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FINAL REPORT ON RESEARCH ACTIVITIES AND RESULTS 
 
 
A)  BRIEF DESCRIPTION OF THE RESEARCH 
 
The research activities included observational, as well as theoretical aspects of the coronal 
and interplanetary propagation of coronal mass ejections (CMEs). The research was carried 
out primarily by four researchers: Bojan Vršnak (PI; Hvar Observatory), Manuela Temmer 
(Hvar Observatory), Darije Maričić (Astronomical Observatory Zagreb), and Astrid 
Veronig (Karl-Franzens Universitaet Graz, Austria). In addition, three PhD students 
employed at Hvar Observatory (Davor Sudar, Domagoj Ruždjak, and Tomislav Žic) were 
engaged in certain aspects of the research and provided a significant support in the project 
activities. 

Until now, the results are published in five scientific papers, two are in press, one is 
submitted, and four are in preparation. 
 
 
Summary of results: 

 
1. An empirical relationship between the area/position of coronal holes (CHs) and the 
characteristics of the associated high-speed streams (HSSs) in the solar wind is established. 
A procedure is developed, providing forecasting of the HSS velocity and density, which are 
important parameters for estimating the Sun-Earth transit times of interplanetary coronal 
mass ejections (ICMEs). 
(reported in B. Vršnak, M. Temmer, & A.M. Veronig: Coronal holes and solar wind high-
speed streams: I. Forecasting the solar wind parameters, Solar Phys. 240, 315-330 (2007) 
available online at http://dx.doi.org/10.1007/s11207-007-0285-8 ) 
 
2. The analysis of the area/position of coronal holes revealed also a distinct relationship 
between the CH characteristics and the severity of the HSS-associated geomagnetic storm. 
The relationship provides forecasting of Dst changes several days in advance.  
(reported in B. Vršnak, M. Temmer, & A.M. Veronig: Coronal holes and solar wind high-
speed streams: II. Forecasting the geomagnetic effects, Solar Phys. 240, 331-346 (2007); 
available online at http://dx.doi.org/10.1007/s11207-007-0311-x ) 
 



3. It is found that in the declining phase of the solar cycle CHs were distributed very 
regularly over the solar surface, on average being separated by 120 deg. Such a triangular 
pattern results in nine days periodicity in the solar wind characteristics and the geomagnetic 
activity.  
(reported in M. Temmer, B. Vršnak, and A.M. Veronig: Periodic appearance of coronal 
holes and the related variation of solar wind parameters, Solar Phys. in press (2007); 
available online at http://dx.doi.org/10.1007/s11207-007-0311-x ) 
 
4. Characteristics of the CME acceleration were studied employing a sample of 22 CMEs, 
in order to get a better insight into the processes and forces that govern the ICME take-off. 
The most important result is that initially compact CMEs are accelerated more impulsively 
than CMEs of extended source regions. The results are important for advancing the 
kinematical modeling of the interplanetary propagation of ICMEs. 
(reported in B. Vršnak, D. Maričić, A.L. Stanger, A.M. Veronig, M. Temmer, & D. Roša: 
Acceleration phase of coronal mass ejections: I. Temporal and spatial scales,  
Solar Phys. 241, 85-98 (2007);  
available online at http://dx.doi.org/10.1007/s11207-006-0290-3 ) 
 
5. Synchronization of the acceleration of CMEs and the energy release in the associated 
flares was investigated in detail, employing the same data set. It is found that the feedback 
relationship exists in about one half of the events. However, in about one quarter of events 
these two phenomena are not synchronized. The results are important for comprehension of 
the role of magnetic reconnection during the ICME take-off.  
(reported in D. Maričić, B. Vršnak, A.L. Stanger, A.M. Veronig, M. Temmer, & D. Roša:  
Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in 
the associated flare, Solar Phys. 241, 99-112 (2007); 
available online at http://dx.doi.org/10.1007/s11207-007-0291-x ) 
 
6. Combining theoretical arguments and observations we inferred that the most powerful 
energy release in the CME-associated flare occurs at the location where the current sheet, 
which forms beneath the erupting flux-rope, has the largest vertical extent. This also 
implies that reconnection provides most of the "fresh" poloidal field to the summit 
elements of the CME, providing a prolonged acceleration of frontal parts of the CME. 
(reported in M. Temmer, B. Vršnak, A.M. Veronig, and M. Miklenic: Spatial restriction to 
HXR footpoint locations by reconnection site geometries (Cent. Europ. Astrophys. Bull. 
31, 49-56, (2007)) 
 
7. Since the true velocity of CMEs is essential for modeling their interplanetary 
propagation, we analyzed to what degree the projection effects influence measurements of 
the CME velocities. It was found that the projection effects are much smaller than expected 
from simple geometrical models like, e.g., the CME cone model. An empirical expression 
is established, relating the velocity correction and the location of the CME source region. 
(reported in B. Vršnak, D. Sudar, D. Ruždjak, & T. Žic: Projection effects in coronal mass 
ejections, Astronomy & Astrophysics, in press, 2007) 
 
8. We found that the Sun-Earth transit times (TT) of ICMEs depend significantly on the 
ambient solar wind speed w. Empirical expressions relating TT and the ICME take-off 
speed vCME are derived, separately for different classes of the ambient solar wind speeds. In 
combination with results described in items 1 and 6, these relations provide an improved 
forecasting of ICME arrivals, where in more than 80% of cases the ICME arrival could be 



predicted with an accuracy better than 10 hours. Furthermore, combining with theoretical 
arguments, it was demonstrated that the remaining data scatter is probably due to different 
masses/densities of ICMEs (to be studied further).  
(reported in B. Vršnak & T. Žic: Transit times of interplanetary coronal mass ejections        
and the solar wind speed, Astronomy & Astrophysics, submitted March 2007) 
 
9. A distinct correlation was found between ICME transit times and the location of the 
CME source region: ICMEs whose source region is located less than 30 deg from the solar 
disc center, on average arrive 5 hours earlier than those whose source is closer to the limb. 
(not published yet; to be studied further). 
 
10. From the in situ measurements it was found that the thickness of the sheath layer 
between the shock and the ICME, on average amounts to 1/3 of the ICME thickness. The 
average sheath "thickness" is 6.5 hours. The thickness is smaller in faster ICMEs. The 
result is important for testing the kinematical modeling of the ICME propagation (not 
published yet; to be studied further). 
 
11. We investigated the conditions for the MHD shock formation by impulsively expanding 
3-dimensional pistons. In particular, the cylindrical and spherical pistons were considered 
in the high-beta and low-beta plasma. The dependence of the time/distance of the shock 
formation on the acceleration phase duration, maximum acceleration, maximum expansion 
speed, maximum Mach number, initial source dimension, and ambient Alfven velocity was 
analyzed, and it was found that the impulsiveness of the acceleration is the most important 
parameter (not published yet; to be studied further). 
 
12. The model developed (item 11) was applied to one very well observed CME to 
reproduce the Moreton wave signature of the related coronal shock. It was shown that the 
required acceleration is much larger than that measured in the upward motion of the CME, 
indicating that either the lateral expansion of CME was initially much more impulsive than 
the vertical one, or that the shock was caused by the associated flare. 
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     ( http://www.astro.sk/~choc/open/06_wrkshp/06_wrkshp.html ) 
2. VIIIth Hvar Astrophysical Colloquium: DYNAMICAL PROCESSES IN THE SOLAR 
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1. Coronal holes and mapping of the solar 
wind high speed streamswind high speed streams
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characteristics of the associated high-speed 
streams (HSSs) in the solar wind is established. A 
procedure is developed providing forecasting ofprocedure is developed, providing forecasting of 
the HSS velocity and density, which are important 
parameters for estimating the ICME transit time. 
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2. Coronal holes and prediction of the
associated geomagnetic disturbancesassociated geomagnetic disturbances

A i i l l i hi b hAn empirical relationship between the 
area/position of coronal holes (CHs) and the 
strength of geomagnetic disturbances caused by 
th CH i t d HSS i t bli h d Athe CH-associated HSSs is established. A 
procedure is developed, providing forecasting of 
the related Dst changes. In periods of low solar 
activity the value of Dst at a given moment t canactivity the value of Dst at a given moment t can 
be predicted using the expression:

Dst = (65≤25cosλ) [A(t*)]0.5,
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3. ICME transit 
times: a) the effect of 100
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3. ICME transit times: 
b) the effect of the source

3. ICME transit times: 
c) the effect of theb) the effect of the source 
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3. ICME transit times: d) kinematical ICME model
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4. The CME acceleration phase 1000

(Vršnak et al. 2007, Solar Phys. 241, 85)
(Maričić et al. 2007, Solar Phys. 241, 99)
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5. Formation of coronal MHD shock waves

(Vršnak et al. 2007, 
in preparation)p p )

The time needed for the shock formation ts is primarily determined by the duration 
of the acceleration phase ta  of the source region expansion (3-dimensional piston). 
It also depends on the peak velocity vm (indicated by the lines shown in the graph; 
km/s), peak acceleration (a = vm/ta), external Alfven velocity (vA), Alfvenic Mach 
number of the source surface (MA = vm/vA), and to a certain degree on the initial 
source dimension (r). The same holds for the distance at which the shock forms. 
The piston is not necessarily superalfvenic, i.e., the shock forms also for MA<1; 
however, the time/distance becomes very large for small Mach numbers. 


