
Quantitative Analysis of Embedded Software Using

Game-Theoretic Learning

Sanjit A. Seshia
Alexander Rakhlin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-130

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-130.html

September 22, 2009

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 SEP 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Quantitative Analysis of Embedded Software Using Game-Theoretic
Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The analysis of quantitative properties, such as timing and power, is central to the design of reliable
real-time embedded software and systems. However, the verification of such properties on a program is
made difficult by their heavy dependence on the program?s environment, such as the processor it runs on.
Modeling the environment by hand can be tedious, error-prone, and time consuming. In this paper, we
present a new, game-theoretic approach to analyzing quantitative properties that is based on performing
systematic measurements to automatically learn a model of the environment. We model the estimation
problem as a game between our algorithm (player) and the environment of the program (adversary) where
the player seeks to accurately predict program properties while the adversary sets environment
parameters to thwart the player. We present both theoretical and experimental evidence for the utility of
our game-theoretic approach. On the theoretical side, we show that we can predict the program property
for all execution paths with probability greater than 1−d by only making a number of
measurements that is polynomial in ln(1/d) and the program size. Experimental results for execution time
analysis demonstrate that our approach is efficient, effective, and highly portable.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Quantitative Analysis of Embedded Software Using
Game-Theoretic Learning

Sanjit A. Seshia
University of California, Berkeley

sseshia@eecs.berkeley.edu

Alexander Rakhlin
University of Pennsylvania

rakhlin@wharton.upenn.edu

Abstract

The analysis of quantitative properties, such as timing and power, is central to the design of reliable
real-time embedded software and systems. However, the verification of such properties on a program is
made difficult by their heavy dependence on the program’s environment, such as the processor it runs on.
Modeling the environment by hand can be tedious, error-prone, and time consuming. In this paper, we
present a new, game-theoretic approach to analyzing quantitative properties that is based on performing
systematic measurements to automatically learn a model of the environment. We model the estimation
problem as a game between our algorithm (player) and the environment of the program (adversary),
where the player seeks to accurately predict program properties while the adversary sets environment
parameters to thwart the player. We present both theoretical and experimental evidence for the utility of
our game-theoretic approach. On the theoretical side, we show that we can predict the program property
for all execution paths with probability greater than 1− δ by only making a number of measurements
that is polynomial in ln(1/δ) and the program size. Experimental results for execution time analysis
demonstrate that our approach is efficient, effective, and highly portable.

1 Introduction

The main distinguishing characteristic of embedded computer systems is their tight integration with the
physical world. Consequently, the behavior of software controllers of suchcyber-physicalsystems has a
major effect on physical properties of such systems. These properties are quantitative, including constraints
on resources, such as timing and power, and specifications involving physical parameters, such as position
and velocity. The verification of such physical properties of embedded software systems requires modeling
not only the software program but also the relevant aspects of the program’s environment. However, only
limited progress has been made on these verification problems. One of the biggest obstacles is to create an
adequately accurate model of a complex environment.

Consider, for example, the problem of estimating the execution time of a software task. This problem
plays a central role in the design of real-time embedded systems, to provide timing guarantees and for use in
scheduling algorithms. In spite of significant research on this topic over the last 20 years (e.g. [14, 20]), this
problem remains far from solved. The complexity arises from the two dimensions of the problem: thepath
problem, which is to find the worst-case path through the task, and thestate problem, which seeks to find the
worst-case environment state to run the task from. The problem is particularly challenging because these
two dimensions interact closely: the choice of path affects the state and vice-versa. Significant progress
has been made on this problem, especially in the computation of bounds on loops in tasks, in modeling
the dependencies amongst program fragments using (linear) constraints, and modeling some aspects of
processor behavior. However, as pointed out in recent papers by Lee [12] and Kirner and Puschner [11], it

1

is becoming increasingly difficult to precisely model the complexities of the underlying hardware platform
(e.g., out-of-order processors with deep pipelines, branch prediction, caches, parallelism) as well as the
software environment. This results in timing estimates that are either too pessimistic (due to conservative
platform modeling) or too optimistic (due to unmodeled features of the platform). Industry practice typically
involves making random, unguided measurements to obtain timing estimates. As Kirner and Puschner [11]
write, a major challenge for measurement-based techniques is the automatic and systematic generation of
test data.

In this paper, we present a newgame-theoreticapproach to verifying physical properties of embedded
software by runningsystematic testsof the software in its target environment, andlearning an environ-
ment model. The following salient features of our approach distinguish it from previous approaches in the
literature:

• Game-theoretic formulation:We model the problem of estimating a physical quantity (such as time)
as a multi-round game between our estimation algorithm (player) and the environment of the program
(adversary). The physical quantity is modeled as the length of the particular execution path the pro-
gram takes. In the game, the player seeks to estimate the length of any path through the program
while the adversary sets environment parameters to thwart the player. Each round of the game con-
stitutes one test. Over many rounds, our algorithm learns enough about the environment to be able
to accurately predict path lengths with high probability. In particular, we show how our algorithm
can be used to predict the longest path and thus predict properties such as worst-case execution time
(WCET).

• Learning an environment model:A key component of our approach is the use of statistical learning
to generate an environment model that is used to estimate the physical quantity of interest. The
environment is viewed as an adversary that selects weights on edges of the program’s control flow
graph in a manner that can depend on the choice of the path being tested. This path-dependency is
modeled as a perturbation of weights that can be introduced by the adversary. Our algorithm seeks to
estimate path lengths in spite of such adversarial setting of weights. The algorithm is robust not only
to adversarial choices made by the environment, but also to errors in measurement.

• Systematic and efficient testing:Another central idea is to performsystematic measurementsof the
physical quantity, by sampling only so-calledbasis pathsof the program. The intuition is that the
length of any program path can be approximated as a linear combination of the observed lengths
of the basis paths. We use satisfiability modulo theories (SMT) solvers and integer programing to
generate feasible basis paths and to generate test inputs to drive a program’s execution down a basis
path.

Although our focus in this paper is on software analysis, we believe that the above concepts are also useful
for the analysis of physical properties of embedded systems in general.

We present both theoretical and experimental results demonstrating the utility of our approach. On the
theoretical side, we prove that if we run a number of tests that is polynomial in the input size and ln1

δ ,
our algorithm can accurately estimate the length of any path in the program with probability 1− δ (formal
statement in Section 4). In particular, we can use this result to estimate the length of the longest path – for
timing, this amounts to estimating the worst-case execution time (WCET). More generally, we show that
our algorithm can estimate the length of all program paths (i.e. the “timing profile” of the program) and, for
anyε, it can also be used to find paths of length withinε of the longest.

We demonstrate our approach for the problem of execution time analysis of embedded software. Our
approach is implemented in a tool called GAMETIME. We present experimental results comparing GAME-
TIME to existing state-of-the-art WCET estimation tools that are based on combining static analysis and

2

integer programming. Results indicate that our approach cangenerateeven biggerexecution-time estimates
than these techniques, without incurring the difficulties involved in modeling complex processor behavior.
Since our approach is measurement-based, it is easy to apply to varied and complex platforms. Moreover,
as noted above, our approach can be used not just for worst-case analysis, but also to predictε-longest paths
and for predicting execution times of arbitrary program paths.

For concreteness, we focus the rest of the paper on execution time analysis. However, the theoretical
formulation and results in Section 4 are potentially applicable for estimatingany physical quantityof em-
bedded software; we have therefore sought to present our theoretical results in a general manner as relating
to the lengths of paths in a graph.

The outline of the paper is as follows. We begin with a survey of related work in Section 2, mainly
focussed on execution time analysis. The basic formulation and an overview of our approach is given in
Section 3. The algorithm and main theorems are given in Section 4, and experimental results in Section 5.
We conclude in Section 6.

A preliminary version of this work appeared in [22]. This technical report expands on both theoretical
and experimental results, describing the theoretical model in far greater detail.

2 Background and Related Work

We briefly review literature on estimating physical parameters of software and relevant results from learning
theory.

2.1 Estimating Execution Time and Other Physical Quantities

There is a vast literature on estimation execution time, especially WCET analysis, comprehensively surveyed
by Li and Malik [14] and Wilhelm et al. [27, 20]. For lack of space, we only include here a brief discussion
of current approaches and do not cover all tools. References to current techniques can be found in a recent
survey [20].

There are two parts to current WCET estimation methods:program path analysis(also calledcontrol
flow analysis) andprocessor behavior analysis. In program path analysis, the tool tries to find the program
path that exhibits worst-case execution time. In processor behavior analysis (PBA), one models the details of
the platform that the program will execute on, so as to be able to predict environment behavior such as cache
misses and branch mis-predictions. PBA is an extremely time-consuming process, with several man-months
required to create a reliable timing model of even a simple processor design.

Current tools are broadly classified into those based onstatic analysis(e.g., aiT, Bounds-T, SWEET,
Chronos) and those that aremeasurement-based(e.g., RapiTime, SymTA/P, Vienna M./P.). Static tools
rely on abstract interpretation and dataflow analysis to compute facts at program points that identify de-
pendencies between code fragments and generate loop bounds. Even static techniques use measurement
for estimating the time for small program fragments, and measurement-based techniques rely on techniques
such as model checking to guide path exploration. Static techniques also perform implicit path enumeration
(termed “IPET”), usually based on integer linear programming. The state-of-the-art measurement-based
techniques [26] are based on generating test data by a combination of program partitioning, random and
heuristic test generation, and exhaustive path enumeration by model checking.

Our technique ismeasurement-based; hence, it suffers no over-estimation and is easy to port to a new
platform. It is distinct from existing measurement-based techniques due to the novel game-theoretic formu-
lation, basis path-based test generation, and the use of online learning to infer an environment model. Our
approach does rely on some static techniques, in deriving loop bounds and using symbolic execution and

3

satisfiability solvers to compute inputs to drive the programdown a specific path of interest. In particular,
note that our approach completely avoids the difficulties of processor behavior analysis, instead directly
executing the program on its target platform. Moreover our approach applies not just to WCET estimation,
but also to estimating the entire execution time profile of a program.

While there have been several papers about quantitative verification of formal models of systems (e.g. [5]),
these typically assume that the quantitative parameters of primitive elements (such as execution time of soft-
ware tasks) are given as input. There is relatively little work on directly verifying non-timing properties on
software, with the exception of estimating the power used by software-controlled embedded systems [24].

Adversarial analysis has been employed for problems such as system-level dynamic power manage-
ment [10], but to our knowledge, the adversarial model and analysis used in this paper is the first for timing
estimation and for estimating quantitative parameters of software.

2.2 Learning Theory

Results of this paper build on thegame-theoretic predictionliterature in learning theory. This field has
witnessed an increasing interest in sequential (oronline) learning, whereby an agent discovers the world by
repeatedly acting and receiving feedback. Of particular interest is the problem of learning in the presence of
an adversary with acomplete absence of statistical assumptionson the nature of the observed data.

The problem of sequentially choosing paths to minimize theregret (the difference between cumulative
lengths of the paths chosen by our algorithm and the total length of the longest path afterT rounds) is known
as an instance ofbandit online linear optimization. The “bandit” part of the name is due to the connection
with the multi-armed banditproblem, where only the payoff of the chosen “arm” (path) is revealed. The
basic “bandit” problem was put forth by Robbins [21] in 1952 and has been well-understood since then.
The recent progress comes from the realization that well-performing algorithms can be found (a) for large
decision spaces, such as paths in a graph, and (b) under adversarial conditions rather than the stochastic
formulation of Robbins. We are the first to bring these results to bear on the problem of quantitative analysis
of embedded software.

We refer the reader to a recent book [4] for a comprehensive treatment of sequential prediction. Some
relevant results can be found in [17, 9, 1].

2.3 Miscellaneous

Our algorithm uses the concept ofbasis pathsof a program, which has been explored before in the software
engineering community to compute thecyclomatic complexityof a program [16]; however, our theoretical
results rely on extracting a special basis called abarycentric spanner[1]. Our approach heavily relies on ad-
vances in SMT solving for input test generation; these techniques are surveyed in a recent book chapter [2].

3 Theoretical Formulation and Overview

We are concerned with estimating a physical property of a software task (program) executing in its target
platform (environment). The physical quantity of interest is in general a function of three things: the program
code, parameters of its environment, and the inputs to the program. More concisely, we can express the
physical quantityq as the following function

q = fP(x,w)

4

wherex denotes the inputs to the program (such as data read from memory or received over the network),w
denotes the environment parameters (such as the contents of the cache or network delays), andfP denotes
the program-specific function that mapsx andw to a value of the physical quantity.

In general,x andw vary over time, and so doesq. However, the functionfP is typically constant over
time. We will make the variation with time explicit by adding a subscript:

qt = fP(xt ,wt)

Some sample physical properties of interest are as follows:

• Global worst-case estimation:In this case, we want to estimate the largest value of the quantityq for
all values ofx andw:

max
x,w

fP(x,w) (1)

• Worst-case estimation over a time horizonτ: This is a similar problem as above, except that the worst
case is to be computed over a finite time horizonτ, formally specified as follows:

max
t=1..τ

max
xt ,wt

fP(xt ,wt) (2)

• Average-case estimation over a time horizon against a worst-case environment:In this case, we want
to estimate, for a time horizonτ and for any sequence of environment parametersw1,w2, . . . ,wτ, the
following quantity:

max
xt

1
τ

τ

∑
t=1

fP(xt ,wt) (3)

• Can the system consume R resources at any point over a time horizon ofτ: The question we ask here is
whetherqt exceedsR for any choice oft, xt , andwt . For example, a concrete instance of this problem
is to ask whether a software task can take more thanRseconds to execute.

For concreteness, in the remainder of this section, we will focus on a single quantity,execution time,
and on a single representative problem, namely, theworst-case execution time(WCET) estimation problem.
However, our theoretical formulation and algorithms carry over to estimating any physical quantity and to
problems other than worst-case analysis.

The WCET estimation problem can be defined as follows:

Given a terminating software taskSand a platformM on whichSexecutes, estimate the longest
time S takes to terminate onM.

Moreover, we will focus on WCET estimation over a finite time horizonτ. If we let τ go to ∞, this
problem reduces to the true WCET estimation problem. For brevity, we will simply refer to finite-horizon
WCET estimation as WCET estimation; however, our experimental results compare against techniques for
the true WCET estimation problem.

The main ideas in our theoretical formulation are elaborated below.
Game-theoretic formulation: We model the WCET estimation problem as a game between the WCET
estimation toolT and the environmentE of S.

The game proceeds over multiple rounds,t = 1,2,3, In each round,T picks the inputsx to S.
These inputs determine the path taken through the program.E picks, in a potentially adversarial fashion,
environment parametersw. This choice byE can dependon the inputs selected byT .

5

At the end of each roundt, T receives as feedback the execution timelt of S for its chosen path under
the parameters chosen byE . Note that we assume thatT only receives the overall execution time of the
task, not a more fine-grained measurement of (say) each basic block in the task along the chosen path. This
enables us to minimize any skew from instrumentation inserted to measure time. Based on the feedbacklt ,
T can modify its input-selection strategy.

After some number of roundsτ, we stop:T must output its prediction of the longest execution time of
S that could have been exhibited during roundst = 1,2, . . . ,τ. T wins the game if its prediction is correct;
otherwise,E wins. The goal ofT is thus to select a sequence of inputs so that it can accumulate enough
data to identify, with high probability, the longest execution time of S during t= 1,2, . . . ,τ.

Note that this longest execution time need not be due to inputs that have been already tried out byT .
By permittingE to select environment parameters based onT ’s choice of path, we can model path-

dependent timing as well as perturbation in execution time of a single path due to variation in environmental
conditions or measurement error. The more predictable the timing behavior of the platform, the smaller
this perturbation will be. For theoretical analysis, we model the perturbation as a random variable whose
mean is bounded by a parameterµmax. If a platform has predictable timing, such as the PRET processor
proposed by Edwards and Lee [6], it would mean thatµmax is small. (Theµmax parameter will play a role in
determining the rate of convergence of our proposed algorithm.)

Formulation as a graph problem: An additional aspect of our model is that the game operates on the
control-flow graphGS of the taskS, with loops unrolled to a pre-determined safe upper bound.

In this setting, the game described above works as follows. At any roundt, the playerT selects a pathxt

through the graphGS from a designatedsource node(entry point of the function) to a designatedsink node
(exit point/return statement of the function). This is performed by generating input values forS to drive
execution down pathxt , using standard constraint-based test generation techniques using SMT solvers.E

selects lengths for all source-sink paths inGS, where this selection can depend on the choice ofxt . However,
E only reveals the lengthlt of the chosen pathxt .

The goal ofT is thus toselect pathsso that within a time horizonτ it can accumulate enough data to
identify, with high probability, the longest path inGS during roundst = 1,2, . . . ,τ.

Next, we formalize the above problem definition.

3.1 Theoretical Formulation

Consider a directed acyclic graphG = (V,E) derived from the control-flow graph of the task with all loops
unrolled. We will assume that there is a single source nodeu and single sink nodev in G; if not, then dummy
source and sink nodes can be added.

Let P denote the set of all paths inG from sourceu to sinkv. We can associate each of the paths with
a binary vector withm= |E| components, depending on whether the edge is present or not. In other words,
each source-sink path is a vectorx in {0,1}m, where theith entry of the vector for a pathx corresponds to
edgei of G, and is 1 if edgei is in x and 0 otherwise. The setP is thus a subset of{0,1}m.

The path prediction interaction is modeled as a repeated game between our algorithm (T) and the pro-
gram environment (E). On each roundt, T chooses a pathxt ∈ P betweenu andv. Concurrent with this
choice, the adversaryE picks a table of non-negative path lengths given by the functionL t : P → R

≥0.
Then, the total lengthlt of the chosen pathxt is revealed, wherelt = L t(xt). The game proceeds for some
number of roundst = 1,2, . . . ,τ.

At the end of roundτ, the goal ofT is to accurately estimate the worst-case execution time due to

6

environment states in roundst = 1,2, . . . ,τ. This can be expressed as the following quantity:

Lmax = max
x∈P

max
t=1,2,...,τ

L t(x) (4)

Moreover, we would also likeT to identify the worst-case path given by

x∗ = argmaxx∈P max
t=1,2,...,τ

L t(x) (5)

We make a few remarks on the above theoretical model.
First, we stress that, in the above formulation, the goal is to find the WCETdue to environment states in

rounds t= 1,2, . . . ,τ. In order to find the true WCET, for all possible environment states, we need to assume
that the worst-case state occurs at some time betweent = 1 andt = τ. We contend that this formulation is
useful in spite of this assumption because it serves to decouple the path dimension of the WCET estimation
problem from the state dimension. In our experience, for many applications, the worst-case environment
state does appear at some time during testing — the problem is that testing may not pick the worst-case path
at that same time. With our formulation, the goal is to accurately estimate the WCET even if we do not
sample the worst-case path when the worst-case state occurred.

Second, the definition of our estimation targetLmax assumes that the timing of a program depends only
on the control flow through that program. In general, the timing can also depend on characteristics of input
data that do not influence control flow. We believe that the basic framework we describe here also applies to
the case of data-dependent timing, and leave an exploration of this aspect to future work.

Overall, we believe that decoupling the path problem from the state problem in a manner that can be
applied easily to any platform is in itself a significant challenge. This paper mainly focuses on solving this
problem. In future work, we plan to address the limitations of the model identified above.

The third and final remark we make is about the “size” of the theoretical model. Since a DAG can have
exponentially-many paths in the number of nodes and edges, the domain of the functionL t is potentially
exponential, and can change at each roundt. In the worst case, the strategy sets of bothT andE in this
model are exponential-sized, and it is impossible to exactly learnL t for everyt without sampling all paths.
Hence, we need to approximate the above model with another model that, while being more compact, retains
enough accuracy to generate useful results in practice.

Below, we present a more compact model, which our algorithm is then based upon. We will present this
model in two steps.

3.1.1 Modeling with Weights and Perturbation

We model the selection of the table of lengthsL t by the environmentE as a two-step procedure.

(i) First, E chooses a vector of non-negativeedge weights, wt ∈ R
m, for G. These weights represent

path-independentdelays of basic blocks in the program.

(ii) Then, after observing the pathxt selected byT , E picks a distribution from which it draws a pertur-
bation vectorπt(xt). The functional notation indicates that the distribution is a function ofxt .

The vectorπt(xt) models the path-specific changes thatE applies to its original choicewt . We will
abbreviateπt(xt) by πx

t . In cases where we wish to denoteπt(x′) for x′ that could be different from
xt , we will explicitly write πx

t(x′) or πt(x′).

The only restriction we place onπt(x), for anyx, is that‖πt(x)‖1≤N, for some finiteN. The parameter
N is arbitrary, but places the constraint that the perturbation of any path length cannot be unbounded.

7

Thus, the overall path length observed byT is

lt = xt · (wt + πx
t) = xt

T(wt + πx
t)

Now let us consider how this model relates to the original formulation we started with.
First, note that, in the original model,E picks the functionL t that defines the lengths of all paths. To

relate to that model, here we can assume, without loss of generality, thatE draws a-priori the perturbation
vectorsπx

t(x) for all x∈ P , but onlyπx
t(xt) plays a role in determininglt .

Second, equating the observed lengths, we see that

L t(xt) = xT

t (wt + πx
t)

The main constraint on this equation is the requirement that‖πx
t‖1 ≤ N, which implies that|xT

t πx
t | ≤ N.

In effect, by using this model we require thatE pick L t by first selecting path-independent weightswt and
then, for each source-sink path, modifying its length by a perturbation of at most±N. Note, however, that
the model places absolutely no restrictions on the value ofwt or how it changes witht (from round to round).

The goal forT in this model is to estimate the following quantity

Lmax = max
x∈P

max
t=1,2,...,τ

xT(wt + πx
t) (6)

Moreover, we would also likeT to identify the worst-case path given by

x∗ = argmaxx∈P max
t=1,2,...,τ

xT(wt + πx
t) (7)

3.1.2 Simplified Model without Perturbation

To more easily introduce the key concepts in our algorithm, we will initially assume that the perturbation
vectors at all time points are identically 0, viz.,πx

t(x) = 0 for all t andx.
Clearly, this is an unrealistic idealization in practise, since in this model the length of an edge is inde-

pendent of the path it lies on. We stress that our main theoretical results are for the more realistic model
defined in Section 3.1.1.

We next give an overview of our approach in the context of a small example.

3.2 Overview of Our Approach

We describe the working of our approach using a small program from an actual real-time embedded system,
the Paparazzi unmanned aerial vehicle (UAV) [18]. Figure 1 shows the C source code for thealtitude control task

in the Paparazzi code, which is publicly available open source.
Starting with the source code for a task, and all the libraries and other definitions it relies on, we run the

task through a C pre-processor and the CIL front-end [8] and extract the control-flow graph (CFG). In this
graph, each node corresponds to the start of a basic block and edges are labeled with the basic block code
or conditional statements that govern control flow. Figure 2 shows the CFG for the code shown in Figure 1.
Note that we assume that code terminates, and bounds are known on all loops. Thus, we start with code
with all loops (if any) unrolled, and the CFG is thus a directed acyclic graph (DAG). We also pre-process the
CFG so that it has exactly one source and one sink. Each execution through the program is a source-to-sink
path in the CFG.

An exhaustive approach to program path analysis will need to enumerate all paths in this DAG. However,
it is well-known that a DAG can have exponentially many paths (in the number of vertices/edges). Thus, a
brute-force enumeration of paths is not efficient.

8

#define PPRZ_MODE_AUTO2 2

#define PPRZ_MODE_HOME 3

#define VERTICAL_MODE_AUTO_ALT 3

#define CLIMB_MAX 1.0

...

void altitude_control_task(void) {

if (pprz_mode == PPRZ_MODE_AUTO2

|| pprz_mode == PPRZ_MODE_HOME) {

if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {

/* inlined below: function altitude_pid_run(); */

float err = estimator_z - desired_altitude;

desired_climb = pre_climb + altitude_pgain * err;

if (desired_climb < -CLIMB_MAX)

desired_climb = -CLIMB_MAX;

if (desired_climb > CLIMB_MAX)

desired_climb = CLIMB_MAX;

}}}

Figure 1:Source code foraltitude control task

1

2

5

6

3

4

7

8

9

10

x1 = (1,1,1,0,0,1,1,0,0,1)

x2 = (1,0,0,1,1,0,0,1,1,1)

x3 = (1,1,1,0,0,0,0,1,1,1)

x4 = (1,0,0,1,1,1,1,0,0,1)

x4 = x1 + x2 − x3

Figure 3:I llustration of Basis Paths.An edge

label indicates the position for that edge in the vector

representation of a path.

Our approach is to sample a set ofbasis paths. Re-
call that each source-sink path can be viewed as a vector
in {0,1}m, wherem is the number of edges in the unrolled
CFG. The set of all valid source-sink paths thus forms a sub-
setP of {0,1}m. We compute the basis forP in which each
element of the basis is also a source-sink path.

Figure 3 illustrates the ideas using a simple “2-diamond”
example of a CFG. In this example, pathsx1, x2 andx3 form
a basis andx4 can be expressed as the linear combination
x1 +x2−x3.

Our algorithm, described in detail in Section 4, ran-
domly samples basis paths of the CFG and drives program
execution down those paths by generating tests using con-
straint solving. From the observed lengths of those paths,
we estimate edge weights on the entire graph. This estimate,
accumulated over several rounds of the game, is then used
to predict the longest source-sink path in the CFG. Theoretical guarantees on performance are proved in
Section 4 and experimental evidence for its utility is given in Section 5.

4 Algorithm and Theoretical Results

Recall that, in the model introduced in the previous section, the path prediction interaction is modeled as a
repeated game between our algorithm (Player) and the program environment (Adversary). On each roundt,
we choose a source-sink pathxt ∈ P ⊆ {0,1}m. The adversary chooses the lengths of paths in the graph. We
assume that this choice is made by the following two stage process: first, the adversary chooses the worst-

9

Figure 2:Control-flow graph for altitude control task

caseweights, wt ∈ R
m, on the edges ofG independently of our choicext , and then skews these weights by

adding a random perturbationπx
t , whose distribution depends onxt . (We will also refer to edge weights and

path lengths as “delays”, to make concrete the link to timing analysis.)
In the simplified model, which we consider first, we suppose that the perturbation is zero; thus, we

observe the overall path lengthlt = xT

t wt . In the general model, onlylt = xT

t (wt + πx
t) is observed. No

other information is provided to us; not only do we not know the lengths of the paths not chosen, we do not
even know the contributions of particular edges on the chosen path. It is important to emphasize that in the
general model we assume that the adversary is adaptive in thatwt andπx

t can depend on the past history of
choices by the player and the adversary.

Suppose that there is a single fixed pathx∗ which is the longest one on each round. One possible
objective is to findx∗. In the following, we exhibit an efficient randomized algorithm which allows us to
find it correctly with high probability. In fact, our results are more general: if no single longest path exists,
we can provably find a batch of longest paths. We describe later how our theoretical approach paves the way
for analyzing worst-case execution time given a range of assumptions at hand.

10

Before diving into the details of the algorithm, let us sketchhow it works:

• First, compute a representative set of basis paths, called abarycentric spanner(see section 4.1)

• For a specified number of iterationsτ, do the following:
⋆ pick a path from the representative set
⋆ observe its length
⋆ construct an estimate of edge weights on the whole graph from the observed length

• Find the longest path or a set of longest paths based on the average of the estimates overτ iterations.

It might seem mysterious that we can re-construct edge weights (delays, for the case of timing analysis) on
the whole graph based a single number, which is the total length of the path we chose. To achieve this, our
method exploits the power of randomization and a careful choice of a representative set of paths. The latter
choice is discussed next.

4.1 Focusing on a Barycentric Spanner

It is well-known in the game-theoretic study of path prediction that any deterministic strategy against an
adaptive adversary will fail [4]. Therefore, the algorithm we present below is randomized. As we only
observe the entire length of the path we choose, we are bound to select from the set of pathscoveringthe
whole graph or else we risk missing a highly time-consuming edge. However, simply covering the graph is
not enough – note that such coverage corresponds to “statement coverage” in the program, without covering
all ways of getting to a statement. Indeed, a key feature of the algorithm is the ability to exploit correlations
between paths to guarantee that we find the longest. Hence, we need abarycentric spanner(introduced
by [1]), a set of up tom paths with two valuable properties: any path in the graph can be written as a
linear combination of the paths in the spanner, and the coefficients in this linear combination are bounded
in absolute value. The first requirement says that the spanner is a good representation for the exponentially-
large set of possible paths; the second says that lengths of some of the paths in the spanner will be of the
same order of magnitude as the length of the longest path. These properties enable us to repeatedly sample
from the barycentric spanner and reconstruct delays on the whole graph. We then employ concentration
inequalities1 to prove that these reconstructions, on average, converge to the true delays of the paths. Once
we have a good statistical estimate of the true weights on all the edges, it only remains to run a longest-path
algorithm for weighted directed acyclic graphs (LONGEST-PATH), subject to path feasibility constraints.

The existence of a barycentric spanner has been shown in Awerbuch and Kleinberg [1]. In particular, the
authors provide the following procedure to find a 2-barycentric spanner set (where coefficients are bounded
in absolute value by 2){b1, . . . ,bm} ∈ P (see also [17]).

In Algorithm 1, B = (b1, . . . ,bm) andB−i = (b1, . . . ,bi−1,bi+1, . . . ,bm). The output of the algorithm is
the final value ofB, a 2-barycentric spanner; i.e., any pathx∈ P can be written asx= ∑m

i=1 αibi with |αi | ≤ 2.
The ith iteration of the for-loop in lines 2-4 repeatedly replaces theith element of the standard basis with
a path that is orthogonal to the previousi−1 paths identified so far and with all remaining standard basis
vectors and also spans the path-spaceP . Line 3 of the algorithm corresponds to maximizing a linear function
over the setP , and can be solved usingLONGEST-PATH.2 At the end of the for-loop, we are left with a basis
of P that is not necessarily a 2-barycentric spanner. Lines 5-7 of the algorithm refine this basis into a
2-barycentric spanner using the sameLONGEST-PATH optimization oracle that is used in the for-loop.

1Concentration inequalities are sharp probabilistic guarantees on the deviation of a function of random variables from its mean.
2In practise, to compute feasible basis paths one must add constraints that rule out infeasible paths, as is standard in integer

programming formulations for timing analysis [14]; in this case, the longest-path computation is solved as an integer linear program.

11

Algorithm 1 Finding a 2-Barycentric Spanner
1: (b1, . . . ,bm)← (e1, . . . ,em).
2: for i = 1 tomdo {{Compute a basis ofP }}
3: bi ← argmaxx∈P |det(x,B−i)|
4: end for
5: while ∃x∈ P , i ∈ {1, . . . ,m} satisfying
|det(x,B−i)|> 2|det(bi,B−i)| do {{TransformB into a 2-barycentric spanner}}

6: bi ← x
7: end while

Algorithm 2 GAMETIME with simplified environment model
1: Inputτ ∈ N

2: Compute a 2-barycentric spanner{b1, . . . ,bb}
3: for t = 1 to τ do
4: Environment chooseswt .
5: We chooseit ∈ {1, . . . ,b} uniformly at random.
6: We predict the pathxt = bit and observe the path lengthℓt = bT

it wt

7: Estimate ˜vt ∈ R
b asṽt = bℓt ·eit , where{ei} denotes the standard basis.

8: Compute estimated weights ˜wt = B+ṽt

9: end for
10: Use the obtained sequence ˜w1 . . . w̃τ to find a longest path(s). For example, for Theorem 4.2, we compute

x∗τ := argmaxx∈P xT ∑τ
t=1 w̃t .

One can intuitively view the determinant computation as computing the volume of the corresponding
polytope. Maximizing the determinant amounts to spreading the vertices of the polytope as far as possible
in order to obtain a “diverse” set of basis paths.

It is shown [1] that the running time of Algorithm 1 is only quadratic inm. Gyorgy et al. [9] extend
the above procedure to the case where the set of paths spans only ab-dimensional subspace ofR

m (where
b≤ m), a scenario which is more realistic for our setting. Slightly abusing notation, letB be theb×m
matrix with bi ’s as rows. We define the Moore-Penrose pseudo-inverse ofB asB+ = BT(BBT)−1. It holds
thatBB+ = Ib. For theoretical analysis, letM be any upper bound on the length of any basis path.

Since we have assumed an adaptive adversary that produceswt based on our previous choicesx1 . . .xt−1

as well as the random factorsπx
1 . . .πx

t−1, we should take care in dealing with expectations. To this end, let
us denote the conditional expectationEt [A] = E[A|i1, . . . , it−1,πx

1, . . . ,πx
t−1], keeping in mind that random-

ness at timet in the general model stems from our random choiceit of the basis pathand the adversary’s
random choiceπx

t given it . In the simplified model, all randomness is due to our choice of the basis path,
and this makes the analysis more transparent. We stress that the adversary can vary the distribution ofπx

t

according to the path chosen by the Player.

4.2 Analysis under the Simplified Model

We now analyze the effectiveness of GAMETIME under the simplified model presented in Section 3. We
begin by proving some key properties of the algorithm.

Preliminaries

The following Lemma is key to proving that Algorithm 2 performs well. It quantifies the deviations of

12

our estimates of the delays on the whole graph, ˜wt , from the true delayswt , which we cannot observe.

Lemma 4.1 With probability at least1−δ, for all x∈ P ,
∣

∣

∣

∣

∣

1
τ

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ τ−1/2c
√

2b+2ln(2δ−1), (8)

where c= 4bM.

Proof: We will show thatEtw̃tx = wtx for any x ∈ P , i.e. the estimates are unbiased3 on the subspace
spanned by{b1, . . . ,bb}. By working directly in the subspace, we obtain the required probabilistic statement
and will have the dimensionality of the subspaceb, notm, entering the bounds.

Definevt = Bwt just asṽt = Bw̃t . Taking expectations with respect toit , conditioned oni1, . . . , it−1,

Et ṽt = Et
[

b(bT

it wt) ·eit

]

=
1
b

b

∑
i=1

b(bT

i wt) ·ei = Bwt = vt .

Fix any α ∈ {−2,2}b. We claim that the sequenceZ1, . . . ,Zτ, whereZt = αT(ṽt − vt) is a bounded
martingale difference sequence. Indeed,EtZt = 0 by the previous argument. A bound on the range of the
random variablesZt can be computed by observing

|αTṽt |= |αT[b(bT

it wt)eit]| ≤ 2b|bT

it wt | ≤ 2bM

and
|αTvt | ≤ 2bM,

implying
|Zt | ≤ 4bM

.
= c.

An application of Azuma-Hoeffding inequality (see Appendix) for a martingale difference sequence
yields, for the fixedα,

Pr

(
∣

∣

∣

∣

∣

τ

∑
t=1

Zt

∣

∣

∣

∣

∣

> c
√

2τ ln(2(2b)δ−1)

)

≤ δ/2b.

Having proved a statement for a fixedα, we would like to apply the union bound4 to arrive at the
corresponding statement for anyα ∈ [−2,2]b. This is implausible as the set is uncountable. However,
applying a union bound over theverticesof the hypercube{−2,2}b is enough. Indeed, if|∑τ

t=1 Zt | =
|αT ∑τ

t=1(ṽt −vt)| ≤ ξ for all vertices of{−2,2}b, then immediately|∑τ
t=1Zt | ≤ ξ for any α ∈ [−2,2]b by

linearity. Thus, by union bound,

Pr

(

∀α ∈ [−2,2]b,

∣

∣

∣

∣

∣

τ

∑
t=1

αT(ṽt −vt)

∣

∣

∣

∣

∣

≤ c
√

2τb+2τ ln(2δ−1)

)

≥ 1−δ.

Any pathx can be written asxT = αTB for someα ∈ [−2,2]b. Furthermore, ˜wt = B+ṽt implies that
xTw̃t = αTBB+ṽt = αTṽt andxTwt = αTvt . We conclude that

3For random variablesX andX̃, X̃ is said to be an unbiased estimate ofX if E[X− X̃] = 0.
4Also known as Boole’s inequality, the union bound says that the probability that at least one of the countable set of events

happens is at most the sum of the probabilities of the events, e.g. Pr(A∪B)≤ Pr(A)+Pr(B).

13

path length
nu

m
be

r
of

 p
at

hs

ε+2ξ

1
τ ∑τ

t=1 w̃T

t x

1
τ ∑τ

t=1wT

t x

ε

Figure 4: Illustration of the second inclusion in Lemma 4.2.The set ofε-longest paths, the object of interest, is

contained in the set of(ε +2ξ)-longest paths w.r.t. to the sequence ˜w1, . . . , w̃τ. Under a margin assumption, equality between the

two sets can be shown, as exhibited by Theorem 4.2.

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ c
√

2τb+2τ ln(2δ−1)

)

≥ 1−δ

and the statement follows by dividing byτ.
�

Estimating the Set of Longest Paths

With the help of Lemma 4.1, we can now analyze how the longest (or almost-longest) paths with respect
to the estimated ˜wt ’s, where path lengths are averaged over all rounds, compare to the true averaged longest
paths.

Definition 4.1 Define the set ofε-longest paths with respect to the actual delays

S
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

wT

t x≥max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε

}

and with respect to the the estimated delays

S̃
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

w̃T

t x≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε

}

.

In particular, S 0
τ is the set of longest paths.

The following Lemma makes our intuition precise: with enough trialsτ, the set of longest paths, which
we can calculate after running Algorithm 2, becomes almost identical to the true set of longest paths. We
illustrate this point graphically in Figure 4: In a histogram of average path lengths, the set of longest paths
(the right “bump”) is somewhat smoothed when considering the path lengths under the estimated ˜wt ’s. In
other words, paths might have a slightly different average path length under the estimated and actual weights.
However, we can still guarantee that this smoothing becomes negligible for large enoughτ, enabling us to
locate the longest paths.

14

Lemma 4.2 For anyε > 0 and forξ = τ−1/24bM
√

2b+2ln(2δ−1),

S̃
ε
τ ⊆ S

ε+2ξ
τ and S ε

τ ⊆ S̃
ε+2ξ
τ

with probability at least1−δ.

Proof: Let x∈ S̃ ε
τ andy∈ S 0

τ . Suppose that we are in the(1−δ)-probability event of Lemma 4.1. Then

1
τ

τ

∑
t=1

wT

t x≥ 1
τ

τ

∑
t=1

w̃T

t x−ξ≥max
x′∈P

1
τ

τ

∑
t=1

w̃T

t x′− ε−ξ

≥ 1
τ

τ

∑
t=1

w̃T

t y− ε−ξ≥ 1
τ

τ

∑
t=1

wT

t y− ε−2ξ

= max
x′∈P

1
τ

τ

∑
t=1

wT

t x′− ε−2ξ,

where the first and fourth inequalities follow by Lemma 4.1, the third inequality is by definition of maximum,
and the second and fifth are by definitions ofS̃ ε

τ andS 0
τ , resp. Since the sequence of inequalities holds for

anyx∈ S̃ ε
τ , we conclude that̃S ε

τ ⊆ S
ε+2ξ
τ . The other direction of inclusion is proved analogously.�

Note thatξ→ 0 asτ→ ∞. To compute the setS 0
τ , we can instead compute the setS̃ 2ξ

τ that contains

it. If |S̃ 2ξ
τ | ≤ k, for some parameterk, then we can use an algorithm that computes thek longest paths (see,

e.g., [7]) to find this set.

Results under Unique Longest Path Assumption

While Lemma 4.2 is very general, we now give one interesting implication for finding a longest path
under the following assumption.

Assumption 4.1 There exists a single path x∗ that is the longest path on any round with a certain (known)
marginρ:

∀x∈ P, x 6= x∗, ∀t, (x∗−x)Twt > ρ

Note that if there is a unique longest path (for any marginρ≥ 0), then we can see that

x∗ = argmax
x∈P

1
τ

τ

∑
t=1

wT

t x = argmax
x∈P

max
t=1..τ

wT

t x

Thus, under the above margin assumption, we can, in fact, recover the longest path, as shown in the next
Theorem.

Theorem 4.2 Suppose Assumption 4.1 holds withρ > 0. We run the Algorithm 2 forτ = (8bM)2ρ−2(2b+
2ln(2δ−1)) iterations. Then with probability at least1−δ, Algorithm 2 outputs

x∗τ := argmax
x∈P

xT

τ

∑
t=1

w̃t

and x∗τ is equal to x∗.

15

Proof:
Let x∗τ = argmaxx∈P x∑τ

t=1 w̃t . We claim that, with probability 1− δ it is equal tox∗. Indeed, suppose

x∗τ 6= x∗. By Lemma 4.2,x∗τ ∈ S̃ 0
τ ⊆ S

2ξ
τ with probability at least 1−δ. Thus,

1
τ

τ

∑
t=1

wT

t x∗τ ≥
1
τ

τ

∑
t=1

wT

t x∗−2ξ.

Assumption 4.1, however, implies that

1
τ

τ

∑
t=1

wT

t x∗τ <
1
τ

τ

∑
t=1

wT

t x∗−ρ

leading to a contradiction wheneverρ ≥ 2ξ = τ−1/28bM
√

2b+2ln(2δ−1)). Rearranging the terms, we
arrive atτ ≥ (8bM)2ρ−2(2b+ 2ln(2δ−1)), as assumed. We conclude that with probability at least 1− δ,

x∗τ = x∗ and{x∗}= S̃ 0
τ = S

2ξ
τ .

�

The following weaker assumption also has interesting implications.

Assumption 4.2 There exists a path x∗ ∈ P such that it is the longest path on any round

∀x∈ P, ∀t, (x∗−x)Twt ≥ 0

If, after running Algorithm 2 for enough iterations, we find all 2ξ-longest paths (the setS̃ 2ξ
τ), Lemma 4.2

guarantees that, under Assumption 4.2, the longest pathx∗ ∈ S 0
τ is one of them with high probability. As

discussed earlier, we can use an efficientk-longest paths computation to find a set containingS 0
τ . We can

then use this information to repeatedly test the candidate paths in this set to find the worst-case path and
estimate its length.

4.3 Analysis under General Weights-Perturbation Model

We now present an analysis of GAMETIME under the general weight-perturbation model given in Sec. 3.
For easy reference, we give the GAMETIME algorithm again below but with the new environment model
Algorithm 3.

As before, letM be any upper bound on the length of any basis path (where the length includes the
perturbation).

In the general model, the environmentE picks a distribution with meanµx
t ∈R

m, which depends on the
algorithm’s chosen pathx. From this distribution,E draws a vector of perturbationsπx

t ∈ R
m. The vector

πx
t satisfies the following assumptions:

• Bounded perturbation:
‖πx

t‖1≤ N, whereN is a parameter.

• Bounded mean perturbation of path length:
For any pathx∈ P , |xTµx

t | ≤ µmax

Note thatµx
t is a function of the chosen path, and thatπx

t depends onµx
t .

We now state the main lemma for our general model. In this case, we calculate ˜wt as an estimate of the
sumwt + πx

t .

16

Algorithm 3 GAMETIME with general environment model
1: Inputτ ∈ N

2: Compute a 2-barycentric spanner{b1, . . . ,bb}
3: for t = 1 to τ do
4: Environment chooseswt .
5: We chooseit ∈ {1, . . . ,b} uniformly at random.
6: Environment chooses a distribution from which to drawπx

t , where the meanµx
t and support of the

distribution satisfies the assumptions given above.
7: We predict the pathxt = bit and observe the path lengthℓt = bT

it (wt + πx
t)

8: Estimate ˜vt ∈ R
b asṽt = bℓt ·eit , where{ei} denotes the standard basis.

9: Compute estimated weights ˜wt = B+ṽt

10: end for
11: Use the obtained sequence ˜w1 . . . w̃τ to find a longest path(s). For example, for Theorem 4.4, we compute

x∗τ := argmaxx∈P xT ∑τ
t=1 w̃t .

Lemma 4.3 With probability at least1−δ, for all x∈ P ,
∣

∣

∣

∣

∣

1
τ

τ

∑
t=1

(w̃t −wt −πx
t)

Tx

∣

∣

∣

∣

∣

≤ (2b+1)µmax

+τ−1/2
[

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

]

(9)

where c= 2b(2M +µmax) and d= N+µmax.

Proof: The proof is similar to that of Lemma 4.1, so we only highlight the differences here.

Et ṽt = Eit

{

Eπx
t

[

b(bT

it wt +bT

it π
x
t(xt)) ·eit |it

]}

=
1
b

b

∑
i=1

b(bT

i wt) ·ei +
1
b

b

∑
i=1

b(bT

i µbi
t)ei

= Bwt +µbasis
t

whereµbasis
t denotes theb×1 vector of means in which theith element isbT

i µbi
t and each entry is bounded

in absolute value byµmax.
Fix anyα ∈ {−2,2}b. As before, the sequenceZ1, . . . ,Zτ, whereZt = αT(ṽt − vt −µbasis

t) is a bounded
martingale difference sequence. A bound on the range of the random variables can be computed by observ-
ing

|αTṽt |= |αT[b(bT

it (wt + πx
t))eit]| ≤ 2b|bT

it (wt + πx
t)| ≤ 2bM

and
|αTµbasis

t | ≤ 2bµmax, |αTvt | ≤ 2bM

implying
|Zt | ≤ 2b(2M +µmax)

.
= c.

17

Thus, using Azuma-Hoeffding inequality, we can conclude that for anyδ1 > 0, and for fixedα,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Zt

∣

∣

∣

∣

∣

> c
√

2τ ln(2(2b)δ−1
1)

)

≤ δ1/2b

and (skipping a few intermediate steps involving the union bound as before), we finally get

Pr

(

∀x∈ P ,
∣

∣

∣

∣

∣

τ

∑
t=1

(w̃t −wt)
Tx

∣

∣

∣

∣

∣

≤ 2bτµmax+c
√

2τb+2τ ln(2δ−1
1)

)

≥ 1−δ1. (10)

Now consider any fixedx∈ {0,1}m. We claim that the sequenceY1, . . . ,Yτ, whereYt = xTπx
t(x)−xTµx

t
is also a bounded martingale difference sequence. Clearly, sinceEt [πx

t(x)] = µx
t , Et [Yt] = 0. Further, a

bound on the range of the random variables can be computed by observing

|xTπx
t(x)| ≤ N and |xTµx

t | ≤ µmax.

Thus,
|Yt | ≤N+µmax =: d.

An application of Azuma-Hoeffding inequality for the fixedx and for anyδ2 > 0 yields,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Yt

∣

∣

∣

∣

∣

> d
√

2τ ln(2(2m)δ−1
2)

)

≤ δ2/2m.

Taking the union bound over allx∈ {0,1}m,

Pr

(

∀x∈ {0,1}m,

∣

∣

∣

∣

∣

τ

∑
t=1

xT(πx
t(x)−µx

t)

∣

∣

∣

∣

∣

≤ d
√

2τm+2τ ln(2δ−1
2)

)

≥ 1−δ2 .

Thus, we get

Pr

(

∀x∈ {0,1}m,

∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

τ

∑
t=1

xTµx
t

∣

∣

∣

∣

∣

+d
√

2τm+2τ ln(2δ−1
2)

)

≥ 1−δ2

and finally

Pr

(

∀x∈ {0,1}m,

∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

≤ τµmax+d
√

2τm+2τ ln(2δ−1
2)

)

≥ 1−δ2 . (11)

Settingδ1 = δ2 = δ
2 in Relations 10 and 11 above and dividing them throughout byτ, we get that, for all

x∈ P , each of the following two inequalities hold with probability at mostδ
2:

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xT(w̃t −wt)

∣

∣

∣

∣

∣

> 2bµmax+ τ−1/2c
√

2b+2ln(4δ−1)

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xTπx
t(x)

∣

∣

∣

∣

∣

> µmax+ τ−1/2d
√

2m+2ln(4δ−1)

18

From the above relations, we can conclude that, for allx∈ P , the following inequality holds with probability
at least 1−δ

1
τ

∣

∣

∣

∣

∣

τ

∑
t=1

xT(w̃t −wt −πx
t(x))

∣

∣

∣

∣

∣

≤ (2b+1)µmax+

τ−1/2
(

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

)

(12)

which yields the desired lemma.
�

Estimating Longest Paths

From Lemma 4.3, we can derive results on estimating theε-longest paths and the longest path in a
manner similar to that employed in Section 4.2. The main difference is that now we view∑τ

t=1 w̃t as an
estimate of∑τ

t=1(wt + πx
t) rather than of simply∑τ

t=1 wt .
Thus, we now define the setS ε

τ as

Definition 4.3 Define the set ofε-longest paths with respect to the actual delays

S
ε
τ =

{

x∈ P :
1
τ

τ

∑
t=1

(wt + πx
t)

Tx≥max
x′∈P

1
τ

τ

∑
t=1

(wt + πx
t(x
′))Tx′− ε

}

The definition of the set̃S ε
τ stays unchanged.

The lemma on approximating the setsS by S̃ now becomes the following:

Lemma 4.4 For anyε > 0 and for

ξ = (2b+1)µmax+ τ−1/2
[

c
√

2b+2ln(4δ−1)+d
√

2m+2ln(4δ−1)

]

,

we have
S̃

ε
τ ⊆ S

ε+2ξ
τ and S ε

τ ⊆ S̃
ε+2ξ
τ

with probability at least1−δ.

Under the margin assumption (Assumption 4.1), we can recover the longest path in the general weight-
perturbation model, using an identical reasoning as before.

Theorem 4.4 Suppose Assumption 4.1 holds withρ > (4b+ 2)µmax. We run Algorithm 3 forτ = 8(ρ−
(4b+2)µmax)

−2
(

c2(b+ ln(4δ−1))+d2(m+ ln(4δ−1))
)

iterations.
Then with probability at least1−δ, Algorithm 3 outputs

x∗τ := argmax
x∈P

xT

τ

∑
t=1

w̃t

and x∗τ is equal to x∗.

The proofs of Lemma 4.4 and Theorem 4.4 are virtually identical to the corresponding results in Sec-
tion 4.2, so we omit them here. Also, as in that section, we can also identify the longest path under the
weaker Assumption 4.2 by finding the setS̃ (4b+2)µmax

τ containingS 0
τ and enumerating the paths in it.

19

5 Experimental Results

We have implemented and evaluated our approach for problems in execution time analysis. Our analysis
tool, called GAMETIME, can generate an estimate of the execution time profile of the program as well as a
worst-case execution time estimate. This section details our implementation and results.

5.1 Implementation

GAMETIME operates in four stages, as described below.
1. Extract CFG. GAMETIME begins by extracting the control-flow graph (CFG) of the real-time task whose
WCET must be estimated. This part of GAMETIME is built on top of the CIL front end for C [8]. Our CFG
parameters (numbers of nodes, edges, etc.) is thus specific to the CFG representations constructed by CIL.
In general, nodes correspond to the start of basic blocks of the program and edges indicate flow of control,
with edges labeled by a conditional or basic block. In our experience, this phase is usually fast, taking no
more than a minute for any of our benchmarks.
2. Compute basis paths.The next step for GAMETIME is to compute the set of basis paths and theB+

matrix. This is done essentially as discussed in Section 4, where we also ensure the feasibility of basis paths
by the use of integer programming and SMT solving. This phase can be somewhat time-consuming; in our
experiments, the basis computation for the largest benchmark (statemate) took about 15 minutes.
3. Generate program inputs.Given the set of basis paths for the graph, GAMETIME then has to generate
inputs to the program that will drive the program’s execution down that path. It does this usingconstraint-
based test generation, by generating a constraint satisfaction problem characterizing each basis path, and
then using a constraint solver based on Boolean satisfiability (SAT). This phase uses the UCLID decision
procedure [3] to generate inputs for each path and creates one copy of the program for each path, with the
different copies only differing in their initialization functions. For our experiments, this constraint-based
test generation phase was very quick, taking less than a minute for each benchmark.
4. Predict estimated weight vector or longest path.Finally, Algorithm 2 is run with the set of basis paths
and their corresponding programs, along with theB+ matrix. The number of iterations in the algorithm,τ,
depends on the mode of usage of the tool. In the experiments reported below, we used a deterministic cycle-
accurate processor simulator, and henceτ was set equal tob, since we perform one simulation per basis
path. In general,τ can be pre-computed as described in Section 4 or increased gradually while searching for
convergence to a single longest path.
The run-time for this phase depends on the execution time of the program and the number of iterations of
the loop in Algorithm 2; for our experiments, this run-time was under a minute for all benchmarks.

Given the estimated weights computed at each round, ˜w1,w̃2, . . . ,w̃τ, we can compute the overall esti-
mated weight vector1τ ∑τ

t=1 w̃t , and use this to predict the length of any path in the program. In particular,
we can predict the longest path, and its corresponding length. Alternatively, the predicted longest path can
be executed (or simulated) several times to calculate the desired timing estimate.

5.2 Benchmarks

Our benchmarks were drawn from those used in theWCET Challenge 2006[23], which were drawn from
the Mälardalen benchmark suite [15] and the PapaBench suite [18]. In particular, we used benchmarks that
came from real embedded software (as opposed to toy programs), had non-trivial control flow, and did not
require automatic estimation of loop bounds. The latter criterion ruled out, for example, benchmarks that
compute a discrete cosine transform or perform data compression, because there is usually just one path

20

through those programs (going through several iterations ofa loop), and variability in run-time usually only
comes from characteristics of the data. Most benchmarks in the Mälardalen suite are of this nature.

The main characteristics of the chosen benchmarks is shown in Table 1. The first three benchmarks,
altitude, stabilisation, and climbcontrol, are tasks in the open source PapaBench software for an unmanned
aerial vehicle (UAV) [18]. The last benchmark, statemate, is code generated from a STATEMATE Statecharts
model for an automotive window control system. Note in particular, how the number of basis pathsb is far
less than the total number of source-sink paths in the CFG. (We are able to efficiently count the number of
paths as the CFG is a DAG.) We also indicate the number of lines of code for each task; however, note that
this is an imprecise metric as it includes declarations, comment lines, and blank lines – the CFG size is a
more accurate representation of size.

Name LOC Size of CFG Total Num. Num. of basis
n m of paths pathsb

altitude 12 12 16 11 6
stabilisation 48 31 39 216 10

climb control 43 40 56 657 18
statemate 916 290 471 7×1016 183

Table 1: Characteristics of Benchmarks. “LOC” indicates number of lines of C code for the task. The Control-Flow

Graph (CFG) is constructed using the CIL front end,n is the number of nodes,m is the number of edges.

5.3 Worst-Case Execution Time Analysis

We have compared GAMETIME with leading tools for WCET analysis. We present here a comparison
with Chronos [13]. These tools are based on models crafted for particular architectures, and are designed
to generate conservative (over-approximate) WCET bounds. Although GAMETIME is not guaranteed to
generate an upper bound on the WCET, we have found that GAMETIME can produce larger WCET estimates
than these tools. We also show that GAMETIME does significantly better than simply testing the programs
with inputs generated uniformly at random.

5.3.1 Comparison with Chronos and Random Testing

We performed experiments to compare GAMETIME against Chronos [13] as well as against testing the
programs on randomly-generated inputs. WCET estimates are output in terms of the number of CPU cycles
taken by the task to complete in the worst-case.

Chronos is built upon SimpleScalar [25], a widely-used tool for processor simulation and performance
analysis. Chronos extracts a CFG from the binary of the program (compiled for MIPS using modified
SimpleScalar tools), and uses a combination of dataflow analysis, integer programming, and manually con-
structed processor behavior models to estimate the WCET of the task.

To compare GAMETIME against Chronos, we used SimpleScalar to simulate, for each task, each of the
extracted basis paths. We used the same SimpleScalar processor configuration as we did for Chronos (which
is Chronos’ default configuration), specified below:

-cache:il1 il1:16:32:2:l -mem:lat 30 2 -bpred 2lev -bpred:2lev 1 128 2 1 -decode:width 1 -issue:width

1 -commit:width 1 -fetch:ifqsize 4 -ruu:size 8

Since SimpleScalar’s execution is deterministic for a fixed processor configuration, we did not run Al-
gorithm 2 in its entirety. Instead, we simulated each of the basis paths exactly once (factoring out the time

21

for initialization code) and then predicted the longest pathas described in Section 4. The predicted longest
path was then simulated once and its execution time is reported as GAMETIME’s WCET estimate.

The random testing was done by generating initial values for each program input variable uniformly
at random from its domain. For each benchmark, we generated 500 such random initializations; note that
GAMETIME performs significantly fewer simulations (only as many as there are basis paths, for a maximum
of 183 for the statemate benchmark).

Name of Chronos Random GAMETIME Tc−Tg Basis path
Benchmark WCET testing estimate Tg times

Tc Tr Tg (%) Max Min

altitude 567 175 348 62.9 343 167
stabilisation 1379 1435 1513 −8.9 1513 1271

climb control 1254 646 952 31.7 945 167
statemate 8584 4249 4575 87.6 3735 3235

Table 2:Comparison with Chronos and random testing.Execution time estimates are in number of cycles reported

by SimpleScalar. For random testing, the maximum cycle count over 500 runs is reported. The fifth column indicates the percentage

over-estimation by Chronos over GAMETIME, and the last two columns indicate the maximum and minimum cycle counts for basis

paths generated by GAMETIME.

Our results are reported in Table 2. We note that the estimate of GAMETIME Tg is lower than the WCET
Tc reported by Chronos for three out of the four benchmarks. Interestingly,Tg > Tc for the stabilisation
benchmark; on closer inspection, we found that this occurred mainly because the number of misses in
the instruction cache was significantly underestimated by Chronos. The over-estimation by Chronos for
statemate is very large, much larger than for altitude and climbcontrol. This appears to arise from the fact
that the number of branch mis-predictions estimated by Chronos is significantly larger than that actually
occurring: 106 by Chronos versus 19 mis-predictions on the longest path simulated by GAMETIME in
SimpleScalar. In fact, the number of branches performed in a single loop of the statemate code is bounded
by approximately 40.

We also note that GAMETIME’s estimates can be significantly higher than those generated by random
testing. Moreover, GAMETIME’s predicted WCET is higher than the execution time of any of the basis
paths, indicating that the basis paths taken together provide more longest path information than available
from them individually.

5.4 Estimating the Full Timing Profile of a Program

One of the unique aspects of GAMETIME is the ability to predict theexecution time profile of a program–
the distribution of execution times over program paths – as formalized in Lemma 4.3.

To experimentally validate this ability, we performed experiments with a complex processor architecture
– the StrongARM-1100 – which implements the ARM instruction set with a complex pipeline and both data
and instruction caches. The SimIt-ARM cycle-accurate simulator [19] was used in these experiments.

In our experiments, we first executed each basis path generated by GameTime on the SimIt-ARM sim-
ulator and generated the averaged estimated weight vector ˜wavg = 1

b ∑b
t=1 w̃t . Using this estimated weight

vector as the weights on edges in the CFG, we then efficiently computed the estimated length of each pathx
in the CFG asx· w̃avg using dynamic programming. We also exhaustively enumerated all program paths for
the small programs in our benchmark set, and simulated each of these paths to compute its execution time.

22

For the altitude program, the histogram of execution times generated by GAMETIME perfectly matched
the true histogram generated by exhaustively enumerating program paths.

For the climbcontrol task, the GAMETIME histogram is a close match to the true histogram, as can
be seen in Figure 5. Out of a total of 657 paths, 129 were found to be feasible; of these, GAMETIME’s
prediction differs from the true execution time on only 12 paths, but the prediction is never off by more than
20 cycles.

Figure 5: Estimating the distribution of execution times with GAMETIME. The true execution times are

indicated by white bars, the predicted execution times by gray bars, and the cases where the two coincide are colored black.

In summary, we have found GAMETIME to be an adequate technique to estimate not just the WCET,
but also the distribution of execution times of a program, for even complex microprocessor platforms. A
key aspect of GAMETIME’s effectiveness has been the generation of tests for basis paths. We have also
experimented with other coverage metrics such as statement coverage, but these do not yield the same level
of accuracy as do basis path coverage. Full path coverage is very difficult to achieve for programs that
exhibit path explosion (e.g., statemate), while the number of basis paths remains tractable.

6 Conclusions

We have presented a new, game-theoretic approach to estimating quantitative properties of a software
task, such as its execution time profile and worst-case execution time (WCET). Our tool, GAMETIME,
is measurement-based, making it easy to use on many different platforms without the need for tedious pro-
cessor behavior analysis. We have presented both theoretical and experimental results for the utility of the
GAMETIME approach for quantitative analysis, in particular for timing estimation.

We note that our algorithm and results of Section 4 are general, in that they apply to estimating longest
paths in DAGs in an unpredictable environment, not just to timing estimation for embedded software. One
could apply the algorithms presented in this paper to quantitative analysis of many systems with suitable
graph models. Several potential applications are worth exploring, including timing analysis of combinational
circuits and distributed embedded and control systems, as well as power estimation of embedded systems.

23

Acknowledgments

We are grateful to Subramani Arunkumar, Richard Karp, Edward Lee, and Pravin Varaiya for valuable
discussions and feedback. We thank Bharathi Seshadri, Susmit Jha, and Min Xu for their inputs. Andrew
Chan helped generate the experimental data presented in Section 5.4. The first author was supported in part
by NSF CAREER grant CNS-0644436 and an Alfred P. Sloan Fellowship, and the second author by DARPA
grant FA8750-05-2-0249.

References

[1] Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback: distributed
learning and geometric approaches. InSTOC ’04: Proceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computing, pages 45–53, New York, NY, USA, 2004. ACM.

[2] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo theories.
In Armin Biere, Hans van Maaren, and Toby Walsh, editors,Handbook of Satisfiability, volume 4,
chapter 8. IOS Press, 2009.

[3] Randal E. Bryant, Daniel Kroening, Joel Ouaknine, Sanjit A. Seshia, Ofer Strichman, and Bryan
Brady. Deciding bit-vector arithmetic with abstraction. InTACAS, volume 4424 ofLNCS, pages
358–372, 2007.

[4] Nicolò Cesa-Bianchi and Gábor Lugosi.Prediction, Learning, and Games. Cambridge University
Press, 2006.

[5] Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna Kupferman, and Rupak
Majumdar. Verifying quantitative properties using bound functions. InProc. Correct Hardware Design
and Verification Methods, pages 50–64, 2005.

[6] Stephen A. Edwards and Edward A. Lee. The case for the precision timed (PRET) machine. InDesign
Automaton Conference (DAC), pages 264–265, 2007.

[7] David Eppstein. Finding the k shortest paths.SIAM Journal on Computing, 28(2):652–673, 1998.

[8] George Necula et al. CIL - infrastructure for C program analysis and transformation.http://manju.

cs.berkeley.edu/cil/.

[9] András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. The on-line shortest path problem
under partial monitoring.J. Mach. Learn. Res., 8:2369–2403, 2007.

[10] Sandy Irani, Gaurav Singh, Sandeep Shukla, and Rajesh Gupta. An overview of the competitive
and adversarial approaches to designing dynamic power management strategies.IEEE Trans. VLSI,
13(12):1349–1361, Dec 2005.

[11] Raimund Kirner and Peter Puschner. Obstacles in worst-case execution time analysis. InISORC, pages
333–339, 2008.

[12] Edward A. Lee. Computing foundations and practice for cyber-physical systems: A preliminary report.
Technical Report UCB/EECS-2007-72, University of California at Berkeley, May 2007.

24

[13] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing analyzer for
embedded software. Technical report, National University of Singapore, 2005.http://www.comp.

nus.edu.sg/∼rpembed/chronos/chronos tool.pdf.

[14] Yau-Tsun Steven Li and Sharad Malik.Performance Analysis of Real-Time Embedded Software.
Kluwer Academic, 1999.

[15] Mälardalen WCET Research Group. The Mälardalen benchmark suite.http://www.mrtc.mdh.se/

projects/wcet/benchmarks.html.

[16] Thomas J. McCabe. A complexity measure.IEEE Transactions on Software Engineering, 2(4):308–
320, 1976.

[17] H. Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit setting against
an adaptive adversary. InCOLT’04, pages 109–123, 2004.

[18] Fadia Nemer, Hugues Cass, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne De Michiel. Papabench:
A free real-time benchmark. In6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
2006.

[19] Wei Qin and Sharad Malik. Simit-ARM: A series of free instruction-set simulators and micro-
architecture simulators.http://embedded.eecs.berkeley.edu/mescal/forum/2.html.

[20] Reinhard Wilhelm et al. The Determination of Worst-Case Execution Times—Overview of the Meth-
ods and Survey of Tools.ACM Transactions on Embedded Computing Systems (TECS), 2007.

[21] Herbert Robbins. Some aspects of the sequential design of experiments.Bull. Amer. Math. Soc.,
58(5):527–535, 1952.

[22] Sanjit A. Seshia and Alexander Rakhlin. Game-theoretic timing analysis. InProc. IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 575–582, 2008.

[23] Lili Tan. The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External
Test. Technical Reports of WCET Tool Challenge 1, Uni-DUE, December 2006.

[24] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software: a first step
towards software power minimization. InProceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 384–390, 1994.

[25] Todd Austin et al. The SimpleScalar tool set.http://www.simplescalar.com.

[26] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. Measurement-based timing
analysis. InProc. 3rd Int’l Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, 2008.

[27] Reinhard Wilhelm. Determining Bounds on Execution Times. In R. Zurawski, editor,Handbook on
Embedded Systems. CRC Press, 2005.

25

A Azuma-Hoeffding Inequality

The Azuma-Hoeffding inequality is a very useful concentration inequality. A version of this inequality with
a slightly better constant is given as Lemma A.7 in [4].

Lemma A.1 Let Y1, . . . ,YT be a martingale difference sequence. Suppose that|Yt | ≤ c almost surely for all
t ∈ {1, . . . ,τ}. Then for anyδ > 0,

Pr

(∣

∣

∣

∣

∣

τ

∑
t=1

Yt

∣

∣

∣

∣

∣

>
√

2τc2 log(2/δ)

)

≤ δ

One-sided inequalities for∑τ
t=1Yt also hold by replacing 2/δ with 1/δ in the logarithm. The inequality

is an instance of the so-calledconcentration of measure inequalities. Roughly speaking, it says that if each
random variable fluctuates within the bounds[−c,c], then the sum of these variables fluctuates, with high
probability, within[−c

√
τ,c
√

τ].

26

