Award Number:
W81XWH-09-1-0460

TITLE:
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis

PRINCIPAL INVESTIGATOR:
Heather Wishart PhD

CONTRACTING ORGANIZATION:
Trustees of Dartmouth College
Hanover, NH, 03755-1404

REPORT DATE:
July 2010

TYPE OF REPORT:
annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

x□ Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The objective of this study is to develop a better biomarker for multiple sclerosis (MS) by combining genotype and imaging data. In this study, patients with MS undergo neurological evaluation to confirm diagnosis and determine disability level. They have blood drawn for genotyping, and undergo magnetic resonance imaging sensitive to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry, and voxel-based morphometry and diffusion imaging. We are continuing to progress with screening, enrollment, and testing of participants. We have encountered no adverse events. We continued to use our established procedures for acquiring, logging and backing up all data, and completing ongoing QA of the data. The genotyping will occur in batches; the blood samples are securely stored in our Molecular Diagnostics Laboratory until then. We are having biweekly to weekly research meetings, and additional meetings as needed, and I am monitoring the financial and administrative issues together with our Grants Manager. We are preparing a two conference submissions based on early results from this study, one on neurotrophic factor genotype as a predictor of hippocampal atrophy on MRI in MS, and one on a semi-automated program we have developed for MS lesion segmentation on fluid-attenuated inversion recovery images. These will be submitted to the International Neuropsychological Society for presentation at their Annual Meeting in February 2011.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction

Background. Conventional MRI provides a useful biomarker for multiple sclerosis (MS) clinical trials, but conventional imaging is sensitive to many of the neural changes in the disease and a better biomarker is needed. The proposed study will combine multimodal MRI, to capture the full range of neural changes in the disease, with genotype data to develop a more sensitive and comprehensive biomarker for the disease. Neurotrophic factor genes related to brain plasticity and repair will be targeted for this purpose because of their probable moderating effects on neural damage in MS. Objective. The objective of the proposed study is to develop a better biomarker for MS by combining genotype and imaging data. Specific Aims. We will combine data regarding neurotrophic factor genotype and imaging to: (1) Assess specific a priori hypotheses regarding effects of specific neurotrophic factor polymorphisms on specific brain imaging, (2) Assess both additive and interactive models of effects of genes within each of the three neurotrophic factor gene families on imaging of gray and white matter integrity, and (3) Determine the optimal linear combination of genotype and imaging data to predict concurrent level of disability in MS. Study Design. Patients with MS (N=200) will undergo neurological evaluation to confirm diagnosis and determine disability level. They will have blood drawn for genotyping, and will undergo MR imaging sensitive to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry, and voxel-based morphometry and diffusion imaging. Regression and symbolic modeling will be used to address the specific aims. A number of data reduction and other procedures will be used to minimize Type II error. Impact. This research will set the stage for future longitudinal research assessing the obtained imaging-genotype biomarker as a predictor of disease course and treatment response. Ultimately this research will improve the clinical care of patients with MS by increasing prognostic accuracy and enhancing our ability to identify optimal treatment protocols for individual patients. Development of a more sensitive and comprehensive biomarker will contribute to drug discovery and clinical trials in MS.

Body

We are continuing to progress with screening, enrollment, and testing. We have encountered no adverse events. We continued to use our established procedures for acquiring, logging and backing up all data, and completing ongoing QA of the data. The genotyping will occur in batches; the blood samples are securely stored in our Molecular Diagnostics Laboratory until then. We are having biweekly to weekly research meetings, and additional meetings as needed, and I am monitoring the financial and administrative issues together with our Grants Manager. We are preparing a two conference submissions based on early results from this study, one on neurotrophic factor genotype as a predictor of hippocampal atrophy in MS, and one on a semi-automated program we have developed for MS lesion segmentation on fluid-attenuated inversion recovery images. Once the final results on these two projects are available they will be submitted to the International Neuropsychological Society for presentation at the Annual Meeting in February 2011.

Key Research Accomplishments

- Abstract in preparation on neurotrophin genotype predictors of hippocampal atrophy, as measured using high-resolution imaging in MS
- Abstract in preparation on a semi-automated program we have developed for MS lesion segmentation on fluid-attenuated inversion recovery images

Reportable Outcomes

- two conference abstracts in preparation (noted above)
- grant application funded by the National MS Society to obtain standardized neuropsychological testing on participants in this study, to examine cognitive genetics in MS
- grant application submitted to request funding of a longitudinal extension of this study

Conclusion

The research protocol is approved and running as planned, with no adverse events encountered. Two conference submissions based on early results from this study are in preparation, we have obtained grant funding to add cognitive testing to the protocol for the purpose of studying neurotrophin gene effects on cognition in MS. We have also applied for funding of a longitudinal extension of the study, to follow participants over time to determine whether and which neurotrophin genes predict greater or lesser brain plasticity/repair as measured using...
quantitative brain imaging. The results of this study will improve scientific understanding of the factors that lead some patients with MS to progress at a more rapid rate, and others to have a more benign disease course, and will ultimately contribute to improved prognostication and treatment planning in the clinic.

References

Neurotrophin genotype and brain MRI of hippocampal atrophy in multiple sclerosis (in preparation)

Development and testing of a new approach to MS lesion segmentation using 3T FLAIR images (in preparation)

Appendices NA

Supporting Data NA