
Compressed Sensing (CS) Imaging with Wide 
FOV and Dynamic Magnification 

Final Report 

Award no: N00014-07-1-0393 
Award period: 12/10/06-6/15/10 
Sponsor: Office of Naval Research 

March 14, 2011 
ONR Program manager: 
Dr. Michael Duncan, Program Officer Tel: (703) 696-5787 
Electro-Optics/Infrared Sensor Processing Fax: 703-696-1331 
Office of Naval Research michael.d.duncan2@navy.mil 
ONR Department Code: 312 
875 North Randolph Street 
Arlington, VA 22203-1995 

Principal Investigator and 
Technical Point of Contact: 
Gonzalo R. Arce, Charles Black Evans Professor Tel: (302) 831-1493 
Department of Electrical and Computer Engineering Fax: (302) 831-4316 
University of Delaware arce@ece.udel.edu 
Newark, DE 19716 www.ee.udel.edu/~arce 

Co-Principal Investigators: 
Dennis W. Prather, College of Engineering Alumni Professor Tel: (302) 831-8170 
Department of Electrical and Computer Engineering Fax: (302) 831-4316 
University of Delaware dprather@ee.udel.edu 
Newark, DE 19716 www.ee.videl.edu/~dprather 

20110321633 



In the Compressed Sensing (CS) Imaging with Wide FOV and Dynamic Magnification 
Project Report we present the development of diverse imaging systems based on Compressive 
Sensing or Compressive Sampling (CS) method. In particular, we demonstrate three different 
implementations of the CS-based imaging systems, including: (a) a single pixel camera, (b) 
a CS-based multispectral imaging system, and (c) a CS-based optical sectioning microscope 
(CSM). 

1      Single Pixel Camera 

Most optical images are sparse in some transformed domains, such in the Fourier or Wavelet 
domain. To exploit the sparse information in the transformed domain, we used CS measure- 
ment patterns to modulate the intensity of optical images. Based on the CS measurement 
results, the original optical image can be reconstructed by solving a minimization problem. 
To experimentally realize the CS measurement process, we utilized a Digital Micromirror 
Device (DMD) to implement the CS measurement patterns. The core component of the 
DMD is a 768(V)?1024(H) aluminum micromirror array. Each mirror can be electrically 
driven to be turned on or off. The DMD is installed in the image plane of an objective lens. 
When CS measurement patterns are being displayed by the DMD, in its reflection direction, 
we can see the intensity of optical images modulated by the active DMD pattern. The CS 
measurements are collected into a single pixel detector by a focusing lens. Since only a single 
pixel detector is used to acquire the complete information of the optical image, this CS-based 
imaging system design can also be considered as a single pixel camera. Figure 1 shows the 
schematic drawing of the single pixel camera. 
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Figure 1: Schematic drawing of the DMD-based single pixel camera. 

Figure 2(a) shows the experimental setup of the single pixel camera. Figure 2(b), (c), 
and (d) show one of the CS measurement patterns used in our experimental setup, its DMD 
implementation, and an image-modulation result by the DMD pattern, respectively. 



Figure 2: (a) The experimental realization of a single pixel camera, (b) A CS measurement 
pattern, (c) The DMD implementation of the CS measurement pattern, (d) An image- 
modulation result using the DMD implemented CS measurement pattern. 

Figure 3 shows an image reconstruction result obtained from our experimental setup. 
Fig 3(a) shows a CCD image of the imaging target, which is a piece of paper printed with 
two characters. Figures 3(b) shows the reconstructed image of the imaging target. In this 
experiment, we used a variable density sampling method in the Hadamard domain to realize 
the CS measurement process. The reconstructed image has a pixel size of 2567256, and it 
was reconstructed using 6554 CS measurement results. In this result, we can see that the 
important information of the imaging target was successfully reconstructed. 

(a) (b) (a) 

Figure 3:   (a) A CCD image of the imaging target,   (b) An image reconstruction result 
generated using our experimental setup. 

The single pixel camera can also be used to realize passive CS imaging in the near infrared 
(NIR) spectrum. Figure 4 shows the reconstructed optical images in the wavelengths of 1200 
nm (Fig. 4(b)) and 1450 nm (Fig. 4(c)). Figure 4(a) shows the imaging target, which is 
a USAF-1951 resolution target. In this experiment, NIR Light Emitting Diodes (LEDs) of 
emission wavelengths of 1200 nm and 1450 nm were used for illumination and a single pixel 
Germanium (Ge) detector was used to collect the CS measurements. 
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Figure 4: (a) Imaging target, (b) Optical image reconstructed in the wavelength of 1200 
nm. (c) Optical image reconstructed in the wavelength of 1450 nm. 

2    Compressive Sampling Multispectral Imaging Sys- 
tem 

The hardware architecture of the single pixel camera can be conveniently extended to build 
a CS-based Multi-Spectral Imaging (CS-MSI) system. Conventional MSI systems usually 
use sensor-arrays or single pixel detectors plus mechanical scanning instruments to acquire 
optical images at multiple spectral channels. In a CS-MSI system, expensive sensor-arrays 
or complicated mechanical scanning instruments can be avoided and only single pixel de- 
tectors are needed to acquire images at multiple spectral channels. This means the eco- 
nomic/technical investments on MSI systems can be significantly reduced. 

Figure 5: Schematic drawing of a 4-channel CS-MSI system. 

Figure 5 shows the schematic drawing of the CS-based MSI (CS-MSI) system. In this 
design, the DMD-reflected image irradiance was split into four spectral channels by beam- 
splitters. Different spectral filters were installed at the end of the spectral channels. Three 
visible wavelength bandpass filters, centered at 650 nm, 550 nm and 450 nm were used at 
channels-1, 2, and 3, respectively. At channel-4, a 1200-nm long-pass filter was used to iso- 
late the NIR spectral information.  The transmission bandwidth of the 450-nni filter is 40 



nm whereas the 550-nm and 650-nm spectral filters had a transmission bandwidth of 10 nm. 
In the NIR spectral channel (Channel-4), a single pixel detector based on Ge material was 
used. In the visible spectral channels, photomultiplier tubes (PMT) were used. The imaging 
target was a color checker card (X-Rite Mini Color Checker). A 150-W quartz halogen lamp 
(Dolan-.Ienner DC-950H DC-Regulated Fiber Optic Illuminator) was used to illuminate the 
imaging target, along with a 150-W Xenon lamp (Newport Research Arc Lamp Source) 
to enhance the illumination in the UV and NIR spectrums when needed. Figure 6 shows 
an image reconstruction results obtained using our setup (the top row images), which arc 
compared with CCD images captured using the same spectral filters as the ones installed in 
the CS-MSI system (the bottom row images). CCD images are scaled and resized to match 
the reconstructed images. No brightness/contrast adjustment was applied to the displayed 
images. 

Figure 6: Comparison between the spectral images reconstructed from the CS-MSI testbed 
(top row) and CCD spectral images captured with the same filters (bottom row), (a) (b), 
(c) and (d) are spectral images reconstructed from the 650-nm, 550-nm, 450-nm and NIR 
spectral channels respectively, (f), (g), (h) and (i) are CCD images captured with the 650- 
nm, 550-nm, 450-nm and the NIR spectral filters respectively, (e) Color image reconstruction 
result, which is generated by filling the visible spectral images into an RGB data format, (j) 
RGB synthesis of the CCD visible spectral images. 

Figures 6 (a), (b), (c) and (d) are spectral images reconstructed in the 650-nm, 550-nm, 
450-nm and NIR spectral channels. Figures 6 (f), (g), (h) and (i) are CCD images captured 
with the 650-nm, 550-nm, 450-nm and the 1200-nm long-pass filters. In Fig. 6 (i), we do 
not see any useful information because the CCD camera used in this experiment was not 
sensitive to wavelengths in the NIR spectrum. To capture these CCD spectral images, the 
DMD in the CS-MSI system was replaced with an exposed CCD sensor array (AVT PIKE 
F-100C). Spectral filters were placed directly in front of the exposed CCD. Figure 6 (e) 



is generated by filling the images reconstructed from the visible spectral channels into an 
RGB data format. Figure 6 (j) is the corresponding RGB synthesis of CCD spectral images. 
The reconstructed images shown in Fig. 6 have a pixel size of 2567256 (65536 pixels). The 
Hadamard-space variable-density sampling method was used and the down-sampling ratio 
was 10% (6534 CS measurements). 

3    Compressive Sampling Optical Sectioning Microscope 

In this effort, we also implemented the CS method in building optical sectioning for con- 
focal microscopy imaging systems. In conventional optical sectioning microscopes, optical 
sections are captured using a single pixel detector, such as a Photo Multiplier Tube (PMT), 
in a point-by-point fashion. To acquire the complete information from the imaging scene, 
usually a 2-axis scanning process is needed. This scanning process can be time consuming. 
To reduce the image acquisition time, a novel design called Programmable Array Micro- 
scope (PAM) was proposed. PAM systems use a DMD to implement multi-pinhole masks 
in conjugate image planes of a confocal microscope. Compared to conventional optical sec- 
tioning microscopes, the image acquisition speed of PAM systems is much faster, because 
in this case, the information from multiple points in the imaging scene is acquired at the 
same time. In PAM systems, CCD cameras are used to acquire the confocal information 
from the imaging target. In low light or high speed imaging settings, CCD cameras pose 
high economic and technical challenges to the PAM system. If CS measurement patterns 
are implemented with the PAM system, confocal images can be captured by single pixel de- 
tectors and thus the technical/economic investments on CCD cameras in PAM systems can 
be reduced. PAM systems implemented with CS measurement patterns can be considered 
as Compressive Sensing Microscopes or CSMs. Figure 7 shows the schematic drawing of the 
CSM system. 

Figure 8 shows our experimental realization of the CSM system and one of the image 
reconstruction results obtained using this experimental setup. The imaging target used in 
this experiment is a slide of skin section. The objective lens used in this setup is a 60x 
Olympus lens, with a Numeric Aperture (NA) of 0.85. A 532 nm solid state laser (30 mW) 
was used for illumination. We implemented the Hadamard space variable density sampling 
method in order to realize the CS measurement process and we also used 6534 measurement 
patterns in this experiment. The reconstructed image had a pixel size of 1287128. The 
excitation filter used in this experiment had a center wavelength of 543 nm. Its transmis- 
sion bandwidth was 30 nm. The emission filter had a center wavelength of 610 nm and a 
transmission bandwidth of 75 nm. In the experiment, we used Modified Scrambled-Block 
Hadamard Ensembles (MSBHEs) as measurement patterns. The measurement patterns had 
a pixel size of 1287128. The block size (BS) of the MSBHE patterns was 16. 

Figure 9 shows a wide field multispectral microscopic image reconstruction result (2 
spectral channels) obtained using the experimental setup. Figure 9 (a) is the imaging target 
captured by a CCD camera. The imaging target was a 15-?m fluorescent beads slide. Figure 9 
(b) shows the multispectral image reconstruction result captured by our experimental setup. 
Figure 9 (c) shows the green spectral image of the imaging target, which was captured under 
the illumination of a 532 nm solid state laser. The fluorescent filter set used to capture this 
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Figure 7: Schematic drawing of the CSM system. 

spectral image was: excitation filter (center wavelength (run)/bandwidth (nm)): 543/30, 
emission filter: 610/75. Figure 9 (d) shows the red spectral image, which was captured 
with a 632 nm when a He-Ne laser was used. The fluorescent filter set used to capture this 
spectral image was: excitation filter (center wavelength (nm)/bandwidth (nm)): 620/60, 
emission filter: 700/75. The filter sets are purchased from Chroma. 

We also studied the optical sectioning imaging performance of the CSM system. Figure 
10 shows 6 optical sections of a reflective imaging target (a microcircuit chip) reconstructed 
using our experimental setup. In this experiment, we used a white light source (Dolan-Jenner 
DC-950H DC-Regulated Fiber Optic Illuminator) for illumination. 

Figure 10(a) shows the imaging target. Figures 10(6) — (g) show the reconstructed optical 
sections. The adjacent optical sections are 1/im away from each other. We can see the 
reconstructed information of the imaging target changes as the optical section moves in the 
depth direction. Figure 11 shows another set of optical sectioning imaging results captured 
using the experimental setup. In this case, a biological specimen (pollen grain) was used as 
the imaging target. A 532 nm solid state laser was used for illumination. The excitation filter 
used in this experiment had a center wavelength of 543 nm, and a bandwidth 30nm. The 
emission filter had a center wavelength of 610nm, and a bandwidth of 75nm. The image in 
the top-left corner is the imaging target, which is a wide-field image captured using a CCD 
camera and white light illumination. The right side images are the reconstructed optical 
sections of the imaging target. The adjacent optical sections are 1/zra away from each other 
in the depth direction. From this result, we can see that as the optical section moves in the 
depth direction, different information of the pollen grain specimen in the depth direction 
was reconstructed. 



Figure 8: (a) Experimental setup of the CSM system,  (b) Biological sample (skin section) 
reconstruction result from a compressive sampling PAM setup. 

4    Reconstruction Algorithm 

By exploiting the sparsity of natural images, compressed sensing has shown that it is feasible 
to acquire and reconstruct natural images from a limited number of linear projection mea- 
surements at sub-Nyquist sampling rates [1, 2]. A key to the success of CS is the design of 
the measurement ensemble, which is based on the evaluation of the incoherence between the 
measurement ensemble and the sparsity basis. The incoherence property requires that the 
components of the measurement ensemble should have dense representations in the sparsity 
basis. Due to the large scale nature of images, the generation of the measurement ensemble 
should be both computationally efficient and memory efficient. Furthermore, the sampling 
scheme should enable fast algorithms to perform image reconstruction. 

Measurement matrices where each entry is an independent and identically distributed 
(i. i. d.) random variable obeying Gaussian or Bernoulli distribution have been proposed 
for compressed image sampling [1, 2]. Recently, it has been shown that the performance of 
CS sampling can be improved if the random measurement matrices are suitably optimized 
[3]. These methods lead to optimized but unstructured measurement matrices and thus large 
memory space and computation demanding resources are needed, making them prohibitively 
expensive for implementation. A more desirable way to obtain linear measurements is by 
incoherent sampling in a transform domain that is equipped with fast transform algorithms 
[4]. Measurement ensembles in the transform domain that enable fast computations include 
partial Fourier ensemble, scrambled Fourier ensemble (SFE), scrambled block Hadamard 
ensemble (SBHE) and Noiselets. These have been shown to obtain good performance in 
CS applications [2, 4, 5]. With the exception of signal sparsity on a given basis, however, 
the formulation of these sampling approaches does not exploit any a priori information of 
natural images that could lead to improved CS performance [6, 7]. 



Figure 9: (a) Imaging target used in this experiment, which is a fluorescent bead specimen. 
The diameter of the beads is 15-?m. (b) Multispectral image-reconstruction result obtained 
from the experimental setup (2 spectral channels), (c) Spectral image reconstructed when 
a 532 nm solid state laser was used to offer illumination. The fluorescent filter set used to 
capture this spectral image is: excitation filter (center wavelength (nm)/bandwidth (nm)): 
543/30, emission filter: 610/75. (d) Spectral image reconstructed when a 632 nm He-Ne 
laser was used for illumination. The fluorescent filter set used to capture this spectral image 
is (excitation filter: 620/60, emission filter: 700/75). 

We developed a method to effectively exploit such a piiori information in the design 
of efficient CS measurement ensemble by using the inherent statistical distributions that 
natural images exhibit in the sparse wavelet domain. A novel family of variable density 
sampling patterns are designed in the frequency transform domain, which is applicable to the 
Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and ordered discrete 
Hadamard transform (DHT) [8]. To design the proposed measurement matrices, the widely 
used generalized Gaussian distribution (GGD) model is adopted to statistically describe 
the distribution of image wavelet coefficients. The method of incoherent. Fourier sampling 
of subband wavelets proposed in [4] provides an efficient way to acquire sparse subband 
wavelets in the DFT domain. The Fourier coefficients in the band where significant energy 
of the wavelet exists are sampled randomly to minimize the coherence between the sparse 
wavelets and the measurement Fourier atoms. Based on such incoherent Fourier subband 
sampling strategy, we derive a variable density sampling function p(m,n) in the frequency 
transform domain according to the adopted statistical wavelet model. Here p(m, n) indicates 
the probability that the (m, n)th coefficient is sampled. The design of the variable density 
sampling function is then further improved so that not only the distribution of significant 
wavelet coefficients are considered, but also their rapid magnitude decay from coarse scales 
to fine scales.   The sampling patterns in the frequency transform domain are generated 



Figure 10: Optical sectioning imaging result, (a) Imaging target captured by a CCD camera, 
which is a microcircuit chip, (b)-(g) Optical sections reconstructed from our experiment 
test bed. The distance between two adjacent optical sections in the depth direction is 1/mi. 

randomly according to the underlying probability function. 
Equipped with fast transform algorithms, the proposed sampling processes are simple, 

fast and can be easily implemented. By exploiting the a priori information of natural images, 
the CS performance obtained with the proposed sampling method is significantly improved. 
Compared with other sampling patterns, such as radial sampling pattern and variable density 
spiral that also exploit some a priori information of the images [2, 7], the proposed sampling 
patterns are not heuristically constructed, but are based on reliable statistical models of 
wavelet coefficients and thus the proposed sampling patterns are analytically justified. 

4.1    Background Reconstruction Algorithm 

4.1.1    Compressed Sensing in a Transform Domain 

A signal x 6 1ZN is S sparse on some basis ty = [ip.,ip2, - • - '^Vl ^ x can ^e represented 
by a linear combination of S vectors of \1> with S -C N. The signal can be expressed as: 
x = *&#, where 6 is an TV x 1 vector with only S non-zero entries. Compressible signals, 
such as natural images, can also be well described by such sparse signal model [9]. Here we 
consider compressed image sampling in the transform domain^ . To obtain the sparse signal 
information, we acquire a small set of transform coefficients of x in $. The measurements 
are given by: y = O^x, where $SJ is a M x iV matrix with M <g. N and y = (jft, Jfe, -.., VM]

T 

represents the M measurements. Each row of$ Q, 0., is taken from a subset Qc {1,..., N} 
of the atoms of $. If ^ and $ are incoherent with each other and <f>. is randomly chosen, then 
x can be recovered from y with high probability when M satisfies: M = CSlogN <C N, 
where C > 1 is the oversampling factor [1, 2]. The incoherence between two bases ( ^$) is 
characterized by the mutual coherence defined as: !;(#,$) = sup{|(^,0)| :V^G*,0e$} [10]. 
It is found that the low coherence property holds for many pairs of bases (\I>, <J>). 

In practical applications where noise is present, the measurements are modeled as: y„ = 

!() 
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Figure 11:   Optical sectioning imaging result of a pollen grain specimen. 
between adjacent optical sections in the depth direction is 1/xrn. 

The distance 

$Q$0 + n, where n is zero-mean additive white Gaussian noise. The reconstructed signal 
can be obtained by using the Basis Pursuit Denoising (BPDN) algorithm which solves the 
following problem [11]: 

g = argmin||$n*g-yn|l5 + e 
(1) 

where f|^||! = ^Zi l^«l ant^ A > 0 depends on the noise level. Note that BPDN works 
equally well for the approximate reconstruction of compressible signals [11]. If there exist 
fast algorithms associated with both $ and^ , then a fast reconstruction algorithm can be 
implemented for signal reconstruction [4]. 

4.1.2    Incoherent Fourier Sampling of Sparse Wavelet Subbands 

Wavelets have well defined spectral characteristics in the Fourier domain [12]. A coarse scale 
wavelet has its spectrum localized in the low frequency band whereas a fine scale wavelet 
has its spectrum widely spread out in the high frequency band. In [4], it is observed that 
if the signal to be acquired is restricted to a certain wavelet subband, a set of incoherent 
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measurements can be obtained by selecting the Fourier coefficients from the corresponding 
frequency band where significant energy of the wavelet exists. 

Let k = 1,2,... ,K denote the scale of the ID wavelets where k — 1 is the finest scale 
and k = K is the coarsest scale. Without loss of generality, it is assumed that the wavelet 
has length N — 2K. Let <pkj denote the ID wavelet at a scale k with a. shift / € [0, N2~k — 1], 
then the DFT spectrum of\pkJ is over the band Bk = [-N2~k, -NT k '] U [N2~h~l, JV2-*]. 
To reconstruct ipkti from its DFT samples, the DFT atoms are randomly selected within the 
band Bk [4]. Assume the number of significant wavelets over Bk is Sk, then approximately 
2Sk to 3Sk Fourier measurements are needed. The probability that a DFT atom is sampled 
depends on the size of Bk and on the sparsity Sk. Since smooth signals have most of their 
significant wavelet components clustered in the coarse scales, incoherent Fourier subband 
sampling implies that the low frequency Fourier coefficients, which contain much of the 
signal's energy, should be sampled with higher probability 1. 

The principle of Fourier sampling of wavelet subbands can be readily applied to 2D 
images.   Assume the underlying image is of size N x N.  Let <pk,ij denote the (i, j)th 2D 
wavelet at the kth scale of subband B where B € LH, HL, HH, i,j — 0, Nk — 1 and 
Nk = N/2k. The DFT spectrum of all the wavelets at the fcth scale can be characterized 
by Bk = ([-W2-fc,-JV2-*-l]U [N2-k-\NTk]) x {[-N2~k, -NT k~'] U [N2 k-l

iN2~k\). 
Again, the probability that a 2D DFT atom within Bk is sampled depends on the size and 
on the number of significant wavelets of Bk. 

4.2    Variable Density Sampling in the Fourier Domain 
4.2.1    Variable Density Sampling Functions 

For 2D natural images, the significant wavelet components tend to cluster around coarse 
scales. Thus, according to the principle of Fourier sampling of wavelet subbands, the Fourier 
coefficients to be measured should also cluster over low frequency bands. Obviously, by 
placing the samples selectively but still in a random manner, we can achieve better quality 
of image reconstruction than if those measurements are chosen uniformly random. In the 
following, we discuss how the sampling probability of the Fourier samples should change over 
different frequency bands. 

For natural images, it is well-known that the distribution of wavelet subband coefficients 
can be adequately described by GGD models [13]. Let wf,k denote the (i,j)th wavelet 
coefficient in the /rth scale. For ease of analysis, we assume that wfj k, for B e LH, HL, HH, 
belongs to the same GGD with the probability density function given by: 

f(x;ak,0k)=r,(ok,0)exp{-[\x\/d(ak,t3k)}0*}, (2) 

where d(ak,pk) = ak yj$$$, »?(**,&) = 2r{]hJd\a^) andF( Z"> = ^f UZ(' ' dt is the 

Gamma function. The parameters ak and (3k are the standard deviation and the shape 
parameter of the Arth scale, respectively. Typical values of fik for natural images falls in the 

1 Results in [4] do not directly imply that if multiple subbands contain nonzero elements and the corre- 
sponding frequency intervals are sampled proportionally to their occupancy, the signal can still be recovered 
with high probability. Thus, splitting the signal into various wavelet subbands and then performing inco- 
herent sampling is suggested. 
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range [0.5,1] [13]. The variance of the fcth scale wavelet coefficients is given by o\ which is 
assumed to decrease exponentially from coarse scales to fine scales [14]: 

4 = 2-°<K-*\ (3) 
where a > 0. It was shown in [14] that a can range from 2.25 to 3.1 based on the inference 
from empirical studies. Equation (3) also reveals the fact that the magnitude of wavelet, 
coefficient decays rapidly from coarse scales to fine scales. Here the coarsest scaling coefficient 
of the image is assumed to belong to a uniform distribution (7(0,1). 

We first discuss how the sampling probability of DFT atoms should change according 
to the incoherent sampling of wavelet subbands. Here we define the significant wavelet 
coefficients as the wavelet coefficients whose magnitudes are larger than a threshold p, > 0. 
Since the number of wavelet coefficients at scale A; is 3(4K fc) , the mean of the number of 
significant wavelet coefficients at scale k is: 

/•OO 

\k = 6(4Kh)       f(x;ak,0k) dr. (4) 
Jft 

Consider the (m,n)th DFT atom within the band Bk corresponding to the wavelet scale 
k = K — [log2(2s)J where s — max{|ra|,|n|} and — N/2 < m,n < N/2. It is clear that 
the number of DFT atoms within Bk satisfies: qk oc AK~k. Thus, based on the incoherent 
Fourier subband sampling method, the probability that the (m, n)th DFT atom is selected 
also satisfies: \ poo 

p(m,n) <x — oc  /     f(x;<rk,pk) dx. (5) 
Sk ./,, 

Before examining p(m, n) in the general case it is insightful to consider a special case of 
the GGD: the Laplacian (/3k = 1). The Laplacian distribution is of particular importance for 
the following two reasons: 1) it is analytically more tractable; 2) the empirical distribution 
of subband wavelets for many natural images are close to Laplacian [13]. With 0k — 1 arid 
d(ak,fik) = Cfc/\/2\ it can be shown that: 

/; 

V2n\ 
f(x;ak,Pk) dx = -exp ( - -^— J. (G) 

Thus, p(m, n) can be approximated as: 

p(m,n) a exp[—(2 2 /xs^)]. (7) 

It is clear that p(m, n) decays exponentially alone with the atom coordinates s and the decay 
rate depends on the image characteristic parameter a. Analysis based on the Laplacian 
distribution indicates that in the general case, p(m, n) should also decay exponentially with 
its atom coordinates. For the random selection of DFT atoms, it is convenient to construct 
a sampling density function in the DFT domain and generate a sampling pattern according 
to the sampling density function. Designing a sampling density function following (7) would 
require image dependent parameter a, (ik and \i. However, in reality, only the number of 
measurements J is known. A method which does not require image dependent information 
to design an effective sampling density function is more desirable. 

To conform to the decaying behavior of the sampling probability with increasing coordi- 
nates while keeping a simple form, we propose a new family of sampling density functions 
containing only exponential terms. Assuming the size of the underlying image is M x N, 
the probability that the (m, n)th coefficient is sampled is given by: 
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pF(m,n) = exp (v^)2+(maf 

a\ 
(8) 

where —M/2 < m < M/2 and — N/2 < n < N/2. aF > 0 is a parameter characterizing 
the decay of the sampling probability. aF > 0 is a parameter tuned to obtain the desired 
number of samples. Since 0 < pF(m,n) < 1, pF(m,n) is suitable as a probability function. 
Furthermore, the proposed sampling density function is flexible to accommodate various 
decaying rates and different number of measurements by tuning the parameters aF and 
aF. Given aF, the sampling ratio defined as J/MN is a monotonically increasing function 
of oF. Thus, the search of aF for a desired number of measurements is straightforward. 
Furthermore, oF can also be found by numerically solving the following problem: 

exp 
(v/i*+7)°' 

dardy = —r^--. (9) 
M x N w 

The sampling patterns generated from the sampling density function are binary where 1 at 
(m,n) indicates a sampling point and 0 means no measurement on that point is made. With 
a probability given by pF{m, n), 1 will be generated at (m, n); otherwise, 0 will be generated. 

Based on the observation from the case of the Laplacian distribution, it is reasonable 
to set aF = \a,p, where /3 is defined as the averaged value of several coarsest scale shape 
parameters. However, it should be noted that the above analysis based on the incoherent 
Fourier subband sampling principle only provides approximately equal probability of recon- 
struction for significant wavelet components both at coarse scales and at fines scales. For 
image reconstruction, the contribution of an individual significant wavelet component to 
the image quality should be considered. Equation (3), along with empirical data analysis, 
reveals that a significant wavelet coefficient at a coarse scale usually has much larger mag- 
nitude than that of a significant wavelet coefficient at a fine scale. Thus, probabilistically, 
a coarse scale wavelet has much more contribution to the reconstructed image quality than 
that of a fine scale wavelet. Consequently, to achieve good reconstructed image quality, it is 
desirable to give more preference to the reconstruction of coarse scale wavelet components. 
Such intuitive analysis shows that an effective sampling density function should decay faster 
than predicted by aF = \afi and it is desirable to increase the decaying parameter aF away 
from \af3. Simulation results show that aF « 1.3 a leads to good image reconstruction, as 
will be illustrated in Sec. 4.4. It is also observed that the quality of the reconstructed image 
is robust to variations of aF if aF is sufficiently large. If an estimation of a is not available, 
then setting aF = 3.5 is recommended since this value leads to robust and satisfactory CS 
performance. 

4.2.2    Variable Density Sampling Spiral for MR! 

The variable density sampling pattern proposed in Sec. 4.2.1 can be applied to MRI in k- 
space, leading to a reduced set of measurements. However, this method does not necessary 
reduce the total scan time. For MRI applications that have limited scan time, like functional 
MRI, a single-shot spiral pattern can effectively cover the A;-space within one repetition time 
(TR) period [15]. 

Based on the proposed variable density sampling function pF(m,n), a single-shot spiral 
sampling pattern is designed which involves two steps.  In the first step, starting from the 
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origin of the fc-space, the proposed spiral samples all the points within radius 7 on the 
sampling grid. For a given threshold 0 < th < 1, 7 is set such that pF(m,n) > th for 
\Jrn? + n2 < 7. In the second step, where \/m2 + n2 > 7, the trajectory of the spiral is 
described by the polar equation: 

r(,)-«p(«V).   ffi<t <(*£)*, (10) 

where 6 > 0 and N is the size of the sampling grid in the fc-space. The parameter t is 
sampled sufficiently so that the sampling points are continuously located along the spiral 
and b is adjusted to obtain a desired number of samples. It is shown that th — 0.8 leads to 
spirals whose performance approximates those patterns generated from pF(m,n). Here it is 
assumed that the MRI gradient hardware is designed such that the slew-rate and amplitude 
constraints allow the sampling trajectory to move from one sampling point to its neighboring 
points on the sampling grid without any difficulty [16]. 

4.3    Sampling in the ordered DHT domain 

Sampling in the ordered Discrete Hadamard Transform (DHT) domain is suitable for image 
sampling with hardware capable of representing binary measurement matrices since the 
basis images of 2D ordered DHT are binary. Furthermore, ordered DHT has fast transform 
algorithms. In ordered DHT, the atoms are ordered by the number of sign changes (zero 
crossing) between consecutive entries in a Hadamard atom [8]. Thus, ordered DHT can be 
regarded as a generalized class of DFT and more specifically, a binarized version of DCT 
sharing thus many properties of DFT and DCT [17]. 

To design the incoherent sampling pattern in the ordered DHT domain, we need to 
exploit the fact that ordered DHT can be regarded as a binary approximation of the DCT. 
For illustrative purposes, we first describe the spectrum characteristics of ID wavelets in 
the DCT domain. Let Vk,t(m), 0 < m < N — 1 be the DCT of a ID wavelet </?fc|i(n), 
n = 0,1,..., N — 1. Define the averaged DCT spectrum of wavelets at scale k as: 

NT~k -\ 

V(m)k=   Y,   M"»)|. (11) 
/=o 

It can be shown that the DCT spectrum of wavelets at scale k has approximately the 
same shape as their Fourier spectra. The DCT spectrum band Bk of wavelets at scale k 
is Bk ~ [N2~k, ./V2~fc+1]. Similar to incoherent subband sampling in the Fourier domain, to 
reconstruct <pk<i from its DCT samples, we need to select the DCT atoms randomly within 
the band Bk- Now consider the incoherent sampling in the ordered DHT domain. We can 
define the averaged ordered DHT spectrum of wavelets at scale k as: 

N2~k-\ 

H(m)k.=    Yl   |M»»)|. (12) 
1=0 

where hk>i(m), 0 < rn < JV — 1, is the ordered DHT of tpk,i(n)- Since ordered DHT is a binary 
approximation of the DCT, H(m)k can be approximated as: H(m)k « V(m)k.  Figure 12 
shows H(m)k for A; = 1 to 4 where Af = 256 and the underlying wavelets are Daubechies-4 
wavelets.  The corresponding DCT spectrum at scale k is also shown.  It can be seen that 
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Figure 12: Ordered DHT and DCT spectra, of Daubechies-4 wavelets, (a) at scale 4; (b) at 
scale 3; (c) at scale 2; (d) at scale 1. 

the averaged ordered DHT spectrum and the averaged DCT spectrum are similar, which 
indicates that the principles of sampling in the DCT domain should be equally applied to 
the sampling in the ordered DHT domain. The above analysis can be readily applied to 
2D cases. Following a similar procedure to that described in Sec. 4.2.1, the variable density 
sampling function in the 2D ordered DHT domain is designed as follows: 

pu{m,n) — exp 
a II 

(13) 

where 0<m<M—l,0<n<iV—1. an depends on the number of samples and «„ depends 
on the desired decay of the sampling probability. The sampling patterns are then obtained 
as realizations of pH(m,n). As sampling in the DFT domain, the sampling ratio is a mono- 
tonically increasing function of aH and searching of aH for a desired number of measurements 
is straightforward. Similar to (9), an initial guess of aH can also be found. As in Fourier 
sampling, simulation results show that aH « 1.3 a leads to good image reconstruction. If an 
estimation of a is not available, then setting aH — 3.5 is also recommended. 

4.4    Simulations Reconstruction Algorithm 

In this section, extensive simulations are provided to illustrate the effectiveness of the pro- 
posed methods. The selection of the design parameters are also discussed. In the simulations, 
all the images are assumed sparse in the Daubechies-8 wavelet domain and pixel values are 
within [0,1]. It is also assumed that each measurement is corrupted by additive white Gaus- 
sian noise with variance a2 = le'4. The BPDN algorithm is used for image reconstruction. 

In the first example, the proposed variable density sampling is applied to MRI image 
acquisition and reconstruction. The MRI images to be measured, Brain and Angiography, 
are of size 256 x 256 and are shown in Fig. 13(a) and Fig. 13(b), respectively. The esti- 
mated parameter a for each image is 2.32 and 2.47, respectively. The sampling patterns 
under investigation contains 15000 samples and there are 15000 real-valued measurements 
made along with each sampling pattern. Figure 13(c) shows the proposed single-shot spiral 
sampling pattern for fast MRI. The parameters of the spiral trajectory is set as: aF = 3.5, 
th = 0.8, 7 = 47 and b = 4.5 x 10 ~n. To generate the spiral pattern with continuously 
located sampling points, the sampling interval along t is set as: At = 0.007. Figure 13(h) 
shows part of the reconstructed Brain image corresponding to the region within the white 
frame in Fig. 13(a). It is clear that with an undersampling ratio of 22.9%, the MRI image 
is reconstructed with only small distortion. Figure 13(d) shows an example of the sam- 
pling pattern generated directly from the proposed sampling function given by Eq. (8) with 
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Figure 13: The original MRI images: (a) Brain; (b) Angiography. (c) Proposed single- 
shot spiral sampling pattern, (d) Proposed variable density sampling pattern, (e) Radial 
sampling pattern, (f) Logarithmic spiral pattern, (g) Random phase-encodes undersampling 
pattern. Each sampling pattern has a 22.9% undersampling ratio. Part of the reconstructed 
image with (h) proposed spiral sampling pattern; (i) proposed variable density sampling 
pattern; (j) radial sampling pattern; (k) logarithmic spiral pattern. (1) random phase-encodes 
undersampling pattern. See Table 1 for corresponding PSNR. 

aF = 3.5 and aF = 0.134, whose performance serves as a benchmark for the proposed spiral 
patterns. The corresponding reconstructed image is shown in Fig. 13(i), which contains less 
distortion than Fig. 13(h). 

To compare the proposed sampling patterns with other practical sampling patterns, we 
also reconstruct the MRI image from samples taken from radial sampling pattern, loga- 
rithmic spiral sampling pattern and random phase-encodes undersampling pattern shown in 
Fig. 13(e), Fig. 13(f) and Fig. 13(g), respectively. The random phase-encodes midersam- 
pling is restricted to undersampling of the phase-encodes and fully sampled readouts and 
the sampling density scales according to a power of distance [7]. The corresponding recon- 
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Table 1: Reconstruction of MRI images. The performance is measured by PSNR (dB). "P. 
VD" is the proposed variable density sampling; "P. SS" is the proposed single-shot spiral 
sampling; "P-E U." is the phase-encodes undersampling. 

No. P. VD P. SS Radial Log^spiral P-E U. 
Brain 

5000 21.03 19.78 16.26 17.19 17.15 
10000 23.86 22.45 19.55 20.58 20.46 
15000 25.56 24.74 22.46 23.40 22.99 
20000 27.23 26.51 24.68 25.97 24.73 
25000 28.77 28.32 27.05 28.10 27.01 

5000 23.68 
Angioqraphy 

22.32     19.87 20.34 21.27 
10000 26.02 25.07 22.89 23.85 23.39 
15000 27.85 27.38 25.30 26.10 25.70 
20000 29.74 29.34 27.25 28.54 27.73 
25000 31.34 31.09 29.18 30.39 29.61 

structed MRI images for the above sampling patterns are shown in Fig. 13(j), Fig. 13(k) and 
Fig. 13(1), respectively. All reconstructed MRI images show more low frequency interference 
and the image qualities are not as good as that of the proposed single-shot spiral sampling 
pattern. 

Table 1 summarizes more extensive simulation results for the MRI test images recon- 
struction with different sampling patterns, where the number of measurements ranges from 
5000 to 25000 (undersampling ratio from 7.63% to 38.12%). The quality of the reconstructed 
images is measured by the peak signal to noise ratio (PSNR) and the data are collected from 
an average of ten runs. The results of the sampling patterns generated directly from the 
proposed sampling functions serve as the benchmarks and among all the sampling patterns, 
the best result is highlighted in bold font in each test set. The simulations again show that 
the proposed single-shot spiral sampling patterns consistently have better performance than 
other fast sampling patterns. The performance gain is 2 ~ 3 dB at J = 5000 and 0.2 ~ 0.7 
dB at J = 25000 for both images. Furthermore, the difference in performance between the 
proposed single-shot spiral patterns and the sampling patterns generated from the proposed 
sampling density function is small. 

In the second example, the proposed sampling method is applied to the acquisition and 
reconstruction of a set of natural images: boat, Lena, Goldhill, baboon and Pentagon with 
size 256 x 256. The estimated parameter a for each images is estimated as: 2.65, 2.88, 
2.32, 2.64, 2.27 and 2.05, respectively. Figure 14(b) shows a sampling pattern in the ordered 
DHT domain that contains 20000 sampling points generated from Eqn. (13) with aH = 3.5 
and aH = 0.501. Part of the reconstructed boat image corresponding to the region within 
the white frame in Fig. 14(a) is shown in Fig. 14(e), which shows that the reconstruction 
contains little distortion. 

For comparison purposes, we also reconstruct the boat image from the samples taken from 
the radial sampling pattern and logarithmic spiral sampling pattern shown in Fig. 14(c) and 
Fig. 14(d), respectively. The number of measurements taken from both sampling patterns are 
the same as that of the proposed sampling pattern. Part of the corresponding reconstructed 
images are shown in Fig. 14(f) and Fig. 14(g), respectively. Again, both reconstructed images 
show more aliasing artifacts, which indicates that they are not as effective as the proposed 
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Figure 14: (a) The original image Boat, (b) Proposed variable density sampling pattern, (c) 
Radial sampling pattern, (d) Logarithmic spiral sampling pattern. Each sampling pattern 
has a 30.5% undersampling ratio. Part of the reconstructed image with (e) proposed variable 
density sampling pattern; (f) radial sampling pattern; (g) logarithmic spiral pattern; (h) 
SBHE. See Table 2 for corresponding PSNR. 

sampling pattern. 
Simulation results are summarized in Table 2, where the number of measurements ranges 

from 5000 to 25000 and the best results as the average of ten runs is also highlighted. For 
each test image, it is shown that the proposed variable density sampling achieves much 
better performance than logarithmic spiral patterns and radial patterns. The performance 
gain is 2 ~ 4 dB at J = 5000 and 0.5 ~ 0.8 dB at J = 25000. To verify that the proposed 
sampling pattern, which exploits the a priori information of natural images, achieves better 
performance than methods that do not exploit the a priori information, the simulation results 
using the Noiselet ensemble, SFE and SBHE under different number of measurements are also 
presented in Table 2. To acquire the image information, samples of the Noiselets, SFE and 
SBHE are taken randomly. The proposed sampling method achieves the best performance 
in all simulations. For illustrative purposes, Fig. 14(h) shows the reconstructed result for 
image boat using SBHE. Such comparison clearly shows the performance gain achieved by 
exploiting the a priori information. 

Finally, we show that the reconstruction performance is not sensitive to the parameters 
aF or aH in the sampling functions. Here, we test the reconstruction performance as the pa- 
rameter aH changes. Figure 15 shows the reconstruction results of all test images with 20000 
number of measurements. Data is collected as the result of 20 runs. Each test image has 
different curves and textures, thus has different statistical model parameters. The sampling 
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Table 2: Reconstruction of images in ordered DHT domain. The performance is measured 
by PSNR (dB). "P. VD" is the proposed variable density sampling. 

No. R VD     Radial    Log-spiral    Noiselet    SFE    SBHK 

5000 
10000 
15000 
20000 
25000 

5000 
10000 
15000 
20000 
25000 

5000 
10000 
15000 
20000 
25000 

5000 
10000 
15000 
20000 
25000 

5000 
10000 
15000 
20000 
25000 

22.75 
24.93 
26.70 
28.36 
29.55 

19.88 
22.93 
25.09 
26.96 
28.79 

boat 
19.79 
22.77 
25.03 
26.95 
28.64 

18.51 
20.78 
22.67 
24.19 
25.58 

19.27 
21.39 
23.25 
24.93 
26.27 

25.51 
27.91 
29.77 
31.24 
32.57 

21.28 
25.33 
28.24 
30.07 
31.82 

Lena 
21.51 
25.49 
28.04 
29.91 
31.54 

20.14 
23.10 
25.06 
26.76 
28.48 

21.25 
23.87 
25.77 
27.56 
29.17 

24.96 
27.09 
28.84 
30.18 
31.26 

22.14 
25.14 
25.82 
27.30 
30.63 

Goldhill 
21.24 
24.80 
26.96 
28.67 
29.88 

20.58 
22.89 
24.59 
25.98 
27.37 

21.31 
23.36 
25.10 
26.59 
27.93 

22.47 
23.32 
24.31 
25.30 
26.40 

21.09 
22.55 
23.46 
24.60 
25.92 

baboon 
20.93 
22.57 
23.64 
24.67 
25.82 

19.59 
21.08 
22.12 
23.04 
23.88 

20.16 
21.36 
22.33 
23.36 
24.31 

24.78 
26.32 
27.61 
28.88 
29.86 

22.59 
24.75 
26.32 
27.79 
28.13 

pentagon 
22.69 
24.69 
26.19 
27.75 
28.97 

21.37 
22.92 
24.33 
25.32 
26.22 

21.95 
23.36 
24.54 
25.66 
26.87 

18.62 
20.74 
22.69 
24.56 
26.18 

20.05 
23.10 
25.45 
27.43 
29.01 

20.38 
22.81 
24.73 
26.52 
27.94 

19.48 
20.91 
22.01 
23.05 
24.15 

21.32 
22.79 
24.17 
25.50 
26.77 

Figure 15: Reconstruction results of images from proposed sampling patterns generated by 
different aH with 20000 number of measurements. 

patterns are constructed with aH ranging from 0.5 to 6. It shows that the sampling patterns 
lead to similar performance for all the images when aH ranges from 2.5 to 4.5. The differ- 
ence of performance measured by PSNR is within 0.4 dB. Thus, the image reconstruction 
is robust to variations over aH. An empirical rule for the selection of aH is aH =1.3 a. If 
the estimation of a is not available, then set aH = 3.5 is recommended since aH = 3.5 lies 
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in the middle of the flat region shown in Fig. 15. Note that the reconstruction performance 
tends to become worse as aH increases. Since larger aH means more low frequency samples 
are taken, the simulation shows that sampling only low frequency components is not a good 
strategy. 

5      Conclusion 

In this effort, we demonstrated the experimental realizations of different CS-based imaging 
systems. We first built a single pixel camera which captures 2-dimensional (2D) optical 
images using a single pixel detector. Based on the single pixel camera architecture, we 
built a CS-MSI system, which uses three beamsplitters and four single pixel detectors to 
acquire optical images at four spectral channels concurrently, including a red (650 nm), 
green (550 nm), blue (450 nm), and an NIR spectral channel. We also built a CS-based 
optical sectioning microscope (CSM), which used a single pixel detector to realize the optical 
sectioning imaging performance without any mechanical scanning. The optical sectioning 
imaging performance of the CSM system was demonstrated using a reflective imaging target 
and also a biological fluorescent specimen. A family of variable density sampling patterns 
are proposed for compressed sensing of natural images in the DFT, DCT and ordered DHT 
domain, which are based on a reliable statistical model of natural images in the sparse 
wavelet domain. The proposed sampling method is simple, fast and suitable for a wide 
range of applications such as in [18, 19]. Furthermore, the a priori information needed 
is general and no extensive data training is needed. Simulations show that, the proposed 
sampling scheme is effective for compressed sensing of images conforming to the proposed 
wavelet model. 
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