Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations and to manually create new extraction rules or hand-tag new training examples. This manual labor scales linearly with the number of target relations. This proposal introduces Open IE, a new extraction paradigm where the system makes a single data-driven pass over its corpus and extracts a large set of relational tuples without requiring any human input. The proposal also introduces TextRunner, a fully implemented, highly scalable Open IE system where the tuples are assigned a probability and indexed to support efficient extraction and exploration via user queries. Open IE is a very recent research breakthrough funded, in part, by our previous ONR grant on “Semantic Tractability on the World Wide Web”. Here, we propose to study its efficacy and extend it in some important ways.
Technical Section

The goal of this research was to extract knowledge from text collections as large and diverse as the Web without any human input. We produced TextRunner, an Open Information Extraction system that mines massive, heterogeneous text corpora to extract relational tuples without any relation-specific input or training data.

- We introduced simple syntactic and lexical constraints on how binary relationships are expressed via verbs in English sentences. The syntactic constraint is captured by a compact regular expression over parts of speech, and the lexical constraint is enforced by statistics computed over the Google N-gram corpus.

- We implemented the constraints in the OCCAM extractor, which achieves substantially improved precision/recall over state-of-the-art open extractors such as TEXTRUNNER and WOE. OCCAM has more than twice the area under the precision-recall curve compared with TEXTRUNNER, 47% more than WOEpos, and 17% more than WOEparse. OCCAM is also 30x faster than WOEparse on average.

- We developed a contradiction detection system called AuContraire, which can find contradictions between various facts present in the web text. It applies probabilistic inference over information of meronymy, functionality of relations, and ambiguity in entities to distinguish between apparent contradictions and true contradictions.
• We developed Grounder, an entity resolution system, which maps surface forms of named entities into known entities in the Wikipedia taxonomy. The new approach is based on probabilistic techniques that combine evidence from the prior popularity of entities as well as the similarity between the Wikipedia page and the current webpage.

• We developed a fact re-ranker for TextRunner that, given a set of facts for a query, computes a best order in which they should be presented to the user. This system is based upon classifiers that classify whether a fact is basic to the query, whether the fact is surprising and unexpected, etc. The basic facts and surprising facts are ranked higher. These classifiers generalize from a limited set of training data. Additionally, our system is able to personalize the search results based on data provided by a user in the past queries.

• We developed a novel hypernym extractor that combines lexico-syntactic patterns with probabilistic techniques such as Hidden Markov models to infer whether an entity pair is in a hypernym-hyponym relationship.

• We are currently investigating increasing the precision and recall of TextRunner by incorporating additional linguistic resources and information. We are implementing a separate classifier for each linguistic construct such as appositives, relative clauses etc. We hope that a more precise and comprehensive TextRunner system will immensely benefit all research that uses TextRunner extractions as input.

• We are currently building a comprehensive repository of selectional preferences for arguments of each predicate based on statistical analysis over TextRunner extractions. Our preliminary results are very promising and we expect to release the data for thousands of predicates in the near future.

• We are investigating the next generation information extractor that will automatically build an expectation for possible future extractions as it reads text. For example, based on the current extraction it may add a template extraction in the database for all objects of the same type. This repository of templates will help guide the later extractions as more complex text is read.

• AuContraire discovered a surprising characterization of contradictions on the Web: of the seeming contradictions (extractions of a functional relation whose argument values disagree), only 1.2% are actual contradictions, from a set of TextRunner extractions from 117 million Web pages. The false contradictions have argument values that are compatible due to synonymy or meronymy (e.g. 'Vienna' does not contradict 'Austria'). Ambiguous argument values that refer to different real-world entities also produce false contradictions. Despite the badly skewed data, AuContraire found true contradictions with precision 1.0 at recall 0.15 and with precision 0.48 at recall 0.29.
- AuContraire learned functionality of predicates and ambiguity of arguments in alternating EM-like iterations. It achieved precision 0.67 at recall 0.55 for functionality and precision 0.87 at recall 0.34 for ambiguity.

- Grounder demonstrated the importance of prior probabilities in mapping referencees in context to Wikipedia articles. Cosine similarity between a document and the Wikipedia article gave precision 0.67 at recall 0.27, while a prior that ignores context gave precision 1.0 at recall 0.31. Combining both sources of knowledge gave results superior to either alone, achieving precision 0.91 at recall 0.62.

- Our HypernymFinder found at least one correct hypernym for proper nouns with precision 0.90 at recall 0.32 (as compared with WordNet that covered only 17% of the proper nouns in our test set). For common nouns HypernymFinder had precision 0.90 at recall 0.67. An HMM-based classifier handles instances not covered by lexico-syntactic patterns, increasing recall by 0.06 for proper nouns and by 0.02 for common nouns.

- Our fact re-ranker evaluated several definitions of interestingness of a fact. We found that three definitions, basic facts, specific facts and distinguishing facts, can make a fact interesting. Often these span different kinds of facts. Our re-ranker was able to increase the number of interesting facts in the first thirty results of the query from 42% to 64% resulting in a better user experience for the users.

- We reimplemented TextRunner’s tuple extractor using a self-supervised Conditional Random Field (CRF). TextRunner learns a relation-independent extractor by automatically generating positive and negative training examples from parse trees and a small set of relation-independent heuristics. Where the previous TextRunner was limited to binary tuples of the form (arg1, pred, arg2), the new implementation finds tuples with an arbitrary number of arguments.

- We evaluated TextRunner’s open extraction model relative to the traditional extraction paradigm in which a relation is specified in an advance, along with hand-labeled training data per relation.

- We built the Holmes system on top of TextRunner, which is able to infer new facts not seen on any page in the corpus. It does this by combining facts from multiple web pages using a small set of rules. Furthermore we demonstrated that relations extracted from the web have the property of being Approximately Pseudo-functional (most entities appear with only a small number of other entities), and this property allows Holmes’s inference to scale linearly with the size of the input corpus. For some example queries, we demonstrated that Holmes doubled recall over the baseline TextRunner system, and can do so in only a few CPU minutes.
• We developed Alice, one of the first learning agents whose goal is to automatically discover a domain theory -- a collection of concepts, facts and generalizations for a given topic -- directly from Web text. Alice uses relational tuples extracted by TextRunner to learn new concepts and build relationships between concepts in a hierarchy.

• We demonstrated that the new implementation of TextRunner can extract a variety of relations with precision 88.3% and recall 45.2%, while the previous implementation had precision 86.6% at recall 23.2%. This is gives an F1 measure 63.4% higher than the previous implementation.

• We found that without any relation-specific input, TextRunner obtains the same precision with lower recall as a traditional supervised extractor trained using hundreds and sometimes thousands, of labeled examples per relation.

• We are currently observing that relational tuples located by TextRunner can be used to bootstrap training of individual relations. TextRunner automatically provides several orders of magnitude more training data without the cost of hand-tagging, yielding substantial gains in F1 on a per-relation basis.

Awards and Honors

Stefan Schoenmaekers' Ph.D. dissertation was accepted in Winter 2011, but a copy is not yet available.

"Unsupervised named-entity extraction from the Web: An experimental study" is the most cited Artificial Intelligence article in the last 5 years.

Ph.D. alum Doug Downey selected as a Microsoft Research Faculty Fellow in 2010.

Michael Cafarella received his Ph.D. degree in Summer 2009; his dissertation is included in the publications section below.

Michele Banko received her Ph.D. degree in Spring 2009; her dissertation is included in the publications section below.

Doug Downey received his Ph.D. degree in Autumn 2008; his dissertation is included in the publications section below.

Thomas Lin and Alan Ritter were each awarded 3 year National Defense Science and Engineering Graduate (NDSEG) Fellowships in 2008.
Anthony Fader was awarded a 3 year National Science Foundation Graduate Fellowship in 2007.

Patent Filings or Patent Awards

There were no patent filings or patent awards resulting from this grant. However a patent award was received during the performance period of this grant. That patent award, identified below, resulted from a patent filing that was submitted during our previous grant, N00014-05-1-0185.

US patent 7,877,343
Title: Open Information Extraction From the Web
Awarded: January 25, 2011

Publications

Publications produced during the report period are listed below; online copies of these publications can be found at http://turing.cs.washington.edu/publications.htm.

Presentations

1. Invited Talk (International Joint Conference on Artificial Intelligence, Barcelona, Spain), "Open Information Extraction at Web Scale." July 2011.

People Supported (Faculty, Students, Technical Staff)

1. Oren Etzioni, Faculty, Principal Investigator
2. Michele Banko, Graduate Student
3. Bo Qin, Graduate Student
4. Mausam, Research Faculty
5. Stephen Soderland, Research Scientist
6. Thomas Lin, Graduate Student
7. Alan Ritter, Graduate Student
8. Yoav Artzi, Graduate Student

Project and Related Websites

http://turing.cs.washington.edu/
http://www.cs.washington.edu/research/knowitall/
http://ai.cs.washington.edu/projects/open-information-extraction
http://www.cs.washington.edu/research/textrunner/
http://reverb.cs.washington.edu/
http://abstract.cs.washington.edu/~tlin/leibniz/