
 
 
 
 

BRANCH POINT MITIGATION OF THERMAL BLOOMING  
PHASE COMPENSATION INSTABILITY 

 
 

THESIS 
 
 

Mark F. Spencer, Civilian 
 

AFIT/OSE/ENP/11-M02 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

 
AIR FORCE INSTITUTE OF TECHNOLOGY 

 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUPLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the U.S. 
Government.  This material is declared as work of the U.S. Government and is not 
subject to copyright protection in the United States.



AFIT/OSE/ENP/11-M02 

 

BRANCH POINT MITIGATION OF THERMAL BLOOMING  
PHASE COMPENSATION INSTABILITY 

 

THESIS 

 

Presented to the Faculty 

Department of Engineering Physics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Optical Sciences and Engineering 

 

 

Mark F. Spencer, BS 
 

Civilian 
 

 

March, 2011 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/OSE/ENP/11-M02 

 

BRANCH POINT MITIGATION OF THERMAL BLOOMING  
PHASE COMPENSATION INSTABILITY 

 

 
Mark F. Spencer, BS 

Civilian 

 
 
 
 
 
 
 
 
 
 
Approved: 
 
 
 
 
____________________________________                                            ______________ 
Salvatore J. Cusumano, PhD (Chairman) Date 
 
____________________________________                                            ______________ 
Steven T. Fiorino, PhD (Member)  Date 

 
____________________________________                                            ______________ 
Maj Jason D. Schmidt (Member)  Date 



iv 
 

AFIT/OSE/ENP/11-M02 
Abstract 

 

 Thermal blooming can have a major impact on high-energy laser (HEL) beam 

propagation in the atmosphere.  In theory, an adaptive-optics (AO) system can mitigate 

the nonlinear optical effects induced by thermal blooming; however, when a single 

deformable mirror is used for phase-only compensation, analysis predicts the possibility 

of instability.  This instability is appropriately termed phase compensation instability 

(PCI) and arises with the time-dependent development of spatial perturbations found 

within the HEL beam.  These spatial perturbations act as local hot spots that produce 

negative-lens-like optical effects in the atmosphere.  An AO system corrects for the hot 

spots by applying positive-lens-like phase compensations.  In turn, this increases the 

strength of the thermal blooming and leads to a runaway condition, i.e. positive feedback 

in the AO control loop.  This study uses a series of computational wave-optics 

experiments to explore the conditions for insipient PCI.  Horizontal propagation is 

modeled with the effects of extinction, thermal blooming, and turbulence for a focused 

Gaussian beam.  In addition, a nominal AO system is used for phase compensation from 

a point source beacon.  Results show that the development of branch points under strong 

thermal blooming reduces the possibility of PCI.  Parameters within the AO system, such 

as the number of actuators on the deformable mirror and the resolution of the wavefront 

sensor, are varied to determine the impact of branch points in the development of PCI.



v 
 

AFIT/OSE/ENP/11-M02 

 

 

 

 

 

To Mom and Dad



vi 
 

Acknowledgments 
 

 First and foremost, I would like to thank my thesis advisor, Dr. Cusumano.  I 

think we have come a long way as advisor and advisee.  We continually learn from one 

another, and I greatly appreciate the countless hours we spent together reviewing this 

thesis.  Without his expertise in the field of directed energy, our research together would 

lack creativity and continuity.  For these reasons, I look forward to completing my 

dissertation work under his advisement.  Secondly, I would like to thank my committee 

members, Dr. Fiorino and Maj Schmidt.  Dr. Fiorino taught me more about the 

atmosphere and its constituents than I ever thought I would need to know.  Nonetheless, I 

am grateful for his advice, as it has come in handy, especially in completing this thesis.  

Maj Schmidt and I have had a unique student professor relationship, as I have had him 

for five different optics classes here at the Air Force Institute of Technology (AFIT).  For 

this, I am extremely grateful.  His expertise in the optical sciences and his ability to teach 

has greatly impacted my education and my ability to effectively perform research. 

 I would also like to thank the OPTECS research group here at AFIT.  They 

continually set the bar high and have given me the necessary feedback to communicate 

my research effectively.  In particular, I would like to thank Capt Hyde for his 

mathematical advise, Maj Wheeler and Maj Tellez for their senior student leadership, and 

Capt Pellizzari for his friendship and his award winning thesis work.  All of these 

components greatly impacted my own abilities in completing this thesis.  Furthermore, I 

would like to thank Lt Col Hawks and Dr. Marciniak, as I have had them as professors 



vii 
 

for a combined total of eight different optics courses here at AFIT.  Without their 

teaching efforts, my research abilities would not have grown into what they are today. 

 Lastly, I would like to thank my industry support.  The help I received from the 

Optical Sciences Company (tOSC) essentially made this thesis possible.  Their support of 

academia, especially at AFIT, is unmatched.  Dr. Brennan of tOSC was patient enough to 

satisfy all of my requests for technical reports written by members of the tOSC team.  

The attention to detail contained in these technical reports greatly impacted my own 

abilities as a student and researcher.  I would also like to thank Dr. Mann of tOSC for his 

countless emails back and forth.  His effort in consolidating all of tOSC’s research in 

thermal blooming over the past 30 years made his expertise of particular value and is a 

point which cannot be overlooked in this thesis.  Moreover, I would like to thank Mr. 

Albertine for his interest and support in my research efforts.  His constructive comments 

at conferences and by email helped me to progress my research, particularly when I was 

stuck in my own development.  Last but not least, I would like to thank Mr. Barchers of 

Nutronics, Inc.  We had the privilege of essentially working on the same problem at the 

same time.  His approach was quite different than my own and I learned a lot from his 

creativity and willingness to share ideas.  Additionally, his constructive comments and 

ability to find inconsistencies in my research greatly impacted this thesis.  Without his 

intuition into the problem, this thesis would have lacked some of the finishing touches 

that I am proud to call my own.  For all the help I received from everybody, I am 

extremely grateful. 

 

       Mark F. Spencer



viii 
 

Table of Contents 
 

Page 
 
Abstract .............................................................................................................................. iv 

Acknowledgments.............................................................................................................. vi 

List of Figures .................................................................................................................... xi 

List of Tables ................................................................................................................... xxi 

1.  Introduction .................................................................................................................... 1 

1.1 Problem Statement .....................................................................................................3 

1.2 Thesis Overview ........................................................................................................4 

2.  Theory and Literature Review ....................................................................................... 5 

2.1 High Energy Laser Beam Propagation in the Atmosphere ........................................5 

2.1.1 Inhomogeneous Wave Equation ..........................................................................5 

2.1.2 Index of Refraction of the Atmosphere ...............................................................8 

2.1.3 Time-Independent Paraxial Wave Equation ......................................................10 

2.1.4 Time-Dependent Paraxial Wave Equation ........................................................14 

2.1.5 Split-Step Beam Propagation Method ...............................................................18 

2.2 Extinction in the Atmosphere ..................................................................................28 

2.5.1 Absorption and Scattering .................................................................................28 

2.5.2 Extinction Coefficient of the Atmosphere .........................................................30 

2.5.3 Transmittance ....................................................................................................32 

2.3 Thermal Blooming in the Atmosphere .....................................................................34 

2.3.1 Energy Balance Equation ..................................................................................36 

2.3.2 Time-Dependent Thermal Blooming ................................................................46 

2.3.3 Steady-State Thermal Blooming .......................................................................52 

2.3.4 Distortion Number .............................................................................................54 

2.4 Turbulence in the Atmosphere .................................................................................59 

2.4.1 Classical Turbulence .........................................................................................60 

2.4.2 Transverse Wind Velocity Vector of the Atmosphere ......................................62 

2.4.3 Time-Dependent Turbulent Thermal Blooming ................................................66 



ix 
 

Page 
 

2.4.4 Optical Turbulence ............................................................................................69 

2.4.5 Optical Turbulence Parameters .........................................................................76 

2.4.6 Imaging Through Optical Turbulence ...............................................................79 

2.5 High Energy Laser Beam Phase Compensation using Adaptive Optics ..................88 

2.5.1 Wavefront Sensing ............................................................................................94 

2.5.2 Wavefront Correcting ........................................................................................99 

2.5.3 Wavefront Reconstruction and Control ...........................................................101 

2.5.6 Measuring System Performance ......................................................................104 

2.5.4 Phase Compensation Instability ......................................................................108 

2.5.5 Branch Points ..................................................................................................124 

3.  Experimental Setup and Exploration ......................................................................... 130 

3.1 Parameter Space Setup ...........................................................................................130 

3.1.1 Engagement Scenario Parameters ...................................................................131 

3.1.2 Adaptive Optics System Parameters ...............................................................138 

3.1.3 Sampling Analysis ...........................................................................................146 

3.2 Parameter Space Exploration .................................................................................151 

3.2.1 Propagation with Extinction ............................................................................151 

3.2.2 Propagation with Thermal Blooming ..............................................................155 

3.2.3 Propagation with Turbulent Thermal Blooming .............................................160 

3.2.4 Propagation with Turbulence ..........................................................................162 

3.2.5 Propagation with Thermal Blooming and Turbulence ....................................167 

3.2.6 Ab Initio Phase Compensation ........................................................................173 

3.2.7 Deferred Phase Compensation ........................................................................185 

3.2.8 Open-Loop Ab Initio Phase Compensation of Thermal Blooming .................192 

3.2.9 Ab Initio Phase Compensation of Thermal Blooming and Turbulence ..........197 

4.  Experimental Analysis and Discussion ...................................................................... 205 

4.1 Impact of Branch Points on Incipient PCI .............................................................206 

4.1.1 Branch Points in the Presence of Strong Thermal Blooming ..........................207 

4.1.2 System Performance in Presence of Branch Points .........................................212 



x 
 

Page 
 

4.2 Impact of Spatial Resolution on Incipient PCI ......................................................213 

4.2.1 Spatial Resolution in the Presence of Thermal Blooming ..............................214 

4.2.2 System Performance with Increased Spatial Resolution .................................219 

4.3 Impact of Optical Turbulence on incipient PCI .....................................................220 

4.3.1 Branch Points in the Presence of Thermal Blooming and Turbulence ...........221 

4.3.2 System Performance with branch points and Turbulence ...............................226 

5.  Conclusion ................................................................................................................. 228 

Appendix ......................................................................................................................... 231 

Bibliography ................................................................................................................... 233 

 

 
 



xi 
 

List of Figures 
 
Figure  Page 
 
1.   Sketch describing the BPM for two partial propagations of distance Δz.  The 

HEL beam profile in the source plane is diffracted half the partial propagation 
distance Δz/2, refracted due to a phase screen, attenuated in amplitude, and 
diffracted again half the partial propagation distance Δz/2 to the observation 
plane.  The process is repeated once more and the HEL beam propagates to the 
target plane a total distance Z away from the source plane. ........................................25 

 
2.   Flow chart describing the BPM.  The HEL beam profile in the source plane is 

diffracted half the partial propagation distance Δz/2, refracted due to a phase 
screen, attenuated in amplitude, and diffracted again half the partial propagation 
distance Δz/2 to the observation plane.  The HEL beam profile in the 
observation plane becomes the HEL beam profile in the source plane and the 
process is repeated until the HEL beam propagates to the user-defined target 
plane a distance Z away from the source plane. ..........................................................27 

 
3.   Absorption and scattering cross sections in the atmosphere.  Photons from a 

HEL beam interact with molecules and aerosols in the atmosphere through 
propagation and become attenuated.  The fraction of area blocked provides the 
probability that a photon is either absorbed and or scattered. ......................................30 

 
4.   Example of calculated transmittance versus wavelength for a particular 

engagement scenario.  The 1000 data points were calculated using LEEDR3 for 
Z=5000 m and commonly used HEL beam wavelengths. ...........................................34 

 
5.   HEL propagation with the effects of thermal blooming.  Absorption of the HEL 

beam irradiance causes an increase in temperature resulting in a decrease in the 
refractive index.  This induces a negative-lens-like optical effect that blooms the 
beam.  Cooling through atmospheric advection induces a tilt-like optical effect 
that causes the beam to wander into the transverse wind direction. ............................35 

 
6.   HEL propagation with the effects of turbulence.  Random fluctuations in the 

temperature of the atmosphere causes turbulent eddies to form and consequently 
random variations in the refractive index.  This induces an optical effect that 
scintillates the HEL beam irradiance.  Atmospheric advection causes turbulent 
eddies to travel across the HEL beam distorting the target irradiance even more. ......60 

 
7.   Ten independent realizations of the wind fluctuations characteristic function 

with time steps of, Δt=1 ms.  In the frequency domain, as time progresses, the 
Gaussian distributed spatial spread in the wind velocity decreases. ............................66 

 
 



xii 
 

Figure  Page 
 
8.   Description of a basic imaging system with unit magnification and no 

aberrations. ...................................................................................................................84 
 
9.   Description of a beacon laser illuminating a target.  For all intents and purposes, 

the beacon laser illumination can be modeled with a point source.  The point 
source back propagates through the atmosphere and is coupled into the AO 
system ..........................................................................................................................90 

 
10. AO system performing open-loop phase compensation. .............................................92 
 
11. AO system performing closed-loop phase compensation. ...........................................93 
 
12. An example of a Shack-Hartman wavefront sensor.  Here, four lenslets are used 

to sample the aberrated wavefronts.  Once imaged on the detector, the image 
plane irradiance of the sampled wavefronts can be used to measure the phase of 
the optical disturbance. ................................................................................................95 

 
13. Description of the FOV θ of a Shack-Hartmann WFS subaperture.  The number 

of waves of tilt nlod is related to the FOV θ using simple geometric relationships. .....98 
 
14. Example of phase compensation using a DM.  The aberrated wavefronts reflect 

off of the surface of the DM and become planer wavefronts.  Thus, phase 
compensation is achieved. .........................................................................................101 

 
15. Description of Fried reconstruction geometry. ..........................................................102 
 
16. Description of Strehl ratio S as a function of distortion number ND.  As the 

distortion number ND increases, the achievable peak Strehl ratio SP increases 
less and less until a critical point is reached.  After reaching the critical point, 
there is no increase in achievable Strehl ratio S as the distortion number ND 
increases.  Phase compensation of thermal blooming can be used to break the 
constraints imposed by the critical point. ..................................................................109 

 
17. Description of the analytic expression determined by Tyler et al. for Strehl ratio 

as a function of distortion number S(ND).  The point where the large distortion 
number ND limit crosses a Strehl ratio of one, S(ND)=1, determines the critical 
distortion number NC..................................................................................................114 

 
 
 
 
 
 



xiii 
 

Figure  Page 
 
18. Example of two oppositely charged branch points connected by a 2π 

discontinuity known as a branch cut.  In a.) the white circle surrounds the 
positively charged branch point and the black circle surrounds the negatively 
charged branch point.  A 3-D view is given in b.) which clearly shows the 2π 
discontinuity of the branch cut connecting the branch points. ...................................127 

 
19. Example of the hidden phase component that contains branch points and branch 

cuts.  The hidden phase component goes unsensed with a Shack-Hartmann 
WFS.  The actual phase represents the phase that needs to be corrected for using 
phase compensation.  The least squares reconstructed phase represents the phase 
that is measured and corrected for using a nominal AO system composed of a 
Shack-Hartmann WFS and a single DM. ...................................................................129 

 
20. Engagement scenario parameters used in the computational wave-optics 

experiments. ...............................................................................................................132 
 
21. Zero-mean wind speed data for Wright-Patterson AFB during the month of 

January.  The ExPERT database in LEEDR3 was used to obtain the data. ...............134 
 
22. Description of the turbulence simulation rule of thumb.  The simulated source 

plane side length must be four times the initial beam diameter D0.  This is done 
so that the simulated point-source wavefronts in the source plane are two times 
the initial beam diameter D0.  Thus, a guard band is set up to account for 
refraction effects. .......................................................................................................138 

 
23. Subaperture geometry used to simulate a Shack-Hartmann WFS with eight 

active subapertures across the aperture, nsub=8.  Active subapertures are given 
by the yellow squares, while active DM actuators are given by the blue circles.  
The white circle outlines the diameter of the aperture, D0=1 m, and red lines 
represent slave mappings to the slaved actuators given by the red circles.  
Yellow circles represent dead actuators.  The readout in the top left corner 
provides the total number of active subapertures, active actuators, and slaves 
used in the design. ......................................................................................................142 

 
24. Subaperture geometry used to simulate an AO system with 16 active 

subapertures across the aperture, nsub=16.  Active subapertures are given by the 
yellow squares, while active DM actuators are given by the blue circles.  The 
white circle outlines the diameter of the aperture, D0=1 m, and red lines 
represent slave mappings to the slaved actuators given by the red circles.  
Yellow circles represent dead actuators.  The readout in the top left corner 
provides the total number of active subapertures, active actuators, and slaves 
used in the design. ......................................................................................................143 

 



xiv 
 

Figure  Page 
 
25. Subaperture geometry used to simulate an AO system with 32 active 

subapertures across the aperture, nsub=32.  Active subapertures are given by the 
yellow squares, while active DM actuators are given by the blue circles.  The 
white circle outlines the diameter of the aperture, D0=1 m, and red lines 
represent slave mappings to the slaved actuators given by the red circles.  
Yellow circles represent dead actuators.  The readout in the top left corner 
provides the total number of active subapertures, active actuators, and slaves 
used in the design. ......................................................................................................144 

26. Closed-loop response for the simulated AO system control parameters used in 
the computational wave-optics experiments.  The top left values are inputs and 
the bottom left values are outputs.  O/L 0 dB is the open loop 0 db crossover 
frequency (Hz). C/L 3 dB is the closed loop 3 dB frequency (Hz).  GM is the 
gain margin (dB).  PM is the phase margin (deg). .....................................................146 

 
27. Thermal blooming phase screen convergence study using a.) peak Strehl ratio 

versus number of screens and b.) normalized power in the bucket versus number 
of screens. ..................................................................................................................148 

 
28. Number of grid points convergence study using a.) peak Strehl ratio versus 

number of grid points and b.) normalized power in the bucket versus number of 
grid points. .................................................................................................................150 

 
29. Propagation of the simulated HEL beam with extinction effects for an initial 

beam power, P0=250 kW.  The top row demonstrates the truncated irradiance 
and initially collimated phase in the source plane and the bottom row 
demonstrates the irradiance and phase in the target plane. ........................................153 

 
30. Propagation of the simulated point-source beacon with the effects of extinction.  

The top row demonstrates the irradiance and phase in the target plane and the 
bottom row demonstrates the irradiance and phase in the source plane after 
collimation. ................................................................................................................154 

 
31. Normalized HEL beam irradiance for time-dependent thermal blooming and a 

distortion number below the critical point, ND=16.8 rad.  In a.) the simulation 
runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  
The white circles represents the diffraction limited bucket diameter DB=1.3 cm. ....157 

 
32. Normalized HEL beam irradiance for time-dependent thermal blooming and a 

distortion number well above the critical point, ND=42.0 rad.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter 
DB=1.3 cm. .................................................................................................................158 

 



xv 
 

Figure  Page 
 
33. Thermal blooming convergence study using a.) peak Strehl ratio versus time 

and b.) normalized power in the bucket versus time. ................................................159 
 
34. Turbulent thermal blooming versus thermal blooming study using a.) peak 

Strehl ratio versus time and b.) normalized power in the bucket versus time. ..........161 
 
35. Normalized HEL beam irradiance for one realization of optical turbulence and a 

spherical-wave coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The 
white circles represents the diffraction limited bucket diameter for the 
simulations, DB=1.3 cm. ............................................................................................163 

 
36. Optical turbulence validation study using the PSF.  The normalized average PSF 

was calculated from 25 independent realizations of a point source propagating 
through optical turbulence.  The dashed white line represents the optical 
turbulence limited bucket diameter, DT=9.54, for a spherical-wave coherence 
diameter, r0,sw=13.6 c .................................................................................................165 

 
37. Optical turbulence validation study using the OTF.  The experimental OTF HEX 

is calculated from 25 independent realizations of a point source propagating 
through optical turbulence.  The equivalent OTF is determined from the long-
exposure and diffraction-limited OTF, HEQ=HDLHLE ................................................166 

 
38. Normalized HEL beam irradiance with time-dependent thermal blooming and 

one realization of optical turbulence for a spherical-wave coherence diameter, 
r0,sw=13.6 cm, and a distortion number, ND=16.7 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The 
white circles represents the diffraction limited bucket diameter for the 
simulations, DB=1.3 cm. ............................................................................................168 

 
39. Comparison study for HEL beam propagation with time-dependent thermal 

blooming and the average of 25 independent realizations of optical turbulence 
using a.) peak Strehl ratio versus time and b.) normalized power in the bucket 
versus time. ................................................................................................................169 

 
40. Normalized HEL beam irradiance with time-dependent thermal blooming and 

one realization of optical turbulence for a spherical-wave coherence diameter, 
r0,sw=13.6 cm, and a distortion number, ND=42.0 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The 
white circles represents the diffraction limited bucket diameter for the 
simulations, DB=1.3 cm. ............................................................................................171 

 
 



xvi 
 

Figure  Page 
 
41. Comparison study for HEL beam propagation with time-dependent thermal 

blooming and the average of 25 independent realizations of optical turbulence 
using a.) peak Strehl ratio versus time and b.) normalized power in the bucket 
versus time. ................................................................................................................172 

 
42. Normalized HEL beam irradiance with ab initio phase compensation of one 

realization of optical turbulence with a spherical coherence diameter, r0,sw=13.6 
cm.  The simulation runs from 1 ms to 150 ms.  The white circles represents the 
diffraction limited bucket diameter for the simulations, DB=1.3 cm. ........................174 

43. Ab initio phase compensation study with the average of 25 independent 
realizations of optical turbulence using a.) peak Strehl ratio versus time and b.) 
normalized power in the bucket versus time..............................................................176 

 
44. Ab initio phase compensation study with the average of 25 independent 

realizations of optical turbulence using a.) RMS of DM commands versus time 
and b.) variance of DM commands versus time. .......................................................177 

 
45. Normalized HEL beam irradiance with ab initio phase compensation of time-

dependent thermal blooming for a distortion number, ND=16.8 rad.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................179 

 
46. Normalized HEL beam irradiance with ab initio phase compensation of time-

dependent thermal blooming for a distortion number, ND=42.0 rad.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................180 

 
47. Comparison study for ab initio phase compensation of time-dependent thermal 

blooming using a.) peak Strehl ratio versus time and b.) normalized power in the 
bucket versus time......................................................................................................183 

 
48. Comparison study for ab initio phase compensation of time-dependent thermal 

blooming using a.) RMS of DM commands versus time and b.) variance of DM 
commands versus time. ..............................................................................................184 

 
49. Normalized HEL beam irradiance with deferred phase compensation of time-

dependent thermal blooming for a distortion number, ND=16.8 rad.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................188 

 



xvii 
 

Figure  Page 
 
50. Normalized HEL beam irradiance with deferred phase compensation of time-

dependent thermal blooming for a distortion number, ND=42.0 rad.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................189 

 
51. Comparison study for deferred phase compensation with time-dependent 

thermal blooming using a.) peak Strehl ratio versus time and b.) normalized 
power in the bucket versus time.................................................................................190 

 
52. Comparison study for deferred phase compensation of time-dependent thermal 

blooming using a.) RMS of DM commands versus time and b.) variance of DM 
commands versus time. ..............................................................................................191 

 
53. Normalized HEL beam irradiance with open-loop ab initio phase compensation 

of time-dependent thermal blooming for a distortion number, ND=8.39 rad.  The 
simulation runs from 1 ms to 25 ms.  The white circles represents the diffraction 
limited bucket diameter for the simulations, DB=1.3 cm ...........................................193 

 
54. Simulation time stamp, t=25 ms, for normalized HEL beam irradiance with 

open-loop ab initio phase compensation of time-dependent thermal blooming 
and a distortion number, ND=8.39 rad.  The white circle represents the 
diffraction limited bucket diameter for the simulation, DB=1.3 cm...........................194 

 
55. Instability study for open-loop ab initio phase compensation with time-

dependent thermal blooming using a.) peak Strehl ratio versus time and b.) 
normalized power in the bucket versus time..............................................................195 

 
56. Instability study for open-loop ab initio phase compensation of time-dependent 

thermal blooming using a.) RMS of DM commands versus time and b.) variance 
of DM commands versus time. ..................................................................................196 

 
57. Normalized HEL beam irradiance with ab initio phase compensation of time-

dependent turbulent thermal blooming and one realization of optical turbulence 
for a distortion number, ND=15.5 rad, a wind velocity standard deviation, 
σv=1.8 m/s, and a spherical coherence diameter, r0,sw=13.6 cm.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................198 

 
 
 
 



xviii 
 

Figure  Page 
 
58. Comparison study for ab initio phase compensation with time-dependent 

turbulent thermal blooming and the average of 25 realizations of optical 
turbulence using a.) peak Strehl ratio versus time and b.) normalized power in 
the bucket versus time. ...............................................................................................199 

 
59. Comparison study for ab initio phase compensation with time-dependent 

turbulent thermal blooming and the average of 25 realizations of optical 
turbulence using a.) RMS of DM commands versus time and b.) variance of DM 
commands versus time. ..............................................................................................200 

 
60. Normalized HEL beam irradiance with ab initio phase compensation of time-

dependent turbulent thermal blooming and one realization of optical turbulence 
for a distortion number, ND=38.8 rad, a wind velocity standard deviation, 
σv=1.8 m/s, and a spherical coherence diameter, r0,sw=13.6 cm.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms.  The white circles represents the diffraction limited bucket diameter for 
the simulations, DB=1.3 cm........................................................................................202 

 
61. Comparison study for ab initio phase compensation with time-dependent 

turbulent thermal blooming and the average of 25 realizations of optical 
turbulence using a.) peak Strehl ratio versus time and b.) normalized power in 
the bucket versus time. ...............................................................................................203 

 
62. Comparison study for ab initio phase compensation with time-dependent 

turbulent thermal blooming and the average of 25 realizations of optical 
turbulence using a.) RMS of DM commands versus time and b.) variance of DM 
commands versus time. ..............................................................................................204 

 
63. Normalized point-source beacon irradiance in the source plane with ab initio 

phase compensation of time-dependent thermal blooming for a distortion 
number, ND=42.0 rad.  In a.) the simulation runs from 1 ms to 25 ms and in b.) 
the simulation runs from 25 ms to 150 ms. ................................................................209 

 
64. Measured point-source beacon wrapped phase in the source plane with ab initio 

phase compensation of time-dependent thermal blooming for a distortion 
number, ND=42.0 rad.  In a.) the simulation runs from 1 ms to 25 ms and in b.) 
the simulation runs from 25 ms to 150 ms.. ...............................................................210 

 
65. The highest number of branch points present in the source plane with ab initio 

phase compensation of time-dependent thermal blooming for a distortion 
number, ND=42.0 rad.  In a.) the point-source beacon wrapped phase for the 
t=87 ms time stamp is given and in b.) the associated placement of the branch 
points is given. ...........................................................................................................211 



xix 
 

Figure  Page 
 
66. Comparison of peak Strehl ratio calculations in the target plane as a function of 

time with the number of branch points in the source plane as a function of time 
for a distortion number, ND=42.0 rad, 16 subapertures across the aperture, 
nlod=32, and ten waves of tilt per subaperture, nlod=10 λ.  The results show that 
the two measurements are correlated for time-dependent thermal blooming. ...........213 

 
67. Normalized HEL beam irradiance with ab initio phase compensation of time-

dependent thermal blooming for a distortion number, ND=33.6 rad, 32 
subapertures across the aperture, nlod=32, and eight waves of tilt per 
subaperture, nlod=8 λ.  In a.) the simulation runs from 1 ms to 25 ms and in b.) 
the simulation runs from 25 ms to 150 ms.  The white circles represents the 
diffraction limited bucket diameter for the simulations, DB=1.3 cm. ........................216 

 
68. Spatial resolution study to determine insipient PCI for ab initio phase 

compensation with time-dependent thermal blooming and a distortion number, 
ND=33.6 rad, using a.) peak Strehl ratio versus time and b.) normalized power 
in the bucket versus time............................................................................................217 

 
69. Spatial resolution study to determine insipient PCI for ab initio phase 

compensation with time-dependent thermal blooming and a distortion number, 
ND=33.6 rad, using a.) RMS of DM commands versus time and b.) variance of 
DM commands versus time. ......................................................................................218 

 
70. Comparison of peak Strehl ratio calculations in the target plane as a function of 

time with the number of branch points in the source plane as a function of time 
for a distortion number, ND=42.0 rad, 32 subapertures across the aperture, 
nlod=32, and ten waves of tilt per subaperture, nlod=10 λ.  The results show that 
the two measurements are anticorrelated for time-dependent thermal blooming. .....220 

 
71. Normalized point-source beacon irradiance in the source plane with ab initio 

phase compensation of time-dependent turbulent thermal blooming and one 
independent realization of optical turbulence for a distortion number, ND=38.8 
rad, and a spherical-wave coherence diameter, r0,sw=13.6 cm.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms. .......................................................................................................................223 

 
72. Measured point-source beacon wrapped phase in the source plane with ab initio 

phase compensation of time-dependent turbulent thermal blooming and one 
independent realization of optical turbulence for a distortion number, ND=38.8 
rad, and a spherical-wave coherence diameter, r0,sw=13.6 cm.  In a.) the 
simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 
150 ms. .......................................................................................................................224 

 



xx 
 

Figure  Page 
 
73. The highest number of branch points present in the source plane with ab initio 

phase compensation of time-dependent turbulent thermal blooming and one 
independent realization of optical turbulence for a distortion number, ND=38.8 
rad, and a spherical-wave coherence diameter, r0,sw=13.6 cm.  In a.) the point-
source beacon wrapped phase for the t=87 ms time stamp is given and in b.) the 
associated placement of the branch points is given. ..................................................225 

 
74. Comparison of peak Strehl ratio calculations in the target plane as a function of 

time with the number of branch points in the source plane as a function of time 
for a distortion number, ND=38.8 rad, and a spherical-wave coherence diameter, 
r0,sw=13.6 cm.  The results show that the two measurements are anticorrelated 
for time-dependent turbulent thermal blooming and 25 independent realizations 
of optical turbulence. .................................................................................................227 

 
75. Conclusion diagram. ..................................................................................................229 
 
 



xxi 
 

List of Tables 
 
Table Page 
 
1.   Calculated parameters for optical turbulence with an index of refraction 

structure constant Cn
2(Z)=10-15 m-2/3. .........................................................................135 

 
2.   Calculated distortion numbers ND, Number of grid points N, target-plane side 

length st, and simulation scaling ℓ for the varying initial beam powers P0 used in 
the wave-optics experiments. .....................................................................................137 

 
3.   Simulated AO system parameters. .............................................................................141 
 
4.   Results corresponding to the correlation analysis for ab initio phase 

compensation of time-dependent thermal blooming. .................................................231 
 
5.   Results corresponding to the correlation analysis for deferred phase 

compensation of time-dependent steady-state thermal blooming. .............................232 
 
 



1 
 

 
 
 

BRANCH POINT MITIGATION OF THERMAL BLOOMING  
 

PHASE COMPENSATION INSTABILITY 
 
 
 

1.  Introduction 
 

 According to Major General David Scott, USAF, directed energy (DE) weapons 

will be the most significant technological change most of us will see in our military 

careers [1].  The innovation DE weapons provide is truly inspiring, as they could 

revolutionize the way conflicts are handled and resolved.  Specifically, DE weapons 

present game-changing capabilities by offering weapons with varying lethality, speed-of-

light delivery, and unparalleled precision.  It is exciting to be part of the young field of 

DE, and it is important that the technology DE offers makes its way onto the battlefield in 

the near future. 

 Half a century has passed since the invention of the laser by Theodore Maiman in 

1960.  Since then, the laser has undergone many advances, particularly in the field of DE.  

Maiman’s ruby laser originally boasted only a few milliwatts of power; however, by the 

1970’s, laser powers reached the megawatt level [2].  Thus, the term high-energy laser 

(HEL) was coined. 

 The potential HEL weapons have to defend against multiple threats at the same 

time has been a powerful lure for military research [3].  Associated with this claim is a 

short list of legacy projects, some more successful than others.  The flagship for HEL 

weapon systems in the United States is of course the Airborne Laser Testbed (ALTB).  
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Completed in late 2009, the ALTB hosts a megawatt class chemical laser on a Boeing 

747 freighter.   

 On 11 February 2010, the ALTB was successful in shooting down a theater-

ballistic missile while still in boost phase.  This demonstration test was the first of its 

kind.  From a technological standpoint, no other weapon system in the world presents the 

tactical strength of the ALTB [3]. 

 There are still multiple logistics burdens to overcome in the near future, in terms 

of fielding HEL weapons on the battlefield.  This is especially the case when it comes to 

HEL weapon systems needed for ground- and or sea-based tactical-engagement 

scenarios.  The Tactical High-Energy Laser (THEL) is the current state of the art when it 

comes to ground-based HEL weapon systems.   

 Built by a joint effort between the US Army and Israel, THEL hosts a chemical 

class laser in a fixed location.  In 2000, 2001, and 2002, THEL shot down multiple 

Katyusha rockets in a test environment and clearly demonstrated its ability to safeguard 

against multiple short-range threats.  Nonetheless, future designs for tactical ground-

based HEL weapons will require mobility, high-powered solid-state lasers, and adaptive 

optics (AO) systems.   

 Such design considerations are currently being implemented on the High Energy 

Laser Technology Demonstrator project (HEL TD)—a three-phase ground-based 

program being headed by the US Army [3].  The goal here is to extend the HEL weapon's 

range past the current abilities of THEL, while increasing power on target.   

 With the desire to increase system performance come engineering constraints.  

These engineering constraints must be overcome in the near future to see that the 
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technology HEL weapons offer makes its way onto the battlefield.  The research 

presented in this thesis brings us one step closer to this ultimate goal. 

1.1 Problem Statement 

 The atmosphere can significantly degrade a HEL weapon’s ability to deposit 

energy on target.  One particular atmospheric effect is termed thermal blooming and is 

particularly detrimental in ground- and or sea-based tactical engagement scenarios for 

laser weapons.  Thermal blooming results from the heating of molecules and dust 

particles as the HEL beam travels or ―propagates‖ through the atmosphere.  An AO 

system can be used to mitigate the detrimental effects of thermal blooming; however, 

there is the potential for instability.  This instability is termed phase compensation 

instability or PCI and results from a positive feedback mechanism in the AO system.   

 Thermal blooming causes a negative-lens-like optical effect in the atmosphere 

that blooms energy out of the beam.  An obvious result from this blooming mechanism is 

that the HEL weapon is unable to deposit the total energy on target.  An AO system 

corrects for the effects of thermal blooming by applying a positive-lens-like 

compensation to the HEL beam.  In theory, by focusing the HEL beam, this should 

override the blooming.   

 Unfortunately, focusing the HEL beam only concentrates the energy contained 

within the beam and heats the surrounding atmosphere even more.  As such, more 

thermal blooming is created in the atmosphere.  The AO system attempts to correct for 

the increased blooming with even more positive-lens-like compensation and the process 

reinforces itself, ultimately driving the HEL weapon system to failure through PCI. 
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 Past research efforts have studied PCI in depth; however, there is still a lot to be 

discovered in terms of characterizing its detrimental effects.  The research conducted 

here, attempted to determine bounds for the onset of PCI.  In so doing, an additional 

limitation was discovered involving branch points.  The limitation of branch points was 

not well characterized in the literature for thermal blooming prior to this research effort.  

Branch points severely degrade an AO system in its ability to ―correct‖ for thermal 

blooming.  As a result, PCI is mitigated.  The discovery of branch point mitigation of PCI 

serves as a significant contribution to the DE community. 

1.2 Thesis Overview 

 In this thesis, the results from a series of computational wave-optics experiments 

are presented.  In order to explain the significance of these results, a thorough literature 

review and accompanying theory is presented.  This is done in chapter two.  In chapter 

three, the setup and exploration of the parameter space is presented.  The goal here is to 

thoroughly bound the problem.  Chapter four provides analysis of the obtained results.  

Here, the impact of spatial resolution and branch points on insipient PCI is discussed.  

The conclusion for the thesis is presented in chapter five.  Future research ideas are also 

given.  The analysis presented in this thesis will hopefully provide future research efforts 

in thermal blooming and PCI with a thorough overview of the problem.
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2.  Theory and Literature Review 
 

 This chapter provides an overview of the theory needed to complete a series of 

wave-optics experiments which search for the conditions of insipient PCI.  For this 

purpose, each aspect of the problem is thoroughly discussed.  Many references are also 

given, so that future research efforts can benefit from the overview provided here.   

2.1 High Energy Laser Beam Propagation in the Atmosphere 

 The split-step beam propagation method or the beam propagation method (BPM) 

is a numerical algorithm used to simulate the propagation of optical disturbances through 

various non-vacuum optical media.  This section investigates how the BPM is used to 

simulate HEL beam propagation in the atmosphere.  Analysis of the BPM is found 

throughout the literature [4,5,6,7,8,9]; however, the derivation included here will 

combine the ideas from previous work, so that each component of simulating HEL beam 

propagation in the atmosphere is understood from quasi first principles.  Specifically, the 

BPM breaks the simulation of HEL beam propagation in the atmosphere into user defined 

partial propagations with multiple atmospheric effects including extinction, thermal 

blooming, and optical turbulence.  Using the BPM provides both speed and accuracy and 

is the preferred method for numerous computational wave-optics codes. 

2.1.1 Inhomogeneous Wave Equation 

 The investigation of using the BPM to simulate HEL beam propagation in the 

atmosphere starts by examining the principles of electricity and magnetism governed by 

Maxwell’s equations.  For this purpose, the conditions describing the optical medium 

determine the form in which Maxwell’s equations are written.  The atmosphere is 
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typically described by a linear, dispersive, inhomogeneous, isotropic, attenuating, and 

non-magnetic optical medium; therefore, Maxwell’s Equations, in rationalized MKS 

units, take the form: 

  
 ,

,
t

t
t


 



r
r  (1) 

  
 ,

,
t

t
t


  



r
r  (2) 

  , 0t r  (3) 

  , 0t r . (4) 

Here,  , tr  and  , tr  are, respectively, the electric- and magnetic-field vectors of 

free space, dependent on position  , ,x y zr , and time t .  The two additional position- 

and time-dependent vectors,  , tr  and  , tr , are, respectively, the electric- and 

magnetic-flux densities of the atmosphere.  There are also the constitutive relations:  

      , , ,t t tr r r  (5) 

    0, ,t tr r  (6) 

where  , t r  is a parameter known as the position- and time-dependent electric 

permittivity of the atmosphere, and 0  is a constant known as the permeability of free 

space.  Equations (1)-(6) fully describe how the principles of electricity and magnetism 

relate to the atmosphere. 

 The goal now is to discover the inhomogeneous wave equation by manipulating 

Eqs. (1)-(6).  In general, the inhomogeneous wave equation describes how an electric-



7 
 

field vector  , tr  propagates in the atmosphere.  Taking the curl of Eq. (2) and using 

Eq. (1), Eq. (6), and the vector identity, 

     2    WW W    , 

the following equation is obtained:  

    
   2

2
0 2

, ,
, ,

t t
t t

t



   

     

r r
r r  . (7) 

Note that a similar equation exists in terms of the magnetic-field vector  , tr ; 

however, its analysis is neglected in the present discussion, since the atmosphere behaves 

like a non-magnetic optical medium.  In addition, the electric-field vector  , tr  and the 

electric permittivity  , t r  are related via Eq. (3) and Eq. (5), where 

    
 

 
   

,
, , , ln ,

,
t

t t t t
t





      

r
r r r r

r


  . (8) 

Substituting Eq. (8)  into the first term of Eq. (7), provides what is known as the 

inhomogeneous wave equation: 

       
   2

2
0 2

, ,
, , ln , 0

t t
t t t

t


 
   

      

r r
r r r  . (9) 

Equation (9) can be rewritten in terms of the position- and time-dependent index of 

refraction  ,n tr  of the atmosphere using the following relationship: 

    0
2, ,t n t r r , (10) 

where 0  is a constant known as the permittivity of free space.  Now, the inhomogeneous 

wave equation takes the form: 
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       
   2

2
2 2
0

2 , ,1, 2 , ln , 0
n t t

t t n t
c t

         

r r
r r r  , (11) 

where 0 0 01c    is the speed of light in free space.  Equation (11) fully describes how 

an electric-field vector  , tr  propagates in the atmosphere with an index of refraction 

 ,n tr . 

 Further simplifications are often made to Eq. (11), which differs from the form of 

the homogenous wave equation with the inclusion of the second term.  For this purpose, 

the second term is omitted in the analysis.  The spatial variations in the index of 

refraction  ,n tr  are often considered negligible in comparison with those of the electric-

field vector  , tr  [6,10,11].  Therefore, the first term in Eq. (11) is dominant over the 

second term, and the inhomogeneous wave equation takes a form similar to the 

homogeneous wave equation, where 

  
   2

2
2 2
0

2 , ,1, 0
n t t

t
c t

     


r r
r . (12) 

Equation (12) still involves the position- and time-dependent index of refraction  ,n tr  

of the atmosphere and differs from the homogenous wave equation in that respect. 

2.1.2 Index of Refraction of the Atmosphere 

 Up to this point in the analysis, there has been no discussion given as to the 

composition of the index of refraction  ,n tr  of the atmosphere included in Eq. (12).  

For this purpose, the index of refraction  ,n tr  of the atmosphere can be written 

mathematically as a complex number using the following relationship [12]: 
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      , , ,R In t n t in t r r r , (13) 

where  ,Rn tr  and  ,
I

n tr  are the real and imaginary components, respectively.  This is 

done to account for refraction and extinction effects in the atmosphere as will become 

apparent with the analysis presented throughout the remainder of this chapter.   

 The real component  ,Rn tr  of Eq. (13) accounts for refraction effects.  In 

practice, the real component  ,Rn tr  of Eq. (13) is further expanded, so that 

    0, ,Rn t n n t r r , (14) 

where  ,n t r  is a position- and time-dependent parameter known as the change in the 

index of refraction.  The expansion of the real component  ,Rn tr , as given in Eq. (14), 

provides a mechanism needed to study  refraction effects in the atmosphere caused 

because of deviations from the ambient index of refraction 0n  [6,7,13]  These deviations 

are accounted for with the addition of the change in the index of refraction  ,n t r .   

 To fully account for extinction effects, the imaginary component  ,In tr  of Eq. 

(13) is written in terms of a position and time-dependent parameter known as the 

extinction coefficient  , t r  of the atmosphere.  Accordingly, the imaginary component 

 ,In tr  of Eq. (13) is given as [12] 

  
 

0

,
,

2I

t
n t

k



r

r , (15) 

where the constant 0 0 02 2 /k f c    is coined the free-space angular wavenumber 

with 0  defined as the free-space wavelength in units of micrometers  6μm 10 m .  
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Wavelengths in the optical regime typically range from 210  μm  in the extreme 

ultraviolet to 300 μm  in the far-infrared [11].  Equation (15) accounts for extinction 

effects because the propagating electric-field vector  , tr  interacts with the atmosphere 

at the atomic level [11,12].  As a result, the index of refraction  ,n tr  has an imaginary 

component.  This idea seems a little vague at this point in the analysis; however, the next 

section will better characterize extinction effects and the extinction coefficient  , t r  of 

the atmosphere.  It is now informative to study how an HEL beam, represented by a 

paraxial wave, responds to the relationships provided by Eqs. (12)-(15). 

2.1.3 Time-Independent Paraxial Wave Equation 

 If the time variations in the index of refraction of the atmosphere are sufficiently 

slow, a quasi-steady-state approach is used, so that the index of refraction of the 

atmosphere is considered to be time-independent,    ,n t nr r .  Thus, the 

inhomogeneous wave equation, as given in Eq. (12), can be rewritten as 

  
   2

2
2

2

2
0

,
, 0

n t
t

c t


  


r r
r . (16) 

Neglecting the time dependence of the refractive index, as given in Eq. (16), is a 

necessary first step in the analysis of the BPM.  With propagation through optical 

turbulence, the time dependence of the refractive index can be handled separately.  This 

point will be re-addressed throughout the remainder of this chapter.  However, it is 

important to note that the BPM is versatile enough to model HEL beam propagation in 

the atmosphere with or without this time dependence in the refractive index. 
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Solutions satisfying Eq. (16) take on many forms.  In general, monochromatic 

electric-field vectors propagating in the atmosphere, in accordance with Eq. (16), take on 

the general form: 

      , exp 2i ftt  Er r , (17) 

where  E r  is the position-dependent complex amplitude vector, and f  is the single-

valued frequency in units of inverse seconds or hertz   -1Hz s .  All of the Cartesian 

polarization components of the electric-field vector  , tr  represented in Eq. (17)  vary 

as harmonic functions of time t  with periods 1T f .  Frequencies in the optical regime 

typically range from 1210  Hz  in the far-infrared to 163 10  Hzx  in the extreme ultraviolet 

[11].  Additionally, if Eq. (17) is substituted into Eq. (16), the inhomogeneous Helmholtz 

equation is obtained, where 

      2 2 2
0 0UnU k  r r r . (18) 

In Eq. (18),  U r  is a position-dependent complex scalar function known as the complex 

amplitude and represents any of the three Cartesian polarization components of the 

complex amplitude vector  E r .  The time dependence of the electric-field vector 

 , tr  can be treated separately from the spatial relationship found between the 

amplitude vector  E r and the complex amplitude  U r  using Eq. (17). 

The complex amplitude  U r  is chosen to have units of square-root watts per 

meter  W m .  Namely, this is done so that the space-dependent irradiance  I r  has 
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the common units of watts per square meter  2W m  and is given by the modulus square 

of the complex amplitude  U r , where  

    
2

I Ur r . (19) 

The irradiance  I r , as given in Eq. (19), represents the flux per unit area incident on a 

target and is a measureable quantity using modern-day optical detectors.  Furthermore, 

the magnitude of the complex amplitude vector  E r , as represented in Eq. (17), is 

readily obtainable from the complex amplitude  U r  with a simple conversion factor 

given as 

      2 UE r r r ,  (20) 

where    0  r r  is known as the impedance of the atmosphere in units of ohms 

   [11].  The complex amplitude  U r  serves as an adequate description for time-

independent optical disturbances propagating in the atmosphere.  From this point forth in 

the analysis, it is assumed that the complex amplitude  U r , of any time-independent 

monochromatic optical disturbance propagating in the atmosphere, satisfies Eqs. (18)-

(20). 

 The specific case of a time-independent monochromatic HEL beam propagating 

in the atmosphere is now considered.  In its simplest form, an HEL beam with a finite 

spatial configuration in the x y  plane is represented as a paraxial wave traveling in the 
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positive z  direction.  The complex amplitude  U r  associated with a paraxial wave 

traveling in the positive z  direction is given by the following relationship: 

      expU A i zr r , (21) 

where  A r  is a parameter known as the position-dependent complex envelope and, 

0 0n k  , is a phase constant dependent on the ambient index of refraction 0n  of the 

atmosphere.  Equation (21) is similar in form to a plane wave traveling in the positive z

direction; however, differs slightly because of modulations from the slowly varying 

position-dependent complex envelope  A r .  These modulations are often induced by the 

effects of diffraction, refraction, and extinction as will become apparent with the analysis 

to follow. 

 A paraxial wave responds in a unique way to Eq. (18).  For example, substituting 

Eq. (21) into Eq. (18) provides the time-independent paraxial wave equation: 

  
 

   2 2 2 2
02 0i k n

A
A A

z
 


      

r
r r r , (22) 

where 2 2 2 2 2/ ( ) / ( )x y       is the transverse Laplacian operator.  Note that an 

approximation is made in obtaining Eq. (22) where the term involving  2 2/ ( )A z r  is 

omitted.  This approximation is made under what is often coined the paraxial, parabolic, 

Fresnel, slowly varying envelope, or small-angle approximation.  Regardless of the title, 

if the change in propagation distance along the z  direction is on the order of the 

wavelength being propagated in the atmosphere, 0 0z n  , the assumption is made that 

the change in the complex envelope is much smaller than the complex envelope, 
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   ΔA Ar r .  It follows that         0 0Δ /   /  z z zA nA A       r r r  and 

       0 0/ / / 2A z A n A    r r r ; therefore, 

  
 

2
2

2  
 

A
A

z






r
r  (23) 

validating the approximation made in obtaining Eq. (22) [11].  Furthermore, using Eqs. 

(13)-(15), the time-independent paraxial wave equation, represented by Eq. (22), can be 

rewritten as 

  
 

       2
02 2 0

A
A Ai k in A

z
   


    


r
r r r r r ,  (24) 

where, 

    
 2 2

0 0 0
0

2n n n n in
k


   

r
r r . (25) 

The approximation provided by Eq. (25) is typically valid since both the change in the 

index of refraction  n r  and the extinction coefficient   r  are considered to be on the 

order of parts per million.  The time-independent methods used above to acquire Eq. (24) 

will prove informative in the following time-dependent analysis. 

2.1.4 Time-Dependent Paraxial Wave Equation 

The time-dependent behavior of the index of refraction  ,n tr  of the atmosphere 

is now accounted for, and solutions satisfying the inhomogeneous wave equation, must 

satisfy the form given in Eq. (12), which is rewritten here for convenience: 

  
   2

2
2 2
0

2 , ,1, 0
n t t

t
c t

     


r r
r

.
 (26) 
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Including the time dependence of the refractive index, as given in Eq. (26), is a necessary 

second step in the analysis of the BPM.  It will be shown that the time dependence of the 

refractive index cannot be neglected when accounting for the refraction effects of thermal 

blooming.  This point will become clearer with the analysis of thermal blooming 

provided later on in this chapter.  In general, solutions satisfying the inhomogeneous 

wave equation, as given in Eq. (26), take the general form, where 

      , , exp 2i ftt t  Er r . (27) 

All of the Cartesian polarization components of the electric-field vector  , tr , as given 

in Eq. (27), vary as harmonic functions of time t  and represent monochromatic electric-

field vectors propagating in the atmosphere.  The main difference found between the 

form of the time-independent solutions given by Eq. (17) and the form of the time-

dependent solutions found in Eq. (27) is the position- and time-dependent amplitude 

vector  , tE r .   

The amplitude vector  , tE r  represents the Cartesian polarization components of 

the electric-field vector  , tr  propagating in the atmosphere.  As such, an HEL beam 

traveling in the positive z direction with a finite spatial configuration in the x y  plane is 

represented using a complex scalar function called the complex wave function  ,U tr , 

so that 

      , , ex 2pU t A t i i fz r r , (28) 

where  ,A tr  is a parameter known as the position- and time-dependent complex 

envelope.  It is informative to note that the same harmonic behavior of the electric-field 
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vector  , tr , represented in Eq. (27), is found in the complex wave function  ,U tr  

using the relationship found in Eq. (28).  The complex wave function  ,U tr , as given in 

Eq. (28), essentially represents any of the three Cartesian polarization components of the 

electric-field vector  , tr .  Again, Eq. (28) is similar in form to a plane wave traveling 

in the positive z direction; however, differs slightly because of the modulations from the 

slowly varying complex envelope  ,A tr .  The effects of diffraction, refraction, and 

extinction cause these position- and time-dependent modulations as will be studied in the 

analysis to come. 

 Similar to the complex amplitude  U r , the complex wave function  ,U tr  is 

chosen to have units of square-root watts per meter  W m .  This is done so that the 

space- and time-dependent irradiance  ,I tr  has the common units of watts per square 

meter  2W m  and is given by the modulus square of the complex wave function 

 ,U tr , where 

    
2

, ,I t U tr r . (29) 

Moreover, the magnitude of the electric-field vector  , tr , as represented in Eq. (27), 

are readily obtained from a similar unit conversion factor as that given in Eq. (20), so that 

      , 2 ,t U tr r r .  (30) 
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It is now assumed that the complex wave function  ,U tr  of any position- and time-

dependent monochromatic optical disturbance propagating in the atmosphere satisfies 

both Eq. (29) and Eq.(30). 

 With the properties defined above, the form of the complex wave function 

 ,U tr  found in Eq. (28) can be directly substituted into Eq. (26) for the electric-field 

vector  , tr .  In response, the following relationship for the complex wave function 

 ,U tr  is obtained: 
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

   
  

   

r r
r

r
r

r r
r

. (31) 

A couple of approximations can be made to simplify Eq. (31) before substituting in the 

form of the complex wave function  ,U tr  given in Eq. (28).  Using the relationships 

found in Eqs. (13)-(15) for the index of refraction  ,n tr  of the atmosphere, the 

following approximation is made: 

    
 2 2

0 0 0
0

,
, 2 ,

t
n t n n n t in

k


   
r

r r , (32) 

since both the change in the index of refraction  ,n t r  and the extinction coefficient 

 , t r  are considered to be on the order of parts per million.  With this in mind, the third 

and fourth terms of Eq. (31) can be neglected.  Now, the form of the complex wave 

function  ,U tr , as given in Eq. (28), can be directly substituted into Eq. (31) to obtain 

the time-dependent paraxial wave equation, where 
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  
 
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2 ,
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A t

A t k n t A t i ti
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A t  
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   



r

r r r r r . (33) 

Inherent in Eq. (33) is the same paraxial approximation found in the time-independent 

analysis and given in Eq. (23); however, the complex envelope  ,A tr  in this case 

contains time dependence. 

 In writing Eq. (33), the time-dependent form of the paraxial wave equation takes 

on a similar form to that of the time-independent paraxial wave equation given in Eq. 

(24).  Differences found between Eq. (24) and Eq. (33) arise because of the addition of 

time dependence to the appropriate terms.  Likewise, solutions satisfying Eq. (24) will 

also satisfy Eq. (33), with the addition of time dependence to the appropriate terms.  This 

is an important point which cannot be overlooked in the analysis.  It is now informative 

to look for solutions to the time-independent paraxial wave equation, which will also 

provide solutions to the time-dependent paraxial wave equation with the addition of time 

dependence to the appropriate terms. 

2.1.5 Split-Step Beam Propagation Method 

 The time-independent paraxial wave equation, as given in Eq. (24), is first 

analyzed assuming only homogeneous and non-attenuating conditions.  This analysis will 

provide insight as to how the BPM is used to approximate solutions to the time-

independent and time-dependent paraxial wave equations.  Now, the refractive index of 

the atmosphere is equal to the ambient refractive index of the atmosphere,   0,n t nr , 

and Eq. (24) is rewritten in the following way: 

  
 2

2
i A

z
A





 



r
r . (34) 
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Solutions to Eq. (34) are readily obtainable as long as the complex envelope  A r  of an 

HEL beam is transformable.  For example, using the definition of the two-dimensional 

Fourier transform, 

 
     

 

, , , , exp 2

ˆ , ,

x y x yf f z W x y z i f x f y dxdy

W x y z


 

 

   
 

   

  , (35) 

and its properties, Eq. (34) transforms into the following ordinary differential equation: 

 
 

   20

0

2
, ,

, ,x y
x y x y

i
z n

f f z
f f f f z

 


 . (36) 

Equation (36) is solved analytically or computationally for an HEL beam propagating 

from the source plane at jz  to the observation plane at 1jz 
 with 

        0

0

2 2
1, , , , exp expx y j x y j x yf f z f f z i z zi f

n
f




 
     

 
, (37) 

where 1j jz z z   .  The exponential terms to the right of the equals sign in Eq. (37) are 

often referred to as the transfer function of the Fresnel diffraction integral [14].  

 In acquiring Eq. (37), the linear systems analysis used is analogous to the way the 

convolution form of the Fresnel diffraction integral is solved to account for diffraction 

effects in propagating optical disturbances.  For instance, the mathematics are equivalent 

to decomposing the complex envelope,  , , jA x y z , of an HEL beam in the source plane 

at iz  into its spatial frequency components,  , ,x y jf f z , using the Fourier transform 

and propagating those spatial frequency components a distance, z , using the transfer 
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function of the Fresnel diffraction integral.  It is also important to note that with the use 

of the two-dimensional inverse Fourier transform, 

 
     

 1

, , , , exp 2

ˆ , ,
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x y
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
 

 



  
 

 
 

 
, (38) 

the frequency components  1, ,x y jf f z   in the observation plane at 1jz 
, can be 

transformed back into the spatial domain to acquire the complex envelope  1, , jA x y z   of 

an HEL beam.  The above homogeneous analysis will prove useful in accounting for 

diffraction effects with inhomogeneous conditions. 

 Inhomogeneous and attenuating conditions are now accounted for and Eq. (24) is 

analyzed in its entirety.  To perform the necessary breakdown, the time-independent 

paraxial wave equation, as given in Eq. (24), is rewritten in the following way: 
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 

 0
2

2 2
A i A ik n A A
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
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   



r r
r r r r . (39) 

Equation (39) differs from Eq. (34) by the second and third term to the right hand side of 

the equals sign.  Moreover, in contrast to Eq. (34), Eq. (39) is a partial differential 

equation that does not provide easily obtainable analytic solutions.  Computational 

solutions are often sought after as a result.  The BPM is a numerical algorithm that is 

used to approximate solutions to Eq. (24) with speed and accuracy. 

 In order to define the BPM formally, an understanding is needed as to how the 

different components of Eq. (39) affect an HEL beam propagating in the atmosphere.  

Firstly, based on the linear systems analysis of Eq. (34), the first term to the right of the 

equals sign in Eq. (39) accounts for diffraction effects due to propagation in the 
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atmosphere.  As an HEL beam propagates in an atmosphere with inhomogeneous 

conditions, it experiences similar diffraction effects as that of an atmosphere with 

homogeneous conditions.  Secondly, investigation of the second term in Eq. (39) reveals 

a coupling between the complex envelope  A r  of an HEL beam and the change in the 

index of refraction  n r  of the atmosphere.  This coupling accounts for how refraction, 

due to the change in the index of refraction  n r , affects an HEL beam propagating in 

the atmosphere.  Lastly, examination of the third term reveals a coupling between the 

complex envelope  A r  of an HEL beam and the extinction coefficient   r  of the 

atmosphere.  Extinction effects are accounted for through this coupling.  It is now noted 

that Eq. (39) essentially contains three atmospheric effects: diffraction, refraction, and 

extinction. 

 With the breakdown of Eq. (39) completed, it is informative to think of the 

different atmospheric effects in terms of operators.  Now, Eq. (39) is rewritten in operator 

form as 

  
     ˆˆ R̂

z
A

D A A





 
 

r
r r r , (40) 

where  2
0 0

ˆ 2i kD n , is a linear operator that accounts for diffraction effects, 

   0R̂ ik n r r , is a position-dependent operator that accounts for refraction effects, 

and,    ˆ 2A  r r , is a position-dependent operator that accounts for attenuation 

effects due to extinction.  Furthermore, if the refraction operator  R̂ r  and the 

attenuation operator  Â r  are considered to be depth independent, so that 
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   , ,n n x y z   r  and    , ,x y z  r , the operator-form solution to Eq. (40) can 

be written as 

         1
ˆˆ ˆ, , , , exp , , , ,j jA x y z A x y z D R x y z A x y z z

 


   


  . (41) 

Equation (41) corresponds to an HEL beam propagating from the source plane at iz , to 

the observation plane at 1jz 
, where again 1j jz z z   .  With the help of the Baker-

Campbell-Hausdorff formula, it can be shown that the diffraction operator D̂ , refraction 

operator  R̂ r , and attenuation operator  Â r  are independent of one another to a first-

order approximation [4,7,8].  Thus, Eq. (41) can be rewritten in the form of the BPM: 
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 

. (42) 

In Eq. (42), the refraction operator  R̂ r  and attenuation operator  Â r  are allowed to 

maintain their depth dependence with path integrals over the propagation distance z . 

 The same analysis leading up to Eq. (42) for the time-independent paraxial wave 

equation is valid for the time-dependent paraxial wave equation.  For example, starting 

with Eq. (33), the analysis performed above is completely suitable with the addition of 

time dependence to the appropriate terms.  Equation (42) can be written with time 

dependence using the following relationship: 
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, (43) 

where again,  2
0 0

ˆ 2i kD n , is a linear operator that accounts for diffraction effects; 

however,    0
ˆ , ,R t ik n t r r , is a position- and time-dependent operator that accounts 

for refraction effects, and    ˆ , , 2A t t r r , is a position- and time-dependent 

operator that accounts for attenuation effects due to extinction.  Equation (42) and Eq. 

(43) essentially have the same form, but the ability to add time-dependence provides 

versatility to the analysis. 

 Both Eq. (42) and Eq. (43) account for the atmospheric effects of diffraction, 

refraction, and extinction separately.  That is what makes the BPM so powerful in 

simulating HEL beam propagation in the atmosphere.  For instance, the problem of 

diffraction due to an HEL beam propagating in the atmosphere can now be solved using 

only the term involving the diffraction operator D̂  in Eq. (42) or Eq. (43).  Note that the 

diffraction operator D̂  is applied twice for an arbitrary user-defined partial propagation 

distance z , as described in Figure 1.  This is accomplished using the same linear 

systems approach used in analyzing Eq. (34), and the process is repeated until the HEL 

beam propagates a distance Z  to the target plane.   

The refraction an HEL beam experiences from propagating in the atmosphere is 

accounted for using the time-independent refraction operator  R̂ r  in Eq. (42) or the 
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time-dependent refraction operator  ˆ ,R tr  in Eq. (43).  For example, the cumulative 

effects of refraction, due to the time-independent change in the index of refraction  n r  

or time-dependent change in the index of refraction  ,n t r , are summed up over the 

propagation distance z  with a path integral.  These cumulative refraction effects over 

the propagation path can be solved for computationally with the idea of a position-

dependent and possibly time-dependent phase screen  1, , ;jx y z t  placed in the middle 

of the partial propagation path, as discussed in Figure 1.  The phase screen  1, , ;jx y z t  

is defined by the following relationship: 

    
1

1 0, , ; , , ;
j

j

z

j
z

x y z t k n x y z t dz


   . (44) 

The integral provided in Eq. (44) is the definition of optical path difference (OPD) and 

corresponds to a change in the index of refraction  ,n t r  summed up over the partial 

propagation distance z .  In using Eq. (44), the physical process causing the change in 

the index of refraction  ,n t r  must be accounted for, i.e. thermal blooming and or 

optical turbulence.   

 The amplitude attenuation an HEL beam experiences from propagating in the 

atmosphere with the effects of extinction is also described in Figure 1.  For this purpose, 

the time-independent attenuation operator  Â r  in Eq. (42) or the time-dependent 

attenuation operator  ˆ ,A tr  in Eq. (43) is used.  The cumulative effects of amplitude 

attenuation, due to the time-independent extinction coefficient   r  or the time-
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dependent extinction coefficient  , t r  are summed up over the partial propagation 

distance z  with a path integral.  Different physical constituents, i.e. molecules and 

aerosols, cause extinction effects in the atmosphere and must be accounted for 

accordingly.  This topic will be discussed in detail in the next section. 

 

 
Figure 1.  Sketch describing the BPM for two partial propagations of distance Δz.  The HEL 
beam profile in the source plane is diffracted half the partial propagation distance Δz/2, 
refracted due to a phase screen, attenuated in amplitude, and diffracted again half the partial 
propagation distance Δz/2 to the observation plane.  The process is repeated once more and 
the HEL beam propagates to the target plane a total distance Z away from the source plane. 

 

 Altogether, the BPM gives the ability to independently solve for different 

atmospheric effects found within the time-independent or time-dependent paraxial wave 

equations and accurately simulate HEL beam propagation in the atmosphere.  An 

algorithm describing the BPM for the time-independent paraxial wave equation is found 
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in Figure 2.  It is important to note that the addition of time-dependence to the 

appropriate terms, i.e. the complex envelope  ,A tr , the change in the index of 

refraction  ,n t r , and the extinction coefficient  , t r  provides the appropriate 

algorithm describing the BPM for the time-dependent paraxial wave equation.  In the 

analysis to follow, the time dependence of both extinction and refraction effects will be 

included and assumed unless otherwise stated. 

 Most modern day computational wave-optics codes utilize the BPM for its 

computational speed. Nevertheless, there are details which cannot be overlooked when 

implementing the algorithm given in Figure 2.  These details include the use NxN  grids 

and the discrete Fourier transform (DFT).  Thus, proper grid sampling is a crucial 

component in combating aliasing, which can significantly corrupt wave-optics results.  A 

recent publication by Schmidt addresses these details for the purpose of computational 

wave-optics experiments [9].  The goal now is to study how extinction and refraction 

effects arise due to HEL propagation in the atmosphere. 
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Figure 2.  Flow chart describing the BPM.  The HEL beam profile in the source plane is 
diffracted half the partial propagation distance Δz/2, refracted due to a phase screen, 
attenuated in amplitude, and diffracted again half the partial propagation distance Δz/2 to 
the observation plane.  The HEL beam profile in the observation plane becomes the HEL 
beam profile in the source plane and the process is repeated until the HEL beam propagates 
to the user-defined target plane a distance Z away from the source plane.
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2.2 Extinction in the Atmosphere 

 Light interacts with matter in discrete units.  This concept is known from the 

study of quantum optics; however, is not all that intuitive based on the wave-optics 

analysis performed in the previous section.  For example, light propagates as a wave, and 

as a result, experiences effects such as diffraction, refraction, and amplitude attenuation.  

When considering the interaction between matter within the atmosphere and an HEL 

beam, the particle nature of light must be accounted for.  In this case, a HEL beam can be 

thought of as a stream of particles, known as photons, which interact discretely with 

matter contained within the atmosphere.  Provided this knowledge, it is relatively simple 

to relate the concepts provided by quantum optics to explain extinction effects in the 

atmosphere.  The purpose of this section is to provide an understanding as to how 

different constituents, i.e. molecules and aerosols in the atmosphere, give rise to 

extinction effects such as absorption and scattering. 

2.5.1 Absorption and Scattering    

 The atmosphere is comprised of both gases and tiny particles.  For instance, 

atmospheric gases include molecules such as 2N , 2O , 2CO , etc., and atmospheric 

aerosols include water droplets and dust [15].  As an HEL beam propagates in the 

atmosphere, it interacts with molecules and aerosols discretely through the absorption and 

the scattering of photons.   

 Absorption and scattering occurs at the atomic level when the energy, E hf , 

associated with the photons of the HEL beam is large enough to excite electrons 

contained within the atmospheric constituents into higher discrete energy levels.  This 

process is explained further using the field of quantum optics [16]; however, is beyond 
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the scope of the present discussion.  At the macroscopic level, photons from the HEL 

beam interact with molecules and aerosols in the atmosphere probabilistically.  Nielsen’s 

treatment of the topic is particularly informative and is outlined here [15].  As an HEL 

beam propagates through a small distance z  of the atmosphere with cross-sectional area 

 , individual photons are absorbed and scattered, as described in Figure 3.  The number 

of photons within the HEL beam essentially becomes attenuated.  For example, contained 

within the volume z  of atmosphere are N  molecules and or aerosols, each with their 

own cross-sectional areas a .  The probability of the photons from the HEL beam being 

absorbed or scattered is expressed in terms of the depth-dependent cross section  s z  

with the relationship: 

  
a Ns z z 


. (45) 

This means that if n  photons enter the region shown in Figure 3,  nNs z z , photons 

will be lost from the HEL laser beam through absorption and or scattering due to a 

fraction, a A , of the HEL beam being blocked. 
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Figure 3.  Absorption and scattering cross sections in the atmosphere.  Photons from a HEL 
beam interact with molecules and aerosols in the atmosphere through propagation and 
become attenuated.  The fraction of area blocked provides the probability that a photon is 
either absorbed and or scattered. 

 

 The quantity Ns , found within Eq. (45), is typically referred to as the depth-

dependent absorption coefficient  a z  and or the depth-dependent scattering coefficient 

 s z .  With units of inverse meters  1m , both the absorption coefficient  a z  and  

the scattering coefficient  s z  are measurable quantities.  Together, the coefficients 

constitute extinction.  The role extinction effects play in HEL beam propagation in the 

atmosphere will become more apparent with the development provided in the next 

subsection. 

2.5.2 Extinction Coefficient of the Atmosphere   

 If extinction effects are taken into account, the interaction between the 

propagating HEL beam and molecules and aerosols in the atmosphere essentially causes 
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the index of refraction  ,n tr  of the atmosphere to contain an imaginary component 

 ,In tr .  This point was described above using Eq. (13) and Eq. (15) and is rewritten 

here for convenience [11,12]: 

  
 

0

,
,

2I

t
n t

k



r

r . (46) 

In Eq. (46), the imaginary component  ,In tr  is dependent on the extinction coefficient 

 , t r .  With units of inverse meters  1m , the depth-dependent extinction coefficient 

 z  is determined from the sum of the absorption coefficient  a z  and scattering 

coefficient  s z , where 

      a sz z z    . (47) 

In the wave-optics theory developed in the previous section, the extinction coefficient 

 , t r  was written as a function of position r  and time t , as rewritten in Eq. (46).   

However, as found in Eq. (47), the extinction coefficient  z  is only dependent on the 

depth of propagation z .  The reason for this discrepancy is explained with the simplistic 

model used above in Figure 3 to describe extinction effects due to absorption and 

scattering.  For all intents and purposes, simplifying the position dependence and 

dropping the time dependence is sufficient when simulating HEL beam propagation in 

the atmosphere with extinction effects caused by absorption and scattering.  This is the 

method employed here; however, future analysis in the subject may include a more robust 

statistical treatment of how aerosols and molecules are distributed throughout the 
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atmosphere [17,18].  Such an analysis could rely on the position- and time-dependent 

nature of the extinction coefficient developed in the wave-optics theory above. 

 Provided the relationship given in Eq. (47) for the depth-dependent extinction 

coefficient  z , the amount of amplitude attenuation associated with HEL beam 

propagation in the atmosphere can be determined.  This is accomplished using Eq. (42) or 

Eq. (43) for the time-independent or time-dependent cases, respectively.  It is now 

important to relate the extinction coefficient  z  to a measurable quantity using 

modern-day optical detectors. 

2.5.3 Transmittance  

 The extinction coefficient  z , as given in Eq. (47), can be related to irradiance 

 ,I tr , which is a measurable quantity using modern-day optical detectors.  For instance, 

using Eq. (19) or Eq. (29), the position-dependent and possibly time-dependent irradiance 

 ;I tr  is found from the complex wave function  ,U tr , as given in Eq. (28), or the 

complex amplitude  U r , as given in Eq. (21), using the following relationship: 

      0, , ; , ; expI x y z t I x y t z z    . (48) 

Here, Eq. (48) gives the general form for the irradiance  ;I tr  of aHEL beam 

propagating in the atmosphere.  Note that the initial irradiance, 

     
2

0 , ; , ,0; , ,0;I x y t I x y t A x y t  , of an HEL beam essentially attenuates with 

propagation in the atmosphere due to exponential decay associated with the extinction 

coefficient  z .  This irradiance attenuation is often referred to as transmission losses. 
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 Associated with the idea of transmission losses is a parameter known as the 

depth-dependent transmittance  z , which can be determined from Eq. (48).  

Specifically, the transmittance  z  associated with a user-defined partial propagation 

from the source plane at jz  to the observation plane at 1jz 
 can be determined using the 

following relationship: 

  
 
 

 
1

1
1

, , ;
exp

, , ;

j

j

z
j

j
zj

I x y z t
z z dz

I x y z t
 







  
   

  
 . (49) 

Here, the depth dependence of the extinction coefficient  z  is accounted for with a 

path integral over the user-defined partial propagation distance 1i iz z z   .  Known as 

Beers’ law, Eq. (49) provides a normalized measure for the amount of power or energy 

lost due to attenuation associated with propagating a HEL beam in the atmosphere (―the 

thicker the brew the less that gets through‖).  As seen in Figure 4, the transmittance for a 

particular engagement scenario with a propagation range Z  is a wavelength dependent 

parameter,    0Z   .  This is so because the extinction coefficient is also a 

wavelength dependent parameter,    0Z   .  When considering HEL engagement 

scenarios with quasi-monochromatic light, this wavelength dependence is dropped for 

convenience in the notation.  With this in mind, the refraction effect of thermal blooming 

is now studied. 
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Figure 4.  Example of calculated transmittance versus wavelength for a particular 
engagement scenario.  The 1000 data points were calculated using LEEDR3 for a propagation 
range, Z=5000 m, and commonly used HEL beam wavelengths. 

 

2.3 Thermal Blooming in the Atmosphere 

 The nonlinear optical effect of thermal blooming results from heat-induced 

distortion of the HEL beam propagating in the atmosphere.  As depicted in Figure 5, 

absorption of the HEL beam irradiance essentially increases the atmospheric temperature 

through heating, which decreases the local refractive index.  This causes the HEL beam 

irradiance to spread out or ―bloom‖ due to a negative-lens-like optical effect.  

Additionally, atmospheric advection cools the HEL beam irradiance and creates a tilt-like 

optical effect which causes the HEL beam to wander into the transverse wind direction.  

Starting with a Gaussian-shaped beam profile in the source plane, the nonlinear optical 
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effect of thermal blooming causes the HEL beam to have a crescent-shaped beam profile 

in the target plane. 

 

 
Figure 5.  HEL propagation with the effects of thermal blooming.  Absorption of the HEL 
beam irradiance causes an increase in temperature resulting in a decrease in the refractive 
index.  This induces a negative-lens-like optical effect that blooms the beam.  Cooling through 
atmospheric advection induces a tilt-like optical effect that causes the beam to wander into 
the transverse wind direction. 

 

 Thermal blooming has been studied in earnest since the late 1960’s.  In particular, 

the foundational work performed by Gebhardt [19,20,21,22,23,24] and Smith [25,26,27] 

helped shape everyone’s understanding of the problem [28,29,30,31,32].  Their 

theoretical, computational, and experimental research in thermal blooming spanned over 

a 25-year period, and is well cited throughout the literature.  In addition, the writings by 

Hogge [33], Walsh and Ulrich [6], and Weichel [34] give excellent introductory 

overviews on thermal blooming.  Despite such an invaluable list of sources, there is still a 
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lot to be discovered in terms of characterizing the refraction effects of thermal blooming.  

As such, a few reoccurring research themes exist throughout the literature, which are 

unfortunately beyond the scope of the analysis presented here.  They include 

investigations of stagnation zones [35,36], focusing studies [37,38], developing scaling 

laws [39,40,41], and pulsed propagation studies [4,5,42,43,44,36].  The purpose of this 

section; however, is to introduce the physics involved in simulating the change in the 

index of refraction  ,n t r  caused by thermal blooming for continuous wave (CW) HEL 

beam propagation in the atmosphere. 

2.3.1 Energy Balance Equation 

 The refraction caused by thermal blooming is explained using the principles 

thermodynamics.  For this purpose, thermodynamics deals with the movement of energy 

within a system.  The system of interest here is the atmosphere.  As with any 

thermodynamic system, energy within the atmosphere cannot be measured directly.  

Instead, the notion of energy within the atmosphere is quantified in terms of a change in 

some measurable quantity such as temperature, pressure, density, or phase transitions.  

The main thing to remember is that measureable quantities found within the atmosphere 

and how they relate to energy depend highly on the conditions describing the 

thermodynamic process of interest.  With this in mind, it is informative to quickly review 

the three laws of thermodynamics, so that they can be understood in terms of measurable 

quantities found within the atmosphere and thermal blooming. 

 The three laws of thermodynamics tell us how energy can be related to 

measurable quantities found within the atmosphere.  For example, the zeroth law of 

thermodynamics tells us that if the atmosphere is in equilibrium with two other systems, 
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than the two other systems must be in equilibrium as well.  This statement is probably the 

most intuitive of the three laws of thermodynamics; however, it is worth mentioning here 

for insight into the thermodynamic process being described.  Thermal blooming arises in 

the atmosphere as a result of HEL propagation.  This means that the atmosphere, the HEL 

system, and the AO system must reach thermodynamic equilibrium, according to the 

zeroth law, before steady-state operation is attained.  Moreover, energy is neither created 

nor destroyed in the atmosphere.  This statement is basically a rehash of the first law of 

thermodynamics—any change in the internal energy E  found within the atmosphere 

must be a result of heat Q  or work W , so that  

 E Q W   . (50) 

The internal energy found within the atmosphere essentially represents the kinetic and 

potential energy of molecules distributed throughout the atmosphere.  Physically, any 

change in the internal energy E  found within the atmosphere manifests itself in the 

motion of molecules.  This motion of molecules distributed throughout the atmosphere 

can be measured using the temperature T  found within the atmosphere. 

 Temperature T  represents the most probable speed for molecules distributed 

throughout the atmosphere.  For instance, a change in temperature T  represents the 

change in the speed of the molecules distributed in the atmosphere.  Heat Q  deposited in 

the atmosphere is required to make the molecules move faster or for the change in 

temperature T  to increase.  However, it is impossible for the atmosphere to have as its 

sole result the transfer of heat Q  from a cooler body to a warmer body.  This is a direct 

consequence of the second law of thermodynamics.  When pressure P  (force per unit 
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area) is applied to a volume of air in the atmosphere, the work being done on the 

atmosphere manifests from a change in volume, W P V  .  An increase in volume 

results in positive work and a decrease in volume results in negative work.  Accordingly, 

the second law of thermodynamics states that it is impossible for the atmosphere to 

convert all heat Q  into work W , which is quite unfortunate but reality. 

 With all three laws of thermodynamics in mind, it is informative to revisit the first 

law of thermodynamics.  Now, Eq. (50) is rewritten in differential form:  

 dE dQ PdV  . (51) 

This is done so that it is easier to relate the first law of thermodynamics to the 

measureable quantity of temperature T  found within the atmosphere.  To continue the 

analysis, two constants are of particular interest.  Both represent the amount of 

differential heat in Joules needed to raise the temperature of a unit of molecular mass in 

kilograms found within the atmosphere one degree Kelvin  -1 -1Jkg K .  The first one is 

defined as the specific heat at constant volume VC , where 

 
0

V
dV

dQC
dT 

 
  
 

, (52) 

and for dry air in the atmosphere, -1 -1718 Jkg KVC  .  Similarly, the second constant is 

known as the specific heat at constant pressure PC , and 

 
0

P
dP

dQC
dT 

 
  
 

. (53) 
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For dry air in the atmosphere, -1 -11005 Jkg KPC  .  Together, these constants provide the 

mechanism needed to relate the differential change in energy dE  or differential change in 

heat dQ  to a differential change in temperature dT  in the atmosphere. 

 Under conditions of an isochoric thermodynamic process (constant volume), a 

differential change in volume is zero, 0dV  .  For all intents and purposes, the 

atmosphere behaves in an isochoric manner.  The inability of the molecules distributed in 

the atmosphere to deform under the addition or removal of heat establishes the isolation 

needed for a closed thermodynamic system with approximately constant-volume 

conditions.  Provided this, Eq. (51) and Eq. (52) can now be used to relate the differential 

change in internal energy per unit molecular mass, dE m , and consequently, the 

differential change in heat per unit molecular mass, dQ m , to the specific heat at 

constant volume, VC , where 

 V
dE dQ C dT
m m

  . (54) 

Additionally, if the differential change in pressure is accounted for, the relationship 

provided in Eq. (54) is equivalently rewritten as 

 
1

V
dQ PC dT d dP
m  

 
   

 
, (55) 

where V m   is the density of air in the atmosphere.  Note that the additional terms 

added to Eq. (54) in Eq. (55) essentially equate to zero.  Since the atmosphere behaves in 

isochoric manner, the differential change in the density of air is zero, 0d  .  Thus, Eq. 

(55) is further manipulated with a modified form of the ideal gas law: 
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 S
P R T

 , (56) 

where here, 1 1287 JkgS P VR C C K     is a constant often referred to as the specific 

gas constant.  Using Eq. (56), Eq. (55) is now rewritten as 

  
1 1 1

V S V S P
dQ C dT R dT dP C R dT dP C dT dP
m   

        . (57) 

It is informative to note that Eq. (57) is often referred to as the general form of the first 

law of thermodynamics for the atmosphere.  To make use of Eq. (57), the mechanism 

adding or removing heat in the atmosphere must be accounted for. 

 A diabatic process is a thermodynamic process which involves heat transfer in 

accordance with the second law of thermodynamics.  In atmospheric physics, the concept 

of the diabatic heating rate J , in units of Joules per kilogram per second  -1 -1Jkg s , is 

often used to study the time rate of change of heating in the atmosphere.  As such, Eq. 

(57) can be rewritten in terms of the diabatic heating rate J , so that 

 1
PJdt C dT dP


  . (58) 

Here, dt  represents the differential change in time during some diabatic heating process.  

If terms are rearranged, Eq. (58) provides a relationship for the time rate of change of 

temperature T in the atmosphere due to diabatic heating, where 

 1

P P

dT dP J
dt C dt C

  . (59) 
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Provided Eq. (59), further analysis must be done to determine the mechanism driving the 

formation of the diabatic heating rate J .  Continuous wave HEL beam propagation in the 

atmosphere is of thermodynamic interest here. 

 Under conditions of an isobaric thermodynamic process (constant pressure), the 

differential change in pressure is zero, 0dP  .  For all intents and purposes, this is a 

great approximation to use when accounting for CW HEL propagation in the atmosphere.  

Changes in the irradiance of a CW HEL beam typically occur much slower than the 

speed of sound [4]; therefore, a constant-pressure approximation is valid.  Provided this 

knowledge, the position- and time-dependent temperature  ,T tr  of the atmosphere can 

be determined from the amount of heat being deposited by absorption of the HEL beam 

irradiance  ,I tr .  This heating relation drives the thermal blooming process and is 

governed by the time rate of change of temperature  ,T tr .  As such, Eq. (59) can be 

rewritten as the following differential equation: 

  
 

,
( , )T

dT t
z I t

dt


r
r , (60) 

where the diabatic heating rate per specific heat at constant pressure is equivalently 

recognized as the absorbed irradiance of the CW HEL beam,   ( , )P TJ C z I t r .  Note 

that in writing Eq. (60),  T z  is a depth-dependent absorption parameter  that contains 

all the thermodynamic information about the surrounding atmosphere, so that 

  
 

 
a

T
p

z
z

C z





 , (61) 
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where  z  is defined as the depth-dependent density of air, respectively.  The 

absorption parameter  T z , as given in Eq. (61), has the units of degrees Kelvin  meters 

squared per Joule  2 1Km J .  Thus, Eq. (60) relates a measureable thermodynamic 

quantity, temperature  ,T tr , to a measureable optical quantity, irradiance ( , )I tr , for 

HEL beam propagation in the atmosphere. 

 To continue the analysis, Eq. (60) can be rewritten in terms of the change in the 

index of refraction  ,n t r .  For this purpose, it has been determined that the index of 

refraction  ,n tr  is related to the depth-dependent pressure  P z  and temperature 

 ,T tr  through the following empirical relationship [45]: 

    
 

 
6 3 2, 1 77.6 10 1 7.52 10

,
P z

n t x x
T t

    r
r

. (62) 

Provided Eq. (62), it is easy to relate the index of refraction  ,n tr  of the atmosphere to 

the density of air  z  using the modified form of the ideal gas law given in Eq. (56), 

and written here as 

      0SP z R z T z , (63) 

where  0T z  is the depth-dependent ambient temperature of the atmosphere.  Now, Eq. 

(62)  can be rewritten, so that 

    
   

 
06 3 2, 1 77.6 10 1 7.52 10
,S

z T z
n t x x R

T t


    r
r

. (64) 
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The relationship provided by Eq. (64) shows that the index of refraction  ,n tr  and 

temperature  ,T tr  are inversely proportional to one another.  This is an important point 

to remember in the analysis of thermal blooming. 

 Provided Eq. (64), Eq. (60) still needs to be rewritten in terms of the change in the 

index of refraction  ,n t r .  For this purpose, the chain rule relation 

 dn dn dT
dt dT dt

  (65) 

can be used to relate the time rate of change of the index of refraction to the time rate of 

change of the temperature.  The temperature rate of change of the index of refraction with 

respect to the ambient temperature must first be determined and is done so using the 

following relationship [46]: 

 
0T T

dn
dT 

 
 
 

. (66) 

It is also important to remember that the index of refraction  ,n tr  can be expanded into 

a complex number using Eqs. (13)-(15), such that  

    
 

0
0

, ,
2

z
n t n n t i

k


  r r , (67) 

where again, the position- and time-dependence of the extinction coefficient have been 

reduced to only a depth-dependence,    ,t z r .  This was done based on the 

analysis from the previous section.  Consequently, using Eqs. (64)-(67), the following 

relationship is obtained: 
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Equation (68) provides the temperature  ,T tr  rate of change of the index of refraction

 ,n tr , and equivalently the temperature  ,T tr  rate of change of the change in the 

index of refraction  ,n t r , with respect to the ambient temperature  0T z .  The 

relationships given by Eqs. (64)-(68) provide a way to relate the change in the index of 

refraction  ,n t r  to the temperature  ,T tr  of the atmosphere. 

 Equation (60) is now re-written in terms of the change in the index of refraction 

 ,n t r  due to thermal blooming.  Using Eqs. (64)-(68), the following relationship is 

obtained: 

  
 

,
( , )

d n t
z I t

dt



 

r
r , (69) 

where again,  z  is a depth-dependent absorption parameter, in units of squared meters 

per Joule  2 1m J , that contains all the thermodynamic information about the 

surrounding atmosphere, provided 
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Note that in writing Eq. (70), the depth-dependence of the density of air has been 

dropped,   0z  .  This is an appropriate approximation, as will be seen with the 

following analysis. 

 If there is no addition or removal of heat to the atmosphere, both the index of 

refraction and the temperature of the atmosphere become their ambient values, so that 

  0,n t nr  and    0,T t T zr .  Equation (64) is now determined as 

  6 3 2
0 01 77.6 10 1 7.52 10 Sn x x R      , (71) 

where again, the depth-dependence of the density of air has been dropped,   0z  .  

This is done since the ambient index of refraction 0n  is constant.  In reality, the ambient 

index of refraction is a depth-dependent parameter,  0 0n n z , which varies, according 

to Eq. (71), with the depth-dependent  density of air  z .  This depth dependence is 

neglected here because the difference between the depth-dependent ambient index of 

refraction and the vacuum index of refraction is approximately zero,  0 1 0n z   , as 

determined from Eq. (71) for optical wavelengths.  Thus, the empirical relationship found 

in Eq. (71) basically requires that the ratio  0 01n   in Eq. (70) be constant.  From this 

point on in the analysis, the density of air will assume its ambient value at zero degrees 

Kelvin, so that   3
0 1.293 kg mz   .  

 The integrated solution to Eq. (69) grows without bound as time progresses.  This 

is physically unrealizable.  Inherent in Eq. (69) is the idea that the energy acquired in 

heating the atmosphere due to an absorbed irradiance   ( , )z I t r  is balanced by removal 
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of energy or heat.  If the right hand side of Eq. (69) is expanded using the definition of 

the total derivative, this removal of heat or cooling is realized as atmospheric advection 

caused by a depth-dependent transverse wind velocity vector      , ,0x yz v z v z
   v  

of the atmosphere, where 

  
     

,
, ( , )

n t
z n t z I t

t
 


   



r
v r r . (72) 

Equation (72) says that the energy acquired in heating the atmosphere due to an absorbed 

irradiance   ( , )z I t r  is balanced by loss of energy due to cooling from atmospheric 

advection caused by a transverse wind velocity vector  zv  of the atmosphere blowing 

across the beam.  As a result, Eq. (72) is often referred to as the energy balance equation.   

2.3.2 Time-Dependent Thermal Blooming 

 Solutions to the energy balance equation, as given in Eq. (72), for the change in 

the index of refraction  ,n t r  caused by thermal blooming are now sought after.  To 

start the analysis, Eq. (72) is re-written in operator form as 

      ˆ , , , , , ,L z n x y z t f x y z t   , (73) 

where    L̂ z t z      v  , is a depth-dependent linear operator that represents 

cooling of the atmosphere through atmospheric advection and,    , , , ( , )f x y z t z I t r , 

is a forcing function that represents heating of the atmosphere due to an absorbed 

irradiance.  In re-writing Eq. (72) in the operator form of Eq. (73), it is easy to see that a 

Green’s function  , , , ; , , ,G x y z t      analysis can now be utilized, so that 

      ˆ , , , ; , , , , , ,L z G x y z t x y z t              , (74) 
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where here, the change in the index of refraction  ,n t r  and the forcing function 

 , , ,f x y z t , found in Eq. (73), are replaced with a Green’s function 

 , , , ; , , ,G x y z t      and a shifted Dirac-delta function  , , ,x y z t        , 

respectively [47].  The Green’s function  , , , ; , , ,G x y z t      defined in Eq. (74) is 

equivalent to the impulse response function that is often sought after for linear shift-

invariant systems.  With this in mind, the Green’s function  , , , ; , , ,G x y z t      

determines solutions to Eq. (72) for the change in the index of refraction  ,n t r  using 

the following relationship: 

      , , , , , , ; , , , , , ,n x y z t G x y z t f d d d d           
   

   

      . (75) 

Once the Green’s function  , , , ; , , ,G x y z t      is determined from Eq. (74), it can be 

substituted into Eq. (75) to determine the change in the index of refraction  ,n t r  

caused by thermal blooming. 

 Linear systems theory is used again to determine the Green’s function 

 , , , ; , , ,G x y z t      from Eq. (74).  For example, using the definition of the two-

dimensional Fourier transform, as given in Eq. (35), and the unilateral Laplace transform  

 
     

 

0

exp

ˆ

s W t st dt

W t



 

   

 , (76) 

where 2s i f   , is a complex number and, 0  , is a constant, Eq. (74) is 

transformed into the following algebraic expression: 
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      

       

2 , , , ; , , ,

                                exp 2 exp 2 exp

x x y y x y

x y

s i v z f v z f f f z s

i f i f z s

    

      

   

     
. (77) 

Here,  , , ,0; , , , 0G x y z      , since it is assumed that there is no initial heating of the 

atmosphere,  ,0 0n r .  The utility employed in transforming Eq. (74) is that Eq. (77) 

can be rearranged algebraically to solve for the transformed Green’s function 

 , , , ; , , ,x yf f z s     , so that 

 

 

       

   

, , , ; , , ,

exp 2 exp 2 exp
                    

2

x y

x y

x x x y

f f z s

i f i f z s

s i v z f v z f

   

      





   


   

. (78) 

Now, the two-dimensional inverse Fourier transform, as given in Eq. (38), and the 

inverse Laplace transform 

 
     

 1

1 exp
2
ˆ

i

i

W t s st ds
i

s






 

 





   

  (79) 

can be used to transform Eq. (78) back into the spatial and temporal domain, so that 

 
 

        

, , , ; , , ,

               , , stepx y

G x y z t

x v z t y v z t z t

   

      



        
. (80) 

Here,  step t   is a shifted unit-step or Heaviside function [47].  Equation (80) 

provides the Green’s function  , , , ; , , ,G x y z t      needed in Eq. (75). 
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 By substituting Eq. (80) into Eq. (75), the refraction effect of thermal blooming 

can be accounted for in HEL propagation in the atmosphere.  With a little manipulation, 

the change in the index of refraction  ,n t r  is determined as 

          
0

, , , , , ,
t

x yn x y z t z I x v z t y v z t z d             . (81) 

Equation (81) serves as an analytically determined time-dependent solution to the energy 

balance equation, as given in Eq. (72), for the change in the index of refraction  ,n t r  

caused by thermal blooming.  The introductory description of thermal blooming given 

above in Figure 5 makes complete sense now based on the relationship provided by Eq.  

(81).  With inspection of Eq. (81), it is readily seen that as time t  progresses from some 

previous time  , the change in the index of refraction  ,n t r  decreases.  This causes a 

negative-lens-like optical effect in the atmosphere.  Additionally, atmospheric advection 

causes the HEL beam irradiance  ,I tr  to wander or shift into the direction of the 

transverse wind velocity vector  zv .  This causes a tilt-like optical effect in the 

atmosphere.  With this in mind, everything needed to describe thermal blooming, at least 

for CW HEL beams propagating in the atmosphere, is contained in Eq. (81). 

 Equation (81) can be modeled computationally.  For this purpose, the following 

expression is readily used [48,46,49]: 

 
 

        

1

1

, , ,

                 , , , , , ,

j

j x y j

n x y z t

z I x y z t t n x v z t y v z t z t





 

      
, (82) 
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where here, the change in the index of refraction  ,n t r  is updated from the previous 

time jt  to the present time 1jt 
 with the time step 1j jt t t   .  Equation (82) discretely 

samples the time-dependent analytical solution given in Eq. (81).  As a result, everything 

needed to simulate time-dependent thermal blooming for CW HEL beams propagating in 

the atmosphere, is contained in Eq. (82).  For instance, heating of the atmosphere at the 

present time 1jt 
 corresponds to the amount of absorbed irradiance    1, , , jz I x y z t t   .  

This heating is being added from the previous time jt  during the time step t .  

Furthermore, previous heating of the atmosphere at time jt  is cooled by the wind through 

atmospheric advection.  This cooling through atmospheric advection corresponds to a 

spatial shift in the change of the index of refraction     , , ,x y jn x v z t y v z t z t     .  

The amount of atmospheric advection or spatial shift is governed by the transverse wind 

speeds,  xv z  and  yv z , and the time step t . 

 When using NxN  grids to implement Eq. (82) into wave-optics simulations, it is 

important to note that the amount of spatial shift is often less than or greater than the grid 

spacing.  As a result, it is common practice to break the time-development of Eq. (82) 

into sub-time steps [46,49].  Linear interpolation is then used for each sub-spatial shift.  

The DFT and a translation filter function  , , ,x yf f z t  can also be used to overcome 

this problem [4,5,50,51,49].  The translation filter function  , , ,x yf f z t  is given as 

       , , , exp 2x y x x y yf f z t i v z f v z f t      . (83) 
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Thus, Eq. (82) is equivalently written in terms of the translation filter function 

 , , ,x yf f z t , as given in Eq. (83), using the following relationship: 

 
 

        
1

1
1

, , ,

ˆ ˆ            , , , , , , , , ,

j

j j x y

n x y z t

z I x y z t t n x y z t f f z t







 

    
 

. (84) 

Equation (84) serves as an alternative way to simulate time-dependent thermal blooming.  

In practice, additional spatial filtering or zero padding is often needed when using NxN  

grids and the DFT to simulate time-dependent thermal blooming with Eq. (84).  This is 

done to prevent aliasing. 

 As stated before, proper grid sampling is a crucial component in combating 

aliasing when using the BPM to simulate HEL beam propagation in the atmosphere.  

Related to this issue, Fried analytically determined, using a plane-wave analysis, that for 

weak heating conditions, spatial frequencies above 0 01 2 z n   should be removed 

from the HEL beam irradiance  ,I tr  [52,49].  The Fresnel integral transfer function 

used in the BPM tends to amplify high spatial frequencies in the HEL beam irradiance 

 ,I tr  with multiple partial propagations of distance z  [9].  Accordingly, to remove 

these unnecessary high spatial frequencies, the HEL beam irradiance  ,I tr , in Eq. (82) 

or Eq. (84), is filtered with a super-Gaussian filter function  ,x yf f , so that 

       1
1 1

ˆ ˆ, , , , , , ,j j x yI x y z t I x y z t f f

 
  
  , (85) 

where  ,I t r  is the spatially filtered HEL beam irradiance.  The super-Gaussian filter 

function  ,x yf f  is given as 
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    
20

0

0

2, expx y x y
zf f f f

n
   

    
   

, (86) 

where the factor of 20 has been empirically determined to work well [49].  Replacing the 

HEL beam irradiance  ,I tr , in Eq. (82) or Eq. (84), with the spatially filtered HEL 

beam irradiance  ,I t r , as determined in Eq. (85), ultimately helps to alleviate 

numerical noise.  This numerical noise artificially increases the severity of time-

dependent thermal blooming [52,49]. 

 The relationships found in Eqs. (82)-(86) serve as the tricks of the trade for 

simulating time-dependent thermal blooming.  Provided these relationships, the important 

thing to remember in the study of time-dependent thermal blooming is that the heating 

and cooling of the atmosphere causes the HEL beam to develop crescent-shaped target 

irradiance.  As time progresses, the development of the crescent-shaped target irradiance 

increasingly degrades system performance. 

2.3.3 Steady-State Thermal Blooming 

 The heating and cooling of the atmosphere as described by time-dependent 

thermal blooming can reach steady state if there are no variations in the output source 

irradiance of the HEL beam.  For instance, steady-state thermal blooming results in static 

behavior of the change in the index of refraction  ,n t r .  This static behavior causes the 

time rate of change of the change in index of refraction to be zero,   0n t  r .  

Consequently, the time-dependence in the change in the index of refraction is dropped, 
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   ,n t n  r r , and steady-state thermal blooming is found from Eq. (72) and 

equivalently Eq. (81), as 

  
 

 
 , , , ,

xz
v z

n x y z I y z d



 

    , (87) 

where  v z  is the transverse wind speed.  In Eq. (87), the coordinates of the HEL beam 

propagating in the atmosphere have been rotated, so that the transverse wind velocity 

vector is assumed to be solely in the x  direction,     ,0,0z v z    v .  Equation (87) 

serves as an analytically determined steady-state solution to Eq. (72) for the change in the 

index of refraction  n r  caused by thermal blooming.  Provided Eq. (87), the refraction 

effect of steady-state thermal blooming can be accounted for in HEL propagation in the 

atmosphere.  To model the refraction caused by steady-state thermal blooming 

computationally, the integral in Eq. (87) must be sampled discretely. 

 Steady-state thermal blooming, as described by Eq. (87), only holds for 

engagement scenarios in which the HEL beam has been propagating in the atmosphere 

for a significant amount of time, i.e. some multiple of the wind clearing time ct .  For this 

purpose, the wind clearing time ct  is defined as the time needed for the transverse wind 

speed in the source plane  0v  to travel across the initial beam diameter 0D , where 

 
 
0

0c
Dt

v
 . (88) 

Varying engagement scenario parameters will require different multiples of the wind 

clearing time ct , as provided in Eq. (88), to reach steady-state thermal blooming.  



54 
 

However, once steady-state thermal blooming is achieved, the development of the 

crescent-shaped target irradiance is static in behavior or fully formed.  This fully-formed 

crescent pattern in the target plane is sometimes referred to as whole-beam thermal 

blooming.  Here, the fully-formed crescent pattern is referred to as steady-state thermal 

blooming—a refraction effect which severely degrades system performance. 

2.3.4 Distortion Number 

 It is useful to describe the refraction caused by steady-state thermal blooming in 

terms of a position-dependent phase distortion   r  measured in radians  rad .  For this 

purpose, the phase distortion   r  accumulated along the propagation path is provided 

from the change in the index of refraction  n r  using the following relationship: 

    0
0

, , , ,
Z

x y Z k n x y z dz   , (89) 

where Z is the entire propagation range.  Equation (89) is similar to the time-independent 

phase screen  1, , jx y z   derived in Eq. (44).  The integral over the change in the index 

of refraction  n r , as given in Eq. (89), is again known as the definition of OPD.  

Moreover, substituting Eq. (87) into Eq. (89) provides the phase distortion   r  

accumulated along the propagation path induced by steady-state thermal blooming, where 

  
 

 
 0

0

,, ,,
Z

x

xz
x y Z k z dzI y

v
d

z
 






   . (90) 

Equation (90) serves as an analytically determined steady-state solution to Eq. (72) for 

the phase distortion   r  caused by thermal blooming.  Provided Eq. (90), different HEL 
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beam parameters can be accounted for to characterize the radians of distortion induced by 

steady-state thermal blooming. 

 For uniform circularly collimated HEL beams propagating in the atmosphere, Eq. 

(90) can be rewritten in terms of a parameter known as the Bradley and Herrmann 

distortion number DN  [53].  In so doing, Eq. (90) is rewritten in the following form 

[54,22]: 

    0
0

0

, , ,
4 2

x

D
Dx y Z N I y d

P
  



   , (91) 

so that the distortion number DN  is given as 

    

 
0 0

0 0

4 2 Z

D

z zk PN dz
D v z

 



  , (92) 

where 0P  is the initial beam power.  The transmittance  z , as defined in Eq. (49), is 

included in the definition of the distortion number DN  because extinction effects known 

as transmission losses limit the effects of thermal blooming.  According to Eq. (91), the 

distortion number DN , as given in Eq. (92), provides an amplitude gauge for the 

integrated radians of distortion accumulated along the entire propagation range Z  for a 

uniform circularly collimated HEL beam.  Thus, the distortion number DN  is widely 

used as a measure for the strength of thermal blooming.  

 It is clear, at this point in the analysis, that thermal blooming causes heating of the 

atmosphere and an associated temperature rise.  This temperature rise is proportional to 

the irradiance  I r  of the HEL beam propagating in the atmosphere.  For uniform 

circularly collimated HEL beams propagating in the atmosphere, the irradiance is 
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proportional to the ratio of the initial beam power over the beam area, 

   
2

0 0 2I P D 
 

r .  As written in Eq. (92), the distortion number DN  is 

proportional to the ratio of the initial beam power over the initial beam diameter, 

0 04 2P D .   Consequently, there is a 01 D  discrepancy between the irradiance 

proportionality and the proportionality used in defining the distortion number DN  in Eq.  

(92).  This may seem surprising; however, the important thing to realize is that the 

temperature rise associated with thermal blooming is also proportional to the wind 

clearing time ct , as defined in Eq. (88).  How long the surrounding atmosphere is 

exposed to the HEL beam plays a big role in determining the strength of thermal 

blooming. 

 Equation (92) is often modified when considering uniform circularly focused 

HEL beams propagating in the atmosphere.  For instance, the depth-dependent beam 

diameter  D z  for a uniform circularly focused HEL beam can be determined from 

geometrical optics as 

   0
Z zD z D

Z


 . (93) 

From the source plane, 0z  , to the target plane, z Z , the optical leverage  Z z Z  

causes the initial beam diameter 0D  to converge.  Thus, uniform circularly focused HEL 

beams are conical in shape and the distortion number DN , given in Eq. (92), is rewritten, 

so that [55]  

    

   
0 0

0

4 2
Z

D

z zZ zN k P dz
Z D z v z

 




  . (94) 
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Similar to Eq. (92), Eq. (94) provides an amplitude gauge for the integrated radians of 

distortion accumulated along the entire propagation range Z  for a uniform circularly 

focused HEL beam.  If Eq. (93) is substituted in to Eq. (94), the optical leverage 

 Z z Z  cancels.  As a result, the distortion number DN  found using Eq. (94) is 

equivalent to the distortion number DN  found using Eq. (92).  Throughout the literature; 

however, there are different definitions of the beam diameter  D z  used in Eq. (94) for 

uniform circularly focused HEL beams propagating in the atmosphere. 

 Diffraction effects prevent the beam diameter  D z , as defined in Eq. (93), from 

reaching zero.  For example, a uniform circularly focused HEL beam will have a 

diffraction-limited bucket diameter BD  determined by the following quantity: 

 0

0 0

2.44B
ZD

n D


 . (95) 

The bucket diameter BD  is defined as the region in the target plane, z Z , that contains 

the central bright spot of the HEL beam irradiance  I r  after diffraction limited 

propagation to the far field.  In Eq. (95), the bucket diameter BD  is derived  from the 

irradiance  I r  given by the following relationship:  

  
2 2 22

2 2 0 00 0

0 0

, , somb
4

n D x yn DI x y Z A
Z Z



 

   
        

. (96) 

Equation (96) corresponds to the irradiance  I r  (neglecting transmission losses) of the 

Fraunhofer diffraction pattern obtained for a circular aperture of diameter 0D  illuminated 
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with an HEL beam amplitude A .  The first nulls of the squared sombrero function, 

 2
0 0 0somb 2 0Bn D D Z    , in Eq. (96), determines the bucket diameter BD  [56].   

 It is common practice to add diffraction effects to the beam diameter  D z  used 

in Eq. (94).  For this purpose, the root sum square of the quantities found in Eq. (93) and 

Eq. (95) can be used to approximate the beam diameter  D z  with diffraction effects, so 

that 

  
22

0
0

0 0

2.44 zZ zD z D
Z n D

  
    

   
. (97) 

With the use of the Binomial approximation, Eq. (97) is further approximated to whole 

numbers as 

   0
0

0 0

zZ zD z D
Z n D


  . (98) 

The added term to Eq. (98), as compared with Eq. (93), accounts for diffraction effects 

along the entire propagation range .  In the source plane, 0z  , the HEL beam is no 

larger than the initial beam diameter 0D , and in the target plane, z Z , the HEL beam 

diameter  D z  is approximately half of the bucket diameter BD . 

 If optical turbulence effects are taken into account, Eq. (98) is rewritten in terms 

of the coherence diameter 0r .  The coherence diameter 0r  is widely used as a descriptor 

of the level of turbulence in the atmosphere [57].  Thus, Eq. (98) is rewritten, so that 

   0
0

0 0

zZ zD z D
Z n r


  . (99) 

Z
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Equation (99) is only valid if the coherence diameter is less than the initial beam 

diameter, 0 0r D .  Under turbulent propagation conditions, the far field HEL central spot 

size is limited by the coherence diameter 0r  rather than the initial beam diameter 0D .  For 

this reason, increasing the initial beam diameter 0D  does not result in a smaller bucket 

diameter BD .  The resolution obtainable can be no smaller than the turbulence limited 

bucket diameter TD , which is similar to the diffraction limited bucket diameter BD , as 

given in Eq. (95).  Here, the turbulence limited bucket diameter TD  is dependent on the 

coherence diameter 0r  using the following relationship: 

 0

0 0

2.44T
ZD

n r


 . (100) 

 

The idea presented in Eq. (100) will become more apparent with the analysis performed 

in the next section.  With this in mind, characterizing turbulence in the atmosphere and its 

effects on thermal blooming is of interest now. 

2.4 Turbulence in the Atmosphere 

 Fluctuations in the wind velocity or temperature in the atmosphere lead to 

unstable air masses called eddies which form in a continuum of sizes.  Within a specific 

range of sizes, the change in the index of refraction  ,n t r  caused by turbulence 

assumes a statistically homogeneous and isotropic value.  As depicted in Figure 6, 

propagation in the atmosphere from one eddy to another causes the HEL beam irradiance 

to distort unevenly.  Starting with a Gaussian-shaped beam profile in the source plane, 

turbulence causes a random-lens-like optical effect in the atmosphere, and the HEL beam 
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irradiance in the target plane becomes scintillated.  In addition, atmospheric advection 

causes turbulent flow, where individual eddies travel across the HEL beam.  This distorts 

the HEL beam target irradiance even more.  The purpose of this section is to introduce 

the physics involved in characterizing the change in the index of refraction  ,n t r  

caused by turbulence. 

 

 
Figure 6.  HEL propagation with the effects of turbulence.  Random fluctuations in the 
temperature of the atmosphere causes turbulent eddies to form and consequently random 
variations in the refractive index.  This induces an optical effect that scintillates the HEL 
beam irradiance.  Atmospheric advection causes turbulent eddies to travel across the HEL 
beam distorting the target irradiance even more. 

 

2.4.1 Classical Turbulence 

 Kolmogorov laid the foundation for a statistical analysis that is used in modeling 

turbulence in the atmosphere [58].  In practice, turbulence is a nonlinear process 
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governed by the Navier-Stokes equations.  For fully formed turbulent flow in the 

atmosphere; however, obtaining closed-form solutions to the Navier-Stokes equations is 

unfeasible.  There are too many random variables to account for.  As a result, a statistical 

analysis can be used to model turbulence in the atmosphere.  Kolmogorov based his 

statistical analysis primarily on insight after examining the behavior of fluctuations in the 

wind velocity.  He hypothesized that within a range of eddy sizes called the inertial 

subrange, kinetic energy is transferrable.  This idea is often referred to as energy cascade 

theory and asserts that the kinetic energy injected into larger eddies, by mechanisms such 

as atmospheric advection or wind shear, is transferrable to smaller eddies.  Energy 

cascade theory is valid within the boundaries of the inertial subrange defined between the 

outer scale 0L  and the inner scale 0l .  Kolmogorov assumed that eddies in the inertial 

subrange are locally statistically homogeneous and isotropic.  From this assumption, he 

was able to develop a statistical analysis for turbulence in the atmosphere claiming that 

the wind velocity fluctuations are stationary in increments. 

 For a random process that is stationary in increments, the covariance is not readily 

applicable.  Instead, the less common structure function is used to compute statistical 

quantities.  For an arbitrary position-dependent random process  W r , the position-

dependent structure function  WD r  is defined as 

        
2

1 2 1 1,W WD D W W     r r r r r r , (101) 
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where the angled bracket notation represents the ensemble average and 2 1 r r r  [13].  

Provided Eq. (101), Kolmogorov was able to use dimensional analysis to determine the 

statistically homogeneous and isotropic wind velocity structure function  vD r  as 

      
2 2 2 3

1 2v vD r v v C z r   , (102) 

where 1v  and 2v  represent wind velocity vector components at two points in the 

atmosphere separated by a distance r  r .  Equation (102) is only valid within the 

inertial subrange, 0 0l r L .  The depth-dependent parameter  2
vC z  is known as the 

wind velocity structure parameter and provides an amplitude measure for the strength of 

wind velocity fluctuations in the atmosphere.  From the wind velocity structure function  

 vD r , as given in Eq. (102), Kolmogorov and many others were able to statistically 

characterize turbulence in the atmosphere. 

2.4.2 Transverse Wind Velocity Vector of the Atmosphere 

 Up to this point in the analysis, there has been little discussion given as to the 

composition of the transverse wind velocity vector of the atmosphere.  For example, in 

the derivation of the energy balance equation, given in Eq. (72), the depth-dependent 

transverse wind velocity vector  zv  of the atmosphere assumed the following form: 

      , ,0x yz v z v z
   v . (103) 

Provided Eq. (103), it was discovered in the analysis of time-dependent thermal blooming 

that the transverse wind velocity vector  zv  of the atmosphere causes atmospheric 

advection or a spatial shift in the HEL beam irradiance.  This is all well and good; 
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however, fluctuations in the wind velocity are not accounted for with the mathematical 

form of the transverse wind velocity vector  zv  included in Eq. (103).  Wind velocity 

fluctuations and turbulent mixing in the atmosphere causes the transverse wind velocity 

vector  ,z tv  to have both a depth and time dependence.   

 Fluctuations in the depth- and time-dependent transverse wind velocity vector 

 ,z tv  occur statistically around a mean value.  This point can be accounted for 

mathematically by expanding the transverse wind velocity vector  ,z tv , as was done 

in Eq. (14) for the index of refraction  ,n tr of the atmosphere, where 

      0, ,z t z z t  v v v . (104) 

In Eq. (104), the depth-dependent parameter  0 zv  is the mean transverse wind velocity 

vector of the atmosphere.  As such, it can now be seen that the mean transverse wind 

velocity vector is equivalent to the form of the transverse wind velocity vector, given in 

Eq. (103), such that    0 z zv v .  The expansion given in Eq. (104) provides the 

mechanism needed to study fluctuations in the wind caused because of deviations from 

the mean transverse wind velocity vector  0 zv .  These deviations are accounted for 

with the addition of the depth- and time-dependent change in the transverse wind velocity 

vector  ,z tv . 

 In writing the form of the transverse wind velocity vector  ,z tv , as given in 

Eq. (103), it is assumed that all of the fluctuations are temporal in nature.  However, the 

form of the wind velocity structure function   vD r , as given in Eq. (102), alludes to idea 
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that classical turbulence is caused by spatial fluctuations in the wind velocity.  To 

account for this discrepancy, an equivalent statistically homogeneous and isotropic wind 

velocity structure function  ,vD z t  is proposed, so that [59] 

        2 4 3 2 3
1 1 0, , ,v vD z t z t z t t C z v t      v v , (105) 

and again, is only valid within the inertial subrange, 0 0l r L .  In Eq. (105), 1t  and 2t  

represent wind velocity vector at two different time stamps in the atmosphere, where 

2 1t t t   .  Thus, the spatial fluctuations in the wind velocity are essentially folded into 

the temporal fluctuations.  These temporal fluctuations create a spatial spread in the wind 

velocity. 

 The depth-dependent wind velocity standard deviation  v z  is used to account 

for the spatial spread in the wind velocity.  For this purpose, the change in the transverse 

wind velocity vector  ,z tv , as given in Eq. (104), is designated as a zero-mean 

random component, so that its ensemble average is zero,  , 0z t v .  This 

mathematical trick is commonly used in the analysis of classical and optical turbulence.  

Another analysis tool used here is to treat the change in the transverse wind velocity 

vector  ,z tv  like a zero-mean Gaussian random variable1.  Consequently, the 

associated position- and time-dependent probability density function (PDF)  ,P tr  is 

then given in terms of wind velocity standard deviation  v z  as 

                                                 
1 This step in the analysis is supported with empirical data and is readdressed in the next chapter. 
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  
 

 
 

2 2

2 2 2 2

1, , , exp
2 2v v

x y
P x y z t

z t z t 

  
  

  

. (106) 

From Eq. (106), it is more readily seen as to how the temporal fluctuations are related to 

the idea of a spatial spread in the wind velocity.  Equation (106) says that the temporal 

fluctuations lead to a Gaussian distributed spatial spread in the wind velocity that grows 

with time.  In addition, the associated position- and time- dependent characteristic 

function  , , ,x yf f z t  is determined by taking the Fourier transform of Eq. (106), so 

that 

      
2 2 21, , , exp 2

2x y v x yf f z t z t f f
 

     
 

. (107) 

Equation (107) also provides a Gaussian distributed spatial spread in the wind velocity in 

the frequency domain.  Here, as time progresses, the Gaussian distributed spatial spread 

decreases, as shown in Figure 7.  The effects of the Gaussian distributed spatial spread in 

the wind velocity are of interest now in the study of time-dependent thermal blooming. 
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Figure 7.  Ten independent realizations of the wind fluctuations characteristic function with 
time steps of, Δt=1 ms.  In the frequency domain, as time progresses, the Gaussian distributed 
spatial spread in the wind velocity decreases. 

 

2.4.3 Time-Dependent Turbulent Thermal Blooming 

 In the analysis of time-dependent thermal blooming performed above, the effects 

of the Gaussian distributed spatial spread in the wind velocity were not accounted for.  

For this purpose, Fried performed an analysis on blurring effects in time-dependent 

thermal blooming [60].  In this ground breaking work, Fried recognized the Gaussian 

distributed spatial spread in the wind velocity as a spatial filtering process.  This spatial 

filtering essentially acts like a blurring mechanism for the heating of the atmosphere 

caused by time-dependent thermal blooming.  Mathematically, the spatial filtering is 

realized as the two-dimensional convolution between the change in the index of 
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refraction  ,n t r  of the atmosphere caused by time-dependent thermal blooming, and 

the wind fluctuations PDF  ,P tr , as given in Eq. (106), so that 

 
     

   

, , , , , , , , ,

, , , , , ,

n x y z t n x y z t P x y z t d d

n x y z t P x y z t

   
 

 

    

  

  , (108) 

where here,  ,n t r  is the filtered change in the index of refraction of the atmosphere 

caused by turbulent thermal blooming.  With the use of the convolution theorem, Eq. 

(108) is further simplified in terms of the wind fluctuations characteristic function 

 , , ,x yf f z t , as given in Eq. (107), where 

       1ˆ ˆ, , , , , , , , ,x yn x y z t n x y z t f f z t     . (109) 

From Eq. (109), it is more readily seen as to how the Gaussian distributed spatial spread 

in the wind velocity is related to a spatial filtering process.  Equation (109) says that the 

change in the index of refraction  ,n t r  caused by time-dependent thermal blooming is 

filtered by the wind fluctuations characteristic function  , , ,x yf f z t , which represents 

the Gaussian distributed spatial spread in the wind velocity in the frequency domain.  As 

time progress, this filtering becomes stronger, since in the frequency domain, the 

Gaussian distributed spatial spread in the wind velocity decreases, as shown above in 

Figure 7. 

 By substituting Eq. (81) into Eq. (109), the refraction effect of turbulent thermal 

blooming can be accounted for in HEL propagation in the atmosphere.  With a little 

manipulation, the change in the index of refraction  ,n t r  is determined as 
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 

        1

0

, , ,

ˆ ˆ         , , , , , , , , ,
t

x y x y

n x y z t

z I x y z t f f z t f f z t d  



    
, (110) 

where here, the translation filter function  , , ,x yf f z t , as given in Eq. (83), was 

utilized to simplify the mathematics.  Equation (110) serves as an analytically determined 

time-dependent solution to the energy balance equation, as given in Eq. (72), for the 

change in the index of refraction  ,n t r  caused by turbulent thermal blooming.   

 Equation (110) is modeled computationally by modifying Eq. (84) in terms of the 

characteristic function  , , ,x yf f z t , as given in Eq. (107).  For this purpose, the 

following expression is readily used [60,49]: 
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


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 

  

    
.

 (111) 

Equation (111) provides a way to simulate time-dependent turbulent thermal blooming.  

The spatial filtering is realized for all previous time steps.  In practice, the spatial filtering 

is truncated.  This is done to prevent aliasing and to increase computational performance 

[49].  Simulating time-dependent thermal blooming and or time-dependent turbulent 

thermal blooming using the BPM typically requires a large number of partial 

propagations and phase screens  1, , ,jx y z t .  As a result, a trade-off analysis is 

necessary to determine the truncation point for the spatial filtering performed by Eq. 

(111).  
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 The important thing to remember in the study of time-dependent turbulent thermal 

blooming is that the heating and cooling of the atmosphere causes the HEL beam to 

develop a crescent-shaped target irradiance that is spatially filtered.  As time progresses, 

the spatial filtering increasing blurs the development of the crescent-shaped target 

irradiance.  This tends to increase system performance.  Consequently, the refraction 

caused by time-dependent turbulent thermal blooming is less severe when compared to 

time-dependent thermal blooming.  It is important to note; however, that turbulence also 

causes a random-lens-like optical effect in the atmosphere.  The HEL beam irradiance 

becomes scintillated as a result.  This often overrides any gain in system performance 

associated with time-dependent turbulent thermal blooming.  Characterizing optical 

turbulence is of importance now. 

2.4.4 Optical Turbulence 

 Based on Kolmogorov’s work, Obukhov and Corrsin, who worked independently 

of each other, were able to associate wind velocity fluctuations to potential temperature 

fluctuations [61,62].  Potential temperature is linearly related to temperature.  Thus, 

Obukhov and Corrsin were able to determine the statistically homogeneous and isotropic 

temperature structure function  TD r  from the wind velocity structure function  vD r , 

determined in Eq. (102), as 

      
2 2 2 3

1 2T TD r T T C z r   . (112) 

Here, 1T  and 2T  represent the temperature at two points in the atmosphere separated by a 

distance r  within the inertial subrange, 0 0l r L .  The depth-dependent temperature 

structure parameter  2
TC z  can be related to the wind velocity structure parameter  
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 2
vC z ; however, this relationship is often overlooked in the analysis.  It is more common 

to relate temperature fluctuations to refractive-index fluctuations.  

 Provided the relationship found in Eq. (112) with respect to temperature 

fluctuations, a similar relationship can be determined for the index of refraction  ,n tr  of 

the atmosphere.  For this purpose, it is important to revisit the mathematical form of the 

index of refraction  ,n tr  of the atmosphere.  Temperature fluctuations and turbulent 

mixing statistically cause the index of refraction  ,n tr  of the atmosphere to fluctuate 

around a mean value.  This point can be accounted for mathematically by expanding the 

real component  ,Rn tr  of the index of refraction  ,n tr  of the atmosphere, as was done 

in Eq. (14), where 

    0, ,Rn t n n t r r . (113) 

Refraction caused by optical turbulence in the atmosphere results in a change in the index 

of refraction  ,n t r  that represents deviations from a mean value.  Here, the ambient 

index of refraction 0n  is this mean value and the ensemble average of the change in the 

index of refraction is zero,  , 0n t r .  Based on this insight, Eq. (113) provides a 

mechanism to study statistical quantities associated with the spatial and temporal 

variations in the index of refraction  ,n tr  of the atmosphere caused by optical 

turbulence. 
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 Temporal variations in the index of refraction  ,n tr  of the atmosphere are often 

neglected in the study of optical turbulence.  Consequently, Eq. (113) is rewritten without 

time dependence, so that 

    0Rn n n r r . (114) 

The relationship found in Eq. (114) makes use of Taylors frozen turbulence hypothesis.  

This hypothesis claims that temporal variations of atmospheric quantities at a point in 

space are produced by atmospheric advection of these quantities due to the mean 

transverse wind velocity vector  0 zv  and not by changes in these quantities themselves 

[13].  Under Taylors frozen turbulence hypothesis, eddies are treated as if they were 

frozen in space and travel in the direction of the mean transverse wind velocity vector 

 0 zv , i.e. the change in the transverse wind velocity vector  ,z tv  is neglected.   

Temporal variations caused by turbulence in the atmosphere are accounted for 

with a spatial shift due to atmospheric advection.  For example, the change in the index of 

refraction  ,n t r  caused by optical turbulence in the atmosphere and the associated 

time dependence is modeled computationally as 

       1, , , , , ,i x y in x y z t n x v z t y v z t z t       , (115) 

where here, the change in the index of refraction  ,n t r  is updated from the previous 

time jt  to the present time 1jt   with the time step, 1j jt t t   .  The validity of Taylors 

frozen hypothesis and Eq. (115) is supported with experimental evidence; however, 

different engagement scenario parameters may require additional constraints.  Such is the 

case when in the presence of aero-optical turbulent flow [63]. 
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 Optical turbulence causes spatial variations in the time-independent index of 

refraction  n r  of the atmosphere.  These spatial variations in the index of refraction 

 n r  are empirically related to spatial variations in the position-dependent temperature 

 T r  and pressure  P r  using Eq. (62).  For this purpose, Eq. (62) is rewritten here 

neglecting the isobaric approximation, so that 

    
 

 
6 3 21 77.6 10 1 7.52 10

P
n x x

T
    

r
r

r
. (116) 

The relationship provided by Eq. (116) says that the index of refraction  n r  of the 

atmosphere is inversely proportional to the temperature  T r  of the atmosphere.  As a 

result, there is a direct relationship found between the statistically homogeneous and 

isotropic index of refraction structure function  nD r  and the temperature structure 

function  TD r , as given in Eq. (112), so that 

        
2 2 2 3

1 2n nD r n n C z r    r r . (117) 

Equation (117) is again only valid within the inertial subrange, 0 0l r L , where r  

represents the distance found between the vectors 1r  and 2r .  The depth-dependent index 

of refraction structure parameter  2
nC z  is a measure for the strength of refractive-index 

fluctuations.  In units of meters to the negative two thirds power  2 3m , the index of 

refraction structure parameter  2
nC z  is deduced from the temperature structure 

parameter  2
TC z  and Eq. (116) as [9] 
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 
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 

. (118) 

Typical values for the index of refraction structure parameter  2
nC z  range from 

17 2 310  m   or less for ―weak‖ optical turbulence to 17 2 310  m   or more for ―strong‖ 

optical turbulence [13].  With this in mind, the goal now is to develop the theory needed 

to review other useful parameters which characterize optical turbulence. 

 For a wide range of analytical calculations involving random processes, the power 

spectral density (PSD) is needed.  As such, the statistically homogeneous and isotropic 

index of refraction PSD  n   is obtained from the index of refraction structure 

function  nD r  using the following relationship [13]: 

  
 

 2
2 2

0

sin1
4n n

kr d dr D r dr
kr dr dr


 


 

   
 

 , (119) 

where 2 22 x yf f    is the angular spatial frequency magnitude in units of radians per 

meter  rad m .  The index of refraction PSD  n  , as given in Eq. (119), determines 

how power found within refractive-index fluctuations is distributed with respect to spatial 

frequency.  Within the inertial subrange, 0 01 1l L , Eq. (119) is determined as 

    2 11 30.033n nC z     (120) 

and is often referred to as the Kolmogorov refractive-index power spectrum.  Other index 

of refraction PSD  n   models do exist to account for refractive-index fluctuations 
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outside the inertial subrange.  They include the Tatarsky2, von Karmon, modified von 

Karmon, and Hill refractive-index power spectrums [13].   

The change in the index of refraction  n r  caused by optical turbulence in the 

atmosphere can be modeled computationally with the use of the index of refraction PSD 

 n  , as given in Eq.  (120).  Since the change in the index of refraction caused by 

optical turbulence is considered to be a zero mean random process,  , 0n t r , so is 

the phase screen  1, , ;jx y z t , given in Eq. (44).  Thus, refractive-index fluctuations 

are often modeled computationally with the concept of a Monte-Carlo phase screen 

 1, , ;jx y z t .  There are many fruitful methods found throughout the literature 

concerned with this topic—the method presented by Schmidt is particularly informative 

[9]. 

 Refractive-index fluctuations are statistically related to optical-disturbance 

fluctuations, through use of the inhomogeneous Helmholtz equation, as found in Eq. (18).  

For instance, if the index of refraction  n r  of the atmosphere is specified by a real 

stochastic expansion, as given in Eq. (114), Eq. (18) is rewritten in the following form: 

      2 2
01 2 0n kU U      r r r , (121) 

where here,  

    2 1 2n n  r r . (122) 

                                                 
2 Sometimes spelled Tatarskii in the American literature. 
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The approximation provided by Eq. (122) is typically used since the ambient index of 

refraction is approximately equal to the vacuum index of refraction, 0 1n  , and the 

change in the index of refraction  n r  caused by optical turbulence is considered to be 

on the order of parts per million.  As a result, Eq. (121) is often referred to as the 

statistical Helmholtz equation. 

 To compute statistical moments for optical disturbances propagating in a turbulent 

atmosphere, an approximate solution to the statistical Helmholtz equation is needed for 

the complex scalar function  U r .  For this purpose, there are numerous approaches used 

throughout the literature to approximate solutions to Eq. (121).  The two most widely 

used approaches include the Born approximation and Rytov approximation [13].  Of 

these two approaches, the Rytov approximation is more accurate in computing statistical 

quantities for optical turbulence.  In using the Rytov approximation, the scalar function 

 U r  for optical disturbances assumes the form: 

      0 expU U    r r r , (123) 

where  0U r  is the vacuum solution to the statistical Helmholtz equation given in Eq.  

(121), so that   1n r .  The complex phase perturbation   r  is used to perform 

successive perturbations, where 

      1 2 ...    r r r . (124) 

These successive perturbations are used to compute various statistical moments of the 

complex phase perturbation   r , which in turn yields statistical moments for optical 

disturbances propagating in a turbulent atmosphere [9].  In addition, the complex phase 
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perturbation   r  is often written as a complex function in terms of the log-amplitude 

perturbation   r  and the phase perturbation   r , so that 

      i   r r r . (125) 

Equation (125) provides further utility in computing statistical moments for optical 

disturbances propagating in a turbulent atmosphere.  The goal now is to list some of these 

statistical moments and resultant parameters that are used to further characterize optical 

turbulence.  Their derivations are found throughout the literature [64,65,66,13]. 

2.4.5 Optical Turbulence Parameters 

 The index of refraction structure parameter  2
nC z  is a useful parameter to have 

in characterizing the strength of refractive-index fluctuations caused by optical 

turbulence.  Nevertheless, computing statistical moments for optical disturbances provide 

other useful parameters that are handy in characterizing specific effects caused by optical 

turbulence [9].  The first statistical moment of interest here is the position-dependent log-

amplitude variance  2
 r  and is defined by the following relationship: 

      
22 2

   r r r  (126) 

Equation (126) makes use of the log-amplitude perturbation   r , as given in Eq. (125).  

For a particular engagement scenario, the log-amplitude variance 2
  is a measure for the 

strength of the scintillation caused by optical turbulence in the atmosphere. Weak 

refractive-index fluctuations are associated with 2 0.25  , and strong fluctuations are 
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associated with 2 0.25 .  Under weak refractive-index fluctuations, the log-amplitude 

variance 2
, pw  for a plane-wave source is given as [9] 

  
7 6

5 6
2 5 6 2

,
0

0.563 1
Z

pw n
zZ C z dz
Z 

 
  

 
 , (127) 

and for a spherical wave emitted from a point source, the log-amplitude variance 

 2
,sw z  is determined, so that 

  
7 6

5 6
2 2 5 6

,
0

0.563 1
Z

sw n
zC z z dz
Z 

 
  

 
 , (128) 

where again, 0 0n k  .  The Rytov approximation typically breaks down under strong 

refractive-index fluctuations; hence, Eq. (127) and Eq. (128) are only valid for weak 

refractive-index fluctuations. 

 The second statistical moment of interest in this analysis is the mutual coherence 

function (MCF)  1 2, , Z r r .  Specifically, the MCF  1 2, , Z r r  is a measure for spatial 

coherence between two points, 1r  and 2r , in the target plane, z Z , and is defined by the 

following relationship: 

 
     

       

*
1 2 1 2

* *
0 1 0 2 1 2

, , , ,

, , exp , ,

Z U Z U Z

U Z U Z Z Z 

 

   

r r r r

r r r r
. (129) 

Goodman’s description of the MCF is particularly insightful and is outlined here [67]. 

 When two points in the target plane perfectly overlap, they are perfectly 
correlated and the optical source is called mutually coherent. 

 
 As the two points move apart, the degree of correlation decreases and the optical 

source is called partially coherent. 
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 When the degree of correlation is zero, the optical source is called mutually 
incoherent. 
 

Different engagement scenario parameters and optical turbulence parameters determine 

the degree of correlation described above.  Furthermore, the degree of coherence (DOC) 

 1 2, , Z r r  is deduced from the MCF  1 2, , Z r r  using the following relationship: 

 
 

 

   

 

1 2
1 2

1 1 2 2

1 2

, ,
, ,
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Z
Z

Z Z

D Z





 

 
  

 

r r
r r

r r r r

r r

, (130) 

where  1 2, ,D Zr r  is known as the wave structure function (WSF).  Within the inertial 

subrange, 0 0l r L , the wave structure function is determined from the index of 

refraction structure parameter  2
nC z  as [68] 

    2 5 3 2
0

0

, 2.91
Z

nD r Z k r C z dz  , (131) 

where again, r  r  and 2 1 r r r .  The 1 e  point of the DOC  1 2, , Z r r  defines a 

parameter known as the spatial coherence radius 0 .  This is also where the WSF is equal 

to two,  0 , 2D Z  . 

 The usefulness of both the MCF  1 2, , Z r r  and DOC  1 2, , Z r r  is readily seen 

from the definition of the spatial coherence radius 0 .  For example, the coherence 

diameter 0r  is determined from the spatial coherence radius 0  using the following 

relationship [68]: 

 0 02.1r  . (132) 
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Remember that the idea of the coherence diameter 0r  was already introduced in the 

definition of the distortion number DN .  For a plane-wave source, the coherence diameter 

0, pwr  is analytically determined as [66,9] 

  

3 5

2 2
0, 0

0

0.423
Z

pw nr k C z dz


 
  
 

 . (133) 

Similarly, for a spherical wave emitted from a point source, the coherence diameter 0,swr  

is analytically determined to be [66,9]  

  

3 55 3
2 2

0, 0
0

0.423
Z

sw n
zr k C z dz
Z



  
   

   
 . (134) 

As was mentioned before, the coherence diameter 0r  is widely used as a descriptor of the 

level of turbulence in the atmosphere.  Apertures with a diameter larger than the 

coherence diameter 0r  experience a breakdown in the degree of correlation or coherence 

description [69].  For instance, if the coherence diameter 0r  is smaller than the initial 

beam diameter 0D , increasing the initial beam diameter 0D  results in minimal resolution 

gain for a focused HEL beam propagating in the atmosphere.  This says that the 

resolution obtainable after propagation in the atmosphere can be no smaller than the 

coherence diameter 0r .  For poor resolution conditions, the coherence diameter 0r  ranges 

from under 5 cm  to 20 cm  with good resolution conditions [70]. 

2.4.6 Imaging Through Optical Turbulence  

 The coherence diameter 0r  is often referred to as the Fried parameter because it 

was originally introduced by Fried [71]; however, in a very different way than the 
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relationship found in Eq. (132).  In this ground breaking work, Fried analyzed the 

resolution of an imaging telescope.  He defined what is known as the atmospheric 

modulation transfer function (MTF).  By analyzing the area under the atmospheric MTF, 

he was able to define the coherence diameter 0r  as ―the knee in the curve,‖ where 

increasing the telescope diameter did not increase imaging resolution.  In practice, 

characterizing an imaging system becomes particularly complicated when the imaging 

system does not perfectly focus the image because of aberrations present in the optical 

system.  Imaging through optical turbulence [71,67,72] and or thermal blooming 

[19,73,74] also significantly degrades imaging system performance with aberrations. 

 The effects of aberrations can be characterized in an imaging system with the use 

of position-dependent wavefronts  ,w x y  measured in waves  λ .  Wavefronts  ,w x y  

are defined as the surfaces of optical disturbances with equal phase  ,x y , so that 

   , 2 ,x y w x y  .  Accordingly, any wavefront can be represented as a series 

expansion.  For azimuthally symmetric optical systems, it is common practice to use 

Zernike circle polynomials  ,jZ r  , so that the wavefronts  ,w r   can be written as a 

Zernike series with coefficients ja , where 

    
1

, ,j j
j

w r a Z r 




 . (135) 

Here, cosx r   and siny r  .  Note that the index j  provides the different modes of 

the Zernike series.   
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 Several conventions for Zernike circle polynomials  ,jZ r   are defined 

throughout the literature [75,76,72,77,9].  The convention defined by Noll and used by 

Roggemann and Schmidt is particularly tractable and is outlined here [76,72,9].  For this 

purpose, Zernike circle polynomials  ,jZ r   are defined as 

  
     

 0

2 1      0
,

                                0

m m
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n R r G m
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R r m
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
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 



, (136) 

where m  and n  are non-negative integers and m n .  The mapping of  ,m n i  is 

complicated, but the notation is greatly simplified.  In Eq. (136), the radial  n
mR r  and 

azimuthal  nG   components are given by the following relationships: 
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The utility found in using Zernike circle polynomials  ,jZ r   is that they are complete 

and orthogonal over the unit circle.  Therefore, the coefficients ja  in Eq. (135) are found 

as 
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. (139) 
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Provided the relationship in Eq. (139), the amplitude strength of the Zernike circle 

polynomials  ,jZ r   are determined for the different modes j .  With an infinite number 

of modes j , the wavefronts  ,w r   obtained with Eq. (135) perfectly represent the 

aberrations present in the imagining system.  However, a finite number of modes j  are 

practically used to construct the wavefronts  ,w r   given by Eq. (135).  These mode-

limited wavefronts  ,mw r   consist of the finite number modes mj  needed to 

characterize the aberrations present in the imaging system to a user-defined accuracy or 

limitation. 

 The wavefront variance 2  is one way to determine the accuracy or limitation 

associated with mode-limited wavefronts  ,mw r  .  As such, the wavefront variance 2  

is determined from the coefficients ja , provided by Eq. (139), using the following 

relationship [9]: 

 2 2

2
j

j
a





 . (140) 

Equation (140) results from using a complete orthogonal basis set to characterize 

aberrations via wavefronts  ,w r  .  The mode-limited wavefront variance 2
m  is also 

found from Eq. (140) when the infinite sum is truncated to the finite number modes mj .  

In practice, computational methods are needed to determine the mode-limited coefficients 

mj
a  given by Eq. (139).  The computational methods presented by Schmidt are 

particularly informative with respect to imaging systems and aberrations [9]. 
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Once the aberrations present within an imaging system are characterized with 

wavefronts  ,w x y , the performance of that imaging system can be evaluated with the 

use of a two-dimensional convolution. For example, provided the use of a spatially 

incoherent source, optical systems respond linearly in irradiance; thus, the image plane 

irradiance  ,iI u v  of an incoherent imaging system is determined from the two-

dimensional convolution between the object plane irradiance  ,oI    and the point 

spread function (PSF)  ,h u v , where [9] 

      , , ,i oI u v h u v I u v  . (141) 

Note that in writing Eq. (141), unit magnification, 1M  , is assumed since in the 

absence of aberrations, the object plane coordinates at  ,   are related to the image 

plane coordinates at  ,u v  by the ideal image point  ,u M v M   , as described in 

Figure 8.  In addition, the PSF  ,h u v  is formally defined as the squared modulus of the 

space invariant amplitude impulse response  ,g u v  of the imaging system, where [14] 

    
2

, ,h u v g u v . (142) 

The PSF  ,h u v , as defined in Eq. (142), is nothing more than the image plane irradiance 

 ,iI u v  of an imaged point source.  If a point source is imaged, instead of seeing a point, 

the optical detector will see the PSF  ,h u v . 
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Figure 8.  Description of a basic imaging system with unit magnification and no aberrations. 

 

 In the presence of aberrations, the amplitude impulse response  ,g u v  is simply 

the Fraunhofer diffraction pattern or scaled two-dimensional Fourier transform of the 

generalized pupil function  ,x y .  For this purpose, the generalized pupil function 

 ,x y  is determined from the wavefronts  ,w x y , as given in Eq. (135), as 

      , , exp 2 ,x y P x y i w x y     (143) 

and represents the aberrations present within the imaging system.  The parameter  

 ,P x y , as given in Eq. (143), is the pupil function of the imaging system which 

mathematically describes the shape of the exit pupil of the optical system.  Provided Eq. 

(143), the amplitude impulse response  ,g u v  is determined as 
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where iZ  is the image distance.  In the absence of aberrations, a circular generalized 

pupil function is equal to the pupil function,    , ,x y P x y , and is defined 

mathematically as 

  
2 2

, cyl
x y

P x y
D

 
 
 
 

, (145) 

where  2 2cyl x y D  is the commonly used cylinder function associated with an exit 

pupil of diameter D  [56].  From Eq. (144) and Eq. (145), the PSF  ,h u v  is equivalent 

to the irradiance  I r  found in Eq. (96) for the Fraunhofer diffraction pattern of a 

circular aperture, where x u , y v , and iz Z . 

 Using linear systems analysis, Eq. (141)  is further simplified with the use of the 

convolution theorem.  Now, the image plane irradiance  ,iI u v  is determined as 

       1ˆ ˆ ˆ, , ,i oI u v h u v I u v        . (146) 

Normalizing the filter function given by the Fourier transform of the PSF,  ˆ ,h u v   , 

provides what is known as the optical transfer function (OTF)  ,x yH f f , where [9] 

  
 

 

ˆ ,
,

,
u v

h u v
H f f
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 

. (147) 
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Since the MTF is given by the magnitude of the OTF,  ,x yH f f , Eq. (147) is widely 

used throughout the optics community to characterize incoherent imaging systems.  The 

MTF  ,x yH f f , and consequently the OTF  ,x yH f f , is just a ratio of image contrast 

to object contrast at a given spatial frequency [69].  Multiple image degrading effects can 

be accounted for with the OTF  ,u vH f f , as defined in Eq. (147).  For this purpose, the 

equivalent OTF  ,EQ u vH f f  for an incoherent imaging system is found through the 

multiplication of multiple OTF’s.  Herein lays the fruitfulness associated with using the 

OTF  ,u vH f f  to characterize the performance of an incoherent imaging system. 

 In defining the equivalent OTF  ,EQ u vH f f , each image degrading effect found 

within an incoherent imaging system must be accounted for separately.  For example, the 

OTF  ,DL u vH f f  associated with diffraction-limited incoherent imaging and the circular 

pupil function  ,P x y , as given in Eq. (145), is determined as 

    , chat ,DL u v u vH f f f f , (148) 

where here,  chat ,u vf f  is formally defined as the conical-hat function, so that 
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The quantity 0f , as given in Eq. (149) and used in Figure 7, is known as the cutoff 

frequency for coherent imaging conditions and is defined by the following relationship 

[14]: 

 0
0

0 i

n Df
Z

 . (150) 

As required by Eq. (150), spatial frequencies up to 0f  are allowed to pass through an 

incoherent imaging system.  Additionally, the OTF  ,LE u vH f f  associated with long-

exposure incoherent imaging through optical turbulence is given by the following 

relationship [67]: 

  

5 3
2 2
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, exp 3.44 i u v
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Z f f
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. (151) 

The relationship found in Eq. (151) is often referred to as the long-exposure MTF, since 

   , ,LE u v LE u vH f f H f f .  Long-exposure images are collected with time periods long 

enough, so that the image center wanders randomly, in the image plane, iz Z , many 

times [9].  When compared with an imaging system with an exit pupil diameter equal to 

the coherence length, 0D r , the result found in Eq. (151) says that an imaging system 

with an exit pupil diameter larger than the coherence diameter, 0D r , does not provide 

any better image resolution.  An AO system is often used to alleviate this constraint. 

 Time periods that are long compared with the refractive-index fluctuations in the 

atmosphere are needed in defining the long-exposure OTF  ,LE u vH f f , as given in Eq. 

(151).  Associated with this purpose, Greenwood investigated the effects of infinite 
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bandwidth AO system controllers on imaging system performance [78].  From this 

ground breaking work, Greenwood was able to come up with the definition for a 

characteristic temporal frequency.  Known as the Greenwood frequency Gf , this 

characteristic temporal frequency is associated with the time period in which optical 

turbulence remains unchanged.  Provided the index of refraction structure parameter 

 2
nC z  and the depth-dependent transverse wind speed,    v z z  v , the Greenwood 

frequency Gf  is determined as  

    

3 5

2 2 5/3
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2.91
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G nf C z v z dz 

 
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 , (152) 

where again, 0 0n k  .  The dependability of Taylors frozen hypothesis is directly related 

to the time period associated the Greenwood frequency Gf .  The Greenwood frequency 

Gf  can be used to determine how quickly an AO system must respond in order to 

compensate for optical turbulence in the atmosphere [79].  With this in mind, further 

analysis of AO systems is of interest now. 

2.5 High Energy Laser Beam Phase Compensation using Adaptive Optics 

 An AO system can be used to break the constraints imposed by the coherence 

diameter 0r  and improve both HEL beam resolution and imaging resolution.  Associated 

with this claim is the idea of phase conjugation.  Optical disturbances are composed of 

both an amplitude A  and a phase  .  An arbitrary optical disturbance U  manifests itself 

mathematically as a phasor, such that 

  expU A i  . (153) 
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The phase conjugate of an arbitrary optical disturbance U , as given in Eq. (153), is found 

using the following relationship: 

    exp expU A i i   . (154) 

This mathematically flattens the phase of an arbitrary optical disturbance U ; therefore, 

extinguishing any unwanted aberrations present in the phase.  To do this physically, an 

AO system is used and the process is referred to as phase compensation.  The hardest part 

here is being able to first sense the unwanted aberrations in the phase and then to apply 

the phase compensation correction.  Depending on the resolution of the AO system, the 

phase compensation process can be highly effective in improving both HEL beam 

resolution and imaging resolution. 

 Aberrations present within an optical disturbance often change at a demanding 

rate and the AO system has to keep up in order to accomplish effective phase 

compensation.  Such is the case with aberrations induced by the atmosphere and HEL 

propagation in the atmosphere.  In order to sense the aberrations present in the 

atmosphere, a beacon laser is used, as described in Figure 9.  For HEL engagement 

scenarios, the beacon laser illuminates a distant target, so that incoherent light back 

scatters off of the target.  For all intents and purposes, the beacon laser illumination can 

be modeled as a point source in the target plane.  The point-source wavefronts back 

propagate through the atmosphere and are coupled into the AO system for sensing and 

phase compensation.  It is important to note that the incoming point-source wavefronts 

essentially experience the same atmospheric effects as the outgoing HEL wavefronts.  

This is especially true when the target is stationary. 
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Figure 9.  Description of a beacon laser illuminating a target.  For all intents and purposes, 
the beacon laser illumination can be modeled with a point source.  The point source back 
propagates through the atmosphere and is coupled into the AO system  

 

 The phase compensation process using an AO system is quite elegant in theory, 

but demanding in practice.  For example, the basic components needed for an AO system 

include the fast steering mirror (FSM), the tracker, the deformable mirror (DM), and the 

wavefront sensor (WFS).  The tracker and the WFS sense unwanted aberrations in the 

incoming point-source wavefronts and then control the FSM and the DM to apply phase 

compensations to the outgoing HEL wavefronts.  In particular, the tracker controls the 

FSM with measurements made from imaging the point-source wavefronts.  This is done 

to correct for tilt induced by propagating through the atmosphere.  Noll determined that 

for optical turbulence, up to 87 percent of the wavefront variance 2
3 , as given by Eq. 
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(140), is contained in Zernike tilt  2 ,Z r   or  3 ,Z r   [76].  Being able to adequately 

sense and correct for tilt is the first component needed for system performance. 

 Sensing and correcting for the higher order aberrations is the second component 

needed for system performance.  For this purpose, the WFS is used to measure higher 

order aberrations present within the point-source wavefronts.  In using the WFS, the 

point-source wavefronts are sampled and imaged.  Each imaged sample is measured and 

related to the geometry of the DM.  Through this geometry relation, the WFS 

measurements are then used to control the DM.  This is done, so that the DM can correct 

for higher order aberrations.  In so doing, higher-order aberrations are corrected for with 

phase compensation.   

 Subtle nuances do exist in the basic description given above.  For example, with 

open-loop operation of the AO system, the incoming point-source wavefronts are first 

collimated with an optical system, as seen in Figure 10.  From here, the point-source 

wavefronts are then sampled with beam splitters (BS) and sent to the WFS and tracker, 

respectively.  The order is arbitrarily chosen in this case.  Immediately after 

measurement, phase compensation is blindly applied to the HEL beam.  In astronomy 

applications, open-loop AO is often referred to as active optics [69]; however, this 

terminology will not be used here.  Open-loop operation is typically less effective when 

compared to closed-loop operation of the AO system. 
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Figure 10.  AO system performing open-loop phase compensation.  

 

 In closed-loop operation of the AO system, the point-source wavefronts are first 

reflected off of the FSM and the DM and then measured with the tracker and the WFS 

after being sampled with a BS.  This process is appropriately described in Figure 11.  In 

so doing, feedback is created and the measured error can be driven to zero.  The term 

open-loop operation is sometimes associated with the case where the point-source 

wavefronts are sensed by the tracker and the WFS in the closed-loop configuration 

described in Figure 11; however, the FSM and DM are not commanded.  There is a big 

difference between the open-loop operation of the AO system described in Figure 10, and 

the open-loop operation of the AO system described in Figure 11.  Either case will be 

explicitly described in the analysis to come.  Nonetheless, with open-loop operation of an 

AO system, there is no feedback mechanism for the error present in the AO system.  This 

is why closed-loop operation of an AO system is typically found to be more effective in 

performing phase compensation. 
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Figure 11.  AO system performing closed-loop phase compensation. 

 

 The open-loop or closed-loop operation of an AO system can be broken up into 

specific pieces to make the analysis more tractable.  For this purpose, this section 

introduces some of the engineering principles needed to design and test an AO system.  

Further in-depth design analysis is found throughout the literature [80,81,69,57,79,70].  

In the discussion to follow, an introduction is given to wavefront sensing, wavefront 

correcting, and wavefront reconstruction and control.  After, metrics for system 

performance is given with explanation.  Branch points and branch cuts are also discussed.  

The section also includes a thorough analysis and review of phase compensation 

instability or PCI.
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2.5.1 Wavefront Sensing 

 The art of wavefront sensing provides a means to determine the phase associated 

with the aberrated wavefronts of an optical disturbance.  Measuring the phase of an 

optical disturbance directly is unfortunately not an option—the temporal frequencies 

associated with the sinusoidal oscillations are too fast to measure directly using modern-

day optical detectors [69].  As a result, the image plane irradiance  ,iI u v  can be used to 

infer the phase indirectly.  One robust way to do this is with a Shack-Hartmann WFS as 

shown in Figure 12.  With the Shack-Hartmann WFS, the incoming aberrated wavefronts 

of an optical disturbance are sampled with a group of lenslets.  These lenslets are used to 

image the sampled portions of the wavefronts onto an optical detector where the image 

plane irradiances  ,iI u v  are measured. 
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Figure 12.  An example of a Shack-Hartman wavefront sensor.  Here, four lenslets are used to 
sample the aberrated wavefronts.  Once imaged on the detector, the image plane irradiance of 
the sampled wavefronts can be used to measure the phase of the optical disturbance. 
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 Slope measurements are made from the measured image plane irradiances 

 ,iI u v  of the sampled wavefronts.  This is accomplished in a number of ways.  One 

robust method is to use the center of mass equations to compute the slopes us  and vs  in 

the x and y directions, respectively.  The center of mass for each image plane irradiance 

 ,iI u v  are computed using the following expressions: 
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, (156) 

where p and q correspond to the image plane irradiances  ,i p qI u v  measured for a 

particular pixel in the optical detector with PxQ  pixels per imaged wavefront.  Once the 

slope measurements are computed using Eq. (155) and Eq. (156), a reconstruction 

algorithm is then used to command the DM.  This point will be addressed in greater detail 

with the analysis to come. 

 Two parameters are of major concern when designing a Shack-Hartmann WFS.  

The first is the number of lenslets or subapertures subn  used to sample the incoming 

aberrated wavefronts.  Typically, more subapertures are good, as it increases the spatial 

resolution of the AO system.  This is said because when using multiple lenslets to sample 

the incoming aberrated wavefronts, the process essentially measures the local tilt found in 

the sampled portion of the wavefront.  As shown above in Figure 12, an individual lenslet 
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is used to first sample the aberrated wavefront, and then image that sampled portion onto 

a detector.  If there is any local tilt found in the sampled portion of the wavefront, then in 

the detector, the image plane irradiance  ,iI u v  is shifted.  This shift is measured as 

slope with the center of mass calculations performed using Eq. (155) and Eq. (156).  

Thus, increasing the number of subapertures subn  in the Shack-Hartmann WFS increases 

the AO systems ability to resolve how much local tilt is found in the sampled portion of 

the wavefronts. 

 The second parameter of concern in the design of a Shack-Hartmann WFS is each 

subaperture’s field of view (FOV)  .  For instance, the FOV   determines number of 

waves    of local tilt that can be effectively measured in each subaperture of diameter 

d .  As shown in Figure 13, the number of waves of tilt lodn  is related to the FOV of the 

subaperture through basic geometric relations.  By increasing the FOV   or the number 

of waves of tilt lodn  of the subapertures, the diffraction-limited central spot size in the 

image plane decreases and vice versa.  As a result, the FOV   or the number of waves of 

tilt lodn  controls the dynamic range of the Shack-Hartmann WFS.  The FOV or the 

number of waves of tilt lodn  is typically chosen so that the image plane irradiance 

 ,iI u v  of each subaperture provides a central diffraction-limited spot that partially 

covers at least four pixels in the detector and does not wander into adjacent subaperture 

image planes.   
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Figure 13.  Description of the FOV θ of a Shack-Hartmann WFS subaperture.  The number 
of waves of tilt nlod is related to the FOV θ using simple geometric relationships.   

 

Before moving on in the discussion of AO system design and implementation, it 

is important to note that a tracker follows the same basic design as that of a single 

subaperture of a Shack-Hartmann WFS.  This concept might seem a little vague at this 

point in the analysis, but remember that the goal for the design of a tracker is to be able 

sense the global tilt associated with the aberrated wavefronts of an optical disturbance.  

Thus, a basic imaging system, such as a camera, is sufficient for the design of a tracker.  

In the case of a tracker, the basic imaging system is used to image the aberrated 

wavefronts onto an optical detector where the image plane irradiance  ,iI u v  is 

measured.  Again, slope measurements are computed from the image plane irradiances 

 ,i p qI u v  measured for a particular pixel in the optical detector associated with the 

tracker using Eq. (155) and Eq. (156).  From these slope measurements, a reconstruction 
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algorithm is then used to command the FSM.  Similar design considerations as given 

above in Figure 12 and Figure 13 for a single Shack-Hartmann WFS subaperture can be 

used in the design of a tracker.  It is all relative. 

2.5.2 Wavefront Correcting 

 In order to effectively perform phase compensation using a traditional AO system 

design, a deformable mirror is needed.  As shown in Figure 14, the DM of an AO system 

is able to match the ―shape‖ of the incoming aberrated wavefronts of an optical 

disturbance by commanding actuators.  In so doing, quasi phase conjugation is 

successfully performed and the reflected wavefronts are basically flat.  This is said 

because a DM is comprised of BxC  grid of actuators.  Because there are a discrete 

number of actuators in a deformable mirror design, it is impossible to match the ―shape‖ 

of the aberrated wavefronts exactly.  Thus, the quasi phase conjugation process using a 

single deformable mirror is referred to as phase compensation. 

 There are many different considerations to take into account in the design of a 

DM.  For example, the basic design for a DM includes a BxC  grid of actuators, where 

each individual actuator is coupled in some way to an adjacent actuator.  This coupling is 

demonstrated in Figure 14.  When one actuator is pushed up or pulled down, the surface 

of the DM causes adjacent actuators to be move in response.  This coupling mechanism is 

accounted for with an influence function [69,79].  When the DM actuators are segmented 

in design this coupling is minified; however, most AO system designs for HEL beam 

applications requires that the DM have a thick face sheet in order to handle the high 

power levels.  This means that there is even more coupling associated with the DM’s 

used in HEL beam applications.  Overall, when there is a lot of coupling between 
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adjacent actuators, the DM’s surface is less able to perform phase compensation in areas 

of the aberrated wavefronts where there are sharp discontinuities in the phase.  Such is 

the case when branch points and branch cuts are in the phase of an optical disturbance.  

This point is re-addressed in detail with the analysis to come. 

 The stroke associated with each actuator, i.e. how far an actuator can be pushed or 

pulled, is also a major design consideration.  As stated before, Noll determined that for 

optical turbulence, up to 87 percent of the wavefront variance 2
3 , as given by Eq. (140), 

is contained in Zernike tilt  2 ,Z r   or  3 ,Z r   [76].  What this means in the 

implementation of a DM design is that all of its available stroke could potentially be used 

in performing phase compensation for global tilt.  A FSM is typically used in most AO 

system designs as a result to alleviate this constraint.  In the design of a FSM the surface 

is flat and pivots around a central point to perform phase compensation for global tilt.  

Commercially available DM’s can provide up to 30 μm  of peak-to-valley stroke per 

actuator [57].  This is an important point to remember in the analysis to follow. 

 One final point worth mentioning about the design of a DM involves the idea of 

actuator spacing  .  The Nyquist sampling theorem states that spatial frequencies greater 

than half the sampling frequency cannot be observed.  What this means in terms of design 

criterion for a DM is that the actuator spacing   must be less than half the smallest 

required spatial frequency period in order to provide the required phase compensation 

[57].  In other terms, two actuator spacings on a DM satisfies the Nyquist sampling 

criterion for that particular AO system design.  In the presence, of optical turbulence, 

small actuator spacing   is typically desired, so that all of the higher-order aberrations 
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induced by inhomogeneities in the atmosphere can be effectively corrected for [70].  It 

will be discussed in the analysis to come that this is not always the desired case when in 

the presence of thermal blooming. 

 

 
Figure 14.  Example of phase compensation using a DM.  The aberrated wavefronts reflect off 
of the surface of the DM and become planer wavefronts.  Thus, phase compensation is 
achieved. 

 

2.5.3 Wavefront Reconstruction and Control 

 Wavefront reconstruction provides a means to use the measurements from a WFS 

to effectively command a DM in a timely manner.  To do this using the zonal approach, 

the geometry of the WFS must be related the geometry of the DM.  The Fried 

reconstruction geometry is typically used to relate the Shack-Hartmann WFS geometry 

with a NxM  number of subapertures to the DM geometry with a BxC  number of 

actuators.  This reconstruction geometry is demonstrated in Figure 15.  Here, the slopes 
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  ,u m n
s  and   ,v m n

s  in the x and y directions are computed from the image plane 

irradiances  ,i m nI u v  associated with each subaperture of the Shack-Hartmann WFS 

using Eq. (155) and Eq. (156).  These calculated slopes are then ―translated‖ into OPD 

commands to each of the actuators located in corners of a given subaperture.  This 

―translation‖ procedure requires a reconstruction matrix G .  There are numerous ways to 

calculate the reconstruction matrix G  for a given WFS and DM layout, such as 

minimum-variance and maximum a posteriori methods [72]. 

 

 

Figure 15.  Description of Fried reconstruction geometry.   

 

The measured slopes can be represented in a vector s  and the OPD commands to 

each actuator can also be represented in a vector  .  Typically, there are more slope 

measurements than there are actuators to command [70].  Thus, the system of linear 

equations is overdetermined, such that 
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 Gs  . (157) 

To solve the overdetermined system of linear equations for the OPD commands  , as 

given in Eq. (157), least squares techniques are used.  Two commonly used least-squares 

approaches include the Moore-Penrose pseudo inverse and single value decomposition 

[57]. 

 Once the wavefront reconstruction process is completed and in working order, an 

AO control loop can be implemented.  For instance, an AO system operating in the 

closed-loop regime, as shown in Figure 11, is controlled discretely using a simple ―leaky‖ 

integrator control law, such that 

      SYS j+1 SYS j ERR jφ t = aφ t -bφ t . (158) 

Here, the system commands  SYS j+1φ t  to the FSM and or DM at the present time are 

determined from a combination of the previous system commands  SYS jφ t  and the error 

in the system  ERR jφ t .  The servo leakage a , determines the how much of the previous 

system commands  SYS jφ t  are used in Eq. (158) to create the present system commands 

 SYS j+1φ t .  When the servo leakage equals one, 1a  , Eq. (158) is referred to as a ―pure‖ 

integrator control law.  Typical values for the servo leakage range from 0.9 to 1.0 in 

practice.   

The servo gain b  determines how much system error  ERR jφ t  is present in the 

system in a given time step, 1j jt t t   .  A low servo gain b  cause the system to 

respond more slowly, to reduce the system error  ERR jφ t .  Increasing the servo gain b
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causes the AO system to respond more quickly and have more system error  ERR jφ t .  

Typical values for the servo gain include, 0.3b  , which is on the conservative side and, 

0.5b  , which is a little more edgy.   

The rate at which the AO system can effectively perform the control loop 

presented in Eq. (158) is given by the 3dB frequency 3dBf  [69].  The sampling rate or the 

sampling frequency, 1sf t  , has the largest impact on determining the 3dB frequency 

3dBf  for a given AO system design.  It is desired that the 3dB frequency be at least four 

times the Greenwood frequency, 3dB4 Gf f , to ensure system performance in the 

presence of optical turbulence [69].  However, this engineering ―rule of thumb‖ is not 

written in stone.  The conjectured engagement scenarios for some HEL weapons have 

rather large Greenwood frequencies Gf  that trump the obtainable 3dB frequencies 3dBf  

with state of the art AO system designs.  Nonetheless, system performance is still 

obtainable.  A careful combination of the servo leakage a , servo gain b, and 3dB 

frequency 3dBf  are all that is needed in practice to ensure system stability and system 

performance. 

2.5.6 Measuring System Performance 

 In the presence of thermal blooming and or turbulence, system performance can 

become significantly degraded.  For this purpose, peak Strehl ratio PS  and normalized 

power in the bucket BP  calculations can be used to measure system performance as a 

function of some varying parameter, such as time t  or distortion number DN .  The 

calculated peak Strehl ratio PS  provides a normalized gauge for the max energy or max 
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power propagated to the target plane after phase compensation from the AO system in the 

source plane.  The peak Strehl ratio PS  in the target plane is calculated using the 

following relationship: 

 A
P

E

IS
I

 , (159) 

where AI  is the maximum aberrated irradiance in the target plane due to thermal 

blooming and or turbulence and EI  is the maximum irradiance in the target plane due to 

extinction effects or transmission losses.  In addition, normalized power in the bucket BP  

gives a normalized measure for the amount of energy or power placed in a certain area in 

the target plane after phase compensation in the source plane.  The diffraction limited 

bucket diameter BD , as given by Eq. (95), is typically used in defining the area of interest 

in the target plane.  Thus, the normalized power in the bucket BP  is calculated in terms of 

the diffraction limited bucket diameter BD  using the following relationship: 
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where  , ,AI x y Z  is aberrated irradiance in the target plane due to thermal blooming and 

or turbulence and  , ,EI x y Z  is the irradiance in the target plane due to extinction effects 

or transmission losses.  Altogether, peak Strehl ratio PS  and normalized power in the 

bucket BP  calculations provided a means to extract information about the development of 
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system performance.  This point will become more apparent with the results presented in 

the next chapter. 

 System stability is of key interest as well in the analysis of system performance.  

To better characterize system stability, the root mean square RMS DMr  of the DM 

commands and the , the variance 2
DM  of the DM commands can be used.  For example, 

the RMS DMr  of the DM commands is given by the following relationship: 

  
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where ,n m  is the OPD commanded to a particular actuator in an NxM  grid of actuators.  

Equation (161) provides a measure for how the OPD commanded to the actuators varies.  

Additionally, the variance 2
DM  of the DM commands is given by the following 

relationship: 
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where DM  is the mean of the DM commands and is determined using 
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Similar to the RMS DMr  of the DM commands, the variance 2
DM  of the DM commands, 

as given in Eq. (162), provides a sensitive measure for the amount of variation found in 

the OPD commanded to the actuators.  In the presence of instability, both the RMS DMr  

of the DM commands and the variance 2
DM  of the DM commands allude to exponential 

behavior.  This is an important point, which cannot be overlooked in the analysis. 
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 The correlation coefficient   gives a normalized measure for the similarity of 

two random variables.  In the analysis of system performance, this is an important 

calculation because it provides a gauge for causality.  As such, the correlation coefficient 

  for the arbitrary discrete random variables V  and W  is given by the following 

relationship: 
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where VWC  is the covariance between V  and W , and ,V W  is the standard deviation of 

V  and or W , respectively.  Equation (164) provides a range of values from negative one 

to positive one.  When the correlation coefficient is equated to positive one, 1  , the 

random variables of interest are said to be perfectly correlated meaning that their 

variations are identical up to a scaling factor [67].  On the other hand, when the 

correlation coefficient is equated to negative one, 1   , the random variables of 

interest are said to be perfectly anticorrelated meaning that the fluctuations are oppositely 

identical, again, up to a scaling factor [67].  From these two extremes, the degree of 

correlation decreases.  When the correlation coefficient is equated to zero, 0  , the 

random variables of interest are said to be uncorrelated.  In this sense, the variations or 

fluctuations found between the random variables are not related, and thus, statistically 

independent of one another [67]. 
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2.5.4 Phase Compensation Instability 

 An AO system, in theory, can be used to mitigate the nonlinear optical effects 

induced by thermal blooming.  Bradley and Herrmann were the first to seriously 

investigate the idea [53].  In this ground-breaking computational study, Bradley and 

Herrmann were able to show improvement in system performance with phase 

compensation of thermal blooming.  Specifically, they showed improvement in 

normalized irradiance as a function of distortion number for both modal and zonal phase 

compensation.  The trend of their classic result is shown in Figure 16, and is interpreted 

as follows. 

 An increase in distortion number is typically associated with one of two things: an 
increase in initial HEL beam power 0P  or a change in atmospheric parameters, 
such as a decrease in the transverse wind speed v . 
 

 As the distortion number DN  increases, the achievable Strehl ratio S  increases 
less and less until a critical point is reached. 
 

 This critical point occurs when an increase in the distortion number DN  does not 
result in an increase in the achievable Strehl ratio S . 
 

 When modal or zonal phase compensation is used to correct for thermal 
blooming, this critical point is shifted up and to the right, i.e. there is an increase 
in system performance. 
 

Altogether, the results obtained by Bradley and Herrmann produced more questions than 

answers (the true indicator of ground-breaking research).  They were the first to clearly 

demonstrate the idea behind the critical point; as the invention of the distortion number 

DN  is credited to them.  This revolutionized the way researchers characterized thermal 

blooming.  In addition, Bradley and Herrmann were the first to demonstrate the idea that 

phase compensation of thermal blooming resulted in a relaxation of the constraints 
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imposed by the critical point.  When the effects of thermal blooming were found near the 

aperture, as is the case for slewed HEL beams, their research showed that phase 

compensation was more effective in improving system performance.  Characterizing how 

much improvement was actually achievable in practice for a particular engagement 

scenario became the primary concern for future research efforts in phase compensation of 

thermal blooming.   

 

 
Figure 16.  Description of Strehl ratio S as a function of distortion number ND.  As the 
distortion number ND increases, the achievable peak Strehl ratio SP increases less and less 
until a critical point is reached.  After reaching the critical point, there is no increase in 
achievable Strehl ratio S as the distortion number ND increases.  Phase compensation of 
thermal blooming can be used to break the constraints imposed by the critical point. 

 

 It is quite difficult in practice to setup a complete full-scale experiment to 

investigate phase compensation of thermal blooming.  Such an experiment would require 

an HEL system, an AO system robust enough to handle the HEL beam powers needed for 

thermal blooming, a test range and facility large enough to conduct the full-scale 

experiment, and enough money to purchase all of the above equipment.  Thus, much of 

the early experimental research in phase compensation of thermal blooming was 

ND

No thermal blooming

With phase compensation

Without phase compensation

S
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conducted using computational and scaled-laboratory simulations.  Both types of research 

provide insight into the principles governing the problem without the logistics burden 

associated with a full-scale experiment. 

 Following the foundational research performed by Bradley and Herrmann, a 

series of scaled-laboratory experiments were conducted [82,83,84,85,86].  These scaled-

laboratory experiments used both phase compensation and multidither approaches to 

correct for thermal blooming.  Regardless of the approach, in a scaled-laboratory 

experiment, a lab bench, low-power laser, and absorbing medium are used to simulate 

thermal blooming.  Some sort of phase compensation, or amplitude and phase 

compensation in the case of the multidither approach, is then applied to the laser to 

correct for thermal blooming.  For the most part, the results from the scaled laboratory 

experiments were consistent with the results provided by Bradley and Herrmann and 

shown above in Figure 16 [53].  They were also successful in demonstrating 

improvement in system performance for phase compensation of thermal blooming. 

 Despite the initial success of the scaled-laboratory experiments, Herrmann threw 

an additional constraint into the mix—the possibility for instability.  In a computational 

study using an iteration scheme, Herrmann demonstrated that both convergent and 

divergent regimes existed for phase compensation of thermal blooming [87].  Here, 

Herrmann used five thin lenses distributed along the propagation path to approximate the 

phase distortions caused by thermal blooming.  He simulated phase conjugation for both 

a flat-top beam and a Gaussian beam, both of which were focused at the target.  The 

irradiance of the simulated HEL beam at each thin lens was used to determine the radius 

of curvature for that particular lens.  A simulated point source was also propagated 
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through the thin lenses from the target plane to the source plane.  Idealized phase 

compensation was accomplished by directly applying the radius of curvature of the point 

source to the simulated HEL beam in the source plane.  His results showed that for 

―substantial‖ thermal blooming, the idealized phase compensation resulted in initial 

improvement/convergence in the simulated HEL beam radius in the target plane; 

however, as the simulation progressed in iterations, the HEL beam radius eventually 

diverged and went unstable.  The results published by Herrmann were not well 

understood at the time.  This judgment is made based on the lack of investigation 

presented in this ground-breaking work.  Nevertheless, it was made clear from 

Herrmann’s results that phase compensation of thermal blooming had the possibility for 

instability.   

 Further research into the instability remained unpublished for quite some time.  

One reason for the gap in the published literature is conjectured to result from the 

confidentiality involved with the topic.  The Russians were developing similar theories 

around the same time [88], all at the height of the Cold War.  An excellent overview 

paper was written in English by Vorob’ev with over 200 references on Russian based 

research in thermal blooming [89].  It is clear from the analysis made by Vorob’ev that 

Russian research in thermal blooming paralleled much of the efforts made by Americans.  

As a result, a lot of the American based research in thermal blooming was written in 

technical reports for U.S. government contract work.  These technical reports 

unfortunately are not readily available to the general public. 

 Another potential reason for the discrepancy in the published literature on phase 

compensation of thermal blooming is conjectured to result from the lack of computational 
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power available at the time.  Computer simulation of HEL beam propagation and AO 

phase compensation unfortunately requires a significant amount of computational 

accuracy in order to have good fidelity in the results.  Numerical noise in an under-

sampled simulation can quickly lead to erroneous results.  Thus, it may have been 

thought that the preliminary analysis presented by Herrmann was kludged with 

computational artifacts.  This point is briefly discussed in the introductory analysis 

provided by Schonfeld [90]. 

 Nearly a decade after the discovery of the instability, Tyler et al. performed an 

overview study in the form of a technical report on thermal blooming in an attempt to 

explain the potential issues associated with simulating thermal blooming and phase 

compensation of thermal blooming [54].  Here, Tyler et al. came up with sampling 

criteria based on the distortion number DN  to validate the numerical accuracy of thermal 

blooming simulations.  From this analysis, it was determined that the number of grid 

points N  needed for thermal blooming simulations must satisfy the following 

relationship: 

 0.75 D
sN N
D

 , (165) 

where s  is the simulation side length of interest in the source plane and or target plane 

and D  is the associated aperture diameter.  In deriving Eq. (165), it is assumed that the 

simulation of thermal blooming requires at least ten samples per period for the highest 

spatial frequency of interest.  The validity of such a claim was thoroughly tested and 

found to be adequate at the time of publication [54,49]. 
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 From the expressions used to acquire Eq. (165), Tyler et al. also determined an 

analytical expression for Strehl ratio as a function of distortion number  DS N .  In this 

analysis, a circularly collimated HEL beam was used.  As such, the heat induced 

aberrations caused by steady-state thermal blooming were assumed to be found within the 

area of the HEL beam and tilt removed.  Figure 17 provides a description of their result.  

In the large distortion number DN  limit, the Strehl ratio  DS N  was determined to be 

given by the following relationship [54,55,49]: 

  
16 2

D
D

S N
N

 . (166) 

Since the Strehl ratio, in general, is a normalized metric, the critical distortion number 

CN  is estimated by setting Eq. (166) equal to one, so that [55,49] 

 16 2 22.6 radCN   . (167) 

Equation (167) is a very useful result, at least from an engineering perspective.  It 

provides a rough estimate for the transition point or ―knee in the curve‖ where an 

increase in the distortion number DN  does not provide any more irradiance on target, i.e. 

the critical point.  Distortion numbers greater than the critical distortion number, 

D CN N , are referred to here as being in the ―strong‖ thermal blooming regime.  

Additionally, if the critical distortion number CN , as given in Eq. (167), is substituted 

into Eq. (94) for the distortion number DN , the critical power CP  is solved for as 

  

   

1

0 0

4 Z

C
x

zZ zP dz
k Z D z v z




 
  

 
 . (168) 
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The physical significance of the critical power CP , as given in Eq. (168), cannot be 

overlooked in the analysis of phase compensation of thermal blooming.  Equation (168) 

says that an increase in the initial HEL beam power 0P  above the critical power CP  does 

not provide any more HEL beam irradiance on target [55,49].  An AO system, in theory, 

can be used to alleviate this constraint; however, the possibility for instability adds 

additional consideration. 

 

 
Figure 17.  Description of the analytic expression determined by Tyler et al. for Strehl ratio as 
a function of distortion number S(ND).  The point where the large distortion number ND limit 
crosses a Strehl ratio of one, S(ND)=1, determines the critical distortion number NC. 

 

 As part of the overview study conducted by Tyler et al, a computational wave-

optics experiment was formulated to test for instability.  For instance, idealized phase 

compensation was simulated for a circularly collimated flat top beam and two different 

distortion numbers, 36DN   and 108DN  .  Using Eq. (165), a 256 256x  grid size and a 

single3 thermal blooming phase screen were determined to be adequate for the simulated 

                                                 
3 More thermal blooming phase screens were probably needed; however, the number of phase screens in a 
given wave-optics simulation of thermal blooming only imposes a constraint on the fidelity of the results. 
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distortion numbers.  In addition, two regimes of phase compensation were simulated.  

The goal here was to simulate phase compensation for the case were thermal blooming 

developed both faster and slower than the phase compensation process.  For this purpose, 

the HEL beam was propagated from the source plane to the thermal blooming phase 

screen and the information was saved.  From this saved information, both the previously 

stored phase screen and current phase screen were applied separately to the HEL beam.  

The Strehl ratio was then computed for each case of thermal blooming after propagation 

to the target plane.  From here, a beacon was propagated from the target plane to the 

source plane with the effects of the current phase screen due to thermal blooming.  The 

phase of the beacon in the source plane was then applied directly to the HEL beam and 

the idealized phase compensation process was repeated. 

 Results from the wave-optics experiment conducted by Tyler et al. consistently 

showed the same trend—the faster regime always outperformed the slower regime in 

terms of system performance for phase compensation of thermal blooming.  However, no 

further analysis was presented by Tyler et al beyond this preliminary conclusion.  They 

claimed that more detail was needed in the simulation to fully understand the problem.  

Nonetheless, the research performed here served as a good stepping stone to add to the 

analysis performed by Herrmann.  No apparent signs of instability were present in the 

results obtained by Tyler et al.  This further supported the idea that the results presented 

by Herrmann may have been kludged with numerical artifacts. 

 Novoseller was successful in publishing a couple of papers which complemented 

the overview study of Tyler et al [91,92].  In these studies, Novoseller used modal 

reconstruction techniques for phase conjugation of thermal blooming.  From this work, he 
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was also able to come up with an expression for Strehl ratio as a function of distortion 

number.  He developed his expressions using the results from wave-optics simulations 

and residual error calculations from Zernike-ordered modal correction.  However, the 

terse nature of his analysis made it difficult to infer the intent in his research.  There was 

no mention of the possibility of instability in his publications. 

 Following the research conducted by Tyler et al. and Novoseller, it was still not 

clear whether the instability existed or not.  Consequently, there was an increased effort 

to determine the true nature of the instability.  Three main research entities led this 

increased effort: Lawrence Livermore National Laboratory (LLNL), MIT Lincoln 

Laboratory (MIT-LL), and the Optical Sciences Company (tOSC).  From this ground-

breaking research, the instability was officially phrased: phase compensation instability 

or PCI.  The effects of PCI are essentially explained in terms of a macro- and micro-scale 

result. 

 Macro-scale PCI is intuitively explained with a simple lens analogy based on the 

results obtained by Herrmann [87]4.  For example, the heat-induced phase distortions 

caused by thermal blooming result in a negative-lens-like optical effect in the 

atmosphere.  This fact is well known from the analysis of thermal blooming provided 

above.  An AO system senses and corrects for the negative-lens-like optical effects of 

thermal blooming by applying positive-lens-like phase compensations to the HEL beam.  

In turn, the positive-lens-like phase compensations focus the HEL beam irradiance.  By 

focusing the HEL beam irradiance, the amount of heating increases, which leads to more 

                                                 
4 The origin of the macro-scale explanation of PCI is unknown; however, it is believed to be treated as 
common knowledge in the explanation of results given by Herrmann [87]. 
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thermal blooming.  Depending on the strength of the thermal blooming or the gain in the 

AO system control loop, the mechanism driving the heating process eventually reaches a 

tipping point and leads to a runaway condition, i.e., positive feedback, in the AO control 

loop.  This tipping point is referred to here as insipient PCI.  With a little thought, the 

macro-scale interpretation of PCI can be used to explain the results obtained by 

Herrmann [87].  In his computational analysis, Herrmann used thin-lens simplifications 

to simulate thermal blooming in the atmosphere.  Divergent regimes existed in the results 

presented by Herrmann because positive feedback was being created in the simulation of 

idealized phase compensation. 

 Principles governing the micro-scale development of PCI were not well 

understood until the late 1980’s5.  For this purpose, a linearized theory was introduced by 

the work of Briggs [93], Karr [94,95,96], Barnard [97], Morris [98,99], Chambers [100], 

and a few supporters of LLNL.  From this linearized theory, the development of micro-

scale PCI was explained as being the time-dependent growth of small-scale spatial 

perturbations in the irradiance and or phase of the HEL beam.  Spatial perturbations 

found within the HEL beam were believed to act as local hot spots, which in turn, drive 

the thermal blooming process.  Each hot spot essentially succeeds in creating a local 

negative-lens-like optical effect in the atmosphere.  When an AO system is used to 

correct for the small-scale perturbations or hot spots found within the HEL beam, local 

positive-lens-like phase compensations are applied.  These local positive-lens-like phase 

compensations have a similar effect as in the case of macro-scale PCI—the process 

                                                 
5 The micro-scale effect of PCI may have been discovered earlier in terms of computational research 
efforts; however, it was probably associated with numerical artifacts.  This point is discussed in the 
introductory analysis given by Schonfeld [90]. 
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causes positive feedback to occur in the AO servo.  However, with micro-scale PCI, the 

spatial perturbations grow with time.   

 It is worth noting that small-scale spatial perturbation growth was also found to 

result from interaction of thermal blooming with turbulence.  This interaction is often 

referred to as stimulated thermal Rayleigh scattering (STRS) or more intuitively as 

turbulence thermal blooming interaction (TTBI).  The process was first treated by Kroll 

and Kelley [101]; however, the introductory analysis given by Holmes et al. is 

particularly informative [102].   

 The effects of STRS or TTBI are explained as the small-scale growth in spatial 

perturbations in the irradiance of the HEL beam.  Scintillation caused by optical 

turbulence produces variations or small-scale perturbations in the irradiance of the HEL 

beam.  The variations in the HEL beam irradiance causes nonuniform heating of the 

atmosphere.  As a result, strong phase gradients are produced which directly increase the 

angular spreading of the HEL beam with propagation.  As time progresses, the spatial 

perturbations in the irradiance grow in size.  This growth continues until some mitigating 

factor, such as variations in the wind velocity, prevents further growth. 

 For all intents and purposes, the effects of STRS or TTBI are particularly 

detrimental to collimated HEL beams under steady-state thermal blooming.  According to 

the research presented by Chamber et al., when the distortion number remains much less 

than the Fresnel number, D FN N , small scale scintillation caused by optical turbulence 

becomes intensified as a result of SRTS or TTBI [100].  The Fresnel number is given by 

the following relationship: 
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and essentially provides a gauge for when the effects of diffraction become important.  

When 1FN  the propagating optical disturbance is in the Fresnel diffraction regime, 

and when 1FN  the propagating optical disturbance is in the Fraunhofer diffraction 

regime.  With circularly collimated HEL beams, the Fresnel numbers are relatively high 

for long propagation distances; therefore, the conditions for STRS of TTBI are often met.  

It is important to note that the spatial perturbation growth due to STRS or TTBI occurs 

separately from the positive feedback caused by macro- and or micro-scale PCI. 

 According to the linearized theory produced by LLNL, in the micro-scale 

interpretation of PCI, phase compensation of thermal blooming was stated as being 

mathematically unstable at all spatial frequencies.  What is more, the growth rate of the 

small-scale spatial perturbations in the irradiance and or phase of the HEL beam was 

found to be proportional to the absorbed irradiance    ,z I t r .  An increase in the 

absorbed irradiance    ,z I t r  led to an increase in the strength of the localized 

negative-lens-like optical effects caused by the small-scale spatial perturbations in the 

irradiance and or phase of the HEL beam.   

 As an optical disturbance propagates, modulations in phase manifest themselves 

as modulations in irradiance and vice versa.  This is a well-known fact from the study of 

wave optics and the analysis of the BPM given above.  Thus, when small-scale spatial 

perturbations present themselves in the irradiance and or phase of a thermally bloomed 

HEL beam, the localized negative-lens-like optical effects are thought of as thick-lens 



120 
 

effects with propagation [103].  The linearized theory produced by LLNL characterized 

these thick lens effects in terms of a gain factor. 

 In the micro scale interpretation of PCI, the spatial perturbations in irradiance and 

or phase were determined to grow quasi exponentially as a result of a gain factor.  This 

gain factor for a wind clearing time ct  was found to be proportional to the distortion 

number DN  and a parameter known as the Fresnel perturbation number PN .  Similar to 

the Fresnel number, as given in Eq. (169), the Fresnel perturbation number PN  was 

determined as 
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 , (170) 

where   is the characteristic scale size of the spatial perturbation of interest [95].  

Typically, the characteristic scale size set to two actuator spacings, 2  .  This 

criterion was experimentally determined to work well based on the research efforts of 

MIT-LL, which will be discussed shortly. 

Two asymptotic limits were determined for the gain factor in terms of the Fresnel 

perturbation number PN .  A low gain factor regime corresponds to the case where the 

Fresnel perturbation number is much greater than one, 1PN , i.e. when the propagation 

range is small and or the spatial perturbation is large.  In this case, there is less of a thick-

lens effect in the atmosphere.  In the low gain regime, the gain factor is proportional to 

the ratio of the distortion number over the Fresnel perturbation number, D PN N .  

Conversely, in the high gain regime, the Fresnel perturbation number is much less than 

one, 1PN .  In this case, the propagation range is large and or the spatial perturbation is 



121 
 

small.  The high gain factor regime cause thick-lens effects.  The gain factor in the high 

gain regime is proportional to only the distortion number DN . 

 In the presence of the appropriate gain conditions, the growth of the spatial 

perturbations was found to grow quasi exponentially unless a dampening mechanism was 

present to mitigate this spatial perturbation growth.  Mitigating factors for the spatial 

perturbation growth caused by micro-scale PCI were found to include fluctuations in the 

wind velocity, thermal diffusion, and turbulent mixing.  Of these three mitigating factors, 

fluctuations in the wind velocity were stated as being the strongest dampening or blurring 

mechanism.  If the growth rate in the spatial perturbations was found to exceed the effects 

of the mitigating factors, then the spatial perturbations would grow quasi-exponentially 

until saturation, at which point the HEL beam irradiance in the target plane would break 

into smaller and smaller spatial perturbations severely degrading system performance. 

 The research conducted by MIT-LL set out to test the results of the linearized 

theories produced by LLNL.  Here, Johnson led efforts in terms of scaled-laboratory 

experiments [104,105,106], Schonfeld led efforts in terms of computational wave-optics 

experiments [107,90,108,109,110], and Fouche et al. led full-scale experimental efforts 

[103], to see if PCI could, in fact, be induced experimentally.  Overall, the multiphase 

research efforts of MIT Lincoln Laboratory showed that the PCI was particularly difficult 

to see in practice.  One conclusion claimed that interactions between thermal blooming 

and mitigating factors in the atmosphere, such as wind fluctuations, prevented the onset 

of PCI.  The results of these experiments marked a decrease in the amount of research 

performed in thermal blooming and PCI.  Nonetheless, the research performed by MIT-

LL in thermal blooming and PCI was truly ground breaking.   
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 The research performed by Fried and Szeto looked at the phase compensation of 

thermal blooming in the presence of turbulence.  Here, the majority of their work was 

documented in a series of technical reports while working for tOSC 

[111,60,112,113,114,115,116,117].  Much of the work performed in these technical 

reports paralleled the work performed by LLNL in terms of developing a linearized 

theory to study the effects of TTBI and PCI.  The analyses performed by Fried and Szeto 

eventually lead to one of the seminal papers on thermal blooming and PCI [118].  Here, 

they showed that fluctuations in the wind velocity stabilized a set of linearized equations 

that they developed to study the effects of PCI.  Numerical results which solved their 

linearized equations showed that PCI was particularly difficult to induce for a ground to 

space engagement scenario with variations in the wind velocity.  These results supported 

the claims made by MIT-LL based on their experimental efforts. 

 One recent paper by Barchers used the Rytov method to create a linearized theory 

and study the effects of phase compensation of thermal blooming and full-wave 

compensation of thermal blooming [119].  In this ground-breaking study, the linearized 

theory was used to check for the existence of stable solutions for HEL phase 

compensation and full-wave compensation in the presence of thermal blooming and 

random processes, i.e. optical turbulence and fluctuations in the wind velocity.  Barchers 

was successful in finding bounded solutions for both phase compensation and full-wave 

compensation of thermal blooming.  However, he was also able to show that the addition 

of time of flight effects caused unstable regimes.  Further experimental analysis is needed 

to discern whether time of flight effects significantly affect incipient PCI with full-wave 

compensation. 
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 In a recent conference proceeding of SPIE, Spencer et al. attempted to 

review/highlight the ground-breaking research conducted by LLNL, MIT-LL, and tOSC 

in thermal blooming and PCI [120].  This conference proceeding provided the basis for 

the research conducted in this thesis.  In the analysis presented by Spencer et al. the 

results from a series of computational wave-optics experiments for the phase 

compensation of a focused Gaussian beam profile using a point-source beacon were 

presented.  Specifically, peak Strehl ratio PS  and power in the bucket BP   measurements 

in the target plane as a function of time were presented.  Despite a few inconsistencies in 

the analysis, such as the distortion number calculations being off by a factor of ten6, the 

results showed the development of periodic oscillations in the system performance 

measurements.  At the time of publication, the source of these periodic oscillations were 

undetermined. 

 With one last review of the literature, it was discovered that the Russians, Lukin 

and Fortes, showed similar results to those published by Spencer et al [121,7].  In this 

ground-breaking research, computational wave-optics experiments were conducted with 

idealized phase compensation of thermal blooming caused by a focused HEL beam 

profile.  Based on their results, Lukin and Fortes were successful in discerning the cause 

of the periodic oscillations in system performance measurements.  They conjectured that 

branch points present in the beacon phase were the cause the periodic oscillations.

                                                 
6 Spencer et al. would like to thank Jeff Barchers of Nutronics, Inc. for his help in analyzing this work [59]. 
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2.5.5 Branch Points 

 Branch points are traditionally characterized as resulting from the propagation of 

a point source through ―strong‖ optical turbulence.  In general, the scintillation caused by 

optical turbulence produces variations or small-scale perturbations in the irradiance of an 

optical disturbance propagating in the atmosphere.  This point is known from the 

discussion of TTBI provided above in the analysis of PCI.  Remember that optical 

disturbances are composed of both an amplitude A  and a phase   .  An arbitrary optical 

disturbance U  manifests itself mathematically in the form of a phasor, as given in Eq. 

(153).  As such, the variations in the irradiance caused by scintillation corresponds to 

fluctuations in the amplitude A  of an arbitrary optical disturbance U .  If the log 

amplitude variance 2
 , as given in Eq. (126), is large enough, the scintillation caused by 

―strong‖ optical turbulence causes large scale amplitude fluctuations, and as a result, 

creates nulls in the irradiance [122].  When this happens, a branch point is created.   

 A branch point results from a mathematical anomaly that occurs when the 

amplitude of a phasor goes to zero.  To make this manifest, the mathematical properties 

of phasors must be accounted for.  The amplitude of an arbitrary optical disturbance U  is 

mathematically determined using the following relationship [56]: 

    
2 2Re ImA U U U   , (171) 

where  Re U  and  Im U  are the real and imaginary components of the arbitrary optical 

disturbance U , respectively.  In addition, using the properties of phasors, the phase   of 

an arbitrary optical disturbance U  is determined as [56] 
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The mathematical relationship provided in Eq. (172) is known as the argument of a 

phasor.  When an arbitrary optical disturbance U , as given in Eq. (153), is substituted 

into Eq. (172), the resulting phase   is often referred to as the principle value or the 

wrapped phase [123].   

 There are two mathematical peculiarities associated with the wrapped phase  .  

Firstly, the argument of a phasor is wrapped as determined by Eq. (172).  What this 

means is that wrapped phase   is confined to the range,  ,  .  Secondly, the 

argument of a phasor that is equal to zero is not determined and thus results in a non-

single-valued function [121,124].  This corresponds to the case where the amplitude of an 

optical disturbance fluctuates to zero, 0A  , as determined by Eq. (171).  It is for this 

reason that branch points arise in the wrapped phase  . 

 The location of a branch point is determined when the contour integral around the 

principle value   does not equal zero.  Specifically, the gradient of the wrapped phase 

  ceases to be a purely potential field, so that the following relationship holds [121]: 

  2
C

d N N      r , (173) 

where N
 is the number of positively charged branch points and N

 is the number of 

negatively charged branch points.  The sign of the closed-loop contour integration in the 

counter-clockwise direction determines the charge of the branch points, as given in Eq. 

(173).  As such, in an NxN  grid, Eq. (173) can be modified to detect branch points in a 

computational wave-optics experiment, where 
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The relationship provided in Eq. (174) breaks an NxN  grid into a bunch of 2 2x  grids 

and sums the discrete phase derivative around each point.  A positive value results in a 

positively charged branch point and a negative value results in a negatively charged 

branch point in accordance with Eq. (173).  What is more, a branch point of a specific 

charge must be connected to a branch point of the opposite charge by a 2  discontinuity 

known as a branch cut [122].  This point is demonstrated in Figure 18, which was 

reproduced from the thesis work of Pellizzari [125].  Branch point detection and branch 

cut manipulation is a rich topic of research, as the presence branch points can 

significantly degrade AO system performance. 

 



127 
 

 
a.) 

 
b.) 

Figure 18.  Example of two oppositely charged branch points connected by a 2π discontinuity 
known as a branch cut.  In a.) the white circle surrounds the positively charged branch point 
and the black circle surrounds the negatively charged branch point.  A 3-D view is given in 
b.) which clearly shows the 2π discontinuity of the branch cut connecting the branch points.
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 Branch points and branch cuts pose a major problem for traditional AO systems 

which perform phase compensation using a Shack-Hartmann WFS and a single DM.  

This is so because a Shack-Hartmann WFS is unable to detect branch points.  Even if a 

Shack-Hartmann WFS could detect branch points, the 2  discontinuities caused by 

branch cuts pose a major problem for most DM’s.  It is particularly difficult for DM’s 

with coupled actuators to create the exact phase conjugate associate with the 2  

discontinuities caused by branch cuts.  In the presence of branch points, there is a 

significant amount of phase that goes unsensed.  This phase component is typically 

referred to as the hidden phase component [126,122,127].  If left uncorrected, system 

performance is significantly compromised.  As demonstrated in Figure 19, the hidden 

phase component contains a significant amount of structure.  It should be noted that 

Figure 19 is also reproduced from the thesis work of Pellizzari [125].   

The least squares phase reconstruction method for the Shack-Hartmann WFS is 

oblivious to the presence of branch points [127].  As a result, an AO system using a 

Shack-Hartman WFS is unable to sense the hidden phase component associated with 

branch points.  If the branch points go unsensed, the DM is unable to effectively perform 

phase compensation for the actual phase present in the optical disturbance of interest.  

This is an important point to remember in the analysis to follow.  Furthermore, it has 

been shown by Voitsekhovich et al. that as the strength of optical turbulence increases 

with increasing log amplitude variances 2
 , the number of branch points increases 

accordingly [124].  For weak to moderate turbulence conditions, branch points are rare.  

However, in conditions of strong optical turbulence, the number of branch points 

increases non-linearly up until a saturation point.  After this saturation condition is met, 
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the number of branch points grows linearly.  The theme worth remembering form the 

analysis produced by Voitsekhovich et al. is that with increased optical distortion, 

whether from thermal blooming and or optical turbulence, the conditions for the 

development of branch points are met.  With a high number of branch points, system 

performance can become significantly degraded. 

 

 

Figure 19.  Example of the hidden phase component that contains branch points and branch 
cuts.  The hidden phase component goes unsensed with a Shack-Hartmann WFS.  The actual 
phase represents the phase that needs to be corrected for using phase compensation.  The 
least squares reconstructed phase represents the phase that is measured and corrected for 
using a nominal AO system composed of a Shack-Hartmann WFS and a single DM.

Least squares reconstructed phase

+=

Actual Phase

Hidden phase
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3.  Experimental Setup and Exploration 
 

 This chapter discusses the setup and exploration needed for a series of 

computational wave-optics experiments which simulate adaptive optics (AO) phase 

compensation of high energy laser (HEL) beam propagation in the atmosphere.  The 

simulations were coded in MATLAB® using WaveProp [128], a wave-optics simulation 

system, and AOTools [129], the adaptive optics toolbox.  Both are MATLAB® toolboxes 

provided to the Air Force Institute of Technology by the Optical Sciences Company 

(tOSC).  WaveProp utilizes object-oriented programming in MATLAB® and contains a 

hierarchy of classes and functions which make the simulation of HEL beam propagation 

in the atmosphere and phase compensation using an AO system particularly user friendly.  

Similarly, AOTools contains a collection of functions and graphical user interfaces that 

make the setup and analysis of simulating AO systems accessible.  Principles taught in a 

recent publication by Schmidt were also used in the setup and exploration of the 

computational wave-optics experiments [9]. 

3.1 Parameter Space Setup 

 The parameters used in the following wave-optics experiments were chosen to 

coincide with a ground- or sea-based tactical-engagement scenario including both state of 

the art and future designs of high-powered solid-state lasers and AO systems 

components.  In particular, the engagement scenario parameters were selected to 

highlight the effects of thermal blooming.  This was done in order to search for the 

conditions of incipient PCI.   
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 Each component of HEL beam propagation in the atmosphere was simulated 

including extinction, thermal blooming, turbulent thermal blooming, and or optical 

turbulence.  As a result, it was necessary to first characterize each component of the 

wave-optics experiments, so that the obtained results made sense based on the theory 

presented in the previous chapter.  Parameters within the simulated AO system were also 

varied, such as the number of subapertures in the WFS, the number of actuators on the 

DM, and the subaperture FOV of the WFS.  Based on the proposed setup and variations 

of the proposed setup, sampling analysis was performed to make sure that results 

acquired from the computational wave-optics experiments were reproducible. 

3.1.1 Engagement Scenario Parameters 

 A typical ground- or sea-based tactical engagement scenario was simulated in the 

computational wave-optics experiments, as shown in Figure 20.  For this purpose, the 

simulated CW HEL beam in the source plane was set to have an initially-collimated 

Gaussian beam profile with a free-space wavelength, 0 1.064 m  .  The choice of this 

particular HEL wavelength was not arbitrary.  Current and future high-powered solid 

state laser designs will use this particular wavelength as it is common to both Nd:YAG 

and Ytterbium based laser designs [70].  Another feature of this HEL laser wavelength is 

that the transmission losses are particularly low when compared with other commonly 

used HEL wavelengths, as seen in Figure 4.  A Gaussian beam profile was chosen as 

opposed to a flat-top beam profile or a higher-order beam profile because of its analytic 

tractability—a Gaussian beam profile remains Gaussian with vacuum propagation and is 

a great analysis tool when simulating HEL propagation in the atmosphere. 
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Figure 20.  Engagement scenario parameters used in the computational wave-optics 
experiments. 

 

 A simulated pupil with no central obscuration was used to truncate the initial 

beam diameter, 0 1 mD  , and provided an initial beam irradiance,  0 0 02 2I P D .  

Following the pupil, a simulated thin lens was used to focus the HEL beam.  The focal 

length of the simulated thin lens was set to the propagation range.  For this purpose, a 

horizontal propagation range, 5000 mZ  , was used for the simulated engagement 

scenario with a constant altitude, 10 mh  .  Based on these engagement scenario 

parameters, LEEDR3 was then utilized to determine a constant absorption coefficient,

  6 19.26 10  ma Z x   , a constant scattering coefficient,   5 12.90 10  ms Z x   , a 

constant transmittance,   0.82Z  , and a constant ambient temperature,  

 0 298 KT Z  , for Wright-Patterson Air Force Base (AFB) during wintertime evening 

conditions [130]. 
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 The mean transverse wind velocity vector was assumed to be solely in the 

positive x  direction,    0 5,0,0  m/sZ v .  This value was also determined from 

LEEDR3 by accessing the ExPERT database for Wright-Patterson AFB during the month 

of January.  Specifically, wind speed percentile data was accessed.  According to Fiorino, 

this data was collected over a period of 30 years near airplane runways located at Wright-

Patterson AFB using anemometers [131].  To determine the wind velocity standard 

deviation  v z , the mean transverse wind speed,   5 m sv Z  , was first subtracted 

from the selected data.  Next, the zero-mean data was plotted, as shown in Figure 21.  It 

was noted that the variation in the data was approximately Gaussian to a first order 

approximation.  Consequently, a Gaussian probability distribution function, as given in 

Eq. (106), was fitted to the data and a constant wind velocity standard deviation was 

determined,   1.8 m sv Z  .  This value was in accordance with the values cited by 

Fouche et al. for the SABLE experiments [103]. 
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Figure 21.  Zero-mean wind speed data for Wright-Patterson AFB during the month of 
January.  The ExPERT database in LEEDR3 was used to obtain the data. 

 

 A nominal value was chosen for the index of refraction structure parameter, 

 2 15 2 310  mnC Z   .  This value was chosen, so that ―moderate‖ optical turbulence was 

simulated in the wave-optics experiments.  From this value, the appropriate log amplitude 

variances for a plane-wave source 2
, pw  and a spherical-wave emitted from a point 

source 2
,sw  were calculated using Eq. (127) and Eq. (128), respectively.  In addition, 

Eq. (133) and Eq. (134) were used to calculate the appropriate coherence lengths for a 

plane-wave source 0, pwr  and a spherical-wave emitted from a point source 0,swr .  The 

Greenwood frequency Gf  was also calculated using Eq. (152).  All calculations for 

optical turbulence parameters were made using the engagement scenario parameters 
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given in Figure 20 and are included in Table 1.  Note that, scn 10n  , phase screens with 

equal spacing were chosen to be adequate to simulate propagation through optical 

turbulence in the atmosphere using the split-step beam propagation method (BPM).  One 

determining factor with regards to this decision was made based on the low percentage 

errors obtained between the continuous and discrete values calculated in Table 1 [9].  The 

other deciding factor was the results obtained from a validation study using the point 

spread function (PSF) and optical transfer function (OTF) performed in the next section. 

 

Table 1.  Calculated parameters for optical turbulence with an index of refraction structure 
constant Cn

2(Z)=10-15 m-2/3. 
Pathstats, scn 10n   Continuous Discrete Percentage error 
Plane-wave 
coherence length,

0, pwr  (cm) 

7.57 7.57 0.0 

Spherical-wave 
coherence length, 

0,swr  (cm) 

13.6 13.6 0.1 

Plane-wave log 
amplitude variance

2
, pw  

0.147 0.148 0.1 

Spherical-wave log 
amplitude variance

2
,sw  

0.0596 0.0600 0.7 

Greenwood 
frequency 

Gf  (Hz) 

28.2 28.2 0.0 

 

 The initial beam power 0P  was the only engagement scenario parameter varied 

within the simulations.  Table 2 provides values for the initial beam powers 0P  used in 

the simulations.  The corresponding distortion numbers DN  were calculated using Eq. 
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(94) for the engagement scenario parameters given in Figure 20 and Table 1.  These 

values are also provided in Table 2.  To calculate the distortion numbers DN  using Eq. 

(94), the focused beam diameter  D z  was needed.  For this purpose, Eq. (98) was used 

in the presence of thermal blooming and Eq. (99) was used for the case when optical 

turbulence was also present.  The difference between the ambient index of refraction and 

the vacuum index of refraction 0 1n   was also needed.  To calculate this value, the 

following relationship was used: 

 
7
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and was provided by tOSC [49].  Furthermore, a critical power, 118 kWCP  , was 

calculated using Eq. (175)for the simulated engagement scenario.  Referencing the values 

provided in Table 2, it should be noted that two values were chosen to lie below the 

critical point, corresponding to the ―moderate‖ thermal blooming regime, and three 

values were chosen to lie above the critical point, corresponding to the ―strong‖ thermal 

blooming regime. 

 The number of grid points N  used in the simulations were determined from the 

calculated distortion numbers given in Table 2.  Specifically, the sampling constraint, 

given in Eq. (165) and derived by Tyler et al. [54,49], was multiplied by ten7, so that  

 
0

7.5 30s
D D

sN N N
D

  . 

                                                 
7 A multiple of ten was arbitrarily chosen to increase the fidelity of the obtained results.  In the presence of 
PCI and or optical turbulence, the required number of grid points needed for the simulation of thermal 
blooming increases beyond the requirements predicted by Tyler et al. [54,49].  Future work could benefit 
from a more exact analysis. 
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The source plane side length, 4 mss  , used in the simulations was determined based on 

the turbulence simulation rule of thumb [128].  This point will be discussed further in the 

next section.  Additionally, a target plane side length was determined by the following 

relationship: 

 
20

B
t

Ds N , 

so that the calculated bucket diameter, 1.3 cmBD  , for the simulated engagement 

scenario had at least 20 samples across.  Simulation scaling for the wave-optics 

experiments was determined by the ratio between the target plane side length and source 

plane side length, t ss s , and the obtained values are also given in Table 2.  The 

fidelity of the simulation parameters calculated in Table 2 and used in the wave-optics 

experiments will be explored in the analysis to come. 

 

Table 2.  Calculated distortion numbers ND, Number of grid points N, target-plane side 
length st, and simulation scaling ℓ for the varying initial beam powers P0 used in the wave-
optics experiments. 

Initial HEL 
beam power 

0P  (kW) 

Distortion 
number DN  
(rad), 

0,  cmswr   

Distortion 
number DN  
(rad), 

0, 13.6 cmswr 

 

Number of 
grid points 

30 DN N  

Target-
plane side 
length 

20t Bs ND

 (cm) 

Simulation 
scaling 

t ss s  

50 8.39 7.76 256 16.6 0.0415 
100 16.8 15.5 512 33.2 0.0831 
150 25.2 23.3 768 49.9 0.125 
200 33.6 31.0 1024 66.5 0.166 
250 42.0 38.8 1280 83.1 0.208 
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3.1.2 Adaptive Optics System Parameters 

 A nominal AO system was also simulated.  Accordingly, a beacon, represented as 

an ideal point source, was back propagated from the target plane of the HEL beam to the 

source plane of the HEL beam.  The simulated beacon used the same grid size NxN  and 

side lengths as that of the simulated HEL beam given in Table 2.  As mentioned above, 

the turbulence simulation rule of thumb was used to determine the source plane side 

length used in the simulations, 4 mss  .  The turbulence simulation rule of thumb 

requires that the source plane side length be at least four times the initial beam diameter, 

04ss D , as described in Figure 22 [128].   

 

 
Figure 22.  Description of the turbulence simulation rule of thumb.  The simulated source 
plane side length must be four times the initial beam diameter D0.  This is done so that the 
simulated point-source wavefronts in the source plane are two times the initial beam diameter 
D0.  Thus, a guard band is set up to account for refraction effects. 
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 A true point source, given by a Dirac delta function, contains all spatial 

frequencies [9].  In simulation; however, a point source must be modeled as a band-

limited function.  WaveProp models a band-limited point source by analytically back 

propagating a square grid of user-defined width from the source plane to the target plane 

with the proper scaling.  This creates a narrow two-dimensional sinc-like pattern in the 

target plane which is used as the band-limited point source.  After propagation from the 

target plane to the source plane using the BPM, the narrow two-dimensional sinc-like 

pattern exhibits the properties of a spherical wave in a finite region of the source plane.  

According to the turbulence simulation rule of thumb, this finite region needs to be at 

least two times the initial beam diameter 0D .  Thus, a guard band is created between the 

edges of the source plane side length, which is at least four times the initial beam 

diameter, 04ss D .  This guard band helps to combat against aliasing effects in the 

simulations.  Aliasing typically results without the guard band because the refraction 

effects due to thermal blooming and or optical turbulence is strong enough to cause the 

data to wander off the simulated source plane. 

 The simulated AO system was comprised of a fast steering mirror (FSM) 

controlled through center of mass measurements made by a tracker, and a deformable 

mirror (DM) controlled through slope measurements made by a wavefront sensor (WFS).  

Altogether, the FSM, DM, tracker, and WFS used the same aperture size as the truncated 

HEL beam.  Specifically, a camera without noise was used to simulate the hardware for 

the tracker.  The camera had a pixel field of view (iFOV), 1 μrad  , and a finite number 

of pixels, pix 32n  .  The FSM was controlled by the tracker through center of mass 
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measurements with a servo leakage, 1a  , and a servo gain, 0.5b  .  Similarly, the WFS 

was modeled after a Shack-Hartmann WFS with no noise.  Table 3 specifies parameters 

used for the WFS which controlled the DM through reconstructed slope measurements in 

the Fried geometry using a servo leakage, 0.995a  , and a servo gain, 0.3b  .  Note 

that the DM actuators had infinite stroke.  Table 3 also specifies the DM actuator 

spacings, 2   , used in the wave-optics experiments. 

 Fresnel perturbation numbers PN  were also calculated for the simulated AO 

systems parameters used in the computational wave-optics experiments.  The 

corresponding values are found in Table 3.  It is important to note that the simulated 

Fresnel perturbation numbers gave a range of values to test for the conditions of insipient 

PCI.  According to the linearized theory introduced by Lawrence Livermore National 

Laboratory (LLNL), the PCI gain factor  was found to be proportional to the ratio of the 

distortion number over the Fresnel perturbation number, D PN N  [103].  By varying 

distortion numbers DN  in the setup of the engagement scenario and the spatial resolution 

of the AO system, the goal was to test for regimes of both a low PCI gain factor, 1PN  

and D CN N , and a high PCI gain factor, 1PN  and D CN N .  
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Table 3.  Simulated AO system parameters. 
Number of 
subapertures 
across 0D  

subn  

Number of 
waves of tilt 
across d  

lodn     

Pixel field 
of view, 
iFOV
 μrad  

Number of 
pixels per 
subaperture 

pixn  

Actuator 
spacing, 

2    
(cm) 

Fresnel 
perturbation 
number PN  

8 6 6.38 64 12.5 9.23 
8 8 8.51 64 12.5 9.23 
8 10 10.6 64 12.5 9.23 
16 6 12.8 128 6.25 2.31 
16 8 17.0 128 6.25 2.31 
16 10 21.3 128 6.25 2.31 
32 6 25.5 256 3.13 0.577 
32 8 34.0 256 3.13 0.577 
32 10 42.6 256 3.13 0.577 

 

 AOTools was utilized in the setup of the simulated AO systems.  This greatly 

simplified the design process required to properly simulate the AO system parameters 

provided in Table 3.  For example, the subapdlg graphical user interface was used to 

calculate the tilt-removed reconstructor needed for the desired subaperture geometries.  

Figure 23 shows the subaperture geometry used for the simulated case with eight active 

subapertures across the aperture, sub 8n  .  Note that the DM actuators were placed in the 

corners of the subapertures to correspond to the Fried reconstruction geometry.  A guard 

ring of one subaperture was also used in all of the subaperture designs.  As a result, 

slaved actuators were created.  Figure 24 shows the subaperture geometry used for the 

simulated case with 16 active subapertures across the aperture, sub 16n  , while Figure 25 

shows the subaperture geometry used for the simulated case with 32 active subapertures 

across the aperture, sub 32n  .  The simplicity found in using the subapdlg graphical user 

interface of AOTools was greatly appreciated in the analysis. 
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Figure 23.  Subaperture geometry used to simulate a Shack-Hartmann WFS with eight active 
subapertures across the aperture, nsub=8.  Active subapertures are given by the yellow 
squares, while active DM actuators are given by the blue circles.  The white circle outlines the 
diameter of the aperture, D0=1 m, and red lines represent slave mappings to the slaved 
actuators given by the red circles.  Yellow circles represent dead actuators.  The readout in 
the top left corner provides the total number of active subapertures, active actuators, and 
slaves used in the design.
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Figure 24.  Subaperture geometry used to simulate an AO system with 16 active subapertures 
across the aperture, nsub=16.  Active subapertures are given by the yellow squares, while 
active DM actuators are given by the blue circles.  The white circle outlines the diameter of 
the aperture, D0=1 m, and red lines represent slave mappings to the slaved actuators given by 
the red circles.  Yellow circles represent dead actuators.  The readout in the top left corner 
provides the total number of active subapertures, active actuators, and slaves used in the 
design.
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Figure 25.  Subaperture geometry used to simulate an AO system with 32 active subapertures 
across the aperture, nsub=32.  Active subapertures are given by the yellow squares, while 
active DM actuators are given by the blue circles.  The white circle outlines the diameter of 
the aperture, D0=1 m, and red lines represent slave mappings to the slaved actuators given by 
the red circles.  Yellow circles represent dead actuators.  The readout in the top left corner 
provides the total number of active subapertures, active actuators, and slaves used in the 
design. 
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 The servodlg graphical user interface of AOTools was also utilized in the analysis 

of the simulated AO systems.  The closed-loop response for the AO system control 

parameters is shown in Figure 26.  It should be noted that the sampling frequency, 

1000 Hzsf  , used in all of the computational wave-optics experiments was determined 

from the simulation time step, 1 mst  .  These values were nominally chosen.  The 

simulated 3dB frequency, 3 35.4 HzdBf  , for the wave-optics experiments was 

determined to be slightly larger than the Greenwood frequency, 28.2 HzGf  .  Ideally, 

an AO system should have a 3db frequency that is a few multiples of the Greenwood 

frequency; however, this is not always an option.  The goal for the computational wave-

optics experiments was to use AO system control parameters that could easily perform 

phase compensation for ―moderate‖ optical turbulence.  This point will be re-addressed in 

the next section. 
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Figure 26.  Closed-loop response for the simulated AO system control parameters used in the 
computational wave-optics experiments.  The top left values are inputs and the bottom left 
values are outputs.  O/L 0 dB is the open loop 0 db crossover frequency (Hz). C/L 3 dB is the 
closed loop 3 dB frequency (Hz).  GM is the gain margin (dB).  PM is the phase margin (deg). 

 

3.1.3 Sampling Analysis 

 Sampling analysis for the simulations was also performed.  This helped to combat 

against aliasing affects often encountered in using finite-sized grids NxN  to simulate 

HEL beam propagation in the atmosphere using the BPM.  Since the effects of thermal 

blooming were of primary concern in the computational wave-optics experiments, a 

series of sampling analysis tests were conducted with steady-state thermal blooming.  

This was done because steady-state thermal blooming represented the strongest form of 

optical distortion in the computational wave-optics experiments.   
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 The first test was conducted to determine the number of thermal blooming phase 

screens needed for the computational wave-optics experiments.  The goal of this study 

was to determine the minimum number of screens necessary to effectively simulate 

steady-state thermal blooming without a significant amount of variation in both the 

calculated peak Strehl ratio pS  and normalized power in the bucket BP  calculations in 

the target plane.  This was a necessary step in the analysis because it essentially increased 

the reliability and reproducibility of the simulations.  As shown in Figure 28, the peak 

Strehl ratio pS  and normalized power in the bucket BP  were calculated in the target plane 

as a function of the number of thermal blooming phase screens.  This was done for one 

simulated distortion number below the critical point, 16.8DN  , and one above the 

critical point corresponding to the highest distortion number simulated, 42.0DN  .  

From this analysis, a "knee in the curve" was determined for 100 screens or more for both 

distortion numbers DN  tested.  Thus, scn 100n  , thermal blooming phase screens were 

determined as being adequate for all of the computational wave-optics experiments.  It 

should be noted that WaveProp automatically set the screen spacing for the simulations, 

so that the each screen had approximately the same amount of distortion as calculated 

with the distortion number DN  [49,128]. 
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a.) 

 
b.) 

Figure 27.  Thermal blooming phase screen convergence study using a.) peak Strehl ratio 
versus number of screens and b.) normalized power in the bucket versus number of screens.
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 The results from the second test are displayed in Figure 28.  Here, the goal was to 

make sure that the number of grid points used in the computational wave-optics 

experiments were adequate to properly simulate HEL beam propagation in the 

atmosphere using the BPM.  This was a necessary step in the analysis to make sure that 

the number of grid points given in Table 2 were satisfactory for simulating steady-state 

thermal blooming conditions without the effects of aliasing.  Secondly, this test was 

conducted to make sure that the chosen number of thermal blooming phase screens, 

scn 100n  , from the previous test was sufficient with the number of grid points given in 

Table 2.  As shown in Figure 28, the peak Strehl ratio pS  and normalized power in the 

bucket BP  were calculated in the target plane as a function of the number of grid points 

N .  Similarly, this was done for one simulated distortion number below the critical 

point, 16.8DN  , and one above the critical point corresponding to the highest distortion 

number simulated, 42.0DN  , with, scn 100n  , thermal blooming phase screens.  From 

this analysis, it was determined from the lack of variation past, 256N  , that the number 

of grid points listed in Table 2 were adequate to simulate steady-state thermal blooming 

conditions.   
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a.) 

 
b.) 

Figure 28.  Number of grid points convergence study using a.) peak Strehl ratio versus 
number of grid points and b.) normalized power in the bucket versus number of grid points.
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3.2 Parameter Space Exploration 

 In this section, a series of preliminary wave-optics experiments are conducted.  

This is done to make sure that the simulations are in working order and to present a 

methodology for the experimental analysis presented in the next chapter.  The goal for 

results presented in this section are to provide bounds for the problem at hand.  As such, 

each wave-optics experiment conducted in this section includes results for an initial HEL 

beam power, 0 100 kWP  , simulated just below the critical power, 118 kWCP  , as 

given by Eq. (168), and an initial HEL beam power, 0 250 kWP  , simulated well above.  

The corresponding distortion numbers, 16.8 radDN   and 42.0 radDN  , are provided 

in Table 2 and are appropriately referred to throughout the analysis as being both below 

and above the critical point, i.e. the critical distortion number CN , as given in Eq. (167).  

In addition, the phase compensation results presented in this section are for the ―middle 

of the road‖ AO system parameters, sub 16n   and lod 8 λn  , simulated in the wave-

optics experiments and tabulated in Table 3.  Further experimental analysis using 

additional AO system parameters are presented in the next chapter. 

3.2.1 Propagation with Extinction 

 As a first step in the analysis, it was nessecary to make sure that WaveProp was 

setup correctly to simulate the engagement scenario parameters given in the previous 

section with only extinction effects.  This was done so that the simulated parameters in 

the wave-optics experiments could be checked for the appropriate initial conditions 

without the effects of thermal bloomining and or turbulence.  For example, the HEL 

beam irradiance and phase in the source plane and target plane are displayed in Figure 29 
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for the highest initial beam power simulated, 0 250 kWP  .  The top left corner of Figure 

29 represents the HEL beam source plane irradiance.  Note that the HEL beam profile is 

Gaussian and truncated with an initial beam daimeter, 0 1 mD  .  Furthermore, the HEL 

beam phase in the souce plane is provided in the top right corner.  Note here that the 

phase is constant/flat, as required by an intitally collimated beam.  This represents the 

phase of the HEL beam before being sent through the lens.  Also note that the chosen 

source plane side length, 4 mss  , is in working order. 

 The HEL beam irradiance and phase in the target plane after propagation with the 

effects of extinction are also shown in the bottom portion of Figure 29.  Here, it should be 

noted that the target plane irradiance fits within the bucket diameter, 1.3 cmBD  , as 

given by Eq. (95).  The corresponding phase in the target plane has the characteristic 

parabolic features associated with Gaussian beam propagation.  It should also be noted 

that the grid resolution in the target plane was significantly less than the resolution in the 

source plane.  This is seen in the slightly blurry target plane HEL beam irradiance and 

phase as compared with the source plane HEL beam irradiance and phase.  Nonetheless, 

20 grid points across the bucket diameter was more than adequate for peak Strehl ratio 

pS  and normalized power in the bucket BP  calculations in the target plane.  In the 

presence of thermal blooming and or optical turbulence, the beam spread was expected to 

be a lot larger than the bucket diameter, 1.3 cmBD  . 
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Figure 29.  Propagation of the simulated HEL beam with extinction effects for an initial beam 
power, P0=250 kW.  The top row demonstrates the truncated irradiance and initially 
collimated phase in the source plane and the bottom row demonstrates the irradiance and 
phase in the target plane. 

 

 The setup and propagation of the point-source beacon was also verified with only 

the effects of extinction.  As shown in Figure 30, it was noted that the point-source 

beacon irradiance in the target plane was represented as a narrow band-limited sinc-like 

pattern.  This is demonstrated in the top left corner of Figure 30.  After propagation to the 

source plane, the point-source beacon was collimated by the simulated thin lens and 

truncated by the pupil to have an aperture diameter, 0 1mD  .  This is demonstrated in 

the bottom portion of Figure 30 and is characterized with a constant/flat irradiance and a 

constant/flat phase associated with collimation.  As a final note here, the point source 

beacon provided adequate coverage of the shared aperture. 
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Figure 30.  Propagation of the simulated point-source beacon with the effects of extinction.  
The top row demonstrates the irradiance and phase in the target plane and the bottom row 
demonstrates the irradiance and phase in the source plane after collimation.
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3.2.2 Propagation with Thermal Blooming 

 The effects of time-dependent thermal blooming were explored here using the 

algorithm presented in Eq. (82).  For instance, in Figure 31, the engagement scenario 

parameters presented in the previous section were used to propagate the HEL beam with 

the effects of time-dependent thermal blooming for a distortion number just below the 

critical point, 16.8 radDN  .  The effects of optical turbulence were not simulated here, 

only the effects of time-dependent thermal blooming and extinction.  It is noted from 

Figure 31, that in terms of normalized irradiance in the target plane, steady-state thermal 

blooming was reached sometime after the 50 ms time stamp.  This is noted as the 

crescent pattern in the target plane becomes static around this time stamp and does not 

really change in shape.  Similarly, the effects of time-dependent thermal blooming were 

simulated for the highest distortion number used in the wave-optics experiments, 

42.0 radDN  .  These results for normalized irradiance are demonstrated in Figure 32.   

It is important to note the differences in the development of the crescent pattern 

obtained in the "strong" thermal blooming regime, 42.0 radDN  , as opposed to the 

crescent pattern obtained in the "moderate" thermal blooming regime, 16.8 radDN  .  

The effects of Fresnel ringing due to the truncated beam diameter, 0 1 mD  , are 

amplified with an increase in the strength of the simulated thermal blooming.  It is also 

noted that the crescent pattern in Figure 32 in the steady-state regime is nearly doubled in 

size when compared with Figure 31.  In this case, steady-state thermal blooming is 

characterized in terms of normalized irradiance in the target plane as being reached after 

the 75 ms time stamp. 
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 To discern the actual convergence of the crescent formation, an additional test 

was conducted.  Here, peak Strehl ratio pS  and normalized power in the bucket BP  

calculations in the target plane were plotted versus time, as shown in Figure 33.  Both 

time-dependent and steady-state values were plotted for the distortion numbers tested in 

Figure 31 and Figure 32.  The results of the convergence study show that the peak Strehl 

ratio pS  and the normalized power in the bucket BP  calculations for time-dependent 

thermal blooming reach their steady-state values faster for the highest distortion number 

tested, 42.0 radDN  , as opposed to the distortion number tested below the critical point, 

16.8 radDN  .  These results seem to contradict those discussed for Figure 31 and Figure 

32, which show time stamps for normalized irradiance.  It should be noted that 

normalized irradiance snapshots are sometimes deceiving; however, they serve as a great 

analysis tool in visualizing the results. 
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a.) 

 
b.) 

Figure 31.  Normalized HEL beam irradiance for time-dependent thermal blooming and a 
distortion number below the critical point, ND=16.8 rad.  In a.) the simulation runs from 1 ms 
to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles represents 
the diffraction limited bucket diameter DB=1.3 cm.
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a.) 

 
b.) 

Figure 32.  Normalized HEL beam irradiance for time-dependent thermal blooming and a 
distortion number well above the critical point, ND=42.0 rad.  In a.) the simulation runs from 
1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles 
represents the diffraction limited bucket diameter DB=1.3 cm.
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a.) 

 
b.) 

Figure 33.  Thermal blooming convergence study using a.) peak Strehl ratio versus time and 
b.) normalized power in the bucket versus time.
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3.2.3 Propagation with Turbulent Thermal Blooming 

 In this study, the effects of time-dependent turbulent thermal blooming were 

tested using the algorithm given in Eq. (111).  Remember that wind speed data from the 

ExPERT database in LEEDR3 was used to determine the wind velocity standard 

deviation,   1.8 m sv Z  , as described above in Figure 21.  It should be noted that the 

spatial filtering associated with the wind fluctuations characteristic function  ,z t , as 

given in Eq. (107), was realized for ten previous time steps.  This was determined as 

being adequate based on the decreasing trend given in the Gaussian distributed spatial 

spread found in Figure 7.  Including additional time steps only served to decrease 

computational efficiency with little added effect in the obtained result.   

With that said, the blurring effects associated with time-dependent turbulent 

thermal blooming were found to nominally increase system performance.  As shown in 

Figure 34, peak Strehl ratio pS  and normalized power in the bucket BP  calculations in 

the target plane versus time were compared for both time-dependent turbulent thermal 

blooming and time-dependent thermal blooming.  The effects of the time-varying wind 

fluctuations were found to have minimal impact on system performance for both the 

"strong" thermal blooming regime, 42.0 radDN  , and the "moderate" thermal blooming 

regime, 16.8 radDN  .  Future studies with WaveProp are needed to discern whether this 

discrepancy was from user error, algorithm error, or fact. 
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a.) 

 
b.) 

Figure 34.  Turbulent thermal blooming versus thermal blooming study using a.) peak Strehl 
ratio versus time and b.) normalized power in the bucket versus time. 
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3.2.4 Propagation with Turbulence 

 The effects of optical turbulence were explored here.  For instance, in Figure 35, 

the engagement scenario parameters presented in the previous section were used to 

propagate the HEL beam through optical turbulence with a spherical wave coherence 

diameter, 0, 13.6 cmswr  .  It is stressed that the effects of time-dependent thermal 

blooming were not simulated in this study, only the effects of optical turbulence and 

extinction.  The characteristic scintillation caused by optical turbulence is shown in 

Figure 35 in terms of normalized irradiance.  It is important to note that the variations in 

the normalized irradiance fluctuate as time progresses.  
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a.) 

 
b.) 

Figure 35.  Normalized HEL beam irradiance for one realization of optical turbulence and a 
spherical-wave coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs from 1 ms to 25 
ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles represents the 
diffraction limited bucket diameter for the simulations, DB=1.3 cm.
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To make sure that the wave-optics experiments were working properly for 

multiple realizations of simulated optical turbulence, the PSF and OTF were used.  For 

example, as shown in Figure 36 and Figure 37, the simulations behaved as expected for 

25 independent realizations of a point-source beacon propagating through optical 

turbulence.  The average PSF  ,h u v  fit within the turbulence limited bucket diameter, 

9.54 cmTD  , as given by Eq. (100).  This was consistent with the theory presented in 

the previous chapter and made sense based on the spatial resolution associated with the 

simulated spherical wave coherence diameter, 0, 13.6 cmswr  .  In addition, the long-

exposure OTF  ,LE u vH f f , as given in Eq. (151), corresponded well with the 

experimental OTF  ,EX u vH f f , which was determined from the average PSF  ,h u v  

found in Figure 36 using Eq. (147).  The diffraction limited OTF  ,DL u vH f f  was also 

used to create an equivalent OTF,      , , ,EQ u v DL u v LE u vH f f H f f H f f , for 

comparison purposes.  As shown in Figure 37, the diffraction limited OTF  ,DL u vH f f

had little effect on the equivalent OTF  ,EQ u vH f f  when compared with the effects of 

the long exposure OTF  ,LE u vH f f .
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Figure 36.  Optical turbulence validation study using the PSF.  The normalized average PSF 
was calculated from 25 independent realizations of a point source propagating through 
optical turbulence.  The dashed white line represents the optical turbulence limited bucket 
diameter, DT=9.54, for a spherical-wave coherence diameter, r0,sw=13.6 c
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Figure 37.  Optical turbulence validation study using the OTF.  The experimental OTF HEX is 
calculated from 25 independent realizations of a point source propagating through optical 
turbulence.  The equivalent OTF is determined from the long-exposure and diffraction-
limited OTF, HEQ=HDLHLE
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3.2.5 Propagation with Thermal Blooming and Turbulence 

 In the analysis presented here, the combined effects of thermal blooming and 

turbulence were study.  This was done to provide a gauge for the effects of time-

dependent thermal blooming coupled with the simulated optical turbulence.  For this 

purpose, two different distortion numbers DN  were analyzed in this study with a 

simulated spherical wave coherence diameter, 0, 13.6 cmswr  .  The results from the first 

distortion number tested, 15.5 radDN  , are given in Figure 38 and Figure 39.  These 

results correspond to a distortion number found below the critical distortion number CN , 

as given in Eq. (167).  In Figure 38, normalized irradiance for varying time stamps is 

studied.  It is noted here that the characteristic scintillation associated with optical 

turbulence is eventually shifted into the transverse wind direction due to advection 

associated with time-dependent thermal blooming.  This effect is characterized with the 

scintillated irradiance pattern being consistently located in the left half plane of the 

simulation grid in the steady-state thermal blooming limit.   

Peak Strehl ratio PS  and normalized power in the bucket BP  calculations versus 

time are shown in Figure 39.  Here, a comparison study is given for the effects of only 

time dependent thermal blooming, the averaged effects of 25 independent realizations of 

optical turbulence, and the combined effects of time-dependent thermal blooming and 25 

independent realizations of optical turbulence.  It was noted that the combined effects of 

time-dependent thermal blooming and optical turbulence were found to be more severe 

than those of only time-dependent thermal blooming. 
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a.) 

 
b.) 

Figure 38.  Normalized HEL beam irradiance with time-dependent thermal blooming and 
one realization of optical turbulence for a spherical-wave coherence diameter, r0,sw=13.6 cm, 
and a distortion number, ND=16.7 rad.  In a.) the simulation runs from 1 ms to 25 ms and in 
b.) the simulation runs from 25 ms to 150 ms.  The white circles represents the diffraction 
limited bucket diameter for the simulations, DB=1.3 cm.
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a.) 

 
b.) 

Figure 39.  Comparison study for HEL beam propagation with time-dependent thermal 
blooming and the average of 25 independent realizations of optical turbulence using a.) peak 
Strehl ratio versus time and b.) normalized power in the bucket versus time.
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 The results from the second distortion number tested, 42.0 radDN  , are given in 

Figure 40 and Figure 41.  These results correspond to a distortion number found well 

above the critical distortion number CN , as given in Eq. (167).  In Figure 40, normalized 

irradiance for varying time stamps is studied.  Here, the characteristic scintillation 

associated with optical turbulence is quickly shifted into the transverse wind direction 

because of advection associated with time-dependent thermal blooming.  This effect is 

characterized with the scintillated irradiance pattern being consistently located in the left 

half plane of the simulation grid in the steady-state thermal blooming limit.  Note that the 

normalized irradiance pattern given in Figure 40 is nearly twice as large as that given in 

Figure 38. 

Peak Strehl ratio PS  and normalized power in the bucket BP  calculations versus 

time are also shown in Figure 41.  Similar to Figure 39, a comparison study is given for 

the effects of only time dependent thermal blooming, the averaged effects of 25 

independent realizations of optical turbulence, and the combined effects of time-

dependent thermal blooming and 25 independent realizations of optical turbulence.  In 

this case, the combined effects of time-dependent thermal blooming and optical 

turbulence were found to be as severe as those of only time-dependent thermal blooming.  

In some time stamps, even better.  It is important to note that this point is accounted for 

with the small difference found in the calculated distortion numbers, 42.0 radDN   and 

38.8 radDN  , which were determined based on the initial beam diameter, 0 1 mD  , 

and the spherical wave coherence length, 0, 13.6 cmswr  , respectively. 
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a.) 

 
b.) 

Figure 40.  Normalized HEL beam irradiance with time-dependent thermal blooming and 
one realization of optical turbulence for a spherical-wave coherence diameter, r0,sw=13.6 cm, 
and a distortion number, ND=42.0 rad.  In a.) the simulation runs from 1 ms to 25 ms and in 
b.) the simulation runs from 25 ms to 150 ms.  The white circles represents the diffraction 
limited bucket diameter for the simulations, DB=1.3 cm.
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a.) 

 
b.) 

Figure 41.  Comparison study for HEL beam propagation with time-dependent thermal 
blooming and the average of 25 independent realizations of optical turbulence using a.) peak 
Strehl ratio versus time and b.) normalized power in the bucket versus time.
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3.2.6 Ab Initio Phase Compensation 

 In the ground breaking research conducted by MIT Lincoln Laboratories (MIT-

LL), different regimes of phase compensation were experimented with to mitigate the 

effects of thermal blooming [90,106,103].  This point was referenced above in the 

analysis of PCI.  The computational wave-optics experiment proposed here follows the 

experimental foundation provided by MIT-LL.  Thus, the first regime of phase 

compensation used in this analysis is referred to as ab initio phase compensation.  The 

term, ab initio, is Latin in origin and is translated to mean: ―from the beginning.‖  As 

such, with ab initio phase compensation, the AO system is used to compensate the HEL 

beam from the beginning.  Put another way, the HEL beam and AO system are turned on 

at the same time.  In the ab initio regime of phase compensation, the AO system is able to 

sense and correct for the effects of thermal blooming as they develop in the atmosphere. 

 As a first order of business in the analysis presented here, it was important to 

verify that the ―middle of the road‖ AO system parameters, sub 16n   and lod 8 λn  , as 

given in Table 3, were capable of correcting for the refraction effects of optical 

turbulence.  For this purpose, normalized irradiance time stamps are given in Figure 42.  

These results correspond to one independent realization of optical turbulence with a 

simulated spherical wave coherence length, 0, 13.6 cmswr  .  No thermal blooming was 

simulated in for the results shown in Figure 42.  As discussed above in the experimental 

setup, the nominal goal for the wave-optics experiments was to simulate atmospheric 

conditions with a ―moderate‖ optical turbulence strength.   

The results show the characteristic behavior associated with a properly working 

AO system.  As shown in Figure 42, the normalized HEL beam irradiance is consistently 
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found to reside within the diffraction limited bucket diameter, 1.3 cmBD  , for multiple 

time stamps.  Small deviations from the bucket diameter are associated with the relatively 

high servo gain, 0.5b  , used for the FSM.  Nonetheless, the AO system parameters used 

in this particular computational wave-optics experiment were more than adequate in 

performing phase compensation for ―moderate‖ optical turbulence.   

 

 

Figure 42.  Normalized HEL beam irradiance with ab initio phase compensation of one 
realization of optical turbulence with a spherical coherence diameter, r0,sw=13.6 cm.  The 
simulation runs from 1 ms to 150 ms.  The white circles represents the diffraction limited 
bucket diameter for the simulations, DB=1.3 cm. 
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turbulence.  In Figure 43, the calculated peak Strehl ratio PS  and normalized power in the 

bucket BP  in the target plane are consistently above 0.8 for the simulated time period—

system performance was definitely not an issue.  Furthermore, the RMS DMr  of the DM 

commands and the variance 2
DM  of the DM commands settled down as time progressed, 

as shown in Figure 44.  This was a good sign in terms of characterizing system stability.  

No exponential behavior was witnessed. 
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a.) 

 
b.) 

Figure 43.  Ab initio phase compensation study with the average of 25 independent 
realizations of optical turbulence using a.) peak Strehl ratio versus time and b.) normalized 
power in the bucket versus time.
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a.) 

 
b.) 

Figure 44.  Ab initio phase compensation study with the average of 25 independent 
realizations of optical turbulence using a.) RMS of DM commands versus time and b.) 
variance of DM commands versus time.
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The next step in the analysis was to perform ab initio phase compensation for 

time-dependent thermal blooming.  As such, normalized irradiance time stamps are given 

in Figure 45 and Figure 46 for a simulated distortion number just below the critical point, 

16.8 radDN  , and a distortion number well above the critical point, 42.0 radDN  , 

respectively  No turbulence was simulated in these particular studies.  The ―middle of the 

road‖ AO system parameters, sub 16n   and lod 8 λn  , as given in Table 3 were also used 

to create these phase compensation results.  As shown in in Figure 45, the characteristic 

crescent pattern associated with ‖moderate‖ thermal blooming, 16.8 radDN  , is 

minified with ab initio phase compensation.  This is said because the crescent pattern is 

successfully confined to the diffraction limited bucket diameter, 1.3 cmBD  .  It should 

be noted that some of the energy is scattered out into a wing like pattern; however, 

system performance for the most part is stable and consistent.  No signs of PCI were 

witnessed. 

 The ab initio phase compensation results obtained for ―strong‖ thermal blooming, 

42.0 radDN  , are shown in Figure 46.  When compared to the results shown in Figure 

45, the AO system struggles a lot more to obtain system performance and stability.  This 

comment is made based on the fact that the wing-like pattern due to scattering is more 

defined in Figure 46.  As time progresses, the characteristic crescent pattern is again 

confined to the diffraction limited bucket diameter, 1.3 cmBD  ; however, upon closer 

inspection, it was noticed that the peak irradiance of the confined crescent pattern seemed 

to oscillate around a mean value.  Further analysis was needed to discern the validity of 

this claim.  It should be noted; nonetheless, that there were still no apparent signs of PCI. 
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a.) 

 
b.) 

Figure 45.  Normalized HEL beam irradiance with ab initio phase compensation of time-
dependent thermal blooming for a distortion number, ND=16.8 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles 
represents the diffraction limited bucket diameter for the simulations, DB=1.3 cm.

x (cm)

y
 (

c
m

)

 

 
1 ms 5 ms 10 ms

15 ms 20 ms 25 ms

-15 -10 -5 0 5 10 15

-10

-5

0

5

10

0

0.2

0.4

0.6

0.8

1

x (cm)

y
 (

c
m

)

 

 
25 ms 50 ms 75 ms

100 ms 125 ms 150 ms

-15 -10 -5 0 5 10 15

-10

-5

0

5

10

0

0.2

0.4

0.6

0.8

1



180 
 

 

 

 
a.) 

 
b.) 

Figure 46.  Normalized HEL beam irradiance with ab initio phase compensation of time-
dependent thermal blooming for a distortion number, ND=42.0 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles 
represents the diffraction limited bucket diameter for the simulations, DB=1.3 cm.
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A comparison study for system performance was conducted next.  As shown in 

Figure 47 and Figure 48, system performance and system stability were analyzed.  

Specifically, in Figure 47, peak Strehl ratio PS  and normalized power in the bucket BP

calculations in the target plane as a function of time were compared for the same data and 

simulated distortion numbers, 16.8 radDN   and 42.0 radDN  , as used to create the 

normalized irradiance time stamps in Figure 45 and Figure 46.  The results show definite 

improvements in system performance.  This claim is made based on comparisons with 

Figure 33 and or Figure 34, where no phase compensation was applied to the same time 

dependent thermal blooming conditions.   

In the ―moderate‖ thermal blooming regime corresponding to a simulated 

distortion number, 16.8 radDN  , just below the critical point, the system performance 

measurements showed signs of excellent system stability.  This is said based on the fact 

that both the peak Strehl ratio PS  and normalized power in the bucket BP  calculations in 

the target plane as a function of time reached a steady-state equilibrium.  However,  in the 

―strong‖ thermal blooming regime corresponding to a simulated distortion number, 

42.0 radDN  , well above the critical point, the system performance measurements 

showed signs of inconsistent system performance.  This is said based on the observation 

of what looks like periodic oscillations in the system performance measurements.  These 

periodic oscillations seemed to be deterministic in nature, as they oscillated around a 

mean steady-state value.  The fact that a steady-state mean value was eventually achieved 

demonstrated that incipient PCI was not met in this particular computational wave-optics 

experiment. 
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The same periodic oscillations were also witnessed in the root mean square 

(RMS) DMr  of the DM commands and the variance 2
DM  of the DM commands as a 

function of time.  As shown in Figure 48, system stability was achieved in both cases.  

This is said because the RMS DMr  of the DM commands and the variance 2
DM  of the 

DM commands eventually settled down as time progressed.  For both simulated 

distortion numbers, 16.8 radDN   and 42.0 radDN  , exponential behavior was 

witnessed early on in the computational wave-optics experiment.  This was almost 

expected in the analysis given the nature of the problem.  Positive feedback results from 

phase compensation of thermal blooming.  The fact that the system measurements 

eventually settled down demonstrated the fact the positive feedback was unsuccessful in 

creating the runaway behavior associated with the conditions for insipient PCI. 
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a.) 

 
b.) 

Figure 47.  Comparison study for ab initio phase compensation of time-dependent thermal 
blooming using a.) peak Strehl ratio versus time and b.) normalized power in the bucket 
versus time.
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a.) 

 
b.) 

Figure 48.  Comparison study for ab initio phase compensation of time-dependent thermal 
blooming using a.) RMS of DM commands versus time and b.) variance of DM commands 
versus time. 
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3.2.7 Deferred Phase Compensation 

 The second regime of phase compensation studied in the analysis is referred to as 

deferred phase compensation.  With deferred phase compensation, the AO system is 

operated in a closed-loop configuration, but the AO control loop is not closed right away.  

This corresponds to the case where the AO system is operated in open loop; however, in 

the closed-loop configuration as described in Figure 11.  Simply put, in the deferred 

phase compensation regime, the AO control loop remains open for a user-defined amount 

of time.   

The computational wave-optics experiment proposed here, simulates the case 

where the AO system is allowed to run in open loop until steady-state thermal blooming 

conditions are achieved.  While in open loop operation, both the DM and the FSM are 

commanded to flat.  Thus, the WFS and tracker are able to sense the effects of time-

dependent thermal blooming; however, no phase compensation is applied until steady-

state thermal blooming conditions are achieved.  In WaveProp, the proposed deferred 

regime of phase compensation is particularly easy to simulate.  This is said because 

steady-state thermal blooming conditions are readily achieved by seeding the 

computational wave-optics experiment with steady-state thermal blooming conditions 

from the algorithm proposed in Eq. (87).  From here, the computational wave-optics 

experiment proceeds with the phase compensation of time-dependent steady-state thermal 

blooming as determined by the algorithm proposed in Eq. (82).  This process was 

effectively tested in creating the time-dependent steady-state thermal blooming results 

found in Figure 33, 1SS  . 
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 It should be noted that the deferred regime of phase compensation was originally 

proposed by MIT-LL [90,106,103].  The experimental results published by MIT-LL 

claimed that the level of thermal blooming in the atmosphere had a significant impact on 

the conditions for insipient PCI.  Specifically, the results published by MIT-LL showed 

that the deferred phase compensation always outperformed the ab initio phase 

compensation.  To explain the results, it was conjectured by MIT-LL that if the AO 

system was given the opportunity to sense and correct for the small-scale perturbations in 

the irradiance and or phase as they developed from time-dependent thermal blooming 

(such is the case with  ab initio phase compensation), then the conditions for incipient 

PCI were met a lot sooner in the analysis.  This conjecture was grounded with the micro-

scale interpretation of PCI developed by the linearized theory produced by LLNL and 

discussed above.  

 With this in mind, the results for the  deferred phase compensation of time-

dependent steady-state thermal blooming are given in Figure 49-Figure 52.  For all 

intents and purposes, the results showed the same exact trends as those for ab initio  

phase compensation, despite the results published by MIT-LL.  The high points worth 

mentioning here are as follows. 

 Normalized irradiance time stamps are given in Figure 49 and Figure 50 for a 
simulated distortion number just below the critical point, 16.8 radDN  , and a 
distortion number well above the critical point, 42.0 radDN  , respectively.   
 

 As shown in  Figure 49 and Figure 50, the characteristic crescent pattern 
associated with steady-state thermal blooming are provided in the first time 
stamp.   
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 With deferred phase compensation, the characteristic crescent pattern was again 
confined to the diffraction limited bucket diameter, 1.3 cmBD  , as time 
progressed. 
 

 In Figure 51, peak Strehl ratio PS  and normalized power in the bucket BP  
calculations in the target plane as a function of time were compared for the same 
data and simulated distortion numbers, 16.8 radDN   and 42.0 radDN  , and the 
results again show definite improvements in system performance.   
 

 For the distortion number above the critical point, 42.0 radDN  , periodic 
oscillations in the system performance measurements were observed.   
 

 The same periodic oscillations were also witnessed in the root mean square 
(RMS) DMr  of the DM commands and variance 2

DM  of the DM commands as a 
function of time, as shown in Figure 52. 
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a.) 

 
b.) 

Figure 49.  Normalized HEL beam irradiance with deferred phase compensation of time-
dependent thermal blooming for a distortion number, ND=16.8 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles 
represents the diffraction limited bucket diameter for the simulations, DB=1.3 cm
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a.) 

 
b.) 

Figure 50.  Normalized HEL beam irradiance with deferred phase compensation of time-
dependent thermal blooming for a distortion number, ND=42.0 rad.  In a.) the simulation runs 
from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white circles 
represents the diffraction limited bucket diameter for the simulations, DB=1.3 cm
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a.) 

 
b.) 

Figure 51.  Comparison study for deferred phase compensation with time-dependent thermal 
blooming using a.) peak Strehl ratio versus time and b.) normalized power in the bucket 
versus time.
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a.) 

 
b.) 

Figure 52.  Comparison study for deferred phase compensation of time-dependent thermal 
blooming using a.) RMS of DM commands versus time and b.) variance of DM commands 
versus time.
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3.2.8 Open-Loop Ab Initio Phase Compensation of Thermal Blooming 

 To continue the analysis, results are presented which support the micro-scale 

interpretation of PCI.  They also support the fact that computational wave-optics 

experiments are a good vehicle in which to study the conditions for insipient PCI.  With 

this said, the computational wave-optics experiment conducted here explored the 

possibility for insipient PCI with an adaptive optics system operating in the open loop 

regime.  The experimental setup is essentially demonstrated above in Figure 10.   

The open-loop phase compensation simulated here, directly measured the 

incoming point-source beacon with the WFS and tracker.  It is important to note that the 

DM and FSM were essentially bypassed with the point source beacon.  Next, the 

measurements from the WFS and tracker were then blindly used to control the DM and 

FSM with the same AO control parameters described above in Figure 26.  With this 

experimental design, no feedback was simulated for the phase compensation of the 

outgoing HEL beam.  Thus, the simulated AO system essentially had a tremendous 

amount of servo gain. 

The results for open-loop ab initio phase compensation of time-dependent thermal 

blooming are given in Figure 53 and Figure 54.  Here, normalized irradiance time-stamps 

are given.  The lowest distortion number, 8.39 radDN  , as given in Table 2 was 

simulated here to obtain the results.  For all intents and purposes, the results demonstrate 

all of the symptoms associated with the micro-scale interpretation of PCI.  This is said 

because with a high servo gain, the conditions for runaway in the adaptive optics control 

loop are met.  As shown in Figure 53 in terms of normalized irradiance time stamps, the 

positive feedback caused by the open-loop phase compensation of thermal blooming 



193 
 

essentially causes the HEL beam to break apart into smaller and smaller spatial 

perturbations.  Eventually, the spatial perturbations wander off the edge of the grid and 

cause aliasing; however, there is a significant decrease in peak irradiance beforehand.   

 

 

Figure 53.  Normalized HEL beam irradiance with open-loop ab initio phase compensation of 
time-dependent thermal blooming for a distortion number, ND=8.39 rad.  The simulation 
runs from 1 ms to 25 ms.  The white circles represents the diffraction limited bucket diameter 
for the simulations, DB=1.3 cm 

 

The idea associated with small-scale perturbation growth is better demonstrated in 

Figure 54.  Here, normalized irradiance is given for the 25 ms time stamp.  Based on the 

micro-scale interpretation of PCI, the result makes sense.  This is said because the 

positive feedback in the AO control loop essentially causes the HEL beam to break up 

into a bunch of small scale spatial perturbations.  These spatial perturbations grow in time 

and with propagation.   
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Figure 54.  Simulation time stamp, t=25 ms, for normalized HEL beam irradiance with open-
loop ab initio phase compensation of time-dependent thermal blooming and a distortion 
number, ND=8.39 rad.  The white circle represents the diffraction limited bucket diameter for 
the simulation, DB=1.3 cm. 

 

 System performance measurements also demonstrate signs of severe PCI.  For 

example, as shown in Figure 55, both the peak Strehl ratio PS  and the normalized power 

in the bucket BP  calculations in the target plane versus time quickly degrade as time 

progresses.  This is very indicative of the conditions for incipient PCI.  System stability is 

also severely compromised.  This is witnessed in Figure 56 with the RMS DMr  of the DM 

commands and the variance 2
DM  of the DM commands as a function of time.  Both 

stability measurement give raise to exponential behavior, a true indicator of instability.   
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a.) 

 
b.) 

Figure 55.  Instability study for open-loop ab initio phase compensation with time-dependent 
thermal blooming using a.) peak Strehl ratio versus time and b.) normalized power in the 
bucket versus time.
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a.) 

 
b.) 

Figure 56.  Instability study for open-loop ab initio phase compensation of time-dependent 
thermal blooming using a.) RMS of DM commands versus time and b.) variance of DM 
commands versus time.
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3.2.9 Ab Initio Phase Compensation of Thermal Blooming and Turbulence 

 The results presented in this subsection are a culmination of the results presented 

throughout this entire chapter.  With that said, normalized irradiance time stamps are 

given in Figure 57 for the ab initio phase compensation of time-dependent turbulent 

thermal blooming and one independent realization of optical turbulence.  The distortion 

number, 15.5 radDN  , simulated here corresponds to one found just below the critical 

point.  Note that the AO system struggles to perform phase compensation for both time-

dependent turbulent thermal blooming and one realization of optical turbulence. 

 This statement is supported with the results presented in Figure 58.  Here, peak 

Strehl ratio PS  and the normalized power in the bucket BP  calculations in the target plane 

versus time are provided for the average of 25 individual realizations of optical 

turbulence combined with time-dependent turbulent thermal blooming and or time-

dependent thermal blooming.  Note that the system measurements steadily ―fizzle‖ out as 

time progresses.  The results are also compared to the results obtained for ab initio phase 

compensation of only time-dependent turbulent thermal blooming and or time-dependent 

thermal blooming.  The results presented in Figure 59 correspond to system stability.  

Here, the RMS DMr  of the DM commands and the variance 2
DM  of the DM commands 

as a function of time were plotted for the same simulation conditions as previously stated.  

No further insight is added, as there are no apparent signs of instability in the 

turbulence/thermal blooming results. 
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a.) 

 
b.) 

Figure 57.  Normalized HEL beam irradiance with ab initio phase compensation of time-
dependent turbulent thermal blooming and one realization of optical turbulence for a 
distortion number, ND=15.5 rad, a wind velocity standard deviation, σv=1.8 m/s, and a 
spherical coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs from 1 ms to 25 ms 
and in b.) the simulation runs from 25 ms to 150 ms.  The white circles represents the 
diffraction limited bucket diameter for the simulations, DB=1.3 cm.
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a.) 

 
b.) 

Figure 58.  Comparison study for ab initio phase compensation with time-dependent 
turbulent thermal blooming and the average of 25 realizations of optical turbulence using a.) 
peak Strehl ratio versus time and b.) normalized power in the bucket versus time.
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a.) 

 
b.) 

Figure 59.  Comparison study for ab initio phase compensation with time-dependent 
turbulent thermal blooming and the average of 25 realizations of optical turbulence using a.) 
RMS of DM commands versus time and b.) variance of DM commands versus time.
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Normalized irradiance time stamps are also given in Figure 60 for the ab initio 

phase compensation of time-dependent turbulent thermal blooming and one independent 

realization of optical turbulence.  The distortion number, 38.8 radDN  , simulated here 

corresponds to one found well above the critical point.  Note that the AO system is 

unable to perform phase compensation for both time-dependent turbulent thermal 

blooming and one realization of optical turbulence.  System performance in this case is 

completely compromised. 

 This statement is supported with the results presented in Figure 61.  Here, peak 

Strehl ratio PS  and the normalized power in the bucket BP  calculations in the target plane 

versus time are provided for the average of 25 individual realizations of optical 

turbulence combined with time-dependent turbulent thermal blooming and or time-

dependent thermal blooming.  Note that the system measurements are basically non-

existent as time progresses.  This is better realized when compared to the results obtained 

for ab initio phase compensation of only time-dependent turbulent thermal blooming and 

or time-dependent thermal blooming.  The results presented in Figure 59 correspond to 

system stability.  Here, the RMS DMr  of the DM commands and the variance 2
DM  of the 

DM commands as a function of time were plotted for the same simulation conditions as 

previously stated.  No further insight is added, as there are no apparent signs of instability 

in the turbulence/thermal blooming results.  One thing worth noting in the analysis before 

moving on is the fact the periodic oscillations are mitigated when optical turbulence is 

added to the mix. 
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a.) 

 
b.) 

Figure 60.  Normalized HEL beam irradiance with ab initio phase compensation of time-
dependent turbulent thermal blooming and one realization of optical turbulence for a 
distortion number, ND=38.8 rad, a wind velocity standard deviation, σv=1.8 m/s, and a 
spherical coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs from 1 ms to 25 ms 
and in b.) the simulation runs from 25 ms to 150 ms.  The white circles represents the 
diffraction limited bucket diameter for the simulations, DB=1.3 cm.
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b.) 

 
b.) 

Figure 61.  Comparison study for ab initio phase compensation with time-dependent 
turbulent thermal blooming and the average of 25 realizations of optical turbulence using a.) 
peak Strehl ratio versus time and b.) normalized power in the bucket versus time.
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a.) 

 
b.) 

Figure 62.  Comparison study for ab initio phase compensation with time-dependent 
turbulent thermal blooming and the average of 25 realizations of optical turbulence using a.) 
RMS of DM commands versus time and b.) variance of DM commands versus time.
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4.  Experimental Analysis and Discussion 
 

 In this chapter, further analysis is presented in support of the parameter space 

exploration given in the previous chapter.  The goal for this analysis is to discern the 

cause of the periodic oscillations witnessed in the system performance measurements.  It 

is shown that branch points result from the phase compensation of ―strong‖ thermal 

blooming and are the cause the periodic oscillations.  In turn, these branch points limit 

insipient phase compensation instability (PCI).  This conjecture is strongly supported 

with a correlation study, which shows that the system performance measurements are 

correlated with the number of branch points.  What is more, the correlation is strongly 

influenced by the strength of the thermal blooming.  As the strength of thermal blooming 

is increased, the correlation study shows that the measured system performance becomes 

increasingly uncorrelated with an increased number of branch points. 

When the spatial resolution of the wavefront sensor (WFS) and the strength of the 

thermal blooming are increased, it is shown that system performance becomes 

compromised with the conditions of insipient PCI.  Here, the correlation analysis shows 

that the measured system performance becomes anticorrelated with the number of branch 

points.  The branch points present in this regime ensue their traditional role in directly 

decreasing system performance.   

The measured system performance becomes increasingly anticorrelated when 

optical turbulence is added to the mix.  These results make sense based on the system 

performance measurements presented in the previous chapter.  In addition, these results 

offer definite trends.  With increased optical distortion, whether from thermal blooming, 
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insipient PCI, and or optical turbulence, the branch point mitigation of PCI is 

increasingly less effective.  The observed trends are consistent with previous work in 

turbulence [124]; however, are new in terms of characterizing the effects of thermal 

blooming and PCI. 

4.1 Impact of Branch Points on Incipient PCI 

 In the exploration of the parameter space provided in the previous chapter, it was 

noticed that periodic oscillations arise in the system performance measurements as the 

strength of the simulated thermal blooming is increased.  These periodic oscillations were 

first described by Lukin and Fortes as a result of branch points [121,7].  In this ground-

breaking research, the periodic oscillations were referred to as auto oscillations.  It was 

determined by Lukin and Fortes that the branch points arise with idealized phase 

compensation of a focused HEL beam in the presence of thermal blooming.  Since this 

discovery, no further research has been published to better characterize the effects of 

branch points in the presence of ―strong‖ thermal blooming.  The analysis provided here, 

uses the correlation coefficient   as defined in Eq. (164) to relate the similarities found 

between the measured peak Strehl ratio PS  and the number of branch points as a function 

of time.



207 
 

4.1.1 Branch Points in the Presence of Strong Thermal Blooming 

 From the parameter space exploration provided in the previous chapter, it was 

noted that the point-source beacon irradiance in the source plane varied as a result of the 

phase compensation of time-dependent thermal blooming.  This point is demonstrated in 

Figure 63 with varying time stamps for the normalized beacon irradiance in the source 

plane and a simulated distortion number well above the critical point, 42.0 radDN  .  

The ―middle of the road‖ AO system parameters, sub 16n   and lod 8 λn  , as given in 

Table 3, were also used to obtain these results.  It is important to note that the point-

source beacon irradiance variations were consistently found in the results obtained with 

ab initio and deferred phase compensation regimes of time-dependent thermal blooming.   

 Large-scale variations in the point-source beacon irradiance provide the 

conditions needed for branch points to arise in the point-source principle value or 

wrapped phase.  This topic was addressed above with the introductory analysis given on 

branch points.  As such, the point-source wrapped phase in the source plane is shown in 

Figure 64 for the same distortion number, 42.0 radDN  , and the same time stamps as 

those shown in Figure 63 for the normalized point-source beacon irradiance in the source 

plane.  The ―middle of the road‖ AO system parameters, sub 16n   and lod 8 λn  , as 

given in Table 3, were also used to obtain these results.  From the results presented in 

Figure 64, it was made clear that the point-source wrapped phase in the source plane 

showed the symptoms associated with the presence of numerous branch points.  Thus, a 

branch point study was conducted. 
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 The algorithm given in Eq. (174) was used to detect branch points present in the 

source plane for each simulated time step.  From this analysis, it was officially discovered 

that there were a significant number of branch points present in the wave-optics 

experiments as a result of ―strong‖ thermal blooming.  As shown in Figure 65, as many as 

3806 branch points were present in the source plane at a given time stamp.  The mean 

number of branch points for the various distortion numbers DN  and AO system 

parameters tested are tabulated in the Appendix.  It should be noted that branch points 

only arise in the wave-optics experiments with simulated distortion numbers above the 

critical distortion number, D CN N , i.e. ―strong‖ thermal blooming. 

Unfortunately, the results provided in Figure 64 and Figure 65 also show 

symptoms of aliasing.  It is conjectured that the aliasing artificially increased the number 

of branch points obtained in some of the results.  The high number of branch points could 

have also caused some of the aliasing.  Future computational wave-optics experiments 

will require a higher number of grid points to combat these aliasing effects.  Nonetheless, 

this small setback was noted and a correlation analysis was conducted. 

 

 

 



209 
 

 

 

 
a.) 

 
b.) 

Figure 63.  Normalized point-source beacon irradiance in the source plane with ab initio 
phase compensation of time-dependent thermal blooming for a distortion number, ND=42.0 
rad.  In a.) the simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms 
to 150 ms.
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a.) 

 
b.) 

Figure 64.  Measured point-source beacon wrapped phase in the source plane with ab initio 
phase compensation of time-dependent thermal blooming for a distortion number, ND=42.0 
rad.  In a.) the simulation runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms 
to 150 ms..
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a.) 

 
b.) 

Figure 65.  The highest number of branch points present in the source plane with ab initio 
phase compensation of time-dependent thermal blooming for a distortion number, ND=42.0 
rad.  In a.) the point-source beacon wrapped phase for the t=87 ms time stamp is given and in 
b.) the associated placement of the branch points is given.
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4.1.2 System Performance in Presence of Branch Points 

 The next step in the analysis was to relate the presence of branch points in the 

source plane to system performance in the target plane.  For this purpose, a correlation 

study was conducted using the correlation coefficient  , as given in Eq. (164).  The 

results are tabulated in the Appendix for the various distortion numbers DN  and AO 

system parameters tested.  It was determined that the number of branch points in the 

source plane as a function of time were correlated with the peak Strehl ratio PS  

calculations in the target plane as a function of time.  This relationship is shown in Figure 

66, where a correlation coefficient, 0.118  , was obtained for a simulated distortion 

number well above the critical point, 42.0 radDN  , and the ―middle of the road‖ AO 

system parameters, sub 16n   and lod 8 λn  , as provided in Table 3. 

What this means in the analysis is that as system performance increases due to 

phase compensation of time-dependent thermal blooming, the number of branch points 

increases.  With an increase in the number of branch points, the simulated AO system is 

unable to sense and correct for the effects of time-dependent thermal blooming.  As a 

result, system performance decreases.  This decrease in system performance also marks a 

decrease in the number of branch points and the process is essentially repeated—hence 

the presence of periodic oscillations in the system performance measurements.   

The presence of branch points effectively mitigates PCI.  This is said because the 

branch points prevent system performance and in so doing prevent the positive feedback 

associated with the macro- and micro-scale interpretations of PCI.  The branch point 

mitigation of PCI does not provide stellar system performance, as noted in Figure 66.  
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However, system performance was not completely compromised as is the case when in 

the presence of PCI. 

 

 
Figure 66.  Comparison of peak Strehl ratio calculations in the target plane as a function of 
time with the number of branch points in the source plane as a function of time for a 
distortion number, ND=42.0 rad, 16 subapertures across the aperture, nlod=32, and ten waves 
of tilt per subaperture, nlod=10 λ.  The results show that the two measurements are correlated 
for time-dependent thermal blooming. 
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and D CN N .  It is shown here, that as the Fresnel perturbation number PN  is decreased 

and the distortion number dN  is increased well above the critical distortion number CN , 

the conditions for insipient PCI are met, and system performance becomes compromised.  

However, the Fresnel perturbation number PN  does not characterize the conditions for 

insipient PCI entirely.  Subaperture field of view (FOV) on the simulated Shack-

Hartmann WFS must be taken into account as well when in the presence of branch points.  

The analysis shows that when the conditions for insipient PCI are met, the number of 

branch points becomes anticorrelated with the system performance measurements. 

4.2.1 Spatial Resolution in the Presence of Thermal Blooming 

 By increasing the AO system spatial resolution, the conditions for incipient PCI 

were met.  For example, as shown in Figure 67, the normalized irradiance time stamps 

show symptoms associated with incipient PCI—as time progresses, energy slowly leaks 

out of the diffraction limited bucket diameter and never comes back.  To produce the 

results shown in Figure 67 a distortion number, 33.6 radDN  , was used.  This 

corresponded to a distortion number well above the critical point; thus, half of the 

criterion for a high PCI gain factor was met.  The other half of the criterion included a 

low Fresnel perturbation number, 0.577PN  , as given in Table 3.   

The number of waves of tilt lodn  used in the Shack-Hartmann WFS design also 

played a big role in the decrease in system performance.  This point is not addressed in 

the results given in Figure 67.  Remember that the number of waves of tilt lodn  is directly 

related to subaperture FOV, as discussed in Figure 13.  Unfortunately, this engineering 

parameter is not taken into account in the calculation of the Fresnel perturbation number 
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PN , as given in Eq. (170).  As a result, a new constraint was thrown into the mix.  This 

point is demonstrated in Figure 68 and Figure 69.  Here, the number of subapertures subn  

and the number of waves of tilt lodn  are varied in the simulated Shack-Hartmann WFS 

design.  These results were obtained for the same distortion number, 33.6 radDN  , used 

to create the normalized irradiance time stamps found in Figure 67.  Peak Strehl ratio PS  

and normalized power in the bucket BP  calculations in the target plane versus time are 

shown in Figure 68.  When the right criterion is met, where 33.6 radDN  , sub 32n  , and 

lod 8n  , system performance is compromised with the symptoms of insipient PCI.  These 

conclusions are also made in the analysis of Figure 69.  Here, system stability is 

compromised with exponential behavior in the RMS DMr  of the DM commands and the 

variance 2
DM  of the DM commands.  It is important to note that the periodic oscillations 

were also present in the compromised results presented in Figure 68 and Figure 69; thus, 

a correlation analysis was conducted to discern their cause. 
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a.) 

 
b.) 

Figure 67.  Normalized HEL beam irradiance with ab initio phase compensation of time-
dependent thermal blooming for a distortion number, ND=33.6 rad, 32 subapertures across 
the aperture, nlod=32, and eight waves of tilt per subaperture, nlod=8 λ.  In a.) the simulation 
runs from 1 ms to 25 ms and in b.) the simulation runs from 25 ms to 150 ms.  The white 
circles represents the diffraction limited bucket diameter for the simulations, DB=1.3 cm.
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a.) 

 
b.) 

Figure 68.  Spatial resolution study to determine insipient PCI for ab initio phase 
compensation with time-dependent thermal blooming and a distortion number, ND=33.6 rad, 
using a.) peak Strehl ratio versus time and b.) normalized power in the bucket versus time.
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a.) 

 
b.) 

Figure 69.  Spatial resolution study to determine insipient PCI for ab initio phase 
compensation with time-dependent thermal blooming and a distortion number, ND=33.6 rad, 
using a.) RMS of DM commands versus time and b.) variance of DM commands versus time.
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4.2.2 System Performance with Increased Spatial Resolution 

 The next step in the analysis was to relate the presence of branch points in the 

source plane to system performance in the target plane; however, in this case the spatial 

resolution of the simulated AO system parameters were increased.  For this purpose, a 

correlation study was conducted using the correlation coefficient  , as given in Eq. 

(164).  The results are tabulated in the Appendix for the various distortion numbers DN  

and AO system parameters tested.  It was determined that the number of branch points in 

the source plane as a function of time were anticorrelated with the peak Strehl ratio PS  

calculations in the target plane as a function of time.  This relationship is shown in Figure 

70, where a correlation coefficient, 0.279   , was obtained for a simulated distortion 

number well above the critical point, 42.0 radDN  , and the highest spatial resolution 

AO system parameters tested, sub 32n   and lod 10 λn  , as provided in Table 3. 

What this means in the analysis is that as system performance decreases due to 

phase compensation of time-dependent thermal blooming the number of branch points 

increases.  With an increase in the number of branch points, the simulated AO system is 

unable to sense and correct for the effects of time-dependent thermal blooming.  As a 

result, system performance decreases even more.  This decrease in system performance 

marks a regime where the AO system is completely unable to sense and correct for the 

effects of time-dependent thermal blooming.   

The presence of branch points effectively drives the AO system to failure when in 

the presence of increased spatial resolution AO system parameters.  This is said because 

the branch points essentially induce insipient PCI.  In so doing the positive feedback 
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associated with the macro- and micro-scale interpretations of PCI are too great to 

overcome.  It should be noted that system performance is compromised when in the 

presence of PCI. 

 

 

Figure 70.  Comparison of peak Strehl ratio calculations in the target plane as a function of 
time with the number of branch points in the source plane as a function of time for a 
distortion number, ND=42.0 rad, 32 subapertures across the aperture, nlod=32, and ten waves 
of tilt per subaperture, nlod=10 λ.  The results show that the two measurements are 
anticorrelated for time-dependent thermal blooming. 

 

4.3 Impact of Optical Turbulence on incipient PCI 

 It was shown in the previous chapter that the periodic oscillations associated with 

the phase compensation of ―strong‖ thermal blooming essentially go away when optical 
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present in the results.  The analysis provided here shows that system performance and the 

number of branch points are highly anticorrelated.   

4.3.1 Branch Points in the Presence of Thermal Blooming and Turbulence 

From the parameter space exploration provided in the previous chapter, it was 

noted that the point-source beacon irradiance in the source plane also varied as a result of 

the phase compensation of time-dependent turbulent thermal blooming and one 

realization of optical turbulence.  This point is demonstrated in Figure 71 with varying 

time stamps for the normalized beacon irradiance in the source plane and a simulated 

distortion number well above the critical point, 38.8 radDN  .  The ―middle of the road‖ 

AO system parameters, sub 16n   and lod 8 λn  , as given in Table 3, were also used to 

obtain these results.   

 Large-scale variations in the point-source beacon irradiance provided the 

conditions needed for branch points to arise in the point-source principle value or 

wrapped phase.  This topic was addressed above with the introductory analysis given on 

branch points and branch cuts.  As such, the point-source wrapped phase in the source 

plane is shown in Figure 72 for the same distortion number, 38.8 radDN  , and the same 

time stamps as those shown in Figure 71 for the normalized point-source beacon 

irradiance in the source plane.  From the results presented in Figure 72, it was made clear 

that the point-source wrapped phase in the source plane showed the symptoms associated 

with the presence of numerous branch points. 

 The algorithm given in Eq. (174) was used to detect branch points present in the 

source plane for each simulated time step.  From this analysis, it was officially discovered 
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that there were a significant number of branch points present in the wave-optics 

experiments as a result of ―strong‖ thermal blooming; however, not as many as in the 

case with only time-dependent thermal blooming8.  For example, a mean number of 

branch points, 325BP  , was determined for the results given in Figure 72.  It should be 

noted that branch points were also present in the wave-optics experiments with simulated 

distortion numbers below the critical distortion number, D CN N , i.e. ―moderate‖ 

thermal blooming.  This was not the case with only time-dependent thermal blooming 

simulated in the wave-optics experiments.  It should also be noted that no branch points 

were detected for the case where only ―moderate‖ optical turbulence was simulated in the 

wave-optics experiments. 

As shown in Figure 73, as many as 806 branch points were present in the source 

plane at a given time stamp.  No apparent aliasing was present in these results.  The 

simulated optical turbulence tended to ―wash out‖ the high spatial frequencies associated 

with the aliasing seen in Figure 65.  A correlation study was conducted to discern the 

impact of the branch points on system performance. 

 

                                                 
8 Aliasing in the results may or may not have artificially increased the number of branch points obtained 
with only time-dependent thermal blooming.  Future research is needed to discern this conjecture 
definitively. 
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a.) 

 
b.) 

Figure 71.  Normalized point-source beacon irradiance in the source plane with ab initio 
phase compensation of time-dependent turbulent thermal blooming and one independent 
realization of optical turbulence for a distortion number, ND=38.8 rad, and a spherical-wave 
coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs from 1 ms to 25 ms and in b.) 
the simulation runs from 25 ms to 150 ms.
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a.) 

 
b.) 

Figure 72.  Measured point-source beacon wrapped phase in the source plane with ab initio 
phase compensation of time-dependent turbulent thermal blooming and one independent 
realization of optical turbulence for a distortion number, ND=38.8 rad, and a spherical-wave 
coherence diameter, r0,sw=13.6 cm.  In a.) the simulation runs from 1 ms to 25 ms and in b.) 
the simulation runs from 25 ms to 150 ms.
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a.) 

 
b.) 

Figure 73.  The highest number of branch points present in the source plane with ab initio 
phase compensation of time-dependent turbulent thermal blooming and one independent 
realization of optical turbulence for a distortion number, ND=38.8 rad, and a spherical-wave 
coherence diameter, r0,sw=13.6 cm.  In a.) the point-source beacon wrapped phase for the t=87 
ms time stamp is given and in b.) the associated placement of the branch points is given. 
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4.3.2 System Performance with branch points and Turbulence 

The next step in the analysis was to relate the presence of branch points in the 

source plane to system performance in the target plane.  Here, the refraction effects of 

time-dependent turbulent thermal blooming and 25 independent realizations of optical 

turbulence were included in the analysis.  A correlation study was conducted using the 

correlation coefficient  , as given in Eq. (164).   

Under ―strong‖ thermal blooming conditions, it was determined that the number 

of branch points in the source plane as a function of time were highly anticorrelated with 

the peak Strehl ratio PS  calculations in the target plane as a function of time.  This 

relationship is shown in Figure 74, where a correlation coefficient, 0.507   , was 

obtained for a simulated distortion number well above the critical point, 38.8 radDN  , 

and the ―middle of the road‖ AO system parameters, sub 16n   and lod 8 λn  , as provided 

in Table 3.  Under ―moderate‖ thermal blooming conditions, it was determined that the 

number of branch points in the source plane as a function of time were uncorrelated with 

the peak Strehl ratio PS  calculations in the target plane as a function of time.  In this 

regime, a correlation coefficient, 0.026   , was obtained for a simulated distortion 

number just below the critical point, 15.5 radDN  , and the ―middle of the road‖ AO 

system parameters, sub 16n   and lod 8 λn  , as provided in Table 3. 

What this means in the analysis is that as system performance decreases due to 

phase compensation of time-dependent thermal blooming the number of branch points 

increases tenfold.  With an large increase in the number of branch points, the simulated 

AO system is unable to sense and correct for the effects of time-dependent turbulent 
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thermal blooming.  As a result, system performance decreases even more.  This decrease 

in system performance marks a regime where the AO system is completely unable to 

sense and correct for the effects of time-dependent turbulent thermal blooming.  The 

presence of branch points effectively drives the AO system to failure for ―strong‖ thermal 

blooming and ―moderate‖ optical turbulence conditions. 

 

 
Figure 74.  Comparison of peak Strehl ratio calculations in the target plane as a function of 
time with the number of branch points in the source plane as a function of time for a 
distortion number, ND=38.8 rad, and a spherical-wave coherence diameter, r0,sw=13.6 cm.  
The results show that the two measurements are anticorrelated for time-dependent turbulent 
thermal blooming and 25 independent realizations of optical turbulence.

0 50 100 150
0

0.1

P
e
a
k

 S
tr

e
h

l 
R

a
ti

o

Time (ms)

0 50 100 150
0

500

N
u

m
b

e
r 

o
f 

B
ra

n
c
h

 P
o

in
ts



228 
 

5.  Conclusion 
 

 Past research efforts have studied thermal blooming in depth; however, there is 

still much to be discovered in terms of characterizing its detrimental effects.  With that 

said, the phase compensation instability (PCI) that arises in using an adaptive optics (AO) 

system to ―correct‖ for thermal blooming is still an important area of research in the 

directed energy (DE) community.  The research conducted in this thesis attempted to 

determine bounds for the onset of PCI.  In so doing, an additional limitation was 

discovered involving branch points.  The limitation of branch points was not well 

characterized in the literature for thermal blooming prior to this research effort.  As such, 

the analysis provided in this thesis serves as a significant contribution to the DE 

community.   

The analysis shows that branch points severely degrade an AO system in its 

ability to ―correct‖ for thermal blooming.  As a result, PCI is mitigated in specific 

regimes.  The mitigation of PCI is short lived in practice, as the analysis presented in this 

thesis shows that regimes exist outside the ideal case where PCI cannot be overcome.  

This is said because spatial resolution considerations and optical turbulence levy 

additional constraints. 

The conditions for insipient PCI are met with increased spatial resolution AO 

system parameters.  This is said with confidence based on the experimental results 

presented from previous research efforts [90,106,103] and the analysis given in this thesis 

effort.  However, the analysis conducted in this thesis shows that additional AO system 

parameters must be accounted for in determining bounds for insipient PCI.   
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 High spatial resolution AO system parameters are typically desired when 

considering the detrimental effects of optical turbulence.  Nonetheless, this is not 

effective when in the presence of thermal blooming.  The analysis given in this thesis 

supports this claim.  In fact, it takes this idea one step further with the results from a 

correlation analysis.  The results from the correlation analysis are given in Figure 75 and 

are explained as follows. 

 When an AO system is used to ―correct‖ for ―strong‖ thermal blooming 
conditions, branch points develop. 
 

 An increase in system performance leads to an increase in the number of branch 
points and vice versa, thus PCI is mitigated. 

 
 With increased spatial resolution, system performance is compromised with an 

increase in the number of branch points and the conditions for insipient PCI are 
met. 

 
 Optical turbulence and branch points pose a major problem for an adaptive optics 

system trying to ―correct‖ for ―strong‖ thermal blooming conditions. 
 

 
Figure 75.  Conclusion diagram. 
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The thorough analysis presented in this thesis took into account over 40 years 

worth of published research in thermal blooming and PCI.  For instance, the engineering 

parameters reviewed and used in this thesis served their purpose in giving rough bounds 

for insipient PCI.  However, the analysis shows that branch points add additional 

constraints to the problem.  These constraints are effectively described above in Figure 

75.  A refinement of the metrics used to characterize thermal blooming and PCI is in 

order for future research efforts.  Additionally, there is still a lot to be discovered in terms 

of characterizing the effects of branch points on insipient PCI.  For example, different 

types of AO systems respond differently to the presence of branch points.  The type of 

wavefront sensor and or deformable mirror used in the AO system design can have a 

significant impact on system performance.  Future research efforts could look at using 

different AO system designs to determine the optimal case. 

Figure 75 contains many ideas never before seen in the analysis of thermal 

blooming and PCI.  The branch point mitigation of PCI cannot be overlooked as a 

significant contribution.  This discovery could be used in future research efforts as a way 

to improve system performance.  However, the analysis also shows that spatial resolution 

considerations and optical turbulence cannot be disregarded.  These engineering 

constraints must be overcome to see that the technology DE weapons offer makes its way 

onto the battlefield in the near future.   
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Appendix 
 

Table 4.  Results corresponding to the correlation analysis for ab initio phase compensation of 
time-dependent thermal blooming. 

Number of 
waves of tilt 

lodn     

Number of 
subapertures 

subn  

Fresnel 
perturbation 
number PN  

Distortion 
number DN  
(rad) 

Mean # of 
branch 
points BP  

Correlation 
coefficient 
  

6 8 9.23 25.2 91.8 0.600 
6 8 9.23 33.6 279 0.402 
6 8 9.23 42.0 608 0.628 
6 16 2.31 25.2 19.1 0.255 
6 16 2.31 33.6 247 0.166 
6 16 2.31 42.0 169 0.277 
6 32 0.577 25.2 19.3 0.419 
6 32 0.577 33.6 84.8 0.434 
6 32 0.577 42.0 130 0.163 
8 8 9.23 25.2 102 0.515 
8 8 9.23 33.6 315 0.492 
8 8 9.23 42.0 348 0.179 
8 16 2.31 25.2 56.8 0.350 
8 16 2.31 33.6 252 0.516 
8 16 2.31 42.0 573 0.118 
8 32 0.577 25.2 93.1 -0.254 
8 32 0.577 33.6 438 -0.224 
8 32 0.577 42.0 649 0.0678 
10 8 9.23 25.2 31.2 0.565 
10 8 9.23 33.6 45.7 0.179 
10 8 9.23 42.0 65.8 -0.395 
10 16 2.31 25.2 70.5 0.359 
10 16 2.31 33.6 222 0.511 
10 16 2.31 42.0 812 0.0142 
10 32 0.577 25.2 81.5 -0.119 
10 32 0.577 33.6 240 -0.279 
10 32 0.577 42.0 452 -0.279 
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Table 5.  Results corresponding to the correlation analysis for deferred phase compensation of 
time-dependent steady-state thermal blooming. 

Number of 
waves of tilt 

lodn     

Number of 
subapertures 

subn  

Fresnel 
perturbation 
number PN  

Distortion 
number DN  
(rad) 

Mean # of 
branch 
points BP  

Correlation 
coefficient 
  

6 8 9.23 25.2 152 0.623 
6 8 9.23 33.6 478 0.403 
6 8 9.23 42.0 538 0.358 
6 16 2.31 25.2 50.7 0.495 
6 16 2.31 33.6 527 0.461 
6 16 2.31 42.0 437 0.282 
6 32 0.577 25.2 43.6 0.333 
6 32 0.577 33.6 137 0.128 
6 32 0.577 42.0 183 0.203 
8 8 9.23 25.2 184 0.500 
8 8 9.23 33.6 595 0.480 
8 8 9.23 42.0 573 0.276 
8 16 2.31 25.2 84.1 0.378 
8 16 2.31 33.6 475 0.422 
8 16 2.31 42.0 820 0.341 
8 32 0.577 25.2 205 0.346 
8 32 0.577 33.6 419 0.482 
8 32 0.577 42.0 1028 -0.0611 
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