontal jet in a 
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co-flow of air show the same structures?   If so, is it possible to pick up the frequency of some of 

these periodic structures in the presence of a co-flow?   

Furthermore, we claim that in the circumferential cavity of the UCC, the cold unburned 

fuel keeps circulating and being pushed outward until it is completely burned.  This fact was 

partially validated by Dahm’s study [24] which revealed that positive acceleration (positive g’s) 

forced the heavier gas to move outward.  Dahm’s research though was performed in a 

combusting environment and did not consider the presence of a sustained flow.  Then, how 

would changing these conditions affect the direction in which the cold gas goes?   

Investigating the behavior of the buoyant jet in the presence of a co-flow is one of the 

fundamental objectives of this study.  Particularly, this situation figures during the fuel injection 

into the circumferential cavity.   Based on Kumar and Yuan’s study [20], a hot flow injected in a 

cold medium penetrates deeper than when a cold flow is injected into a hot environment due to 

the absence (and respectively presence) of opposing buoyancy.  In addition, at the same 

Reynolds number (as a cold jet), the hot jet exhibits higher velocity since it has lower density.  

This study however does not provide any details on the progression of the injected jet with 

respect to time.  Will it stay deeper in the cavity or eventually move upward?  Sherif  et al.’s 

study [21] on the other hand, concluded that the increase in the jet to air velocity ratio resulted in 

a more pronounced mixing between the jet and the cross-flowing air. Will this observation, 

however, hold true in a more complex configuration where G-loading and co-flowing air effects 

are introduced simultaneously?   

The relevance of this research stems directly from the need to answer all these questions 

which go in parallel with the list of objectives previously set in chapter one of this report. 



26 
 

III. Methodology 

The methodology developed and executed for this research is outlined in this chapter.  

Simply put, it entails setting up and performing three separate experiments that ensure the 

collection of adequate data to answer the questions outlined in the research objectives.  The first 

experiment will be associated with properly setting up the FRS technique which requires the 

characterization of the absorption well of the molecular filter to be used in the study.  The second 

and third experiments involve the use of FRS technique to collect jet concentration data using 

two different configurations.  The first configuration is based on a horizontal buoyant jet (helium 

and CO2) in a co-flow of air.  The second configuration (third experiment) involves the use of a 

UCC like curved section with a circumferential cavity where air is flowing around a jet (CO2

III.1. Equipment  

) 

introduced in the cavity using a curved tube.  The idea is to create an environment and a flow 

structure that mimics the flow field within the UCC circumferential cavity.  It is important to 

note that all these configurations will have optical access from different views to allow the 

capture of FRS images.  These experiments along with the equipment are described in the 

following sections. 

The following sections will describe the equipment used in this research program.  With the 

exception of the mass flow controllers used in the third experiment for high flow measurements, 

the same equipment is used for both the second and third experiment.   

III.1.1. Laser 

The laser used in this experiment is the Coherent VERDI Laser DPSS High Power CW 

V12 manufactured by Coherent Inc.  The laser outputs a maximum power of 12 W at a 

wavelength of 532 nm.  The lowest power it outputs is about 0.01 W.  The laser system consists 
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of the laser head, a power supply and a water cooling unit as shown in Figure 13 below.  The 

laser’s wavelength can be tuned by changing the laser’s etalon temperature.   Using the menu 

display located on the power supply, the user can navigate through the different options.  The 

power can be regulated directly using a knob located next to the menu display.  The laser can be 

turned on using first an on/off switch on the back of the power supply, an enable/standby key , 

and a shutter switch located below the menu display.  

 

Figure 13.  Coherent Verdi V12 Laser System 

III.1.2. Iodine Filter  

As shown in Figure 14, the molecular filter used in this experience consists of a 3.5 inch 

glass tube filled with iodine and a protective aluminum cylindrical case.  It is manufactured by 

Innovative Scientific Solutions Inc. (ISSI) of Dayton, Ohio.   

Power supply 

Water Cooler 

Laser Head 

Menu Display 
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Figure 14. Iodine Filter and Accessories 

The filter is attached to a power supply cord and a thermocouple of type K.  The 

thermocouple is used to set the temperature inside the filter and is connected to a Cole-Parmer 

Digi Sense control box.  

III.1.3. Power meters  

 

Figure 15. Orion, Vega, and Coherent Fieldmaster Power Meters 

Iodine Cell 

Cole-Parmer Digi Sense Control 
 

Thermocouple 
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Three power meters were used during the iodine filter characterization experiment (Figure 

15). Two of them (the Orion TH and the Coherent Fieldmaster) were used to acquire the 

reference power and the transmitted power values.   The third power meter was used to check the 

consistency of the measurements during the experiment.  Each power meter is attached to a 

sensor and a power supply.   A power meter sensor is shown in Figure 16 below. The Orion and 

Vega meters are manufactured by the OHIR Laser Measurement Group.  According to their 

respective manuals, the Orion TH meter operating range is between 0.1 μW and 20 kW.  The 

Vega however measures values in range of nW and up to kW.  Because the meters were of 

different types, calibrating them was a necessary task.   The meters were initially zeroed out with 

the laser turned off.  The Coherent Fieldmaster power meter has an accuracy of ±2%.  

 

Figure 16. Power Meter Sensor  
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III.1.4. Mass Flow Controllers 

For relatively low jet velocity measurements, the Brooks Instrument 5850i mass flow 

controller shown in Figure 17 was used to control the jet mass flow rate to ±0.1SLPM.  This flow 

controller was calibrated for air at maximum flow rate value of 30 SLPM.  For high flow 

measurements, the Brooks Instrument 5853i mass flow controller, shown in Figure 18, was used 

instead to control the jet’s mass flow rate to ±0.5 SLPM.  This mass flow controller, however, 

was calibrated for propane at a maximum flow rate value of 200 SLPM.  The same user interface 

(shown in Figure 17) was used to display and control the jet’s mass flow rate value.   

 

Figure 17.  The Brooks Instrument 5850i Mass Flow Controller 

 

30 SLPM Mass Flow Controller 
(Calibrated for Air) 

User Interface Unit 
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Figure 18.  The Brooks Instrument 5853i Mass Flow Controller 

For this research however, both mass flow controllers were intended to be used for Carbon 

Dioxide (CO2) gas and helium.  Equation (12) which is provided by the manufacturer is used to 

relate the output reading and the actual value of the mass flow rates of the CO2

  

 or helium jet.   

As an example, when plugging the corresponding values for the conversion factors for the 

cases when the Brooks 5850i were used for a CO2

 

 jet, the relationship of  Equation (12) becomes 

Equation (13): 

200 SLPM Mass Flow Controller 
(Calibrated for Propane) 
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III.1.5. Camera  

Images used in this study were collected using a monochrome Phantom V12.1 (shown in 

Figure 19) manufactured by Vision Research.  This high speed camera enables image capture at 

up to 1,000,000 Hz.  For this research, data was captured at 400 Hz for the CO2

Figure 20

  (and 80 Hz for 

helium) jet allowing the capture of images at an adequate signal to noise ratio as will be 

explained later on in this thesis report.  In addition, this camera was also equipped with a Nikon 

85mm lens with an f stop of 1.8. The camera has a maximum resolution of 1280x800 and an 

exposure time down to 1μsec.  All images have a pixel depth of 16 bit.   illustrates a 

snap shot of the camera software used to input the camera settings and initiate the data 

collection.   

 

Figure 19.  Phantom V12.1 Camera 

Nikon 85mm Lens (f/1.8) 
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Figure 20.  Camera User Interface Software Screen Shot 

III.1.6. Optics 

Various optical tools were needed in this research to direct the laser beams to the test 

section and control its power.  The optics includes mirrors, beam splitters, density filters and 

others as it will be discussed in this section.   

III.1.6.1. Mirrors 

 

Figure 21. High Reflective (HR) Mirror 



34 
 

High reflective mirrors were used in all three experiments to turn the beam 90o

Figure 21

.  These 

mirrors (shown in ) reflect 99% of the beam while letting only 1% goes through.  The 

mirrors are manufactured by Lattice Electro Optics (LEO), Inc.   

III.1.6.2. Beam Splitters 

The objective behind using a beam splitter (whether the 50-50 or the 90-10) is to reduce the 

power of the beam to a predefined percentage.  The beam splitters (or often called beam 

samplers) used in the first experiment (the iodine filter characterization) are shown in Figure 22.  

Both beam samplers are made by LEO and are designed to be used with a laser of a wavelength 

value around 532 nm.  The 50-50 beam splitter is a 2 inch diameter sampler.  It divides the beam 

into two perpendicular beams transmitting 50% of the incident power each.  The 90-10 power is 

a regular glass plate that allows 90% of the power to pass through while reflecting the remaining 

10% at a 90o

 

 angle.   

Figure 22. Beam Splitters (or Samplers) 

50-50 Beam Splitter 

90-10 Beam Splitter 
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III.1.6.3. Aperture 

The aperture was used in all three experiments.  The intent behind using it is to block the 

unwanted beam spray as shown in Figure 23.  The laser power was set during the measurements 

at 12 W.  It is important at this high power to intercept and block any stray beams to avoid any 

risks of burning any surface the laser may be in contact with.  The aperture is manufactured by 

ThorLabs.  

 

Figure 23. Aperture and Unwanted Beam Spray 

III.1.6.4. Spherical lenses 

Two spherical lenses (shown in Figure 24) were used in the iodine filter characterization 

experiment.  Both lenses were manufactured by LEO.  The first one (on the right) is a 1 inch 

diameter, +25 mm spherical lens used to create a sheet of laser in front of the iodine filter to 

allow for maximum passage through the inner volume of the filter.  The 25mm is the focal length 

Beam Spray 
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and indicates that the beam will be focused to a point at 25 mm behind the lens.  Beyond the 25 

mm, the beam is turned into a sheet as shown in Figure 25.  The second spherical lens is a 2 inch 

diameter, +200 mm lens and is used to focus the sheet of laser back to a point after passing 

through the filter before it is intercepted by the power meter sensor.     

 

Figure 24. Spherical Lenses 

 

Figure 25. Sheet of Laser in front of the Iodine Filter 

2 Inches 

25 mm Spherical Lens 

200 mm Spherical Lens 

Iodine Filter 
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III.1.6.5. Density Filters 

Two density filters were employed during the first experiment to further reduce the power 

of the incident beam.  One density filter with an opacity of 2.0 (98% absorption) is placed in 

front of the wave meter sensor while the other one, with an opacity of 3.0 (99% absorption), was 

positioned in front of the aperture in the way of the main beam directed toward the filter.  The 

two filters are manufactured by LEO. Figure 26 below shows one of the density filters used for 

this experiment.  Similarly to the other optical tools, the density filter is mounted on a ThorLabs 

post.   

 

Figure 26.  A LEO Density Filters 

III.1.7. Wave meter and Accessories  

In order to keep track of the laser’s wavelength, two different wave meters were used 

throughout this research.  The first wavemeter used for the iodine filter characterization is a 

HighFinesse WS-7 wave meter shown in Figure 27.  The wave number (or wavelength) values 
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were acquired via the WS-7 software provided by the company TOPTICA.    According to the 

WS-7 user’s manual, the device is capable of measuring wavelength values in the range between 

192 nm and 2250 nm.  In addition, it can be used for both pulsed and continuous wave lasers. 

When operating between 370 nm and 1100 nm, the device has an accuracy of 60 MHz which 

corresponds to approximately 0.00005 nm.    

 

Figure 27.  WS-7 Wavemeter Unit 

The second wave meter is the Brsitol Model 621 wavemeter.  The Bristol wavemeter was 

used in the second and third experiments.  This wavemeter has comparable characteristics as the 

WS-7 wavemeter mentioned earlier. Both wavemeters were connected to a computer using the 

corresponding device’s USB interface.  In addition, they were both used in conjunction with a 

fiber optic cable attached to a calorimeter as shown in Figure 29.  A screenshot of the computer 

screen during the acquisition of the data when using the WS-7 wavementer (as an example) is 

shown in Figure 30.   



39 
 

 

Figure 28.  Bristol (Model 621) Wavemeter 
 

 

Figure 29.  Laser Calorimeter (Right) and Fiber Optic Cable (Left) 
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Figure 30. WS-7 Wavemeter Computer Interface and Data Display (currently the 
wavenumber is 18787.9380 cm-1

III.2. Experiment # 1: Iodine Filter Characterization 

) 

As mentioned in the literature review section, the molecular filter characterization is 

essentially plotting the absorption well within which there will be blocking of the incident light.  

Based on the diagram of Figure 5, maximum absorption (about 0% transmission) occurred for a 

small range of frequency between a lower boundary value of wavenumber (or wavelength or 

frequency) νmin and an upper boundary value νmax .  The well is usually centered at a reference 

frequency νo.  The objective of the filter characterization experiment is therefore, determining 

values of νmin and νmax of the absorption well centered at about 532 nm which corresponds to the 

wavelength of the laser in use in this research.  When testing, tuning the incident laser to a 

frequency between νmin  and νmax

Figure 31

 ensures maximum blocking of undesired scattered light and 

background noise.  The experimental set up used to characterize the iodine filter is illustrated in 

 and Figure 32. 
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Figure 31. Iodine Filter Characterization Setup Diagram 

The incident beam’s trajectory is turned 90o toward the iodine filter area using a high 

reflective mirror.  It then goes through two beam splitters (a 50-50 and 90-10) to reduce its 

power down to a value that is within the range of operation of the wave meter.  45% of the 

beam’s power is intercepted by the first power meter.  The light then passes through a density 

filter to further reduce its power and an aperture to block the undesired stray beams.  The beam 

then hits the surface of a mirror and turns 90o 

Figure 25

facing the front of the iodine filter.  A sheet of laser 

(as shown in ) is created in front of the filter using a 25 mm spherical lens.  Finally, the 

light exiting the filter passes through a 200 mm spherical lens which focuses it back to a single 

point before it is intercepted by the second power meter.     



42 
 

 

Figure 32. Photos Showing the  Iodine Filter Characterization Experimental Set Up 

The construction of the iodine filter absorption well is essentially plotting the percentage of 

the transmitted power as a function of the wave number (or the wavelength, or the frequency).  

Mirro
 25 mm Spherical Lens 

Iodine Cell 

200 mm Spherical 
 

Verdi V12 (532 nm)  

Density Filters  

Beam Splitters  

Power Meter  

Mirror
 



43 
 

For that purpose, the power of the laser exiting the iodine filter was measured and the ratio of the 

output to input power was calculated as the wavelength was changing.   The wavelength can be 

changed by varying the etalon temperature of the laser.  This could be achieved using the 

software interface associated with the V12. According to the user’s manual, the etalon 

temperature can be varied between 35 oC and 75oC.  For example, the command to set the etalon 

temperature to 40o 

       > >et =  40 

is given by:   

The command to check the currently set etalon temperature is: 

                   >>?est 

It is important to note though that the wavelength (or the wave number) values decrease 

spontaneously over time.  Starting with a high value of wave number (way larger than the range 

where the well is) allows for a slow drift that could be taken advantage of to record the values of 

the corresponding transmitted power as the wave number decreases.   This approach was used for 

the iodine filter characterization in order to avoid changing the etalon temperature and obtain 

more consistent results.  For this experiment, the incident power was set at 1.04 W.  According 

to the V12 user’s manual, the power has to be greater than 5 % of the maximum output (12 W) to 

avoid driving the laser to enter an alignment mode (where the power could not be accurately 

measured).   As mentioned in the Second Chapter, the well’s shape and depth change with 

respect to the iodine cell temperature.  Three different cell temperatures (40 o C, 60 o C, and 90o 

C) were investigated during this experiment.  
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III.3. Experiment # 2: Horizontal Buoyant Jet in a Co-flow 

The experimental set up to collect scattered light images off of a horizontal buoyant jet in a 

co-flow is shown in Figure 33.  In order to investigate the effects of both positive and negative 

buoyancy on the jet’s trajectory and behavior, both helium and Carbon Dioxide (CO2) jets were 

respectively used.  Because the two gases have significantly different densities, two different 

configurations of the plenum in which air flows, were used to create comparable test conditions.  

The plenum section (for both helium and CO2 configurations) was designed by Mr. Samuel 

Raudabaugh.  In order to create comparable test conditions for these two configurations, the exit 

area of the helium configuration plenum is about 60% smaller than that of CO2

Figure 34

 as it could 

clearly be noticed when comparing  and Figure 35.  The experimental set up however, 

is essentially the same for both configurations. 

 

Figure 33.  Diagram of Horizontal Buoyant Jet Set Up 
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Figure 34.  Horizontal Buoyant Jet Set Up Photo for the CO2

 

 Configuration 

 

Figure 35.  Horizontal Buoyant Jet Set Up Photo for the Helium Configuration 
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For both configurations (helium and CO2

Figure 36

), the core jet flow is provided by a stainless steel 

tube whose diameter can be varied to alter the Froude number and Reynolds number values.  The 

Brooks Instruments 5850i mass flow controller was used to control the jet mass flow rate.  The 

co-flow was delivered from an air tank through a mass flow controller that could be adjusted to 

±0.01 kg/min.  Air then entered a plenum made of Plexiglas via four orifices at which were 

placed four washing nozzles to ensure a uniform flow of air.  The co-flow passed through a 

honeycomb screen with 9.5 mm openings (as shown in ) prior to passing through a 

converging duct (the yellow box for the CO2 

Figure 36

configuration and the metal one for the helium 

case).  The Plexiglas tank was sealed at one end using a 0.375’’ thick metal plate.  As shown in 

, a PVC fitting (going through the metal plate) was used to feed in the CO2

 

 (or helium) 

to the stainless tube. 

Figure 36.  Equipment Used to Feed in Both the Jet (CO2 and Helium) and Air.   

Stainless Tube 

Washing Nozzle 
PVC Fitting 

Metal Plate 

Honeycomb Screen 

Plexiglas Tank 
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As mentioned earlier, the laser used for this study was a Coherent 12 W CW Verdi V12 

with a wavelength around 532 nm.  As shown in Figure 33, the beam was routed to the test 

section using four highly reflective (HR) mirrors at 532 nm.  The closest mirror to the tube 

directed the laser vertically to a prism that reflected the beam back to the same mirror and then to 

a beam block.  This created two vertical laser beams intersecting with the jet and the co-flowing 

air.  The intent behind using two laser beams as opposed to a laser sheet (as used in previous 

FRS studies) was to maintain the high power of the beams to maximize the scattered light 

intensity known to be proportional to the incident light intensity.  Using the Phantom V12.1 high 

speed camera, data was captured at 400 Hz for the CO2

Before the scattered light was captured by the camera, it was filtered by the iodine cell 

positioned in front of the camera.  The temperature inside the filter was controlled by a Cole-

Parmer Digi Sense control box.  The goal was to ensure that most of the scattered light 

(broadened and shifted) fell outside the absorption well of the filter while ensuring near total 

absorbtion of the incident signal itself, the background noise, and Mie scattering (due to 

particles).   In addition, a 200 mm spherical lens was placed in front of the iodine filter to 

increase the effective focal length of the camera allowing for a better focus and hence a better 

spatial resolution.  The Bristol (Model 621) wavemeter (as shown in 

 (and 80 Hz for the helium) jet allowing 

the capture of images at an adequate signal to noise ratio.  The camera has a maximum resolution 

of 1280x800 and an exposure time down to 1μsec.  The camera was focused at the area of 

intersection between the laser beams and the gases (both the jet and the co-flowing air).     

Figure 28) monitored the 

wavelength of the laser to ensure maximum absorbance of background noise by the filter.  

Further, a slotted board minimized the background noise before reaching the filter.   
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In order to enable data collection at different stream-wise and vertical locations a traverse/ 

scissor jack unit was employed.   As shown in Figure 37, the scissor jack (which is attached to 

the Plexiglas tank) allowed for a maximum vertical range of 2.25’’.  The traverse allowed for a 

horizontal displacement of 2.3’’.  The unit was controlled using a joy stick, an Anilam Wizard 

150 power supply and a Questar digital readout.     

 

Figure 37.  Traverse and Scissor Jack Unit and Accessories 

III.4. Experiment # 3: G-loaded Buoyant jet in a Co-flow 

The experimental set up to collect scattered light images off of a G-loaded buoyant jet in a 

co-flow is shown in Figure 38.  The set up for this experiment involved, in general, the use of the 

same equipment of the second experiment (horizontal jet).  The straight configuration consisting 

of the cubic plenum and the horizontal tube used in the second experiment, were replaced by an 

SLA curved hallow section in which flowed air around a bent stainless tube as shown in Figure 

39 and Figure 40.  The shape of this curved section was designed by Mr. Jacob Wilson who 

based his drawings on the actual UCC rig used in the COAL lab.  The SLA section, of which a 

Scissor Jack 

Traverse 

Joy Stick 

Questar Readout 

Power Supply  
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CAD drawing is shown in Figure 41, has a radius of curvature 38c m (15 inches) and a squared 

cross section with 4.8 cm (1.9 inches) on each side. Three different tubes of different inner 

diameters of 0.635 cm  (0.250 inches), 0.775 cm (0.305 inches), and 1.09 cm (0.430 inches) were 

used during this experiment.  Due to the flow of the gases (both co-flowing air and the jet) along 

the curvature of the section and the stainless tube, the gases were subjected to a normal outward 

acceleration.  Carbon Dioxide was used as a jet for this experiment to easily separate the effects 

of buoyancy (pulling the jet down) and those of the G-loading (expected to push the CO2

 

 

molecules outwards).   

Figure 38.  Diagram of G-loaded Buoyant Jet Set Up 
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Figure 39.  G-loaded Buoyant Jet Set Up Photo  

 

Figure 40. Stainless Tube Used to Feed in the CO2 

Stainless Tube  
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Figure 41.  Curved Section CAD Drawing  

 

Figure 42. G-loaded Buoyant jet Horizontal Area of Focus   
  

This experiment was set up in a way such that the area of interest at which the camera was 

focused was a horizontal section as shown in Figure 42.  In order to allow the laser beams to pass 

through the sides of the horizontal section and intersect with the jet and the co-flowing air, four 

Horizontal Section (Area of camera focus) 
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different pieces of Quartz were used to seal the sides of the test section (the area of interest).   

The laser was directed to the area of interest using the same optics used in the second 

experiment.  Imaging occurred along two vertical laser beams allowing the collection of intensity 

(or concentration) data at two different stream-wise locations for each run.  The curved section 

was fixed on top of the traverse platform allowing the entire unit to move horizontally.  This 

enabled data collection at different stream-wise locations.  The co-flow was delivered from the 

same air tank used in the horizontal jet experiment.  Before entering the curved section, air was 

collected at a rectangular shaped chamber (shown in Figure 43).  Through this chamber the 

stainless tube was passed.  The tube brought the jet of CO2

 

 from the tank through the Brooks 

mass flow controllers and to the measuring station.  As mentioned earlier, the Brooks 5850i mass 

flow controller was used for low velocity (and G-loading) measurements while the Brooks 5853i 

mass flow controller was used for the high G-loading data collection.  

Figure 43. G-loaded Buoyant jet: Air Collection Chamber     
 

Air Chamber 

Air Tube  Jet Tube  

Traverse Platform 
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III.5. Buoyant Jet Experimentation Methodology  

In order to ensure the collection of Rayleigh scattering images of which useful information 

can be drawn, three main considerations were taken into account.  These considerations involved 

the proper choice of the frame rate, the investigation of the Doppler Effect, and the development 

of formulas allowing the conversion of the Rayleigh scattering signal intensity to percent 

concentrations.  Details of these considerations are as follows: 

III.5.1. Data Acquisition Considerations 

Given the jet’s velocity and diameter values considered for the case of the CO2

 

 jet, initial 

jet’s shedding frequency calculations were predicted to have values up to 25 Hz.  Considering 

the rule of thumb that an adequate sampling rate is about ten times the maximum frequency of 

the signal, a frame rate of 250 Hz seems to be a minimum value to consider.  When using a 

pulsed laser, the data acquisition rate is usually limited by the pulse rate.  Fortunately, this is not 

the case when using a continuous wave laser such as in this study.  The sampling rate, in this 

case, is only limited by the ability of the camera/lens unit to gather enough scattering light 

resulting in a sufficiently large signal to noise ratio.   

Figure 44.  Frame Rate Sensitivity Analysis for the CO2 Jet Configuration 
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Inherently, the higher the frame rate, the smaller the exposure time is, and hence the 

smaller the signal to noise ratio.  Keeping this compromise in mind, it is therefore important to 

perform a frame rate (or exposure time) sensitivity analysis to figure out the highest possible 

frame rate value that would allow for an adequate signal to noise ratio.  As shown in Figure 44, a 

frame rate of a 1000 Hz results in a poor signal to noise ratio (N/S of 70%).  At 400 Hz however, 

it is easy to discern the Rayleigh scattering signal due to CO2

Figure 44

 from the one due to air (N/S of 

21%).  The signal intensity shown in  is the sum of raw intensity values of five adjacent 

pixels.  The signal due to CO2 molecules is higher than the one due to air molecules since the 

CO2 molecule has larger Rayleigh scattering cross section than the air molecule as it will be 

discussed in the data processing section of this thesis.  Due to the fact that sampling rate and 

exposure time are inversely proportional, the signal is much higher for frame rates lower than 

400 Hz (N/S of 7 % at 80 Hz for instance).  However, due to the shedding frequency 

consideration discussed earlier, a frame rate of 400 Hz is chosen for the case of the CO2

 

 jet.   

Figure 45.  Frame Rate Sensitivity Analysis for the Helium Jet Configuration 

Similar analysis is performed to choose a data acquisition rate for the case of the helium 

jet.  There was no shedding frequency consideration in this case, since time resolved analysis 
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was only considered for the case of the CO2 

Figure 45

jet due to time limitation.  A data acquisition rate of 

80 Hz (with a N/S of 25 % ) was considered for the case of the helium jet as it allows for the 

balance between a relatively high frame rate and an adequate signal to noise ratio as shown in 

.  The noise to signal ratio (N/S) for both CO2

III.5.2. Doppler Effect Considerations 

 and helium measurement appears to be 

high (about 25 %).  However, this sensitivity analysis was based on raw intensity data.   When 

the intensity is converted to concentration, as will be explained in the data processing section, the 

background signal is subtracted which eliminates a significant amount of noise.  An uncertainty 

analysis is performed in the data processing section to quantify the estimated percent error of the 

collected data and analysis.              

As mentioned in the literature review section, the Rayleigh scattering central frequency can 

be Doppler shifted due to the motion of the molecules present in the flow.  This shift, if not taken 

into account, could drive the Rayleigh scattering signal out of the absorption well and hence give 

false readings relating to the intensity of the signal.  This study involves collecting Rayleigh 

scattering signal of moving CO2,

υ∆

 helium, and air molecules.  Therefore, the Doppler Effect on 

the measurements needs to be addressed.  When associated with the Rayleigh scattering 

phenomenon, the Doppler Effect, due to the motion of the molecules, results in a frequency shift 

given by Equation (14): 

 

As shown in the equation, the frequency shift is the dot product of the jet velocity vector and the 

interaction wave vector.  As shown in Figure 46, the frequency shift is associated with the 

secondary velocity in the direction of the interaction wave vector [7].  For the case of the 
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experiments performed in this study, however, the frequency shift due to the stream-wise 

direction is negligible since the jet velocity vector and interaction wave vector are perpendicular.  

Therefore, the measured Rayleigh scattering signal is primarily associated with concentration of 

the gas species. 

 

Figure 46.  Sensitivity of the Rayleigh Scattering Signal to the Doppler Effect. 

III.5.3. Data Processing 

The data collection consisted of taking sets of 3000 images of the region of intersection 

between the jet and the two laser beams at 400 Hz for the CO2 jet and 80 Hz for the helium jet.  

As discussed earlier, these frame rates were thought to result in the best signal to noise ratio 

while maintaining a relatively high sampling rate.  The incident light power was kept at 12 W 
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during data collection.  The camera was focused at the region of interest (intersection of the two 

beams with the horizontal or curved jet).  The image resolution was set at 1280x800 pixels for all 

data measurements covering an area of interest of 59.5x37.5 mm as shown in Figure 47 below.   

Some distortion can be seen on the edges of the frame in Figure 47 due to the use of the spherical 

lens.  However, the level of distortion in the area where the laser beams were was very small and 

hence no correction was made during data processing.  The bright regions of Figure 47 

correspond to an intensity of 130 counts while the dark regions correspond to about 35 counts.  

 

Figure 47. Unprocessed Image of Scattered Light of the Laser Going Through the CO2

For both the CO

 Jet 
and Air at 400 Hz (Top) and the Grid Used for Spatial Reference (Bottom).  

2

Figure 48

 and helium configurations, essentially three different types of images 

were collected to extract concentration information from the Rayleigh scattering signal.  These 

sets of data of which samples are shown in  were the signal due to jet and air 

molecules, signal due to air only, and background signal corresponding to collected images with 

the laser turned off (or with the lens cap on).   
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Figure 48. Sample Images of Signals Used for Data Processing of Both the CO2 and Helium 
Configurations 

For the purpose of the data processing, only the areas of intersection of the laser beams 

with the jet were considered.  Therefore, each frame was reduced to two matrices of dimensions 

13x800 pixels.  The width of 13 pixels corresponds to approximately 0.60 mm.  The 16 bit 
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videos of the scattered light were initially converted to “Multipage. TIFF” format and then to 

“.mat” using MATLAB.  The raw intensity for any frame at any given imaging location was a 

summation of the intensity due to Rayleigh scattering I, and the intensity of any captured 

background light Io

The outcome of the initial post processing described above is the intensity I

.  This latter term included reflections off test equipment such as the stainless 

tubes used for this experiment or any lights in the laboratory.  The background intensity was 

corrected for and subtracted from the raw intensity.  In addition, the electronic signal generated 

by the camera was subtracted off from the scattered light signal.  The electronic signal was 

obtained by capturing images with the lens cap on.   

R which is the 

scattered light from both CO2 (and helium) and air molecules combined with background signal 

subtracted.  In order to convert the intensity IR to concentration of the jet only, the intensity IA of 

air only was removed from the signal.  IA was obtained by capturing images of the scattered light 

of the ambient air only and subtraction of the electronic signal of the camera.  The formula used 

in this work to convert the intensity IR to CO2

 

 concentration is given by:  

where f is a correction factor that takes into account the ratio in cross section between air and 

CO2 molecules.  Typically, the Rayleigh scattering signal of the CO2 transmitted through the 

filter is about twice the signal associated with air molecules. The ratio of the CO2 cross section 

to the N2 cross section is about 2.23 while it is approximately 2.7 with respect to O2 25 [ ] which 

yields the following relationship: 

 



60 
 

For this study; the correction factor f turns out to be about 2.45 to ensure 100% CO2 

concentration at the core of the jet.  IA is set to 28 intensity counts (and approximately 22 for the 

case of the curved jet due to imaging through quartz) which correspond to the maximum value of 

air intensity.  Considering this peak intensity values into the equation allows for the use of a 

more conservative calculation of the CO2

On the other hand, the formula used to convert the Rayleigh scattering signal intensity to 

helium concentration is given by: 

 (or helium) jet concentration.   

 

The Rayleigh scattering cross section ratio used in the formula above is 1.4 % as given by 

Su et al. in their quantitative planar imaging of buoyant jet study [26].  

Figure 49 and Figure 50 illustrate sample processed data for respectively the CO2 and 

helium jets’ cases.  For the case of CO2, brighter regions correspond to the Rayleigh scattering 

signal due to CO2 Figure 49 molecules ( ) while signal due to helium molecules is associated with 

areas of dimmer intensity (Figure 50).  The concentration plots were created by averaging the 

intensity values of all 3000 images for each pixel.  The intensities were then converted to 

concentrations using Equations (16) and (17) described above.   
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Figure 49.  Raw Rayleigh Scattering Image (Left) and Processed Concentration Plot 
(Right) for the CO2 Configuration  

 

Figure 50.  Raw Rayleigh Scattering Image (Left) and Processed Concentration Plot 
(Right) for the Helium Configuration 

In addition to concentration plots, concentration profiles were obtained by averaging the 

concentration lines along the X/D (stream-wise) direction in a way to obtain a strip of 

concentration running across the entire vertical direction as shown in Figure 51b.  As part of the 

analysis of the jet behavior, trajectory plots were also generated by tracking the maximum value 

of the jet’s concentration along each strip located at every X/D location as shown in Figure 51c.     
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Figure 51. Sample CO2

In order to monitor the variation of the Rayleigh scattering intensity over time, standard 

deviation of the signal’s raw intensity were generated using the std command of MATLAB.  

These plots will be discussed in details in the Results and Analysis section of this report.   

 Process Data: (a) Percent Concentration, (b) Concentration Profile, 
(c) Jet’s Trajectory  

In order to ensure the extraction of relevant and trust worthy information from the collected 

data and analysis, it is important to approximate the overall percent error.  There is obviously 

instrumentation errors as specified when describing the equipment used for this research.  The 

equipment associated with the instrumentation errors include but are not limited to mass flow 

controllers, traverse unit, laser power instability, thermocouples regulating the iodine filter 

temperature, etc.  All these errors could affect the end result which is the concentration of the jet.  

In fact, this concentration depends on various parameters such as the incident power, the laser’s 

wavelength, the position of the beam with respect to the jet, and others.  The problem is that, for 

this research, there is no direct equation that could relate all these parameters directly to the 

concentration of the jet.  Classical formulas of uncertainty cannot therefore be used in this case.  

However, a repeatability analysis could be used to investigate the consistency of the information 

a 
b 

c 
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given by the collected signal.  For that purpose, one case corresponding to a given flow condition 

was run twice at two different times and results were compared.  The standard deviation between 

the jet concentrations of the two runs, when normalized by the mean, is considered to be an 

approximation of the overall error of this analysis.  Between the two presumably identical runs, 

other cases were ran to allow for the manifestation of the inherent measuring errors such as the 

change in the laser power over time, the drifting of the wavelength which affects the transmitted 

light, the imperfection in the traverse unit setting and readout, etc.  The case considered here was 

one of the cases of the third experiment involving the investigation of G-loaded buoyant jet.  It 

was a case involving the presence of co-flowing air to take into account any errors due to the 

vibration of the jet’s tube in the presence of co-flow.  One stream-wise position was considered 

which was an X/D of 1.3.  Figure 52 illustrates the concentration profiles corresponding to the 

1.3 D position from the first and second run.   

 

Figure 52.  Jet’s Concentration Profiles at 1.3 D  
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Figure 53.  Position one (X/D=1.3): (a) Standard Deviation and (b) Mean  

As shown in Figure 52, the two runs are very close to each other.  It is however hard to 

quantify the difference between them.  For that purpose, Figure 53 was generated to estimate the 

error between the two runs based on the standard deviation.   At this position (X/D = 1.3), the 

standard deviation in the area of the core of the jet is approximately 3 % while the mean has a 

maximum value of 98%.  This results in an error of approximately 3 % in the core of the jet 

which is the interest of this study mainly when tracking the trajectory of the jet.  The error in the 

areas around the core of the jet is higher than at the core.  In addition, the errors increase as the 

stream-wise location increases due to the weakening of the signal as a result of mixing and due 

to the slight difference power of the two laser beams off of which the Rayleigh scattering signal 

is collected. 

Every time, a laser beam hits the surface of a mirror or a prism it loses a small percentage 

of its power.  The second laser beam is created off of the first beam through the use of a prism.  
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In order to quantify the difference in power between the two laser lines, the Rayleigh scattering 

signal due to the presence of air only collected off of both laser beams was considered.   

 

Figure 54.  Rayleigh-Scattering Signal Due to Air Associated with the First and Second 
Laser Beams: (a) Raw Images and (b) Intensity Counts 

A raw images of the two signals is shown in Figure 54a.  Figure 54b illustrates the intensity 

counts of the two Rayleigh scattering signals due to air.  Based on the ratio of the average 

intensity values of the two signals, the second line has approximately 97.5 % power of the first 

line. This difference was taken into account when generating the concentration data. When 

processing the data for this research the information corresponding to the first line was chosen in 

favor of the one (in most cases) associated with the second line every time there was an overlap 

between the two lines.  The laser beam comparison leads to adding a 2.5 % possible error to the 

4% error found above.  
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IV. Results and Analysis 

IV.1. Experiment # 1 : Iodine Filter Characterization 

The data obtained for iodine filter characterization is transferred to an EXCEL sheet and 

transformed into graphs to be laid out and discussed in this section.  Multiple runs were 

performed in order to validate the consistency of both the filter’s behavior and the data 

acquisition method.  For the iodine cell temperature set at 90 o C and 40 o 

Figure 55

C, two tests were 

performed for each temperature.  and Figure 56 below illustrate the findings of this step 

and show negligible variation of the results when comparing the two tests.    

 

Figure 55. Repeatability Test of the Transmitted Power of the Filter at 90 o 
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Figure 56. Repeatability Test of the Transmitted Power of the Filter at 40 o 

The optimal iodine cell temperature corresponds to the temperature at which the frequency 

range corresponding to transmission is the largest.  Operating the cell temperature at the optimal 

temperature ensures maximum blocking of the unwanted background signal.  Based on 

C 

Figure 57 

below, among the three tested temperatures, 90 o C appears to be the optimal temperature for the 

iodine molecular filter in use.  In addition, the absorption well depth increases as the temperature 

increases.  Therefore, for future uses of the iodine filter (the second and third experiment), the 

cell temperature will be set at 90 o C.  
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Figure 57. Iodine Filter Absorption Well for Three Different Cell Temperature 

The details of the absorption well are given in Figure 58 below.  The maximum absorption 

occurs between 18787.8265 cm-1 and 18787.8479 cm-1

Figure 58

.  In order to optimize the scattered signal 

quality when using Rayleigh scattering for the remainder of this work, the laser wavelength 

(wave number) must be tuned to be in this range of values during the period of the test.  A less 

restrictive range of 5% transmission is also depicted in .  When performing the 

Rayleigh scattering measurement, it is recommended to start with values of wave number greater 

than that of the upper portion of the well.  Then let the wave number drift down to the range of 

zero transmission.  At that point testing can began while monitoring the wave number (or 

wavelength) to ensure that the values stay within the appropriate range.  
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Figure 58.  Iodine Filter Absorption Well at 90o

Based on the literature, the absorption well can be expressed also as a function of the 

wavelength (in nm) or a relative frequency (in GHz).  The relative frequency is calculated by 

taking the difference with respect to a reference frequency that corresponds to the center of the 

well.  In order to be able to compare the results with previous filter’s characterization in the 

literature, three more graphs 

 C 

Figure 59 , Figure 60 , and Figure 61 were also generated.  The 

center of the well corresponds to a wavelength of 532.1099054 nm in air, a wavelength of 

532.2580152 nm in vacuum, and a reference frequency of 563245.1895 GHz.    
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Figure 59.  Iodine Filter Absorption Well with Respect to Wavelength in Air 

 

 

Figure 60.  Iodine Filter Absorption Well with Respect to Wavelength in Vacuum 
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Figure 61.  Iodine Filter Absorption Well with Respect to Relative Frequency 

Although the well constructed in this section depicts the shape of a typical absorption well, 

it is not ideal for two reasons.  First, it does not have steep and sharp edges which characterize a 

near ideal molecular filter.  Second, we expected the filter to have 100% transmittance outside 

the well.  It only reached 68% on the left edge and 52% on the right edge.  In fact, it appeared to 

be entering a second well on the upper end of the well.  In order to see the filter’s behavior at the 

upper end of the first well, the transmitted power is calculated for wave number values greater 

than 18787.872 cm-1 Figure 62.  This resulted in  below.   

Results from the iodine filter’s characterization (which will be discussed in the Results and 

Analysis chapter) were taken into consideration.  The incident beam wavelength was monitored 

to ensure maximum blockage of background noise and unwanted signal when taken data.  In 

addition, and by closely watching the image of the Rayleigh scattering signal collected by the 

camera, it was relatively easy to identify the times when the incident beam’s wavelength was 
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within the range of the filter’s absorption well.  Figure 63 illustrates the difference between the 

transmitted Rayleigh scattering signal when inside and outside the filter’s absorption well.   

 

Figure 62.  Investigation of the Upper End on the Absorption Well 

 

 

Figure 63.  Rayleigh-Scattering Signal Inside and Outside the Filter’s Absorption Well 
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IV.2. Experiment # 2: Horizontal Buoyant Jet in a Co-flow 

This experiment sheds the light on the interaction between the co-flowing gas (air) and the 

jet (helium or CO2) in the presence of buoyancy effects.  The goal is to understand and 

characterize the effects of both buoyancy and the addition of the co-flow to the flow field on the 

trajectory and mixing properties of the jet.  The use of both helium (a lighter than air jet) and 

CO2

IV.2.1. Cases With Helium Gas 

 (heavier than air jet) allows for the comparison between the jet’s behavior in the presence of 

positive and negative buoyancy effects.   

Table 2. Processed Cases of Different Flow Conditions for the Helium Jet 

 

Several cases of various flow parameters and conditions were examined for the case of 

CO2 to allow for a time resolved concentration analysis and a jet’s trajectory investigation.  On 

the other hand, only two flow conditions were examined for the case of the helium jet due to the 

weakness of the Rayleigh scattering signal and the similarity in the jet’s behavior between the 

helium and CO2 cases.  These two cases, which are described in Table 2, highlight the effects the 

addition of the co-flow to the flow field has on the jet trajectory and its mixing properties.  The 

helium configuration data analysis will be presented first since it is much shorter.  It will 

essentially consist of a comparison between Case 1 (without co-flow) and Case 2 (with co-flow).  
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Figure 64.  Helium Jet Concentration Plots: (a) Without Co-flow (Case 1), and (b) With 
Co-flow (Case 2) 

Using the concentration formula of the helium (Equation 16), the Rayleigh scattering 

intensity values are converted to concentration plots shown in Figure 64a and Figure 64b.  

Concentration is obtained along two lines for each data measurement set.  The four lines (or six 

lines for the case of the CO2

Table 2

 configuration) shown on the figures for the remainder of this 

analysis are generated by joining data taken at different stream-wise (X/D) locations.  As shown 

in , Case 1 corresponds to a jet velocity of 0.914 m/sec.  Case 2 maintains the same 

conditions of Case 1 except for the addition of a co-flow of air going at the same velocity of the 

jet for comparison purpose.  As shown in Figure 64, both jets follow an upward curvature due to 

positive buoyancy.  This is expected since helium is much lighter than air and tends to naturally 

flow upward.  However, it is obvious that the addition of the co-flowing air contributes to the 

straightening of the helium jet.  In fact, due to the addition of the co-flow, the center of the jet 

goes from being at 1.25 Y/D for about a 2.4 X/D to roughly 0.5 Y/D.   Y/D is the relative 



75 
 

normalized vertical location of the jet with respect to the center of exit of the tube while X/D is 

the normalized horizontal (stream-wise) location of the jet measured from the exit of the tube.  

As far as the mixing of the jet with air, it seems that the diffusion of the helium into air, at the 

same X/D location, is more significant in the absence of the co-flow.  However, for both cases 

the mixing and the level of turbulence of the jet increases downstream of the jet as shown in 

Figure 65 of the standard deviation plots.             

 

Figure 65.  Standard Deviation of Helium Intensity: (a) Without Co-flow (Case 1) and (b) 
With Co-flow (Case 2) 

For both cases (Figure 65a and Figure 65b), the mixing occurs initially in the top and 

bottom shear layers of the regions of interaction between the jet and the co-flowing air.  As the 

jet moves downstream, it loses a lot of its momentum and the mixing moves progressively 

toward the center of the jet as shown in both Figure 65a and Figure 65b.  It is important to note 
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as well that for Case 2 (with co-flow), the top shear layer is much more significant than the 

bottom shear layer due to the tendency of the jet to go up (positive buoyancy) which is expected.   

The observations noted based on Figure 64 and Figure 65 can also be extracted by simply 

examining the concentration profile plots of Figure 66.       

 

Figure 66.  Helium Concentration Profiles: (a) Without Co-flow (Case 1) and (b) With Co-
flow (Case 2) 

Clearly, the addition of the co-flow straightens the trajectory of the helium jet which 

maintains its overall upward curvature due to positive buoyancy effects.  In addition, the profiles 

(in both cases) get wider as the stream-wise location increases due to the diffusion of the jet into 

air.  The straightening and flattening of the jet can also be seen in the trajectory plots of Figure 

67.  The idea here is to track the approximate position of the center of the jet by identifying the 

location of the maximum value of concentration.   
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Figure 67. Helium Jet Trajectory With Co-flow (Case 1) and Without co-flow (Case 2) 

The work of Reeder et al., mentioned earlier in the literature review section, provides jet 

core trajectory data that could be checked against the findings of this study.  The horizontal and 

vertical locations have to be, however, normalized by a length scale for “the transition of a 

horizontal buoyant jet to a plume” LM 18 defined by the authors as follows [ ]: 

 

The velocity of the jet is Vjet, A is the cross sectional area of the jet, g is the gravitational 

constant; ρair and ρjet are respectively air and jet densities.  The value of LM

Table 2

 for Case 1 is 

calculated to be 12.0 mm.   As shown in , Case 1 corresponds to a Froude number of 1.1.  

Case 1 trajectory points are then plotted against a case from Reeder et al. study with a value of 

Froude number of 1.14 as shown in Figure 68.  Reeder et al. used a weighted averaged method to 

generate the trajectory data points shown in Figure 68.  Despite the fact that the two studies used 
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different methods to track the trajectory of the jet, the two curves are in a very strong agreement.  

This comparison indicates that that tracking the jet using the maximum value of concentration 

for each stream-wise profile is a valid approach.   

 

Figure 68.  Comparing Case 1 of the Helium Configuration Trajectory Points to the 
Literature 

IV.2.2. Cases With CO2

Various cases were run to construct sufficient data to allow for the qualitative investigation 

of both the trajectory behavior and mixing properties of the CO

 Gas 

2 jet as a function of different 

parameters.  These parameters include the velocity of air (the co-flow velocity), the CO2

 

 jet 

velocity, the relative velocity of the jet with respect to the co-flow, the velocity ratio, Reynolds 

number, and Froude number.  These cases are illustrated in Table 3.  



79 
 

Table 3. Processed Cases of Different Flow Conditions for the CO2

 

 Jet  

Figure 69a and Figure 69b show the mean concentration for series of 3000 images taken for 

two different cases. The six separate vertical lines in each plot correspond to three separate runs 

as two lines are imaged in each time sequence. Case 1(shown in Figure 69a) represents a typical 

jet flow, with a jet velocity of 0.305 m/sec and no co-flow configuration.  Case 2, however, 

shown in Figure 69b differs from Case 1 (Figure 69a) by the addition of a co-flow of air going at 

the same speed as the CO2 jet of Case 1.  As expected, the heavier than air jet is subject to a 

negative buoyancy effects resulting in the CO2 concentration locations following a curved down 

trajectory in both cases.   
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Figure 69.  CO2

Significant changes occur to the flow structure and behavior when a co-flow of air is 

introduced as seen in Case 2 concentration and standard deviation plots.  First, the trajectory 

becomes flatter as noticed when comparing 

 Jet Concentration Plots: (a) Without Co-flow (Case 1), and (b) With Co-
flow (Case 2) 

Figure 69a and Figure 69b.  The concentration of the 

CO2

Figure 70

 drops to less than 10% at X/D = 4.4 as opposed to 65% at the core of the jet in the Case of 

no co-flow.  Furthermore, stronger regions of mixing (as seen in b) are developed even 

at closer locations away from the exit of the jet (X/D = 1.2).  For both Case 1 and Case 2, the 

increase in mixing is more pronounced with downstream distance.  As shown in Figure 70b, for 

instance, starting from a jet location of X/D = 3.2, the fluctuation of the jet intensity 

(concentration) becomes more significant especially along the shear layers on the top and bottom 

of the core of the jet.  At 4.4 D, the region of the center of the jet was subject to the strongest 

fluctuations indicating mixture of the center of the jet with ambient air.  As expected, the level of 

fluctuation is more significant in the bottom shear layer than on the top due to the uneven density 

distribution resulting from the existing negative buoyancy.  The mixing of the jet with the co-
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flowing air moves progressively from the top and bottom shear layers to the core of the jet.  This 

entrainment results in the significant decrease of the CO2

 

 concentration as the jet travels 

downstream. 

Figure 70.  Standard Deviation of CO2

 

 Intensity: (a) Without Co-flow (Case 1) and (b) 
With Co-flow (Case 2) 

Figure 71.  CO2 Concentration Profiles: (a) Without Co-flow (Case 1) and (b) With Co-
flow (Case 2) 
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The changes in the jet behavior the addition of the co-flow causes are also highlighted in 

Figure 71.  The flattening of the jet trajectory can be noticed by comparing the profiles of Case 1 

(Figure 71a) to that of Case 2 (Figure 71b).  In addition, the figures indicate a decrease in the 

CO2 concentration with downstream distance from the exit of the jet for both with and without 

co-flow.  Furthermore, there is an overall spreading of the jet due to the mixing of the CO2 with 

the ambient air.  Unlike the cases with the helium jet, the co-flow in the case of the CO2 

 

jet 

seems to increase the mixing of the jet and its diffusion into air.     

Figure 72. Comparing Jet Trajectory for no Co-flow Cases (1, 3 and 5) and With Co-flow 
Cases (2, 4, and 6) 

As part of the analysis of the jet behavior, trajectory plots were also generated.  Figure 72 

compares the trajectory of CO2 jets at Froude numbers of 1.73, 2.6, and 3.45 for conditions with 
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and without a co-flow of 0.305 m/s.  Readily apparent is that the addition of the co-flow 

significantly flattened the trajectory of the jet.  For example when the co-flow is added, such as 

in Case 2, the trajectory curvature decreased and the jet dropped with only a vertical position of 

Y/D= -0.5 as opposed to approximately -1.5 for Case 1.  Although they had the same jet velocity 

(0.305 m/sec), the two cases had different trajectory pattern which indicates the need to alter the 

classical definition of Froude number (Equation 8) to incorporate the effects of co-flow on the 

buoyancy of the jet and its trajectory.  In addition, for a velocity ratio of 2.0 (Case 6), the jet has 

greater momentum than Case 2 (velocity ratio of 1.0) and Case 4 (velocity ratio of 1.5) and 

hence exhibits a smaller overall vertical drop of 0.40 D at X/D = 3.5 as opposed to 0.60 D for 

Case 2.   Similar investigation was performed by comparing cases 1, 3, and 5.  The co-flow 

velocity for these cases however was kept at 0 m/sec while the jet velocity varied from 0.305 

m/sec (Case 1) to 0.458 m/sec (Case 3) to 0.610 m/sec (Case 5).  As shown in Figure 72, the 

effect of buoyancy (curving the trajectory) is more pronounced in the absence of the co-flow.  In 

addition, the higher the jet velocity, the smaller the overall drop of the jet at 4.4 D.  Cases 3 and 

5 have close values of Froude number (2.6 and 3.45) which explains the similarity between their 

respective trajectories.  This indicates that in the absence of the co-flow, the classical definition 

of the Froude number holds true. Overall, for both the co-flow and no co-flow cases, the 

trajectory is less curved as the jet velocity (and thus the Froude number) increases.   

Case 1 core jet trajectory, which corresponds to a Froude number of 1.73, can be compared 

against a comparable case from the literature with Froude number of 1.8.  The length scale for 

Case 1 is found to be about 14.50 mm.  Figure 73 below illustrates this comparison which 

indicates a relatively close agreement between the two studies.  
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Figure 73.  Comparing Case 1 of the CO2

The data presented up to this point with the exception of the standard deviation plots is 

time averaged data that does not reflect the time resolved aspect of this study.  Hence, 

highlighting the behavior of the jet as a function of time is the objective of this section.  As 

shown in 

 Configuration Trajectory Points to the 
Literature 

Figure 70, the addition of the co-flow to the flow fields causes the unsteadiness of the 

jet concentration that increases as the stream-wise location (X/D) increases.  In order to convey 

this unsteadiness seen in the collected images of Case 1 (without the co-flow), and Case 2 (with 

co-flow), Figure 74 is generated.  It illustrates a comparison between these two cases using four 

images of each case taken at four different instants in time.  While the jet remains relatively 

steady over time in the absence of the co-flowing air, it exhibits significant unsteadiness when air 

is added to the flow field.   
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Figure 74.  CO2

The significant changes introduced by the addition of the co-flow prompts the investigation 

of time resolved data of the mixing regions.  

 Raw Data Images With Co-flow (Case 2) and Without Co-flow (Case 1) 

Figure 75a and Figure 75b illustrate the two 

dimensional standard deviation plots for Case 1 and Case 2 respectively.  As shown in Figure 

75a, minimal mixing occurs at 1.2 D away from the exit of the jet with a small increase of the 

level of fluctuations in the top and bottom shear layers.  Case 2, however, exhibits significant 

fluctuations level at the shear layers and was therefore used as a baseline for time histories 

analysis.  The standard deviation plot of Case 2 at X/D = 1.2 D is shown in Figure 75b.   
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Figure 75.  Two Dimensional Standard Deviation Plots of:  (a) Case 1 (Vjet = 0.305 m/sec, V-
co-flow = 0 m/sec), (b) Case 2 (Vjet = 0.305 m/sec, Vco-flow 

Four points of interest were then chosen based on the plot of the standard deviation (as 

shown in 

= 0.305 m/sec), and (c) Comparison 
of Case 1 and Case 2  

Figure 75b).  Time histories of points 1, 2, 3, and 4 are plotted together in Figure 76.  

Points 1, 3, and 4 correspond to peaks in the fluctuations due to the top and bottom of the shear 

layer regions.  Point 2 corresponds to a point of low standard deviation which is relatively away 

from the shear layer and close to the core of the jet where less mixing occurs (at that X/D 

location).  Note that the intensity counts indicated in Figure 76 and Figure 77 are much higher 

than those shown in previous standard deviation plots.  This is because nine pixels are binned 

together for each point location to minimize noise and obtain cleaner time history plots.  As 

evident from these time histories, the fluctuations in the upper and lower shear layer are regular 
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in time indicative of steady mixing between the core CO2 intensity of about 450 and the air only 

intensity of 100 counts.  However, at Point 2 the fluctuations are very intermittent, yet at the 

same magnitude.  This is expected since Point 2 is in the core region of the jet.  Pure CO2 was 

present most of the time at this location.  However, at times, air was clearly penetrating into the 

core.  More likely, what was occurring was that the CO2

Figure 70

 jet was oscillating in space over this 

time period.  This was evident in watching the FRS signal while the data was collected.  This 

oscillation did not occur for Case 1 as seen in a, where the unsteadiness was 

significantly less. 

 

Figure 76.  Time Histories of Four Points on the First Line at 1.2 D in the Horizontal 
Direction for Case 2 (Vjet = 0.305 m/sec, Vco-flow = 0.305 m/sec).  
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Figure 77.  Time Histories of Points 3 and Point 4 of Case 2 (Vjet = 0.305 m/sec, Vco-flow 

 

= 
0.305 m/sec).  

 

Figure 78.  Cross-Correlation of Point 4 to Point 3 of Case 2 (Vjet = 0.305 m/sec, Vco-flow = 0 
m/sec) 

0.17 
 St = 0.17 
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Figure 77 was generated in light of what appeared to be a time lag between Point 3 and 

Point 4 time histories given in Figure 76.  These two points were located in the area of high 

fluctuations in the lower shear layer, as shown in Figure 75b.  As indicated above, the two points 

have the same X/D location (1.206 D) and are offset by a vertical distance of 0.13 D or 1.15 mm.  

From the cross correlation plot (shown in Figure 78), there exists a small time lag (less than 

0.0025 seconds) between the time histories of the data taken from the two locations.  The 

magnitude of the lag indicates a correlating velocity of 0.46 m/sec between the two points; while 

the high correlation between Point 3 and Point 4 was indicative of that the structure of the 

vortices was regular and coherent.  Furthermore, the secondary peaks in the cross correlation 

(shown in Figure 78) suggest the presence of a repeating pattern every 0.17 seconds (5.9 Hz) 

which could be associated with the shedding frequency of the flow structure.  This frequency 

corresponded to a Strouhal number (St) of 0.173.  The Reynolds number is 339 for this case 

which corresponded to a Strouhal number of 0.20 for a flow around a cylinder traveling at a 

comparable speed to that of Case 2.  This compares favorably with the work of Baranyi et al. 

27[ ].   

In addition, it is often useful when time resolved data is collected to perform a Fast Fourier 

Transform (FFT) on the time dependent information to identify the frequency content of the 

signal.  An FFT is then performed on a 20 second long time history of Point 3 of Case 2 as 

indicated above.  The frequency spectrum of the signal, shown in Figure 79, indicates the 

presence of a frequency at 6 Hz which could correspond to the same frequency (5.9 Hz) 

identified through the correlation plots.    
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Figure 79.  Frequency Content of 20 Second Long Time History of Point 3 of Case 2  

 

Figure 80. Two Lines Cross- Correlation for Case 7 (Vjet = 0.153 m/sec, Vco-flow = 0.153 
m/sec) 
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Figure 81. Two Lines Cross- Correlation for Case 2 (Vjet = 0.305 m/sec, Vco-flow 

 

= 0.305 
m/sec)  

 

Figure 82. Two Lines Cross- Correlation for Case 8 (Vjet = 0.610 m/sec, Vco-flow = 0.610 
m/sec) 
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Figure 80, Figure 81, and Figure 82 show cross-correlation plots between a point on the 

first line (at 1.2 D away from the exit of the jet) and a point on the second line (at 2.4 D away 

from the exit of the jet) for cases 7, 2, and 8 respectively. Standard settings for the xcorr routine 

in MATLAB were applied, and as a result, the values on the vertical axis should not be 

compared from one plot to another, as they are affected by the standard deviation for each point. 

Nonetheless, the peak corresponding to a lag time for a given plot may be used to characterize 

events in the flow field. The ratio of the jet velocity to the co-flow velocity was maintained at 1.0 

for all three cases.  For cases 7, 2, and 8, the jet velocities are respectively 0.153 m/sec, 0.305 

m/sec, and 0.610 m/sec.  These cases enable correlation plots to deduce the mean convective 

velocities of flow features within the jet.   Figure 80, Figure 81, and Figure 82 indicate the 

presence of a significant lag of 0.0475 sec, 0.02 sec, and 0.0125 sec respectively between points 

of the first line and points of the second line which is expected.  As shown in Figure 80, the 

chosen point on the second line is not on the same height as the point on the first line due to the 

drop of the jet trajectory.  This vertical drop due to buoyancy increased the distance the jet 

traveled between the first and second point and hence added to the time lag.  The corresponding 

convective velocities given the horizontal distances between the points of the first line and those 

of the second line are respectively 0.225 m/s, 0.536m/s, and 0.858 m/s.   These values are higher 

than the actual jet velocities of cases 7, 2, and 8.   This significant difference between the 

calculated and expected convective velocities can be due in part to the fact that the flow exiting 

the tube is unlikely to have a top hat profile but, rather, would have velocities higher than the 

nominal values listed in Table 3 in the core of the jet. On the other hand, as the jet velocity 

increased proportionally with the mass flow controller setting, the correlation peaks shifts to a 

smaller time lag, which is an expected trend.  In other words, the shift in the time lag is inversely 
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proportional to the increase in the jet velocity, demonstrating the value of the measurement 

technique.   

The second portion of the data analysis involves investigating the effects of the parameters 

discussed previously on the jet trajectory.  In Figure 83, the relative velocity was kept constant at 

0.305 m/sec while the velocity of the jet was changed.  The jet velocity for Case 9 was three 

times that of Case 1 and one and a half that of Case 6 which corresponded to a Froude increase 

from 1.73 to 3.45 to 5.18.  Readily apparent was that the trajectory was straighter for the higher 

Froude number jet (i.e. higher velocity).  This highlights the importance of the jet velocity in 

shaping the trajectory.  This also suggests that the relative velocity between the jet and core flow 

is not the proper scaling velocity for buoyant flows.  

 

Figure 83. Effects of Jet Velocity on the Jet’s Trajectory  
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Figure 84. Effects of Froude Number on the Jet’s Trajectory  

A set of runs were performed while maintaining the Froude number constant.  To 

accomplish this, three different combinations of jet diameter were used.   Cases 8, 10 and 11 

shown in Figure 84, corresponded respectively to Reynolds number values of 678, 992, and 

1800.  It might be expected that Case 11, with a Reynolds number of 1800, would have a 

relatively higher trajectory than the other two cases.   However, all these cases corresponded to a 

Froude number of 3.45 based on jet velocity and diameter (based on the classical definition of 

the Froude number of Equation (8)).  As indicated in Figure 84, all three of these cases 

maintained a tight distribution suggesting that the Froude number has a substantial impact on the 

trajectory.  One note is that these three cases all maintained a constant co-flow velocity of 0.610 

m/s. To look specifically at the effect of the co-flow, Case 5, which corresponds to Case 8 

without the co-flow, was also plotted.  The curvature of the trajectory was more pronounced in 

Case 5.  This reemphasized that the presence of the co-flow impacts the overall structure of the 

jet, including the turbulence, as well as altering the buoyancy.  However, it does not appear that 
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once the turbulence is increased, that any further increases in the co-flow velocity has any further 

effect.  

 

Figure 85. Effects of Relative Velocity on the Jet’s Trajectory (Maintaining Fr = 3.45) 

In order to further investigate the impact of the relative velocity on the jet’s trajectory, 

Cases 5 and 6 were further compared to Case 8.  These three configurations corresponded to a 

Froude number of 3.45 based on the classical definition of Froude number outlined in Equation 

(8).  The co-flow velocity was changed from 0 (Case 5) to 0.305 m/sec (Case 6) to 0.610 m/sec 

(Case 8).  This resulted in a substantial change in the velocity ratio and the relative velocity 

between the jet and the co-flow.  As shown in Figure 85, Cases 6 and 8 trajectories were similar.  

This indicates that the relative velocity parameter had a minimal effect on the jet trajectory.  It 

also emphasizes the significant change that occurred when the co-flow was added.  The addition 

of the co-flow to the flow field seems to have the effect of increasing the turbulence and thus the 
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spreading rate of the jet.  Once this turbulence is activated, a further increase in the co-flow 

velocity is not significant.   

To better understand the impact of velocity ratio on the jet’s trajectory, Cases 6, 12, and 13 

were further compared.  Each of these cases maintained velocity ratio of 2.0 between the jet and 

the co-flow.  Both the jet velocity and the co-flow were increased between these cases.  This 

resulted in an increase in the relative velocity and Froude number.  For the highest value of 

Froude number (Case 13), the trajectory of the jet is almost linear as shown in Figure 86a.  The 

velocity ratio between the two flows was clearly not the normalizing factor as changing the 

relative velocity altered the impact of the buoyancy. For these conditions, the relative velocity 

was increased by a factor of 2 (from Case 6 to Case 12) and by a factor of 3 (from Case 6 to Case 

13).  To remove influence of the relative velocity, four other cases were interrogated.  These 

cases maintained the velocity ratio at 1.0 while also maintaining the relative velocity constant at 

0.  Figure 86b reveals still a significant variation in the trajectory of these jets indicative that the 

buoyancy still has a dominant effect.  This effect is not attributed to either the velocity ratio or 

the relative velocity between the jet and co-flow.  What did change significantly for these cases 

was the Froude number which took on the values of 0.75 (Case 7), 1.73 (Case 2), 3.45 (Case 8), 

and 7 (Case 14).  Clearly for these cases, the higher the Froude numbers (and hence the jet 

trajectory) the straighter the trajectory of jet was.  This clearly indicates that the jet velocity itself 

has stronger impact on the buoyancy than the co-flow velocity.  
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Figure 86. Effects of Velocity Ratio on the Jet’s Trajectory: (a) Vratio = 2.0 , (b) Vratio

 

 = 1.0  

 

Figure 87.  Effects of Reynolds Number on the Trajectory  

To validate this, the Reynolds number was investigated in Cases 15, 16, and 17.  Figure 87 

presents a comparison of the jet trajectory at a constant Reynolds number of 1430 while the 
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Froude number is respectively 2.75, 4.97, and 7.3. This was accomplished by varying the jet 

diameter and the jet velocity systematically.  The respective trajectories were nearly flat for these 

cases.  This highlights that the buoyancy is dictated by characteristics of the jet such as the jet’s 

velocity and diameter.  This in turns validates the dependence of the jet trajectory on the Froude 

number (which depends on the jet’s characteristics).  However, as mentioned above, the effect of 

the co-flow in straightening the overall trajectory of the jet cannot be ignored and has to be 

incorporated in the formula of the Froude number.    

IV.3. Experiment # 3: G-loaded Buoyant Jet in a Co-flow 

Various cases were run and processed to investigate the effect of G-loading on the 

trajectory and mixing behavior of the jet.  As shown in Table 4 cases of high (up to 1500) and 

low G-loading (as low as 0.07) were considered.   

Table 4. G-loaded Buoyant Jet Cases 
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Earlier analysis on the horizontal buoyant jet indicated that the co-flow contributed in 

straightening the jet trajectory and increasing the mixing of the jet with air.   Plots of the jet’s 

raw intensity counts or percent standard deviation are usually employed to highlight areas of 

mixing and changes of the jet’s concentration.  However, for the G-loaded jet’s experiment, the 

laser beams went through windows of quartz through which imaging occurred.  This 

significantly lowered the overall collected intensity of the Rayleigh scattering signal causing a 

lower difference between the intensity counts in the core of the jet and in the top and bottom 

shear layer.  Changes in the fluctuations of the jet could not then be picked up by the standard 

deviations and hence standard deviation plots were not generated for this section.  Another 

reason for which the standard deviation plots were not useful in this case was that at high G-

loading, the velocity of the jet was so fast to the point the changes due to mixing were not picked 

up.  To illustrate this observation, three points, as shown in Figure 88, were considered on the 

first position line (X/D = 1.33 D) of Case 11 where some fluctuations were noted by visually 

inspecting the collected images.  Point 1 is located in the top shear layer, Point 2 is in the middle 

of the jet, and Point 3 is in the bottom shear layer.   

 

Figure 88. Locations of the three Considered Points of Case 5 (G-loaded Jet) 
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Figure 89. Time Histories of the Three Points of Figure 88 

As indicated in Figure 89, the standard deviations of the Rayleigh scattering signal 

intensity of the three points had similar values around 20 counts.  There were no significant 

changes in the standard deviation going from the top shear layer, to the core of the jet, and to the 

bottom shear layer.  Based on the collected video (and images) for this case, the signal to noise 

ratio was very low.  For cases 1 through 5, the velocity of the jet was comparable to cases run in 

the horizontal jet experiment where standard deviation plots exhibited relatively higher values.  

The signal to noise ratio, for the case of the G-loaded jet however, was much lower due to the 

fact that imaging now occurs through quartz (which was not the case for the case of the 

horizontal jet experiment).  This explains the irrelevance of plotting the standard deviation of 

which a sample plot is provided in Figure 90.   
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Figure 90.  Case 11 Standard Deviation (Intensity Counts) Plot 

Initially, when processing the data, the intent was to plot the concentration data of the jet at 

six different stream-wise locations.  However, due to the inconsistency in the laser power and 

possible (unnoticed) minor drifts of the laser’s wavelength over time, the concentration lines 

which correspond to the third position (after the traverse was moved two diameters) for cases 1 

through 10 and 17 were ignored.  In addition, the lines corresponding to second position (after 

the traverse was moved one diameter) for cases 11 through 16 and 18 were also ignored for the 

same reason. 

Part of the analysis in this section involves understanding the effects of the addition of the 

co-flow to the flow field on the jet’s behavior in the presence of G-loading.  Figure 91, Figure 

92, Figure 93, and Figure 94 illustrate concentration plots of the CO2 jet when it is subject to 

respectively a G-load of 0.07, 4,100, and 1000.   
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Figure 91. CO2 Jet Concentration Plots for Gjet

 

 = 0.07: (a) Case 1 (With Co-flow) and (b) 
Case 2 (Without Co-flow)     

Figure 92. CO2 Jet Concentration Plots for Gjet

 

 = 4: (a) Case 9 (With Co-flow) and (b) Case 
10 (Without Co-flow)     
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Figure 93. CO2 Jet Concentration Plots for Gjet

 

 = 100: (a) Case 11 (With Co-flow) and (b) 
Case 12 (Without Co-flow)     

Figure 94. CO2 Jet Concentration Plots for Gjet = 1000: (a) Case 15 (With Co-flow) and (b) 
Case 16 (Without Co-flow)  
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With the exception of Case 1 and Case 2 where the G-loading and the jet velocities were 

small, it was very apparent that the co-flow contributed to increasing the mixing of the jet with 

air.  This could clearly be seen especially when comparing the jet concentration with and without 

co-flow for the cases considered in figures above.  In fact, the plots illustrated more spreading of 

the jet across the vertical location in the presence of the co-flow which indicated the occurrence 

of more mixing.  It was not apparent however, at low G-loading values that the increase in the G-

loads contributed to a significant change in the mixing of the jet.  Concentration profiles of cases 

corresponding to different G-loading were then generated to investigate the effect of G-loading 

on the jet trajectory and the structure of the jet.  At relatively low G-loading (between 0.07 and 

4), the G-loading does not seem to drastically influence the direction of the jet nor its core 

structure.  This observation is underlined when looking at the jet concentration profiles at G-

loadings of 0.07, 1,2,3 and 4 with and without co-flow as shown in Figure 95, Figure 96, Figure 

97, and Figure 98 respectively. 

 

Figure 95.  CO2 Concentration Profile for Gjet = 0.07: (a) Case 1 (With Co-flow) and (b) 
Case 2 (Without Co-flow)  
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Figure 96. CO2 Concentration Profile for Gjet

 

 = 1: (a) Case 3 (With Co-flow) and (b) Case 4 
(Without Co-flow)  

 

Figure 97. CO2 Concentration Profile for: (a) Case 5 (With Co-flow),(b) Case 6 (Without 
Co-flow), (c) Case 7 (With Co-flow), and (d) Case 8 (Without Co-flow)  
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Figure 98.  CO2 Concentration Profile for Gjet

It could also be noted based on 

 = 4: (a) Case 9 (With Co-flow) and (b) Case 
10 (Without Co-flow) 

Figure 95, Figure 96, Figure 97, and Figure 98 that the G-

loading clearly raises the overall profile of the jet upward in the presence of co-flow.  This could 

be due to the subjection of both the jet and the co-flow to G-loading.  Based on Figure 98a, the 

vertical peak (Y/D) of the concentration profile increased by 0.15 D when the stream-wise 

location (X/D) increased by 2.1 D.  In the absence of co-flow however, jet concentration profile 

dropped clearly down due to buoyancy.  As shown in Figure 98b, this overall drop is about 0.1D 

in the absence of co-flow. 

As shown in Table 4, the first ten cases correspond respectively to G-loadings of 0.07, 1, 

2, 3, and 4 (with and without co-flow) with the G-loading of the air kept constant at 1.77 (with 

the exception of Case 1 and Case 2).  For some of these cases, the G-loading of the jet was 

higher than that of the air and lower for others.   Therefore, the ratio of the G-loading of the jet 

with respect to the G-loading of air was different for these cases.  In order to investigate the 

effects this ratio has on the mixing or trajectory of the jet, Figure 99, was generated.  Based on 

this plot, it appears that the difference (ratio) between the G-loading of the jet and that of air does 
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not seem to strongly affect the mixing of the jet nor its trajectory at least at low G-loading 

values.   

 

Figure 99. Comparing Concentration Profiles at X/D = 3.4  

 

 

Figure 100.  CO2 Concentration Profile for: (a) Case 11 (With Co-flow),(b) Case 12 
(Without Co-flow), (c) Case 13 (With Co-flow), and (d) Case 14 (Without Co-flow)  
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Figure 101. CO2

Concentration profiles at higher G-loading ranging from 100 to 1500 were illustrated in 

 Concentration Profile for: (a) Case 15 (With Co-flow), (b) Case 16 
(Without Co-flow), (c) Case 17 (With Co-flow), and (d) Case 18 (Without Co-flow)  

Figure 100 and Figure 101. Based on these plots, the jet maintained an almost straight trajectory 

in the absence of the co-flow.  This was expected since the jet had large momentum (large 

velocity and Fr as well) at these high G-loading values.  The jet maintained, in the absence of the 

co-flow, relatively similar and narrow concentration profiles that decreased in the overall peak as 

the stream-wise location increased due to mixing.  On the other hand drastic changes occurred to 

the shapes of the profiles in the presence of co-flow.  In addition, at these values of G-loading, 

the concentration profiles exhibited the development of two peaks.  At relatively low G-loading 

(GJet = 100), these peaks appeared to initially develop evenly about the center of the jet (Y/D=0). 

Then, as the G-loads increased, the two peaks became more and more distinct leading to the 
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development of a double-headed profile with a larger top peak.  Overall, the two peaks were 

much more apparent as the G-loading increases.  The development of the two peaks was only 

noted, however, in the presence of co-flow.  This indicates that this change in the jet’s core 

structure is due to the interaction between the jet and the co-flowing air subject to G-loading.  A 

possible explanation of this change in the structure of the jet could be based on Schlichting and 

Gersten’s observations on the flow with a curved pipe [28].  The authors noted that due to the 

presence of a large centrifugal force, a secondary flow (in the pipe) emerges “outwards in the 

center and inwards (towards the center of curvature) near the wall” as shown in Figure 102.  

 

Figure 102. Flow in a Curved Pipe, after Prandtl (as inspired by Schlichting et al.’s figure)  

The effects of the large centrifugal force are not only associated with the jet in the tube but 

also with the air which flows in a curved cavity section.  The observations noted in Figure 100 

and Figure 101 could be the combination of the change in the flow structure undergone by both 

the jet and the co-flow.  With the formation of a large upper peak and small bottom peak within 

the core of the jet, the jet mixes more with air in the bottom part of the jet and the overall 

trajectory appears to be slightly moving outwards (away from the center of the curvature).  In 

addition, based on the overall trajectory of the jet for cases with and without co-flow, it appears 
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that, at high G-loading, the effects of buoyancy (bringing the jet down), are overcome by the 

high momentum of the jet and G-loading effects.   
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V. Conclusions 

V.1. Findings 

The goal of this work was to understand the impact of buoyancy and G-loading on a jet in 

the presence of a co-flow.  Filtered Rayleigh Scattering (FRS) was used to illustrate the jet 

trajectory and mixing properties of a buoyant jet using both helium and CO2

The first experiment was the Iodine filter characterization which led to the identification of 

the transmission well associated with the molecular filter used in the second and third 

experiments.  The transmission well (or alternatively called the absorption well) defined the 

range of operation of wavelength for which there was maximum blocking of background noise 

and hence allowed for the collections of relevant Rayleigh scattering signal.   

 gases.  Three 

different experiments were set up, and run for that purpose.  The concentration data acquired 

with FRS was unique in that a continuous wave laser was used in combination with a high speed 

camera to produce data at 400 Hz (80 Hz when helium was used). This enabled spatio-temporal 

data collection along a linear expanse at a single stream-wise position. By passing the laser beam 

through the jet twice, spatio-temporal plots at two different stream-wise positions were also 

enabled.  These time-resolved measurements of concentration along a line were used to 

investigate the interactions of the jet with a co-flow of air for both the horizontal and G-loaded 

jet configurations.  The concentration of the jet was measured at several locations up to 4.4 D 

away from the exit of the jet.   

The second experiment involved the acquisition of concentration data of a horizontal jet in 

a co-flow of air using both helium and CO2 gases.  Cases with a co-flow of air and without the 

co-flow were run to examine the effects on the trajectory curve and the mixing of the jet.  

Processed data of Rayleigh scattering signal for cases with or without co-flow indicated that the 
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jet in general curved downwards as it traveled downstream of the jet for the case of the CO2

In addition, the shape of the trajectory was investigated through the variation of the jet 

velocity, the jet to co-flow velocity ratio, the relative velocity, the Froude number, and the 

Reynolds number.  The Froude number definition used for comparison was based on the jet 

velocity only and did not take into account the co-flow velocity.  The trajectory plots were 

generated by tracking the maximum value of CO

 jet 

due to negative buoyancy and upwards for the case of the helium jet due to positive buoyancy.   

The generation of standard deviation plots of the Rayleigh scattering signal and the time histories 

of the signal’s intensity at different locations along the imaging lines highlighted the time 

resolved aspect of this analysis.  These clues were incorporated to identify areas of significant 

mixing between the jet and the co-flowing air.  In general, it was deduced from the horizontal jet 

experiment that the addition of the co-flow to the flow field contributed to both the straightening 

of the jet trajectory and the increase of its mixing with air.    

2 concentration along a strip of the Rayleigh 

scattering line at multiple stream-wise locations.  The trajectory analysis demonstrated that in the 

presence of the co-flow, the jet velocity had an initial impact on the resultant jet location and 

spread causing a more horizontal jet to convect downstream.  The velocity of the jet then had the 

strongest effect of all other considered parameters in shaping the trajectory of the jet.  Cases with 

co-flow where the Froude number was kept constant resulted in consistent trajectories and thus 

impacts of buoyancy.  However, at that same Froude number, the trajectory was noticeably 

different when there was no co-flow.  This confirmed that the traditional definition of Froude 

number based on the jet velocity was the correct parameter to normalize the data; however a 

correction is needed to account for the presence of a co-flow for future analysis and studies.   
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The third experiment was set up to investigate the effects of G-loading (centrifugal force) 

on the jet trajectory and mixing of the jet with air.  It turned out that the centrifugal force due to 

the flow of the jet in a curvature changed drastically the structure of the core of the jet in the 

presence of co-flow.  The classical bell shaped concentration profile turned to a double headed 

profile in the presence of high G-loading causing the jet to slightly move outwards (away from 

the center of the curvature) on one hand and an increase in the mixing with air on the other hand.  

At high G-loading where the velocity of the jet was significantly high, the effects of buoyancy 

which pulled the jet down were overcome by the effects of G-loading which pushed it outwards.   

V.2. Recommendations & Future Work 

The idea behind imaging along two laser lines as opposed to using a sheet of laser stems 

from the need to get the most out of the 12 W laser systems available in the COAL lab.  Using a 

sheet of laser would result in the decrease of the incident laser power and hence a lower signal to 

noise ratio.  However, a disadvantage of this method is that concentration data is only obtained 

along the laser line which has a relatively small width.  Essentially data, between the lines is 

unknown.  In order to bypass this problem, it is recommended for future studies to perform 

multi-passes of the laser using top and bottom sets of mirrors or prisms.  The idea is to collect the 

Rayleigh scattering signal along multiple lines with relatively small spacing between them.  That 

way, data can be collected simultaneously at different stream-wise locations without the need for 

a traverse unit or similar systems. 

In addition, when processing data for this study, the signal to noise ratio was in some cases 

low to the point that it was hard sometimes to distinguish between the Rayleigh scattering signal 

associated with air and that due to CO2.  Although this was not a major issue, it is recommended 

for future buoyant jet in co-flow studies to use CO2 as a jet and helium as a co-flow instead of 
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air.  From a fundamental stand point this would be very advantageous due to the presence of a 

significantly large density gradient between CO2 and helium.  Furthermore, the distinction 

between the Rayleigh scattering signals associated with both gases would be relatively easy since 

the Rayleigh scattering cross section of the helium is approximately about 0.6 % of that of CO2

As far as developing an equation for the Froude number that would take into account the 

addition of the co-flow into the flow field, it is recommended to start with the classical definition 

of the Froude number and modify it.  The velocity of the co-flow has to be included in the new 

formula which could have the velocity of the jet as an exponent to a factor to be determined 

empirically via the analysis of multiple cases.  The reason for this choice is that, in the case when 

the velocity of the co-flow is zero (no co-flow), the new model collapses back to the classical 

definition of the Froude number since any factor raised to zero would be one.  This model could 

serve as an initial guess for the development of the new formula but is not necessarily the only 

one.   

.  
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