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1  Executive Summary (ABSTRACT)  

The project consists of two major thrusts.  

Robust inference for sensor networks The first thrust is on robust inference and connectivity for sensor and 
ad hoc networks involving decentralized sensor nodes with unreliable communication channels. The 
effort spans FY05-FY07. We have investigated two major problems under this thrust:  

1. Decentralized signal processing for statistical inference when the communication between the 
sensors and t he f usion center i s subject to channel outage. Major findings of  the work were 
published in the following paper:  

•  Y. Lin, B. Chen, and B. Suter, “Robust binary quantizers for detection in sensor networks,” 
IEEE Trans. Wireless Communications, vol. 6, pp.2172-2181, June 2007.  

In t he paper , t he m ultiple des cription pr inciple w as adopt ed t o pr ovide r obust i nference 
performance at the fusion center in the event that only a subset of the sensors successfully 
send t heir output t o t he fusion c enter. I t w as f ound t hat pr oactively de signing l ocal s ensor 
processing pr ovides s ignificant per formance g ain ov er t he appr oach t hat a ll s ensor o utputs 
were presumed reliably available at the fusion center when channel outage occurs.  

2. Cooperative relay that minimizes the error probability at the destination.  Recognizing the 
equivalence between cooperative relay with finite alphabet sources and decentralized hypoth-
esis testing, w e have developed a new framework for relay processing de sign t hat a ims t o 
optimize the performance at the destination node in terms of error probability. Major findings of 
the work were published in the following paper:  

•  B. Liu, B. Chen, and R.S. Blum, “Minimum error probability cooperative relay design,” IEEE 
Trans. Signal Processing, vol. 6, pp. 2172-2181, June 2007.  

Throughput study of multi-user and free space MIMO communications The second thrust study throughput 
issues for MIMO communications under different scenarios. The first scenario is when multiple MIMO 
transmitters communication with a single MIMO receiver and we study  
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the sum-rate optimality of orthogonal transmission for such systems. Major findings of the work

were published in

• X. Shang, B. Chen, and J. Matyjas, “Sum capacity optimality of orthogonal communications

over vector Gaussian multiple access channels, IEEE Trans. Wireless communications, vol.

7, pp. 4304-4311, November 2008.

Sufficient conditions and necessary conditions, in terms of channel matrices and transmitter power

constraints, for orthogonal transmissions to achieve the sum capacity of a vector Gaussian MAC

were obtained. The obtained conditions provide a unified framework that helps explain many

intuitive and known results as well as explore cases that have not been addressed. In the cases

when these conditions are violated, the developed results enable us to quantify the suboptimality of

orthogonal transmission when the sum capacity can only be achieved by overlay transmission. The

second scenario concerns MIMO communication with airborne platforms, i.e., free space MIMO

communication when there is a lack of scattering in the transmission medium. Our primary effort

for this problem involves the development of a GUI software system that studies the theoretical

throughput under realistic channel conditions in terms of antenna size/spacing, platform velocity,

and power constraints. The developed software allows us to study throughput of MIMO peer-

to-peer communications under various airborne network configuration. One of the major findings

is that for most tested platform trajectories, the impact of interference is rather limited even

when the receivers completely ignore the interference, i.e., treating interference as noise. The

primary reason is that the spatial diversity as afforded by the large antenna aperture (instead

of scattering for terrestrial channels) gives rise to the immunity of multi-user interference for

concurrent transmissions.

The rest of the final report will primarily involve results related to the development of the GUI

software. For the other three problems investigated under this effort, we have included the three

archival papers cited above as Appendix for this final report as the results.
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2  Introduction  
The project consists of two thrusts: 1) robust inference in sensor and ad hoc networks; 2) throughput 
analysis of multiuser MIMO systems. This chapter provides a synopsis of the major contributions under 
this effort. Many of the research results have been reported in archival papers and have been widely 
disseminated to the research community. Thus we will briefly summarize those research results and 
leave the details to the archival papers which are attached as appendix of this report. Instead, we will 
describe in details on the development of the GUI system for throughput study of free space MIMO 
communications in the next chapter.  

2.1 Robust inference in sensor and ad hoc networks  

For the emerging wireless sensor networks (WSN), distributed signal processing design has to deal with 
various physical limitations imposed by severe resource constraints. For example, the power and 
bandwidth constraints, coupled with the interference and channel fading, may result in transmission 
loss due to channel outage [1]. In addition, low cost sensor nodes deployed in harsh environments may 
be subject to sensor failure, making them unavailable for sensing/ communication [2].  

Our work studied robust signal processing techniques for inference-centric distributed sensor networks 
operating in the presence of possible sensor and/or communication failures. Motivated by the multiple 
description (MD) principle [3,4], we develop robust distributed quantization schemes for a decentralized 
detection system. Specifically, focusing on a two-sensor system, our design criterion mirrors that of MD 
principle: if one of the two transmissions fails, we can guarantee an acceptable performance, while 
enhanced performance can be achieved if both transmissions are successful. Different from the 
conventional MD problem is the distributed nature of the problem as well as the use of error probability 
as the performance measure. Two different optimization criteria are used in the distributed quantizer 
design, the first a constrained optimization problem, and the second using an erasure channel model. 
We demonstrate that these two formulations are intrinsically related to each other. Further, using a 
person-by-person optimization approach, we propose an iterative algorithm to find the optimal local 
quantization thresholds. A design example is provided to illustrate the validity of the iterative algorithm 
and the improved robustness compared to the classical distributed detection approach that disregards  
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the possible transmission losses.

Technical details can be found [5] which is attached in the appendix of this final report.

2.2 Minimum error probability cooperative relay design

In wireless networks, a severe limiting factor is multipath- induced channel fading. One of the most

effective methods in mitigating fading is to exploit diversity [6]. Examples include spatial diversity

when multiple antennas are used at the transceivers, multipath diversity in frequency-selective channels,

and temporal diversity in time-selective fading channels through the use of coding/interleaving. More

recently, a new diversity resource has attracted considerable attention, especially in the context of

wireless ad hoc networks [7–9]. There, multiple nodes collaborate in transmitting their information,

thus providing diversity by exploiting the independence of the fading channels of different users. This is

generally referred to as the cooperative diversity, and the collection of cooperating nodes, including the

source and the destination nodes, are referred to as a relay network.

Recognizing the connection between cooperative relay with finite alphabet sources and the distributed

detection problem, our effort studies relay signaling design via channel aware distributed detection theory.

Focusing on a wireless relay network composed of a single sourcedestination pair with relay nodes, we

derive the necessary conditions for optimal relay signaling that minimizes the error probability at the

destination node. The derived conditions are person-by-person optimal: each local relay rule is optimized

by assuming fixed relay rules at all other relay nodes and fixed decoding rule at the destination node.

An iterative algorithm is proposed for finding a set of relay signaling approaches that are simultaneously

person-by-person optimal. Numerical examples indicate that the proposed scheme provides performance

improvement over the two existing cooperative relay strategies, namely amplify-forward and decode-

forward.

Technical details can be found in [10], also attached in the appendix of this final report.

2.3 Throughput Optimality of Orthogonal Transmissions for MIMO

Multiple Access Channels

It is well known that, for a scalar Gaussian MAC, orthogonal transmissions, e.g., frequency division

multiple access (FDMA) or time division multiple access (TDMA) under an average power constraint,

can achieve the sum capacity [11]. As such, although FDMA and TDMA is suboptimal in terms of

the entire capacity region, if only the system throughput is of concern, orthogonal transmissions are

sufficient, resulting in a much simplified transceiver structure, i.e., no successive interference cancellation

is needed. Similar result holds for a scalar Gaussian MAC with more than two users. With vector Gaussian

MAC, the above claim - that orthogonal transmissions achieve the sum capacity - is not necessarily true.

Indeed, it is observed that in most cases orthogonal transmissions fall well short of achieving the sum

capacity of a vector Gaussian MAC [12].

The goal of this study is twofold. First, we establish sufficient and necessary conditions for orthog-
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onal transmissions to be optimal in achievable sum rate for a vector Gaussian MAC. The established

conditions, in terms of singular values and singular vectors of the channel matrices as well as the power

constraints, provide a unified framework behind many intuitive and well known results. In addition, it

allows us to examine cases that have not been explored before in terms of the (sub)optimality of orthog-

onal transmissions for vector Gaussian MAC. We show that the channel must have proportional singular

values, well aligned singular vectors and appropriate power constraints in order for FDMA/TDMA to

achieve the sum capacity. Secondly, using the established conditions, we attempt to provide quantitative

measure for the performance degradation of orthogonal transmission when they are suboptimal.

Technical details can be found in [13], attached in the appendix of this final report.

2.4 MIMO Communications in Airborne Platforms

Free space MIMO had not been a fruitful research area due to the belief that the lack of scattering

prevents us from harvesting the potential throughput gains of MIMO communications. However, Dr.

Gans, using realistic settings of airborne platforms, demonstrated that free space MIMO still yields

considerable throughput gains that warrant a serious second look. Our effort is to develop a GUI simu-

lation system that allows one to visualize the throughput comparison of various airborne communication

scenarios. The GUI system will described in details in the next chapter.

2.5 Summary of Other Contributions

The award has provided (partial) financial support to several graduate students over the past years.

Two of them, Drs. Ying Lin and Bin Liu, have since graduated and have taken academic appointments

at US and overseas. This award was also instrumental in facilitating close collaboration between the

PI and AFRL researchers. The PI has visited AFRL/Rome Research Site numerous times during the

project period. Some of the research results presented in this report result from direct collaborations

with AFRL researchers.

2.6 Acknowledgment

The PI would like to express his sincere gratitude to many of the Air Force Research Lab (AFRL)

collaborators that he has had the fortunate to work with over the years, including Dr. Michael Gans,

Dr. John Matyjas, and Dr. Bruce Suter. Such collaborations were not only fruitful in terms generating

cutting edge research results, but have also helped the PI to keep informed of research problems that

are relevant to the AF and DoD at large. The PI has benefited greatly by many discussions with Drs.

Gans, Matyjas, and Suter, some of the during the regular coffee breaks at the lab. The PI is especially

indebted to Dr. Gans, who graciously hosted the PI’s summer visits in 2004 and 2005. Dr. Gans’

technical expertise in diverse areas ranging from communication theory to antenna to hardware design,

his valuable insight on many of the seemingly complex problems, and above all, the scientific rigor with

which he conducts research have been an constant inspiration to the PI.
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3  GUI System for Throughput Analysis  

    of Free Space MIMO Systems  
3.1 Introduction  

Communication systems utilizing multiple antenna elements were shown to provide throughput 
improvement of several magnitudes compared with the single antenna systems [14]. The throughput 
gain is attained because of the spatial diversity which were typically believed to only exist in a rich 
scattering environment. As such there had been much doubt on the suitability and relevance of MIMO 
communications in airborne platforms where scatterers are hard to find.  

However, using realistic aircraft platforms, it was demonstrated in [15] that free space MIMO 
communication may still harvest potentially significant throughput gains due to the existence of spatial 
diversity arising from the large aperture of transceiver antenna arrays. This work largely motivates the 
development of this simulation platform that attempt to validate the throughput potential of free space 
MIMO as well as to provide insights on the impact of the existence of multiple transceiver pairs to 
network throughput in the context of free space MIMO system.  

The purpose of any simulation is to provide foresight on how an actual system might function when put 
to work. Our simulation software provides a comparison on the data rates that can be achieved by a 
Line of Sight (LOS) MIMO system using different transmission schemes. Here, by LOS MIMO systems we 
refer to airborne networks. This simulation software was developed in MATLAB version 7.0.0.19920 
(R14).  

The different transmission schemes that we consider can be broadly classified into two categories, viz., 
Channel Blind and Channel Aware. For the Channel Blind case we put equal power on all the antennas. 
In case of Channel Aware approach, we use Beamforming or Waterfilling. All these schemes are 
compared with the ergodic capacity that can be achieved under suitable channel conditions. Another 
feature of this simulation software is to provide a visualization of the trajectories that the airborne 
objects follow and the corresponding data rates.  

6  
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3.2 GUI Overview  

The simulation software GUI consists of one (1) Main (or parent) window and four (4) children windows. 
There are two primary purposes of the parent window. One, to invoke the children windows and set Jet 
parameters. Second, to display the plots in different configurations. Other purposes that the parent 
window serves are to invoke the Animation window and display Jet Parameters window. Jet Parameters 
window is used to set the trajectory, number of antennas, antenna configuration and speed of a Jet. 
Channel Parameters window is used to set the communication parameters viz., the carrier frequency & 
the bandwidth. Plot and Animation window is used for data rates and trajectory visualization.  

For the given start and end co-ordinates of a Jet, it is assumed to move in a straight line such that its 
length is oriented along the line joining the co-ordinates. There is no rolling of the Jet about the line 
joining these co-ordinates.  

3.2.1 Main Window  

 

Figure 1: Main Window  

This window is the main and first user interface that the simulation software provides the user when it is 
run. We start the simulation by setting the Number of Jets edit box and then pressing Set Jets button, 
which is situated above the edit box. This invokes Jet Parameters window and then consequently 
Channel Parameters window. After the user is done with inputting the required parameters, the 
application starts calculating the data points. These data points can be plotted in 3 different 
configurations on the window, i.e., 1 Plot, 2 Plots & 4 Plots.  

By checking the Random Trajectories check box, the application will fill in randomly generated values in 
the start and end co-ordinates of the Jets. The start and end co-ordinates are generated from  
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a uniform distribution between 0 and 1. Scaling Factor is used to scale them up to the desired values.  
    The Y Axis and X Axis popup menu are used to select the data the corresponding axes should plot. The 
table below the popup menus gives the Jet parameters for the selected communication pair.  
    The New Window button is used to export the selected plot to a new axes window. This allows the 
user to access the features that are available in the axes window, which are not available on the Parent 
Window axes.  
    The Start Animation button invokes Plot and Animation window, which is used to display animation of 
the jets along with their corresponding data rates. The New Window and Start Animation buttons are 
disabled until the data points are available.  
    The different plot configurations are shown in figure 2 and figure 3:  

 

Figure 2: 2 Plots  

3.2.2 Jet Parameters Window  

The purpose of this window is to get Jet parameters from the user. When the window is invoked by Set 
Jets button on parent window, it passes the previously used jets parameters as input to this window. 
This prevents the user from re-entering the parameters, if no or very few changes are to be made. All 
the fields on the window are self-explanatory.  
    We enter the start and end co-ordinates for the jets in the corresponding fields. The Cruise Speed has 
to be set in km/hr. The antenna co-ordinates file contains the antenna co-ordinates. Once, all these 
parameters are entered, we need to tell the application which other jet this current jet intends to 
communicate. This is can be done by checking the appropriate box on the right side of the window. Only 
one box can be checked at a time.  
    The number of windows that are opened sequentially depend on the value that is put in the Number  
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Figure 3: 4 Plots  

of Jets edit box in the parent window. After all the parameters for all the jets are set Channel 
Parameters Window is invoked.  

3.2.3 Channel Parameter Window  

This window is used to get the communication parameters from the user. Communication can take 
place in two modes, viz. Fixed Power & Fixed SNR. This can be selected by checking the appropriate 
radio button. Similarly, the Frequency and Bandwidth has to be set by the user. These parameters apply 
to all the communicating pairs.  
    Similar to Jet Parameters window, the Main window passes previously stored channel parameters 
while invoking this window, so as to avoid re-entering them. After pressing the OK button, it returns a 
JetsPairParam object to the Parent Window and the main application starts calculating the data points.  

3.2.4 Plot & Animation Window  

This window is invoked when user presses Start Animation button on the Main window. The left axes on 
the window shows the trajectories of the Jets. Each solid blue circle indicates the Jet position. The Jet 
number and role it is playing in communication i.e. whether it is acting as transmitter or receiver (T & R 
respectively) are displayed above the Jet position. The solid line indicates communicating pair and the 
dashed line indicates interference from other transmitters.  
    The right axes shows the corresponding data rates that are achieved at that location.  
    The slider is used to control the position of the Jets in time domain. After pressing the play button, 
slider is moved periodically in forward direction, which changes the Jet positions, thereby giving the 
effect of animation.  

 

9  
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Figure 4: Jet Parameters  

3.2.5 Other Options Window  

This window can be opened by pressing the Options button on the Main window. Here, the Resolution 
edit box gives the number of data points that need to be calculated. The Scatter Loss gives the scaling 
parameter for the scatter matrix.  
    For our simulation purpose, we use two kinds of scatter matrices. One is the deterministic case. In this 
case, we set the scatter points on the jet surface and calculate the scatter matrix accordingly. Second is 
the random case. In this case, we consider each element of the matrix to be Complex Gaussian 
distributed with mean 0 and variance 1.  

3.2.6 Jet Parameters for Random Trajectories Window  

This window is invoked when the Random Trajectories check box is checked and the user presses Set 
Jets on the Main window. The Cruise Speed, Number of Antennas and the Antennas File Path are 
common to all the jets in this case.  

3.3 Formulae  

Let Hij be the channel matrix between receiver i and transmitter j as calculated in [15], Kjj be the 
transmit covariance matrix, t be the number of transmit antennas and r be the number of receive 
antennas. We assume the noise to be complex Gaussian distributed with mean 0 and variance 1.  

      10 
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                         Figure 5: Channel Parameters  

 
               Figure 6: Plots and Animation Parameters  

3.3.1 Channel Blind MIMO Rate  

In this approach i.e. when the transmitter doesn’t know the Channel State Information (CSI), the 
transmitter puts equal power on all the transmit antennas, such that the transmit covariance matrix is  

tij IK
t
P

= , where P is the total power constraint on the transmitter and It is a t × t identity matrix.  

The rate at receiver i, treating interference as noise is given below,  

(1)                                 log
1

2

−

≠

++− 







++= ∑

il
il

CSINon
iR illliliiiiii HKHIHKHI ηρ  

Here, Hij
+ is the hermitian of Hij and I is an identity matrix of size r x r.  
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Figure 7: Other Options  

3.3.2 MIMO Rate 2 (Beamforming)  

This transmission scheme is used when the transmitter knows the Channel State Information such that it 
knows the right dominant eigenvector of the channel matrix by means of some feedback mechanism 
from the receiver. Let vi be the right dominant eigen vector of the channel matrix Hii.We set the channel 
covariance matrix Kii as  

(2)                                                                                             += ii
BF
ii vvK  

 
We calculate the correspoding rate by plugging in this Kii

BF in the above capacity expression.  

3.3.3 MIMO Capacity (Waterfilling)  

We calculate the waterfilling matrix Kii
WF from the given channel matrix Hii, and plug it in (1). We can 

use this transmission scheme only when the transmitter has complete channel state information.  

3.3.4 Rayleigh Ergodic Capacity  

For this case we use the formula given in [15], which is as follows:  

[ ] (3)                                                                        
2ln

1log2 2








−++=
ρ
σσρMC Ergodic  

where, ( )14 −1+0.25= ρσ , M is the number of antennas and ρ is the average SNR at each 

receiver antenna. We assume same number of antennas at the transmitter as well as receiver.  
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Figure 8: Jet Parameters For Random Trajectories  

3.3.5 SISO Rate  

This is the rate for a single input single output case,  

( )( ) (4)                                                                 1log 1
2

−+1+= ηρSISOR  

where, ρ is the average SNR at the receiver antenna and η is the INR.  

3.3.6 Channelized MIMO Rate  

If there are M communicating pairs, assuming FDMA or TDMA the rate for each ith  link is given by  

(5)                                                log1
2

+− += iiiiii HKHI M
M

R i
MIMOCh

i ρ  
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Abstract— We consider robust signal processing techniques 
for inference-centric distributed sensor networks operating in 
the presence of possible sensor and/or communication failures. 
Motivated by the multiple description (MD) principle, we de-
velop robust distributed quantization schemes for a decentralized 
detection system. Specifically, focusing on a two-sensor system, 
our design criterion mirrors that of MD principle: if one of 
the two transmissions fails, we can guarantee an acceptable 
performance, while enhanced performance can be achieved if 
both transmissions are successful. Different from the conventional 
MD problem is the distributed nature of the problem as well 
as the use of error probability as the performance measure. 
Two different optimization criteria are used in the distributed 
quantizer design, the first a constrained optimization problem, 
and the second using an erasure channel model. We demonstrate 
that these two formulations are intrinsically related to each other. 
Further, using a person-by-person optimization approach, we 
propose an iterative algorithm to find the optimal local quanti-
zation thresholds. A design example is provided to illustrate the 
validity of the iterative algorithm and the improved robustness 
compared to the classical distributed detection approach that 
disregards the possible transmission losses. 

Index Terms— Distributed detection, erasure channels, fading 
channels, sensor networks. 

I. INTRODUCTION

FOR the emerging wireless sensor networks (WSN), dis-
tributed signal processing design has to deal with various

physical limitations imposed by severe resource constraints.
For example, the power and bandwidth constraints, coupled
with the interference and channel fading, may result in
transmission loss due to channel outage. In addition, low-
cost sensor nodes deployed in harsh environments may be
subject to sensor failure, making them unavailable for sens-
ing/communication.

A conventional approach to combat transmission loss is
to exploit channel diversity through the use of multiple de-
scription (MD) design [1] such as the MD codes [2] or MD
quantizers [3]. This MD idea is illustrated in Fig. 1(a) with two
encoders and three decoders [2]. The encoders are so designed
that in the case of loss of one of the two transmissions, the side
decoders (Decoder 1 or Decoder 2) are guaranteed with certain
acceptable performance; if both transmissions are successful,
the central decoder output (corresponding to Decoder 0) will
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Fig. 1. Comparison between (a) conventional MD, and (b) distributed MD
for sensor network applications. In (a), Encoders 1 and 2 have access to the
same observation X. In (b), Encoder 1 encodes X1 without access to X2

while Encoder 2 encodes X2 without access to X1.

have enhanced performance. As sensor failure can be dealt
with in an identical fashion under the MD framework, we
will no longer distinguish the two types of losses, one due to
channel outage and the other due to sensor failure.

To carry over the MD principle to sensor network applica-
tions, care must be taken in considering the distinct features
for distributed sensor networks. Two of the critical differences
are listed below and are what motivate the current work.

• Distributed nature of WSN.
In the conventional MD framework, two encoders operate
on a common source. In WSN, each encoder resides
in a sensor and operates only on its own observations
without access to the other sensor’s observations. This is
illustrated in Fig. 1.

• Inference-centric nature of WSN.
In WSN applications, all the sensor nodes are typically
engaged in a collective inference task. The ultimate goal
may be the evaluation of some underlying state instead
of recovering the sensor observations. In reference to
Fig. 1(b), the goal may be inferring about the unknown
parameter θ instead of recovering X1 and X2. This is
in comparison with the conventional MD problem where
the goal is to recover the original source data. A direct
consequence is that, instead of using the conventional dis-
tortion measures in the traditional MD quantizer design,
other performance metrics that cater toward the inference
task may be more relevant.

In this paper, we study how the MD principle can be adapted
to inference-centric applications with distributed quantizer
design. By focusing on a binary decentralized hypothesis
testing problem (i.e., θ is binary in Fig. 1(b)), we investigate
distributed binary quantizer design using the MD principle.
We term this new framework distributed multiple descriptioQ
17�������������
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quantizer (DMDQ) design. The DMDQ approach achieve ro-
bust inference performance in the presence of channel outage
or sensor failure as it strikes a better balance/tradeoff between
the detection performance at the fusion center and that of local
sensors.

The proposed scalar quantizer design is closely related
to the classical distributed detection problem [4], [5] as it
involves the design of multiple sensor decision rules that are
coupled with each other. Major differences exist, and the most
significant is that we no longer deal with a single objective
function (minimum error probability at the fusion center).
Instead, multiple design objectives need to be considered, each
corresponding to the end-to-end inference performance for a
particular channel outage or sensor failure state.

To explain the significance of the proposed approach, and
in particular, to understand its improved robustness compared
with the classical distributed detection design, consider the
following simple example. Assume a binary hypothesis testing
problem with a two-sensor parallel fusion system where each
sensor employs a binary quantizer. The two hypotheses under
test, H0 and H1, are a priori equally likely. The local sensor
observations at the two sensors, X1 and X2, are conditionally
independent and identically distributed ternary random vari-
ables with
  { P (Xk = 0|H0) = 0.95 { P (Xk = 0|H1) = 0.05

P (Xk = 1|H0) = 0.05 P (Xk = 1|H1) = 0.9  P (Xk = 2|H0) = 0 P (Xk = 2|H1) = 0.05

for k = 1, 2. By the monotonicity of the likelihood ratio (LR)
in the sensor observations (i.e., the local sensor LR values are
monotone in Xk), we need to consider only the two binary
local decision rules at each sensor [6]:{ 

0 Xk = 0
Rule A Uk = 1 Xk = 1 or 2

{ 
0 Xk = 0 or 1

Rule B Uk = 1 Xk = 2

Adopting the classical distributed detection approach, it is
straightforward to show that the two sensors should employ
different decision rules to achieve a minimum error probability
of 0.04875 at the fusion center. Assume that, without loss of
generality, sensor 1 uses Rule A while sensor 2 uses Rule
B. If sensor 1’s decision does not reach the fusion center,
either due to a channel outage or a sensor failure, the actual
minimum error probability by using the decision from sensor 2
alone becomes 0.475, which is a significant degradation from
the case when both sensor outputs are available. This error
probability essentially renders the detection system essentially
useless as it is close to 0.5. A more robust design is to
use decision rule Rule A at both sensors. In this case, both
the fusion center and each local sensor have identical error
probability 0.05 thus there is no degradation in the event of
a lost transmission1. Compared with the classical distributed
detection approach (whose error probability pair are 0.04875
and 0.475), the alternative approach provides a more robust
performance in the presence of a transmission loss.

1This simple example also indicates that, depending on the local decision
rules used and the observation distributions, having more sensors in the
system may not always improve the overall performance. 18

The proposed DMDQ also provides an alternative approach
to the channel aware design for a decentralized detection prob-
lem [7]–[9] in dealing with imperfect channels. The channel-
aware quantization schemes require that the channel state
information (CSI) be available to attain optimum performance.
Acquiring CSI, however, may be too costly in systems with
stringent resource constraints. It is, therefore, imperative to
consider quantizer design that is robust to potential channel
outages without the knowledge of CSI. The proposed DMDQ
framework is an initial attempt toward robust and proactive
signaling for distributed sensor networks in the absence of
CSI.

The rest of the paper is organized as follows. In the next
section, we describe the problem formulation and introduce the
two-sensor fusion network with possible transmission losses.
In Section III, we apply the Lagrangian method to solve the
constrained minimization and to obtain necessary conditions
for optimum binary quantizers in the form of LR test (LRT)
thresholds. In Section IV, we impose the discrete memoryless
erasure channel model and obtain the corresponding optimum
local decision rules using the channel-aware quantizer design
methodology described in [7], [8]. Numerical results are pre-
sented in Section V to demonstrate how the proposed quantizer
design can be implemented and the improved robustness over
the classical distributed detection approach. We conclude in
Section VI.

II. PROBLEM FORMULATION

Fig. 2 depicts a two-sensor parallel fusion network tasked
with a hypothesis testing problem. Each sensor collects data
that are generated according to one of the two hypotheses (H0

and H1) under test. We assume in the present work that the
local observations X1 and X2 are conditionally independent
given the underlying hypothesis, i.e., for i = 0, 1,

f(X1, X2|Hi) = f(X1|Hi)f(X2|Hi).

It is easy to establish that with this conditional independence
assumption, the LR pair of the local sensor observations  

f(X1|H1) f(X2|H1)
L(X1) = , L(X2) =

f(X1|H0) f(X2|H0)
form a sufficient statistic for the detection problem.

Based on its local observation Xk, the kth local sensor
implements a binary quantizer whose output Uk ∈ {1, 0}, for
k = 1, 2, will be sent to the fusion center. The transmission,
however, is subject to channel outage or sensor failure. When
both transmissions are successful, Decoder 0 will perform as
a fusion center and make a final decision on which hypothesis
is true using both U1 and U2. Otherwise, if only one of the
two transmissions is successful, either Decoder 1 or Decoder
2 will make a final decision based on the successfully received
Uk. In our current work, as Uk is binary, Decoders 1 and 2 will
simply take U1 and U2 as their respective output, as illustrated
in Fig. 2.

Adopting a Bayesian framework, we use error probability as
the performance measure. Define Pek the probability of error
at Decoder k:

Pek = π0P (Uk = 1|H0) + π1P (Uk = 0|H1), k = 0, 1, 2
(1)
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Fig. 2. A two-sensor parallel fusion network with possible transmission failures.
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where πj = P (Hj) is the prior probability for hypothesis
Hj , and U0 denotes the decision output for Decoder 0. Thus
Pe0 corresponds to the error probability of the fusion center
when both U1 and U2 are available while Pe1 and Pe2

are respectively the error probabilities at individual sensors.
Classical distributed detection theory aim to minimize Pe0

while our present work strives for a balance in performance
between Pe0 and Pek for k = 1, 2.

Our approach is derived from the MD principle [1]: we aim
to design sensor decision (quantization) rules such that if one
of the two transmissions is lost, an acceptable performance (in
terms of error probability) is guaranteed; if both transmissions
are successful, a better performance can be achieved. Catering
toward the hypothesis testing problem, we can succinctly
summarize the design criterion using the following constrained
minimization problem

min Pe0 (2)
subject to Pe1 ≤ ε1 and Pe2 ≤ ε2.

where ε1 and ε2 are the pre-specified error probabilities that
are guaranteed if only U1 or U2 is successfully received. This
design criterion is reminiscent of the MD scalar quantizer
design [3] where a general distortion measure is used.

III. NECESSARY CONDITIONS FOR OPTIMALITY AND A

DESIGN ALGORITHM

The constrained optimization problem readily admits a La-
grangian formulation which is used to solve the minimization
problem below. The Lagrangian function is given by

L(τ1, τ2, λ1, λ2) = Pe0 + λ1(Pe1 − ε1) + λ2(Pe2 − ε2)

where τk is the local sensor LRT threshold, λk is the La-
grangian multipliers, for k = 1, 2.

Using the Kuhn-Tucker theorem [10], the set of optimum
solution of the constrained minimization problem must satisfy
the following necessary conditions, for k = 1, 2,

∂Pe0 ∂Pe1 ∂Pe2+ λ1 + λ2 = 0 (3)
∂τk ∂τk ∂τk

λk ≥ 0 (4)

Pek − Ek ≤ 0 (5)

λk(Pek − Ek) = 0 (6)

Given the above necessary conditions, the optimum solu-
tions for the local decision rules are described in the following
theorem. 19

Theorem 1: Assume that the two local observations, Xk’s,
are conditionally independent. Further, if the fusion rule and
the kth local sensor decision rule satisfy, for k = 1, 2{ 

P (U0 = 1|Uk = 1, U ) − P (U0 = 1|Uk = 0, U¯) ≥ 0k̄ k

P (U0 = 0|Uk = 0, U¯) − P (U0 = 0|Uk = 1, U¯) ≥ 0k k

f
where k̄ 1 = 2 and ¯= 3 − k, thus ¯ 2 = 1. Then the optimum
solution of the constrained minimization problem in Eq. (2)
is given by the following LRT, for k = 1, 2 

p(Xk|H1)1, if ≥ τkP (Uk = 1|Xk) = p(Xk|H0) (7)
0, otherwise

where τk, the optimal LRT threshold for the kth local sensor,
is determined as follows:

• When λk = 0 (inactive constraint),

π0Ak
τk = (8)

π1Bk

• When λk > 0 (active constraint), τk is obtained by
solving

Pek − Ek = 0 (9)

The associated λk can be obtained by

π0Ak − π1Bkτk
λk = (10)

π1τk − π0

from which we get,

π0(Ak + λk)
τk = (11)

π1(Bk + λk)

The quantities Ak and Bk in Eqs. (8-11) are defined
respectively as 
Ak = P (Uk̄|H0)

Uk̄

[P (U0 = 1|Uk = 1, U¯) − P (U0 = 1|Uk = 0, U¯)]k k

(12) 
Bk = P (Uk̄|H1)

Uk̄

[P (U0 = 0|Uk = 0, Uk̄) − P (U0 = 0|Uk = 1, U¯)]k

(13)
Theorem 1 is proved in Appendix I.
Remarks: 

• Note that the forms of τk, Ak, and Bk indicate that the
threshold for the kth sensor is a function of the decision
rule at the other sensor. Thus, as expected, the optimal
thresholds at sensor 1 and 2 are coupled with each other.
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• In order for the constrained optimization to have feasible
solutions, E1 and E2 can not be chosen to be too small.
Specifically, Ek needs to be no smaller than the minimum
achievable error probability at sensor k. More discussions
about this can be found in Section V after we introduce an
alternative design approach (Approach 3 in Section V).

• Pe0 is the achievable error probability using both U1 and
U2. On the other hand, Pe1 and Pe2 are respectively
the error probabilities at local sensors, each associated
with U1 or U2. Thus Pe0 ≤ min{Pe1, Pe2} where the
inequality is due to the fact that one can simply ignore
one of {U1, U2} and the error probability should thus be
no worse than either Pe1 or Pe2. Due to the constraints
Pe1 ≤ E1 and Pe2 ≤ E2, we have

Pe0 ≤ min{Pe1, Pe2} ≤ min{E1, E2}
That is, the error probability achieved when both trans-
missions are successful is upper bounded by the error
probability constraints at local sensors.

• If Pe1 < E1 and Pe2 < E2, i.e., λk = 0 for k = 1, 2, Pe0

is the minimum error probability that can be achieved at
the fusion center. The constrained optimization approach
yields the same result as the unconstrained approach that
minimizes the error probability at the fusion center. This
happens when the constraints Ek are large enough.

• Eq. (11) is a unifying expression of the optimal local LR
threshold for the two cases of λk > 0 and λk = 0.

• The conditions described in Theorem 1 do not admit
closed-form solutions. Simultaneously optimizing τ1 and
τ2 is intractable due to the distributed nature - it typically
involves some exhaustive search over a two dimension
space for the (τ1, τ2) pair. However, the necessary con-
ditions established in Theorem 1 allows us to adopt a
person-by-person optimization (PBPO) approach where
each threshold is optimized assuming fixed threshold at
the other sensor. The PBPO approach has been widely
used in optimizing decentralized systems, and in partic-
ular, in the classical distributed detection (see, e.g., [11],
[12]) when joint optimization is typically intractable.

• Theorem 1 describes necessary conditions for the op-
timum LRT thresholds; thus multiple initializations are
needed to find the globally optimum thresholds.

The following iterative algorithm describes this PBPO pro-
cedure.
Iterative Algorithm 

• Step 1. Initialize τk, for k = 1, 2.
• Step 2. Obtain the optimum fusion rule for fixed τ1 and

τ2.
• Step 3. For fixed fusion rule and τ2, calculate τ1 using

(8).
• Step 4. Check to see if τ1 satisfies Pe1 − E1 ≤ 0.

– If yes, go to Step 5.
– If no, calculate τ1 using (9).

• Step 5. For fixed fusion rule and τ1, calculate τ2 in a
similar fashion.

• Step 6. Check convergence, i.e, if the obtained τ1 and τ2

are identical (up to a prescribed tolerance) to that from

δk

δk

1 − δk

1 − δk 11

E

0 0

Fig. 3. A discrete memoryless erasure channel model for the channel between
sensor k and the fusion center.

– If yes, stop.
– Otherwise, go to Step 2.

At each iteration, τk is optimized for a given fusion rule and
the other threshold τ¯, hence the error probability is monotonek

decreasing until a stationary point is reached.

IV. OPTIMAL LOCAL DECISION RULE DESIGN UNDER AN

ERASURE CHANNEL MODEL

The constrained minimization approach provides a proactive
design methodology that avoids severe performance degrada-
tion in the absence of CSI. We propose in this section an
alternative approach by imposing a certain parametric model
on the channel/sensor failures. This allows us to adopt existing
channel aware approach [8] to design the local quantizers.
Similar to [13], we model the potential transmission loss using
erasure channels where the erasure accounts for possible sen-
sor failures/channel outages. This channel model is illustrated
in Fig. 3 where δk = P (Xk = E|Uk) is the erasure probability
corresponding to sensor k. Our alternative optimization crite-
rion is to minimize the average error probability Pe, defined
as

Pe = (1 − δ1)(1 − δ2)Pe0 + δ2(1 − δ1)Pe1

+ δ1(1 − δ2)Pe2 + min{π0, π1}δ1δ2 (14)

where the last term corresponds to the error probability when
both transmissions are lost. This constant term has no effect
on the quantizer design, hence can be dropped in the design
problem.

The following theorem provides the solution for the sensor
decision rules that minimize Pe.

Theorem 2: Assume that the two local observations, Xk’s,
are conditionally independent and channels are independent
discrete memoryless erasure channels. Further, if the fusion
rule and the kth local sensor decision rule satisfy, for k = 1, 2{ 

P (U0 = 1|Uk = 1, U¯) − P (U0 = 1|Uk = 0, U¯) ≥ 0k k

P (U0 = 0|Uk = 0, U¯) − P (U0 = 0|Uk = 1, U¯) ≥ 0k k

where k̄ is defined similar as in Theorem 1. Then the optimum
local rule for the kth sensor amounts to the following LRT,
for k = 1, 2

p(Xk|H1) ≥ π0(Ak+αk)1 if
P (Uk = 1|Xk) = p(Xk|H0) π1(Bk+αk) (15)

the previous iteration.��                                                        20������������������������������������0       otherwise
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where
δ2 δ1

α1 = and α2 = , (16)
1 − δ2 1 − δ1

and Ak and Bk are defined in Eqs. (12) and (13).
A proof is given in Appendix II. Following the same spirit

of the iterative algorithm in Section III, we can devise a similar
procedure to find the optimal thresholds using Theorem 2.

Comparing Eqs. (11) and (15), we have some interesting
observations that suggest intrinsic connections between the
erasure channel model and the constrained minimization for-
mulation. From Eq. (14), if we drop the last term and divide
the average probability by (1− δ1)(1− δ2), the new function
to be minimized becomes

Q � Pe0 + α1Pe1 + α2Pe2.

with α1 and α2 defined as in Eq. (16). The design problem
reduces to a problem of minimizing Q subject to α1 ≥ 0 and
α2 ≥ 0. Compare this with Eq. (3), we see that αk plays a
similar role as the Lagrangian multiplier λk .

Further more, the first-order necessary conditions for min-
imizing Q are given by:

∂Pe0

∂τk
+ α1

∂Pe1

∂τk
+ α2

∂Pe2

∂τk
= 0 (17)

αk ≥ 0 (18)

Comparing Eq. (17) and (18) to Eq. (3-6), we notice that
these two formulations are similar except that the constrained
optimization approach has more restrictive constraints (Eq. (5)
and (6)). Next we elaborate when these two formulations will
have identical optimal solutions.

Consider the first case: when λk = 0, i.e., the constraints
Pek ≤ Ek are satisfied. In this case, set αk = λk = 0, and the
two formulations have the same optimal thresholds. The case
of λk > 0 is more complicated. With λk > 0, we have Pek =
Ek, k = 1, 2. Assume the erasure channel model yields L local
minima, with the corresponding threshold pair (τ1

l , τ l), l =2

1, 2, ..., L,. Denote by P l , 1, 2, the error probabilitiesej , j = 0
associated with (τ1

l , τ l). By virtue of the problem formulation,2

there must exist one (τ1
m, τm) whose local error probabilities2

satisfy Pm = Ek, k = 1, 2. Ifek

j j jQm � Pe
m
0 + α1E1 + α2E2 ≤ P + α1P + α2P � Qj (19)e0 e1 e2

for j � j = 1, 2, .., L. Then (τm= m, , τm) is the optimal1 2

solution for both constrained minimization formulation and
the erasure channel formulation. We will further illustrate
these connections using some numerical examples in the next
section.

V. A NUMERICAL EXAMPLE

In this section, we use several numerical examples to
highlight the robust performance of the proposed local quan-
tizer design compared with the classical distributed detection
approach. Consider the detection of a known signal in inde-
pendent Gaussian noises using two sensors:

H0 : Xk = nk

H1 : Xk = s + nk
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where s is a known signal and nk is zero mean Gaussian noise
with variance σ2, for k = 1, 2. Without loss of generality, we
assume s = 1 and σ2 = 1. Each local sensor makes a binary
decision using its observation Xk and a decision rule γk, i.e.,
Uk = γk(Xk) ∈ {1, 0}. The transmission of Uk, however, is
subject to channel losses. If both U1 and U2 are successfully
received, Decoder 0 will implement the maximum a posteriori
probability decoding (detection) rule, i.e.,

P (U1,U2|H1) ≥ π01, if
P (U0 = 1|U1, U2) = P (U1,U2|H0) π1 (20)

0, otherwise

For simplicity, we consider a symmetric setting where we
use identical error probability constraints (i.e., E1 = E2) for
the constrained minimization approach, and identical erasure
probabilities (i.e., δ1 = δ2) for the erasure channel model
approach.

In addition to the proposed approaches, we also present
results using alternative approaches to highlight the robustness
of the proposed MD principle based framework. The complete
list of approaches used in the simulations is as follows.

Approach 1 Constrained minimization described in Sec-
tion III (Theorem 1).

Approach 2 Erasure channel model approach described
in Section IV (Theorem 2).

Approach 3 Minimizing the local error probabilities Pe1

and Pe2. We denote by Pek,3 (k = 1, 2) the minimum
achievable local error probabilities, and Pe0,3 the
corresponding error probability at Decoder 0, respec-
tively. Note that Pek,3 provides the lower bound for
the local error probability constraint Ek, i.e., one must
have Ek ≥ Pek,3 for the constrained minimization
formulation to have a solution.

Approach 4 Minimizing the error probability at the fusion
center. We denote by Pe0,4 the minimum achievable
error probability at Decoder 0, and Pek,4 (k = 1, 2)
the corresponding local error probabilities, respec-
tively. This approach corresponds to the classical
distributed detection with a single objective function.
An interesting observation is that this approach can
be considered as a special case of the erasure channel
model with δk = 0, for k = 1, 2. As such, one
only need to minimize Pe0 as both transmissions are
always assumed successful.

Notice that Approaches 3 and 4 are conflicting with each other:
one can show that optimizing Pe0 and Pek for k = 1, 2 can
not be simultaneously achieved [14]. Otherwise, the entire
distributed MD framework will become trivial as one can
simultaneously optimize the local error probability and that
of Decoder 0 (the fusion center).

As we are considering a Gaussian problem, the obtained
LRT thresholds at the sensors can be directly translated into
thresholds for the original observations. Thus in the following
presentation, we will use thresholds for the original observa-
tions, denoted by ηk for k = 1, 2.

The numerical results are summarized in Tables I-III as well
as in Figs. 4-6. Specifically,

• Tables I and II enumerate respectively the parameters and
the obtained thresholds and error probabilities of the two
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TABLE I

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USING APPROACH 1

π0 = 0.6 π0 = 0.8
εk ηk Pek Pe0 λk εk ηk Pek Pe0 λk

0.33 0.2629 0.33 0.2574 0.0177 0.25 0.8474 0.2466 0.1686 0
0.32 0.3609 0.32 0.2591 0.1652 0.21 1.1737 0.21 0.1744 0.1788
0.31 1.2895 0.3047 0.2632 0.0001 0.2 2.0292 0.1866 0.1775 0.001
0.30 1.1812 0.30 0.2649 0.4023 0.19 2.0292 0.1866 0.1775 0.001

TABLE II

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USING APPROACH 2

δk

0.0174
0.2869

0.5
0.7
0.9

ηk

0.2629
1.1812
1.0971
1.018
0.9417

π0 = 0.6
Pek

0.33
0.3

0.2973
0.2955
0.2946

Pe0

0.2574
0.2649
0.2685
0.2738
0.2807

αk

0.0177
0.4023

1.0
2.3333

9.0

δk

0.01
0.4
0.5
0.7
0.9

ηk

0.8667
1.9757
1.9616
1.9324
1.902

π0 = 0.8
Pek

0.2438
0.1864
0.1863
0.1863
0.1862

Pe0

0.1686
0.1777
0.1778
0.1780
0.1784

αk

0.0101
0.8
1

2.3333
9.0

TABLE III

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USING

APPROACHES 3 AND 4

Approach 3 ηk

π0 = 0.6 0.9059
π0 = 0.8 1.8863

Approach 4 ηk

π0 = 0.6 0.2495
π0 = 0.8 0.8474

Pek,3

0.2945
0.1862
Pek,4

0.3315
0.2466

Pe0,3

0.2846
0.1787
Pe0,4

0.2574
0.1686

proposed approaches (Approaches 1 and 2).
• Tables III gives the obtained thresholds and error proba-

bilities of the two alternative approaches (Approaches 3
and 4).

• Figs. 4 and 5 give the analytically calculated error proba-
bilities (both of the fusion center and local sensors) versus
threshold plots with two different priors, π0 = 0.6 and
π0 = 0.8, respectively. In each plot, (b) is a zoom-in of
(a) for better visualization.

• Fig. 6 is the error probability versus erasure probability
plot.

Our observations from the numerical results are summarized
below.

• For Approach 1, the iterative algorithm indeed yields
thresholds that are solutions to the constrained optimiza-
tion problem. For example, with π0 = 0.6 and error
probability constraint Ek = 0.3, the threshold obtained
using Approach 1 is ηk = 1.1812 with corresponding
error probabilities Pe0 = 0.2649 and Pe1 = Pe2 =
0.30 (the left half of the last row of Table I). This
is consistent with Fig. 4 (the corresponding values are
marked on Fig. 4(b)). Similarly, with π0 = 0.8 and
Ek = 0.2, the minimum achievable Pe0 = 0.1775 with
the corresponding threshold ηk = 2.0311 and local error
probability Pek = 0.1866. These values are marked on
Fig. 5 and are consistent with those listed in Table I (right
half of the last row).

• Approach 3 which optimizes local sensor performance
corresponding to Pek and Pe0, smaller local sensor error does not have significant improvement when both trans-
From Table I, it can be seen that, by comparing columns•
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TABLE IV

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL

APPROACH, Ek = 0.32, αk = λk = 0.1652

δk ηk Pek Pe0 Q
0.1418 1.237 0.3023 0.2636 0.3635
0.1418 0.3609 0.32 0.2591 0.3648

probabilities typically result in larger error probability at
the fusion center. In general, having a generous constraint
on local sensor error probabilities (large Ek) imposes
less restriction on the admissible threshold pairs, which
typically gives rise to smaller Pe0. In the extreme case,
for example, when Ek = 0.5, the obtained thresholds will
always coincide with that of Approach 4.

• The classical distributed detection (Approach 4) that
minimizes error probability at the fusion center suffers
significant performance loss in the event of a lost trans-
mission. This can be illustrated using Fig. 4(b) along
with Table III. At π0 = 0.6, Approach 4 yields a
globally minimum error probability Pe0 = 0.2574 at
the fusion center. However, if one of the transmission is
lost, the error probability suffers a significant degradation
to Pek = 0.3315 (marked on the dash-dotted curve).
Clearly, the constrained optimization approach is much
more robust (a degradation from Pe0 = 0.2649 to
Pek = 0.30). This effect is even more pronounced for
the case of π0 = 0.8. Approach 4 yields a fusion center
error probability Pe0 = 0.1686 (corresponding to the
minimum point of the solid curve in Fig. 5(b)). However,
if only one transmission reach the fusion center, the error
probability becomes Pek = 0.2466 which essentially
renders this system useless – as the prior probability
is π0 = 0.8, the error probability should be capped at
0.2. This seemingly pathological result is due to the
fact that the threshold design at local sensors for the
classical distributed detection always assumes successful
transmissions from other collaborating sensors.
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Fig. 4. Analytically calculated error probability versus threshold plot for
π0 = 0.6; (b) is a zoom-in of (a).

TABLE V

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL

APPROACH, Ek = 0.3, αk = λk = 0.4023

δk ηk Pek Pe0 Q
0.2869 0.4784 0.3101 0.2645 0.514
0.2869 1.1812 0.3 0.2649 0.5063

missions are successful. From Table III and Fig. 4, for
π0 = 0.6, the minimum local sensor error probability
is Pe1 = Pe2 = 0.2945. When both transmissions are
successful, the fusion center will have an error probability
Pe0 = 0.2846, which is only marginally better than
the individual sensor’s performance. This improvement
is much smaller than that achieved by the proposed
constrained minimization approach.

• For the erasure channel model approach, as the erasure
probability δk approaches one, the obtained optimal local
thresholds converge to that obtained using Approach 3
(minimizing the local error probabilities). This can be
seen by comparing Tables II and III: the thresholds ob-
tained using Approach 2 will approach that of Approach
3 as δk increases. This is expected since large δk implies
that the channel is likely to break down, thus the local
error probability will dominate the system performance.
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Fig. 5. Analytically calculated error probability versus threshold plot for
π0 = 0.8; (b) is a zoom-in of (a).

On the other hand, as the erasure probabilities approach
zero, the obtained optimal local thresholds converge to
those that minimize the error probability at Decoder
0 (corresponding to Approach 4). Intuitively, small δk

indicates a high probability of successful transmissions
of both U1 and U2. Thus, the error probability at Decoder
0 would largely determine the system performance. The
same behavior can be observed from Fig. 6, plotted
for π0 = 0.6, by looking at the two extreme points
corresponding to δk = 0 and δk = 1. The associated
error probabilities coincide with that of Approach 4 and
3 respectively.

• We have explored the intrinsic connections between Ap-
proach 1 and 2 in Section IV. Now we present numerical
results to further elaborate the connections. Consider the
case of π0 = 0.6.

– With Ek = 0.32, the corresponding λk = 0.1652.
Set αk = 0.1652, we obtain two local minima that
satisfy Eq. (17), as listed in Table IV. Since we want
to choose the thresholds that minimize Q, it turns
out that η1 = η2 = 1.237 (with Pe1 = Pe2 = 0.3023
and Pe0 = 0.2636) is the optimal solution for the
erasure channel model approach. But the constrained
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Fig. 6. Error probability versus erasure probability plot for π0 = 0.6
obtained using the channel-aware quantization for the erasure channel model.

minimization approach results in the thresholds η1 =
η2 = 0.3609 (with Pe1 = Pe2 = 0.32 and Pe0 =
0.2519). From Table IV, it is clear that Eq.(19) does
not hold, i.e., the Q function corresponding to Pek =
0.32 is not the smallest among the two. Hence in this
particular setup, these two approaches do not have
the same optimal solution.

– Now we examine a case when the two formulations
share the same solution. Consider Ek = 0.3, the
corresponding λk = 0.4023. Set αk = 0.4023, again
there are two local minima as listed in Table V
obtained using the erasure channel model approach.
We notice that η1 = η2 = 1.1812 is the optimal
solution for both approaches and it is easy to check
that Eq.(19) is satisfied.

• In general, the rate of convergence of the proposed
iterative algorithm depends on the initial values of local
thresholds. Our simulations indicate that the proposed
iterative algorithm converges very fast. For all the sce-
narios we have examined, convergence happens typically
after several (< 10) iterations. For instance, the results
in Table I were obtained after about six iterations on the
average.

VI. CONCLUSIONS

In this paper, we developed robust signal processing tech-
niques for distributed sensor networks applications. In partic-
ular, we presented a distributed multiple description quantiza-
tion (DMDQ) framework for the design of sensor signaling
in the presence of sensor failures/channel outages. Two ap-
proaches are proposed to address the DMDQ design using a
two-sensor distributed detection problem. The first scheme is
based on a constrained minimization approach; and a solution
using Lagrangian multiplier is presented. The second imposes
a discrete erasure channel model; we developed the channel-
aware quantizer design that minimizes the average error prob-
ability. Iterative algorithms were constructed in search of the
optimal thresholds. The intrinsic connections between to the
two approaches were explored. A design example was used to

detection problem, and to demonstrate its robust performance
compared with the classical distributed detection approach in
the presence of possible transmission losses.

Our future work will address the application of the MD
principle to sensor networks involving more than two sensors.
The problem becomes conceivably much more complex as the
number of objective functions grow exponentially as the num-
ber of sensors. Thus the constrained minimization approach
may not be feasible. On the other hand, the erasure channel
model essentially collapses the multi-objective functions into
a single error probability, making it more appealing in dealing
with large sensor networks. Thoroughly understanding the
connection between the constrained minimization problem and
the erasure channel model will provide valuable insight in how
to choose the erasure channel model parameters.

APPENDIX I
PROOF OF THEOREM 1

Without loss of generality, we expand Pe0 with respect to
U1 and rewrite Pe0 as the form in Eq. (21), where A1 and B1

are defined in Eqs. (12) and (13), and

C1 = π0 P (U2|H0)P (U0 = 1|U1 = 0, U2)
U2

+π1 P (U2|H1)P (U0 = 0|U1 = 0, U2)
U2

C2 can be similarly defined by swapping the roles of U1 and
U2. Without loss of generality, we can rewrite Pe0 as:

Pe0 = π0P (Uk = 1|H0)Ak − π1P (Uk = 1|H1)Bk + Ck

for k = 1, 2.
From Eq. (1), the local error probabilities can be expressed

as Pek = π0Pfk + π1(1−Pdk), where Pfk = P (Uk = 1|H0)
and Pdk = P (Uk = 1|H1). Thus the left-hand side of Eq. (3)
becomes

�∂Pe0
2

∂(Pei − �i)
+ λi

∂τk ∂τk
i=1

∂Pfk ∂Pdk ∂Pfk ∂Pdk
= π0Ak − π1Bk + λk(π0 − π1 )

∂τk ∂τk ∂τk ∂τk

∂Pfk ∂Pfk ∂Pfk ∂Pfk
= π0Ak − π1Bkτk + λk(π0 − π1τk )

∂τk ∂τk ∂τk ∂τk

(22)

where we have used the fact that dPdk = τk, and τk is the LRdPfk

threshold for the kth sensor. 2.
π0(Ak+λk)Set (22) equal to zero, we have τk = . Eqs. (8-π1(Bk+λk)

11) follow by directly applying the Kuhn-Tucker theorem for
the two cases λk = 0 and λk > 0 separately. Thus, Theorem
1 is proved.

APPENDIX II
PROOF OF THEOREM 2

Similar to the proof in Appendix I, Pe0 can be expanded
with respect to the individual decision rules, and we get, for

2This is the property of the receiver operating characteristics (ROC) curve
for a likelihood ratio test. The threshold corresponding to the (Pf , Pd) pair
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show how the DMDQ can be implemented in a real distributed�����HTXDOV�WKH�VORSH�RI�WKH�52&�FXUYH�DW�WKDW�SRLQW�
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Pe0 =

=

π0P (U0 = 1|H0) + π1P (U0 = 0|H1)

π0

U1 U2

P (U0 = 1|U1, U2)P (U1, U2|H0) + π1

U1 U2

P (U0 = 0|U1, U2)P (U1, U2|H1)

= π0

U2

P (U2|H0)[P (U0 = 1|U1 = 1, U2)P (U1 = 1|H0) + P (U0 = 1|U1 = 0, U2)P (U1 = 0|H0)]

+π1

U2

P (U2|H1)[P (U0 = 0|U1 = 1, U2)P (U1 = 1|H1) + P (U0 = 0|U1 = 0, U2)P (U1 = 0|H1)]

= π0P (U1 = 1|H0)A1 − π1P (U1 = 1|H1)B1 + C1 (21)

k = 1, 2,  
Pe0 = [π0AkP (Xk|H0) − π1BkP (Xk|Hk)]

Xk

P (Uk = 1|Xk)dXk + Ck (23)

where Ck has no effect on the decision rule at sensor k.
Similarly, the error probability at the kth sensor can be

expanded as

Pek = π0P (Uk = 1|H0) + π1P (Uk = 0|H1) 
= [π0P (Xk|H0) − π1P (Xk|H1)]

Xk

P (Uk = 1|Xk)dXk + π1 (24)

Thus, using sensor 1 as an illustration, the average error
probability Pe can be written as the form in Eq. (25), from Eqs.
(14), (23), and (24). As D1 is independent of the quantizer rule
at sensor 1, we need only to minimize the first term in Eq. (25)
with respect to the local decision rule for sensor 1. Thus, the
optimum local decision rule for sensor 1 is as follows.{ 

1, if F1 ≥ 0
P (U1 = 1|X1) = (26)0, otherwise

This is equivalent to the decision rule specified by Eqs. (15-
16) for k = 1. The optimum quantizer rule for sensor 2 can
be similarly established. This completes the proof of Theorem
2.
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Pe

D1

F1

= (1 − δ1)(1 − δ2)Pe0 + δ2(1 − δ1)Pe1 + δ1(1 − δ2)Pe2 + min{π0, π1}δ1δ2

= (1 − δ1)(1 − δ2)
X1

P (U1 = 1|X1) [π0A1P (X1|H0) − π1B1P (X1|H1)] dX1

+δ2(1 − δ1)
X1

P (U1 = 1|X1) [π0P (X1|H0) − π1P (X1|H1)] dX1 + D1

=
X1

P (U1 = 1|X1)F1dX1 + D1

= C1 + δ2(1 − δ1)π1 + δ1(1 − δ2)
X2

P (U2 = 1|X2)[π0P (X2|H0) − π1P (X2|H1)]dX2 + π1

= (1 − δ1)(1 − δ2) [π0A1P (X1|H0) − π1B1P (X1|H1)] + δ2(1 − δ1) [π0P (X1|H0) − π1P (X1|H1)]
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Minimum Error Probability
Cooperative Relay Design

Bin Liu, Member, IEEE, Biao Chen, Member, IEEE, and Rick S. Blum, Fellow, IEEE 

Abstract—In wireless networks, user cooperation has been pro­
posed to mitigate the effect of multipath fading channels. Recog­
nizing the connection between cooperative relay with finite alphabet 
sources and the distributed detection problem, we design relay sig­
naling via channel aware distributed detection theory. Focusing on 
a wireless relay network composed of a single source–destination 
pair with relay nodes, we derive the necessary conditions for op­
timal relay signaling that minimizes the error probability at the 
destination node. The derived conditions are person-by-person op­
timal: each local relay rule is optimized by assuming fixed relay 
rules at all other relay nodes and fixed decoding rule at the des­
tination node. An iterative algorithm is proposed for finding a set 
of relay signaling approaches that are simultaneously person-by­
person optimal. Numerical examples indicate that the proposed 
scheme provides performance improvement over the two existing 
cooperative relay strategies, namely amplify-forward and decode-
forward. 

Index Terms—Cooperative relay, decentralized detection, finite 
alphabet, wireless relay network. 

I. INTRODUCTION 

I N wireless networks, a severe limiting factor is multi­
path-induced channel fading. One of the most effective 

methods in mitigating fading is to exploit diversity. Examples 
include spatial diversity when multiple antennas are used at the 
transceivers, multipath diversity in frequency-selective chan­
nels, and temporal diversity in time-selective fading channels 
through the use of coding/interleaving. More recently, a new 
diversity resource has attracted considerable attention, espe­
cially in the context of wireless ad hoc networks [1]–[3]. There, 
multiple nodes collaborate in transmitting their information, 
thus providing diversity by exploiting the independence of the 
fading channels of different users. This is generally referred to 
as the cooperative diversity, and the collection of cooperating 
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nodes, including the source and the destination nodes, are 
referred to as a relay network. 

Historically, study of relay networks has focused on the 
capacity issue, e.g., achievable rates. The classical three-node 
relay network was first introduced by van der Meulen [4], and 
its capacity was extensively studied by Cover and El Gamal 
[5]. Gastpar and Vetterli [6] considered the capacity of wireless 
networks with multiple relay nodes and showed that the lower 
and upper bounds became the same asymptotically as the 
number of nodes in the network goes to infinity. Sendonaris et 
al. [1], [2] were the first to introduce the concept of user coop-
eration diversity where the mobile users shared their antennas 
and other resources to obtain diversity gain through distributed 
transmission. Focusing on a two-user case, it was shown that 
user cooperation results in an increase in capacity for both 
users. In addition, the achievable rates are less susceptible to 
channel variations, making the cooperative network a more ro­
bust system. Kramer et al. considered several coding strategies 
for various relay networks in [7] and showed that a strategy that 
mixes decode-forward and compress-forward achieves capacity 
if the terminals form two closely-spaced clusters. 

The performance of wireless relay networks has also been 
evaluated by diversity gain and outage probability. By con­
straining the nodes to half-duplex mode, Laneman et al. [3] 
developed various cooperative transmission protocols and 
showed that most of the protocols achieve full diversity order 
(equal to the number of cooperative nodes). Space–time 
code-based cooperative transmission protocols were developed 
in [8] and were also shown to achieve full diversity. In [9] 
and [10], symbol error probabilities were derived in the high 
signal-to-noise ratio (SNR) regime for the general multihop, 
multibranch wireless relay model using the amplify-forward 
(AF) scheme; the result provides insight on the optimum 
placement of relay nodes. Chen and Laneman [11] focused 
on the decode-forward (DF) scheme and developed a general 
framework for maximum-likelihood (ML) demodulation in 
cooperative wireless communication systems. 

In this paper, we focus on a relay network consisting of a 
single source–destination pair and relay nodes. As illustrated 
in Fig. 1, each relay node receives the signal from the source 
node and generates a processed signal based on its received 
signal. The processed signals from all the relay nodes are sent 
to the destination node using orthogonal channels. The desti­
nation node uses the relay signals along with the signal sent 
directly from the source node to determine the source signal. 
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Fig. 1. Wireless relay network with L relay nodes and a direct link connecting 
the source and the destination nodes. 

us to pose the cooperative relay design as a distributed multiple 
hypotheses testing problem. Notice that this FA property is ubiq­
uitous in almost all wireless systems. A similar idea has been ex­
plored in [12] to study a diversity combining scheme using the 
quantized outputs from multiple antennas with independently 
faded binary frequency-shift keying (BFSK) signals. Distinc­
tive in the current paper, in addition to considering a general FA 
source instead of BFSK, is that the relay outputs are assumed 
to also go through general non-ideal channels. Our approach is 
to generalize the channel aware distributed signaling design for 
binary hypothesis testing problem [13], [14] to this cooperative 
relay problem and derive a numerical procedure to compute the 
optimal local relay rules for minimum error probability at the 
fusion center. 

While DF also utilizes the FA property, the proposed ap­
proach is based optimum detection theory and thus provides su­
perior error probability performance. To motivate our proposed 
idea, we consider a simple relay network with one source–des­
tination pair and two relay nodes. We also assume a parallel 
relay scheme where there is no direct transmission between 
the source node and the destination node. The source is binary 
with repetition coding, i.e., one transmits “ ” 
or “ ”, where the redundancy is used to combat 
channel impairment. We also restrict each relay node to send a 
four-bit sequence to the destination node. If we adopt a DF idea, 
each relay node attempts to recover the original binary source 
and resends it to the destination node. However, for this simple 
example, it will be seen that the optimum relay rule amounts 
to quantizing the local likelihood ratio; and better performance 
may result if one uses all possible output alphabet at the relay for 
the quantization. Contrasting this to the DF approach, one can 
consider our approach as using “soft” information from the re­
lays as opposed to hard decisions for DF. As such, applying the 
distributed detection theory allows us to fully exploit the redun­
dancy in the FA sources for improved detection performance. 

Even without the redundancy in the FA sources, jointly de­
signing the relay and destination signaling can still result in im­
proved performance compared with DF. Consider, for example, 
a simple case in which the source signals are either “ ” or 
“ ”. The relay nodes are also restricted to transmit a binary 

channels between the source and the two relay nodes have iden­
tical channel SNRs, while the SNRs of the channels between 
the two relays and the destination differ significantly from each 
other. One natural question is: How do we jointly determine the 
relay and destination processing/signaling that may minimize 
the error probability at the destination node? Clearly, if one re­
sorts to the DF idea, each relay will try to recover the original 
signal and retransmit it to the destination node. As such, one can 
immediately conclude that this idea leads to identical relay rules 
at the two relay nodes. On the other hand, as the channels be­
tween the relays and the destination have different SNRs, should 
one design the processing/signaling differently for better perfor­
mance? As demonstrated in Section IV, the optimum relaying 
for minimum error probability indeed uses different signaling at 
the two relays. Our goal is to come up with a mechanism to find 
out the optimal relay signaling. 

The proposed cooperative relay signaling design assumes a 
clairvoyant case, i.e., the designer knows the global channel 
state information (CSI). While this is unrealistic, it provides im­
portant benchmark performance and reveals a significant gap in 
terms of error probability performance between what is achiev­
able with the existing schemes and what is achievable theoret­
ically. More important, the insight one draws from this clair­
voyant case study may prove critical in devising cooperative 
signaling scheme under a more realistic setting with only dis­
tributed CSI knowledge (i.e., each relay node knows only its 
own CSI). 

The rest of the paper is organized as follows: Section II de­
scribes the system model and the problem formulation. The 
problem setting allows us to derive, in Section III, the neces­
sary conditions for optimal cooperative relay strategies at relay 
nodes to minimize the error probability at the destination node. 
In the same section, we also consider several special models and 
including the three-node relay network, the parallel relay model, 
and the singular relay network. Numerical examples are pre­
sented in Section IV to show the substantial performance gain 
of our approach over two existing relay strategies. We conclude 
in Section V. 

II. STATEMENT OF THE PROBLEM 

Consider a wireless relay network which includes one source 
node, relay nodes, and one destination node (Fig. 1). The 
data transmission is divided into two steps. In the first step, 
the source node broadcasts a signal to all the relay nodes 
as well as the destination node. In the second step, the relay 
nodes then transmit the relay signals to the destination node in 
orthogonal channels. We assume that is drawn from an FA set 

with prior probabilities . 
Further, the received signals at the relays and the 
received signal at the destination, which describe the broad­
cast channel during the first step, are characterized by 

(1) 

i.e., and are conditionally independent given . Here, the 
transmitted signal can be a vector, and the received signal 

(“ ” or “ ”) signal to the destination node. Assume that the and 28 would have a similar structure. The th relay node sends 
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a relay signal to the destination node based on its received 
signal 

(2) 

We assume that, without loss of generality, belongs to a 
FA set . While it may appear natural 
to require , as in the case of DF, we can accommodate 

in the proposed scheme. Indeed, as to be seen later, 
allowing is advantageous as it provides flexibility in 
the relay signaling design. We note here that the condition 

need not necessarily mean that the source sequence and the 
relay message have different lengths. Redundancy is typically 
built into the source sequence (e.g., channel coding), while the 
relay node may exploit all possible alphabets, as illustrated in 
the example in Section I. The relay outputs are also 
sent through parallel transmission channels characterized by 

(3) 

Note that all the signals, including , , , , and , are 
assumed to be vectors. 

Upon collecting the channel outputs from the relay nodes, 
, and from the source node , the destination 

node makes a final decision 

(4) 

where indicates which signal was sent 
from the source node. 

An error happens if . The goal is, therefore, to jointly 
design the local relay schemes , and the de­
coding rule such that the overall error probability at the 
destination node is minimized. From the distributed 
detection point of view, this relay system can be regarded as an 

-ary hypotheses testing system with each hypothesis corre­
sponding to one of the input alphabet symbols, i.e., . 
Given independence among the transmission channels, the sig­
nals received at relay nodes are independent conditioned on the 
input source, or equivalently, a given hypothesis. Thus, the joint 
probability density function (pdf) of the signals received at the 
relays becomes 

(5) 

Similarly, for the signals received at the destination node, the 
joint pdf conditioned on the decision made at the relays is 

(6) 

We point out here that integrating the transmission channels 
into the decoding rule design has been investigated before in 
the context of decision fusion in fading channels for wireless 
sensor networks (WSNs) [15]–[17]. The optimal decoding rule 
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in the Bayesian sense amounts to the maximum a posteriori 
probability (MAP) decision, i.e., 

(7) 

Given a specified set of local relay strategies and the channel 
characteristics, this MAP decision rule can be obtained in a 
straightforward manner. As such, in the next section, we will 
focus on the local relay signaling design. 

We close this section with a summary of the cooperative relay 
design problem. 

1) Problem Statement: In a wireless relay network as de­
scribed in Fig. 1, given the following: 

• a FA source with prior probabilities 
; 

• the channels from the source to relay nodes described by 
for ; 

• the channels from the relay nodes to the destination node 
described by for ; 

• the channel from the source to destination node described 
by ; 

• and a decoding rule at the destination node; 
design the local relay rules for that minimize 
the overall error probability at the destination node . 

III. OPTIMAL LOCAL RELAY STRATEGIES 

This is a joint optimization problem. In order to obtain a glob­
ally optimal scheme, we should simultaneously optimize the 
local relay schemes at all the relay nodes. This joint optimiza­
tion, however, is not feasible due to the distributed nature of the 
problem [18]. In this paper, we adopt a person-by-person op­
timal (PBPO) approach, i.e., we optimize the local relay rule 

for the th relay node given fixed relay rules at all other 
relay nodes and a fixed decoding rule at the destination 
node. As such, the conditions obtained are necessary, but not 
sufficient, for optimality. This PBPO approach has been widely 
adopted in various distributed inference problems (see, e.g., [19] 
and [20]). 

Define 

so that the error probability at the destination node can be 
written as 

(8) 

where, for , 

(9) 

and 

29
(10) 
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Equations (8)–(10) can be obtained by expanding the error 
probability with respect to the relay rule . The derivation 
is straightforward and follows the same spirit as that in [13]; 
hence, we skip the details. 

Thus, to minimize , or equivalently maximize , we set 
, where is the index that maximizes 

. Hence, we have Theorem 1. 

satisfy 

(11) 

Theorem 1: The optimal relay rule for the th relay node must 

defined in (9).
The major issue of Theorem 1 is to evaluate

for 
. While it 

is possible to evaluate it analytically for some special cases, in 
general it requires numerical evaluation which is fairly straight­
forward. 

As expressed in (9) and (10), given the fixed local relay rules 
of the other relay nodes , and the decoding rule 
at the destination node , only depends 
on the local observations at the th relay node and is a linear 
combination of the likelihood function of the local observations. 
Following the definition of likelihood ratio quantizer (LRQ) for 
multiple hypotheses testing [21], the optimal local relay rule as 
described in Theorem 1 is an LRQ. 

An important distinction between the current work and that 
of [22] is that we are considering an -ary hypotheses testing 
problem with general input (e.g., vector input such as a packet). 
As such, one does not have the luxury of equating the local relay 
rule to a scalar quantization problem; instead, one needs to quan­
tize a -dimensional sufficient statistic [23]. Thus, con­
vergence checking by comparing relay rules is generally not vi­
able. 

The fact that we use the PBPO criterion implies that the de­
rived conditions are only necessary but not sufficient conditions 
for optimality. Recognizing that the necessary conditions for the 
relay function is coupled with the decoding rule, we pro­
pose the following iterative algorithm to find the relay and de­
coding rules that are at least locally optimum. 

Iterative algorithm 

1) Initialize the local relay strategies for each relay node 
, and set the iteration index . 

2) Obtain the optimal decoding rule using (7) for fixed 
local relay rules , . 

3) For each , obtain the PBPO local relay rule of 
relay node using (11) given the fixed local relay rules for 
the other relay nodes and fixed decoding rule. 

4) Evaluate the error probability at the destination 
node given the relay rules and 
decoding rule , and compare it with . If the 
difference is less than a prescribed value, stop. Otherwise, 
set and go to Step 2). 

For each iteration, we optimize one rule given that the other 
rules are fixed. Therefore, the error probability is guaranteed to 30

be non-increasing after each step. Thus, the algorithm always 
converges as the error probability is lower bounded by zero. 

A. Special Cases 

The relay network described in Fig. 1 is rather general; it en­
compasses many special cases. For example, setting re­
duces it to the classical three-node relay network; and the cor­
responding optimum decoding rule and optimal local relay rule 
can be obtained by letting in (7) and (11). While this 
three-node network is not materially different from the gen­
eral case, it does significantly reduces the computational com­
plexity. Since there is a single relay node, there is no iteration 
among the relay rules. Instead, one only needs to iterate between 
the decoding rule and the relay rule. 

Another interesting case is the parallel relay network where 
there is no direct transmission from the source node to the des­
tination node. Following the same spirit of the derivation in 
Section III, we can easily get the optimal decoding rule and op­
timal relay rule which are similar to (7) and (11) except that 
is omitted from the expression. 

We now consider the simplest possible relay system: there is 
only a single ( ) relay node and there is no direct link 
between the source and the destination node. Notice that this 
simple model can be considered as a special case of either the 
three-node relay model or the parallel network. We term this as 
a singular relay network. In the context of channel optimized 
quantizer design for WSN, we have shown in [14] and [22] that 
for (i.e., a binary source), the optimum relay rule for a 
singular relay network is channel-blind; i.e., the local relay rule 
will remain unchanged when the relay-destination channel char­
acteristics change. For this special case, the local relay rule is the 
same as that in the case with ideal relay-destination channel as 
this ideal channel can be treated as a limiting case of the fading 
channel. We show in the following that it is not true for the gen­
eral case of ; that is, for a singular relay network with a 
general FA source, the relay signaling should always be channel 
aware. 

By setting in (7) and (11) and omitting , we can 
easily obtain the decoding rule 

(12) 

and local relay rule 

(13) 

where 

(14) 

Define 
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which specifies a set such that a lower probability of error will 
result when the members of the set are assigned to index in­
stead of . Define 

(15) 

and 

Since 

we have 

From (15), the change of channel characteristics may alter the 
value of , which will result in a different region for deciding 
index instead of . In other words, the optimum relay rule 
for the singular relay network needs to be channel aware when 

. 

IV. PERFORMANCE EVALUATION 

In this section, through a number of numerical examples, we 
demonstrate the performance advantage of our approach over 
some existing relay strategies, namely DF and AF, for the relay 
network defined in Fig. 1. For DF, each relay node makes its 
own decision using an MAP rule, as follows: 

(16) 

and re-encodes it and sends it to the destination node. This is dif­
ferent from the relay signaling specified in Theorem 1, i.e., (11) 
and (9), where all the relay rules are coupled with each other. 
We remark here that the DF approach considered in this paper 
is the vanilla version discussed in [8] and [11]. We assume that 
the relay node always forwards its best estimate to a destination 
node. 

For AF, the output of the relay node is simply a scaled version 
of the received signal, i.e., 

where the scaling factor is determined so that all schemes 
have the same average power constraint. For fading channels, 
we have 

31
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where is the power constraint which is assumed to be the 
same for all the relay nodes as well as the source node, is 
the channel coefficient and is the variance of channel noise. 
At the destination node, all the schemes implement the MAP 
rule to obtain the final decision. 

Throughout our simulations, we assume that the channels be­
tween the source and the relay nodes are identically and in­
dependently distributed (i.i.d.) Rayleigh-fading channels with 
average SNR denoted by SNR . Similarly, the channels be­
tween the relay and destination node are also assumed to be i.i.d. 
Rayleigh fading channels with average SNR denoted by SNR 
(except for the first example where both relay nodes experience 
different SNR ). Notice that this is a somewhat simplifying as­
sumption: In a homogeneous environment where the path loss 
exponent is a constant, the above assumption amounts to re­
quiring that the relay nodes are equidistant to the source node 
as well as to the destination node. We will vary one of these two 
SNR with the other fixed; this captures the change in the place­
ment of the relay nodes in terms of their distances to the source 
and to the destination nodes. The SNR for the direct link be­
tween the source and the destination node is denoted as SNR . 
Further, all the channels are assumed to be slow fading chan­
nels so that the channel coefficients remain unchanged during 
the transmission of one symbol or a packet. 

The signal sent from the source node is assumed to be a -bit 
codeword drawn from a -ary codebook with equal proba­
bility. Hence, . Each bit is assumed to use BPSK modu­
lation. We also assume that the local decision at each relay node 
is bits; thus, the relay output has a maximum alphabet size of 

. 

A. Parallel Relay Network 

We first consider an example that we discussed in Section I, 
the parallel relay network with , and , 
i.e., a single BPSK symbol is sent from the source and is to 
be relayed to the destination node using two relay nodes. We 
assume that the BPSK signal has equal prior probability, i.e., 

We also assume that SNR is identical for both relay nodes but 
SNR may be different. In this case, the relay rule used by DF 
for the th relay node can be easily obtained from (16), 

SST 

where is the channel coefficient for the channel between 
the source node and the th relay node and means real 
part. Application of Theorem 1 and our iterative algorithm 
show that our approach also compares SST to a threshold, but 
our threshold is obtained by jointly designing the relay rules 
and the decoding rule, which leads to performance gains. In 
Table I, with identical SNR for both relay nodes and different 
SNR for each relay node, we compare the thresholds of SST 
and overall error probability between DF and the proposed 
approach. As one can see, the proposed approach has better 
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TABLE I 
COMPARISON OF THRESHOLDS OF SST AND ERROR PROBABILITY BETWEEN DF AND PROPOSED APPROACH (SNR = 5 dB).  

Fig. 2. Error probability versus SNR of source-relay channel for L = 2, : =

2, and I = 1 (SNR = 5 dB).  

performance than DF and the thresholds of SST are different 
for the different relays for our approach. 

We then consider a little different case where SNR is iden­
tical for both relay nodes. Figs. 2 and 3 plot the error probability 
at the destination node as a function of SNR and SNR , re­
spectively. From Fig. 2, where SNR is fixed at 5 dB, the pro­
posed approach provides the best performance among all three 
relay schemes. In Fig. 3 where SNR is fixed at 5 dB, the AF 
outperforms the proposed method at high SNR values. This is 
not surprising since the optimum performance is achieved with 
centralized processing, i.e., when all local observations are ac­
cessible by the decoder. With high SNR , the analog signal 
can be received at the destination almost noiselessly, hence it 
amounts to the centralized processing. The proposed scheme 
attempts to find the optimum relay scheme among all possible 

-bit quantizers to minimizes the error probability at the desti­
nation node. The AF apparently does not belong to the class of 
the -bit quantizers. 

We next consider a special case that we also discussed in 
Section I, the repetition coded binary source. This is equiva­
lent to a binary hypotheses testing with soft (multibit) output. 

Fig. 3. Error probability versus SNR of relay-destination channel for L = 2, 
: = 2, and I = 1 (SNR = 5 dB).  

fading channel using a binary symmetric channel (BSC) where 
the crossover probability can be properly calculated using the 
channel SNR. The BSC provides a reasonable, albeit coarse, 
approximation of the fading channel; moreover, one can apply 
directly the distributed detection algorithm developed in [22] to 
find the optimal relay rules. We thus compare the BSC approxi­
mation with our approach using the actual fading channel model 
and the two existing relay strategies (i.e., AF and DF). Consider 
the system with relay nodes and bit source input. 
We generate the error probability plots as a function of SNR 
and SNR , respectively. From Fig. 4 where we vary SNR but 
fix SNR 0 dB, one can see that the proposed approach pro­
vides uniformly better performance compared with the other 
alternatives. Notice that all the error probabilities level off as 
SNR increase. This is not unexpected: with large SNR , the 
channels between the source and the relay nodes can be consid­
ered as ideal. Thus, the error probability performance is limited 
by the finite and fixed SNR . We also notice that the BSC ap­
proximation provides a reasonable performance compared with 
the proposed approach. 

Fig. 5 is the error probability plot as a function of SNR 
To alleviate the computational burden, one can approximate the with 32 fixed SNR dB. Again, one observes error probability 
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Fig. 4. Error probability versus SNR of source-relay channel for L = 2, : =

2, and I = 4 (SNR = 0 dB).  
Fig. 6. Error probability versus SNR of source-relay channel for the case using 
L = 2 and (7, 4) code as source input (SNR = 5 dB).  

Fig. 5. Error probability versus SNR of relay-destination channel for L = 2, 
: = 2, and I = 4 (SNR = 0 dB).  

floor as SNR increases due to the fact that SNR is fixed. 
Furthermore, the AF eventually outperforms all other schemes 
as SNR gets large – this is again because at very high channel 
SNR between the relays and the destination, AF essentially 
amounts to a centralized processing. On the other hand, the DF 
is the first to level off in the error probability performance. This 
is because the DF uses a hard decision relaying—this is clearly 
not optimal at high SNR for the channel between the relays and 
the destination. 

We also consider a more practical scenario where the packet 
is coded with a (7, 4) Hamming code [24] with relay 
nodes, and the generator matrix we use is 

33

Fig. 7. Error probability versus SNR of relay-destination channel for the case 
using L = 2 and (7, 4) code as source input (SNR = 5 dB).  

As shown in Figs. 6 and 7, the proposed approach again has the 
best performance. 

B. Three-Node Relay Network 

We compare the performance of the proposed scheme with 
two existing relay schemes for the classical three-node model. 
In generating the error probability plots, we vary one channel 
SNR and fix the other two. As shown in Figs. 8 –10, the pro­
posed approach still has the best performance. When we vary 
SNR or SNR , the plots we obtain are similar to previous ex­
amples: the proposed scheme is uniformly better than others for 
varying SNR and the advantage of the proposed scheme over 
DF diminishes at low SNR for varying SNR . Since we have 
a direct transmission from source to destination node, when we 
vary SNR and fix the other two, the performance gain of the 
proposed scheme diminishes to zero at high SNR, as shown in 
Fig. 10. 
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Fig. 8. Error probability versus SNR of source-relay channel for classical 
model with : = 3 and I = 3 (SNR = 5 dB, SNR = 5 dB).  

Fig. 9. Error probability versus SNR of relay-destination channel for classical 
model with : = 3 and I = 3 (SNR = 5 dB, SNR = 5 dB).  

V. CONCLUSION 

In this paper, a novel cooperative relay signaling that applies 
channel aware decentralized detection theory was proposed to 
fully exploit the FA property of the source message. Aimed at 
minimizing the error probability at the destination node, we de­
rived the necessary conditions for an optimal distributed sig­
naling scheme for a FA source. An iterative algorithm was pre­
sented to find distributed relay schemes that are at least locally 
optimum. We further examined some special cases, including 
the classical three-node relay network and the parallel relay net­
work. For the special case of a single relay node with no direct 
link between the source and the destination node, i.e., the sin­
gular relay network, we pointed out the significant difference 
between a binary source and a general -ary source ( ), 
that is, while the optimal relay rule is channel blind for the sin­
gular relay network with a binary source, it is channel aware 

Fig. 10. Error probability versus SNR of source-destination channel for clas­
sical model with : = 3 and I = 3 (SNR = 5 dB, SNR = 5 dB).  

strategies, namely AF and DF, was conducted numerically. In 
almost all cases of practical interest, the proposed approach ex­
hibits notable advantages over existing relay schemes that do 
not exploit the redundancy in FA sources. 

One drawback of the proposed scheme is that the optimal sig­
naling design requires global channel information. Distributed 
signaling design that only uses local channel information is 
more practical and will be investigated in the future. Similar 
work has been carried in the context of distributed detection for 
sensor networks [25] and can be extended to the cooperative 
relay signaling design. Another drawback is that the relay rule 
design of all relay nodes are coupled in the proposed design 
approach. This significantly increases the complexity of the 
design algorithm which typically scales exponentially in the 
number of nodes. One remedy is to resort to the large system 
regime to optimize the error exponent instead of the error 
probability, thereby circumventing the iterative algorithm that 
is needed to achieve the person-by-person optimality in error 
probability performance. 
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Sum Capacity Optimality of
Orthogonal Transmissions in

Vector Gaussian Multiple Access Channels
Xiaohu Shang, Student Member, IEEE, Biao Chen, Senior Member, IEEE, and John Matyjas, Member, IEEE

Abstract—We study in this paper the sum capacity achievabil-
ity of orthogonal transmissions in vector Gaussian multiple access
channels (MAC). Specifically, we derive sufficient and necessary
conditions, in terms of channel matrices and transmitter power
constraints, for orthogonal transmissions to achieve the sum
capacity of a vector Gaussian MAC. The obtained conditions
provide a unified framework that helps explain many intuitive
and known results as well as explore cases that have not been
addressed. In the cases when these conditions are violated, our
results enable us to quantify the suboptimality of orthogonal
transmission when the sum capacity can only be achieved by
overlay transmission.

Index Terms—Sum capacity, vector Gaussian multiple access
channel, frequency division multiple access.

I
I. INTRODUCTION

N A MULTIPLE access channel (MAC), multiple trans­
mitters communicate with a single receiver. The capacity

region of a two-user MAC is the closure of all (R1, R2) pairs
satisfying

R1 < I(X1; Y |X2),
R2 < I(X2; Y |X1),

R1 + R2 < I(X1, X2; Y ),

for some product distribution p1(x1)p2(x2) [1], [2], where
X1,X2,Y are respectively transmit and receive alphabets.
For a two-user scalar Gaussian MAC, the capacity region is
specified by ( )

1 P1
R1 < log 1 + ,

2 N( )
1 P2

R2 < log 1 + ,
2 N( )
1 P1 + P2

R1 + R2 < log 1 + ,
2 N

where P1 and P2 are respectively the average power constraint
of the two transmitters, and N is the noise variance at the
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receiver. While it is shown that the capacity region is achiev­
able using overlay transmission, it is also well known that,
for a scalar Gaussian MAC, orthogonal transmissions, e.g.,
frequency division multiple access (FDMA) or time division
multiple access (TDMA) under an average power constraint,
can achieve the sum capacity [2]. As such, although FDMA
and TDMA is suboptimal in terms of the entire capacity region
[3], if only the system throughput is of concern, orthogonal
transmissions are sufficient, resulting in a much simplified
transceiver structure, i.e., no successive interference cancel­
lation is needed. Similar result holds for a scalar Gaussian
MAC with more than two users.

With vector Gaussian MAC, the above claim - that orthogo­
nal transmissions achieve the sum capacity - is not necessarily
true. Indeed, it is observed that in most cases orthogonal
transmissions fall well short of achieving the sum capacity
of a vector Gaussian MAC [4]. The goal of this study is two­
fold. First, we establish sufficient and necessary conditions for
orthogonal transmissions to be optimal in achievable sum rate
for a vector Gaussian MAC. The established conditions, in
terms of singular values and singular vectors of the channel
matrices as well as the power constraints, provide a unified
framework behind many intuitive and well known results. In
addition, it allows us to examine cases that have not been
explored before in terms of the (sub)optimality of orthogonal
transmissions for vector Gaussian MAC. We show that the
channel must have proportional singular values, well aligned
singular vectors and appropriate power constraints in order for
FDMA/TDMA to achieve the sum capacity. Secondly, using
the established conditions, we attempt to provide quantitative
measure for the performance degradation of orthogonal trans­
mission when they are suboptimal.

The paper is organized as follows. In Section II, we present
the channel model and give the main results, namely the
sufficient and necessary conditions in terms of channel ma­
trices and power constraints, for FDMA to achieve the sum
capacity. The equivalence of FDMA and TDMA in terms of
achievable sum rate is also established in section II. In Section
III, we examine several cases using the new framework to
determine the (sub)optimality of FDMA. In the cases when
FDMA becomes suboptimal, we propose a heuristic metric
to quantify the degradation of sum capacity achievability of
FDMA in section IV. We conclude in Section V.

The following notations will be used throughout the paper:
A†, |A|, tr(A), rank(A), ||A|| are respectively the Hermitian
matrix, determinant, trace, rank, and 2-norm of matrix A; x̄ £
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1 − x; (x)+ = max{x, 0}; diag(σ1, · · ·  , σn) is a diagonal
matrix with the diagonal entries σ1, · · ·  , σn.

II. MAIN RESULTS

Consider a vector Gaussian MAC

y = H1x1 + H2x2 + z,

where Hi is an nr × nti full rank channel matrix, xi and
y are nti × 1 transmit and nr × 1 receive signal vectors
respectively, z is a nr×1 complex Gaussian noise vector, with( )
E(z) = 0, E zz† = I, where I is the nr×nr identity matrix.( )

†The covariance matrix of xi is denoted by Si = E xixi

with power constraint tr(Si) ≤ Pi. Both the transmitters and
receivers are assumed to have full channel state information.
For simplicity, we use MAC(H1,H2, P1, P2) to denote this
vector Gaussian MAC, of which, the sum capacity is    
C = max log  H1S1H

† + H2S2H
† + I . (1)1 2

tr(S1)≤P1,tr(S2)≤P2

It was established in [5] that the sufficient and necessary
condition to achieve the sum capacity is the mutually water-
filling scheme, i.e., choose Si as single-user water-filling
covariance matrix by treating other user’s signals as channel
noise. On the other hand, the maximum achievable sum rates
by using FDMA and TDMA are respectively

CF = max CF (α), CT = max CT (α),
0≤α≤1 0≤α≤1

where α is the fraction of bandwidth or time allocated to the
first user, by normalizing the bandwidth or the time, we obtain
from [2, (15.150),(15.151)]        CF (α) = max α log

1
H1S1H

† + I
tr(S1)≤P1,tr(S2)≤P2

 α 1       +ᾱ log
 1

H2S2H
† + I

 
, (2) ᾱ 2  {     

CT (α) = max α log  H1S1H
† + I 1P1 P2tr(S1)= ,tr(S2)=α ᾱ   }  +ᾱ log  H2S2H

† + I . (3)2

Both CF (α) and CT (α) are obtained by two independent
single user water-fillings in their respective channels. We will
show later that CF (α) = CT (α) for all α for a given MAC,
therefore we can explore the achievability of sum capacity
focusing only on FDMA. In addition, we have Proposition
1, whose proof is nearly identical to the proof of concavity
of FDMA sum rate for the vector Gaussian interference
channel [6, (14)], as the two sum rates bear exactly the same
expression.

Proposition 1: CF (α) is a concave function of α.
Proposition 1 guarantees convergence of simple gradient

methods to the global maximum [7].
Before proceeding, we first show the following lemma.   1  Lemma 1: If Sopt = arg maxtr(S)≤P log HSH† + I ,α

where α > 0 is a constant, then for any β ∈ (0, 1), the
β̄two matrices β HSoptH† and HSoptH† satisfy the mutuallyα α

water-filling condition.     37

1 1Proof: Consider a MAC(√ H, √ βP ), the sumH, βP, ¯
α α

capacity is
   1 1    C = max log HS1H† + HS2H† + I  

tr(S1)≤βP,tr(S2)≤βP¯ α α   1    = max log H(S1 + S2)H† + I  
tr(S1)≤βP,tr(S2)≤¯ αβP   1    ≤ max log HSH† + I  tr(S)≤P α    = log
 1

HSoptH† + I
 
.  α

The above sum capacity is achieved by choosing S1 = βSopt
¯and S2 = βSopt. According to Theorem 1 of [5], the two

β β̄matrices HSoptH† and HSoptH† satisfy the mutuallyα α
water-filling condition.

Our goal is to find the sufficient and necessary conditions
such that CF = C. Our main result is summarized below.

Theorem 1: For a MAC(H1,H2, P1, P2), FDMA can
achieve its sum capacity if and only if there exist 0 < α < 1,
S1opt, and S2opt that jointly satisfy

1
H1S1optH

† =
1
H2S2optH

†
2, (4)

α 1 ᾱ     S1opt = arg max log
 1

H1S1H
† + I

 
, (5)  tr(S1)≤P1 α 1      S2opt = arg max log

1
H2S2H

† + I . (6) 2  tr(S2)≤P2 ᾱ

Proof: Sufficient condition From (4)-(6), by choosing
S1 = S1opt and S2 = S2opt, the achievable sum rate is

    log  H1S1optH
†
1 + H2S2optH2

† + I     = log
 1

H1S1optH
† + I

  1  α     = max log
 1

H1S1H
† + I

 
.

tr(S1)≤P1
 α 1  

ᾱFrom Lemma 1, H1S1optH
† and H1S1optH

† (or1 α 1

H2S2optH
†) satisfy the mutually water-filling condition.2

From Theorem 1 of [5], they achieve the sum capacity.
Apply FDMA to the same channel with S1 = S1opt, S2 =

S2opt and the bandwidth allocation factor α, the sum rate is

         H1S1optH1
†   H2S2optH

†
2  

CF = α log  + I + ᾱ log  + I  α   ᾱ           H1S1optH
†
1   H1S1optH

†
1  = α log  + I + ᾱ log  + I  α   α      = log

 1
H1S1optH

†
1 + I

 
= C,  α

i.e., it achieves the sum capacity.
Necessary condition Assume FDMA can achieve the sum
capacity with α,S1opt,S2opt. We only need to show that (4)
must be satisfied since (5) and (6) must be true. From the
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assumption, we have

= α log
H1S1optH

†
1

α
+ I + ᾱ log

H2S2optH
†
2

ᾱ
+ I

    
(a) H1S1optH

†
1 H2S2optH

†
2≤ log α + I + ᾱ + I

α ᾱ

≤C,

where (a) follows from the concavity of log | · |  for positive
semi-definite matrices [2], with equality if and only if (4) is
true. Since equality must hold, (4) must be true.

Conditions (5) and (6) can be interpreted as that Siopt water-
fills Hi for the given α. To be able to dissect more complicated
cases, we next present Theorem 2, derived directly from The­
orem 1. We assume that the channel matrices admit respective
singular value decompositions Hi = UiΣiV

†
i , i = 1, 2.

We denote by σij and uij the jth singular value and left
singular vector for Hi. Without loss of generality, we assume
σi1 ≥ σi2 ≥ · · · ≥ σiri , ri = rank(Hi), i = 1, 2.

Theorem 2: For a MAC(H1,H2, P1, P2), FDMA achieves
the sum capacity if and only if there exists an integer 1 ≤ m ≤ 
min{r1, r2} that satisfies the following conditions.
Singular value conditions For some constant k,

σ2 σ2
11 1m= · · · = = k. (7)

σ2 σ2
21 2m

Singular vector conditions For any  σ1n1 =σ1n1−1 =
σ1n1+1 = · · · = σ1n2  = σ1n2+1 with 1 ≤ n1 ≤ n2 ≤ m,

S{u1n1 , · · ·  ,u1n2} = S{u2n1 , · · ·  ,u2n2}, (8)

where S{u1, · · ·  ,uL} denotes the subspace spanned by u1,
· · · , uL. In the event that all singular values are distinct, we
have u1i = ±u2i for 1 ≤ i ≤ m.
Power constraint conditions

v1P2 = v2P1, (9)

where
r1 ( )+ m ( )f fα α

v1 − = v1 − = P1, (10)
σ2 σ2

1i 1i

r2 ( )+ m ( ) i=1 i=1f fᾱ ᾱ
v2 − = v2 − = P2, (11)

σ2 σ2
2i 2ii=1 i=1

kP1
α = . (12)

kP1 + P2

Proof: From (4) we have

1
U1Σ1S̃1ΣI U† + I =

1
U2Σ2S̃2ΣI U† + I,1 1 2 2α ᾱ

where S̃1 = V†S1optV1 and S̃2 = V†S2optV2. With (5)-(6)1 2

we have ( )
σ2 σ2 v111v1 1m1 U†U1 diag , · · ·  , , 1, · · ·  , 1 1α α( )

σ2 σ2 v221v2 2m2 U†= U2 diag , · · ·  , , 1, · · ·  , 1 2,(13)
ᾱ ᾱ

where v1 and v2 are the water-filling level
( )+f r1 α

v1 − = P1, (14)
σ2

1ii=1 ( )+r2f ᾱ
v2 − = P2. (15)

σ2
2ii=1

th thAssume the power is allocated until the m and m eigen­1 2

modes for user 1 and user 2 respectively. Then m1 = m2 £ m,
σ2 σ2v1 v21m1 2m1because and are strictly greater than 1. Thusα α  

m1 f 1
v1 = P1 + α , (16)

m σ1
2
ii=1  

m1 f 1
v2 = P2 + ᾱ . (17)

m σ2
2
ii=1

In (13), the two matrices on both sides must have the
same eigenvalues and the same corresponding eigenvector
subspaces, therefore, Ui must satisfy the singular vector
conditions (8) and singular value conditions

σ2 σ2 αv211 1m= · · · = = £ k. (18)
σ2 σ2 αv1¯21 2m

Substitute (17) into (18) we have (12) and (9). In order that
αpower is allocated until the mth element we must have <

σ2
1m

α ᾱ ᾱv1 ≤ and < v2 ≤ .
σ2 σ2 σ2
1m+1 2m 2m+1

Equations (7) and (8) establish that the two channel matrices
must have proportional singular values and perfectly aligned
singular vectors, while the last condition dictates that the cor­
responding power constraints must be such that the respective
water-filling uses the same number of eigenmodes for the two
users in the FDMA transmission for the optimal α.

σ2
1m 1,m+1For a MAC with σ2  , even if the singular vector=

σ2 σ2
2m 2,m+1

mconditions in Theorem 2 are satisfied, if Pi > −
σ2
1,m+1

m 1 for either i = 1 or 2, the power conditions arej=1 σ2
i,j

violated and FDMA is suboptimal due to the generous power
constraint, which favors overlay transmission with successive
interference cancellation. Proposition 2 shows the relation of
power conditions and the achievability of sum capacity of
FDMA.

11Proposition 2: For a MAC(H1,H2, P1, P2) if k £ σ2

=
σ2
21

σ2 σ2
1m 1,m+1· · ·  =  , and the singular vector conditions in=

σ2 σ2
2m 2,m+1

Theorem 2 are satisfied, FDMA achieves the sum capacity if
and only if the power constraint pair (P1, P2) belongs to P ,
where

P = {(P1, P2) |kP1 + P2 ≤ mk   
1 1·   − , P1, P2 > 0 , (19)

max σ2 , kσ2
σ221,m+1 2,m+1 1,m

where σ22
i,m is the harmonic mean of σ2 , . . . , σ2 , i.e.,i1 i,m

m1 £ 1 f 1
.

σ22 m σ2
1i1,m i=1
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Proof: If the power is allocated up to the mth eigenmode
for both users, from Theorem 2 (10) and (11), CF = C if

α α
< v1 ≤ ,

σ2 σ2
1,m 1,m+1

(20)

ᾱ ᾱ
< v2 ≤ . (21)
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Example 2 

Example 3 
σ2

2,m σ2
2,m+1

Substitute (10)-(12) to (20) and (21) we have

1 1
mk − < kP1 + P2

σ2
1,m σ22

1,m

1 1≤ mk − .(22)
max σ2 , kσ2

1,m+1 2,m+1 σ22
1,m 0 0.2 0.4 0.6 0.8 1 

Frequency band allocation α
Therefore, for all the power constraint pairs (P1, P2) satisfying
(22), FDMA achieves the sum capacity. Notice that it is not

thnecessary that the power must be allocated up to the m
eigenmode for FDMA to be optimal. If both users allocate the
power to the tth < mth eigenmode and the power constraint
conditions in Theorem 1 are also satisfied, FDMA can still
achieve the sum capacity. Consider the same constraints in
(20) and (21) with m replaced by t, we have (23), where
t = 1, · · ·  , m − 1. Denote the sets defined in (23) as Pi, i =
1, · · ·  , m − 1 and the set in (22) as Pm. For the MAC, if
the power constraint pairs satisfy (P1, P2) ∈ P , FDMA can�machieve the sum capacity, where P = Pi, which is thei=1

same as (19). In (19) we exclude the trivial cases that FDMA
always achieves sum capacity if either P1 or P2 is zero, since
it reduces to a single user channel.

In the following, we establish the equivalence of FDMA
and TDMA in terms of achievable sum rate.

Proposition 3: For a MAC(H1,H2, P1, P2), CF (α) =
CT (α) for all 0 < α < 1

S1 S2Proof: Define Ŝ1 = and Ŝ2 = , and substitute themα ᾱ
into (2), it can be shown that (3) and (2) are equivalent.

Therefore all the results of FDMA can be readily extended
to TDMA.

Finally, we extend Theorem 1 to the multiple-user MAC.
The proof follows exactly the same proof of Theorem 1, and
is omitted because of the space limit.

Theorem 3: For a k-user MAC(H1, . . . ,Hk, P1, . . . , Pk),
FMDA achieves the sum capacity if and only if there exist

k0 < αi < 1, = 1, Siopt, i = 1, . . . , k that jointlyi=1 αi

satisfy

1
H1S1optH

†
1 = · · · =

1
HkSkoptH

†
k (24)

α1 αk

Siopt = arg max log
1

HiSiH
† + I (25)

tr(Si)≤Pi αi
i

III. CASES FOR FDMA BEING SUM-CAPACITY OPTIMAL

The sufficient and necessary conditions in Theorem 1 or
2 appear to be overly restrictive. Such conditions are rarely
satisfied for the general vector Gaussian MAC. The results,
however, provide a unified approach to determine the sum
capacity optimality of orthogonal transmissions. More impor­
tantly, Theorem 2 also allows us to gain insight into how
to quantify the suboptimality of orthogonal transmissions as
demonstrated later in this section.     39

Fig. 1. Sum rate of FDMA versus frequency allocation factor, where, for
Example 2 nr = nt1 = nt2 = 8, P1 = P2 = 1, γ = 2, H and A are√ 
randomly chosen; for Example 3, nr = nt1 = 8, nt2 = 10, σ1 = 3,√ 
σ2 = 12, P1 = P2 = 1, U1, U2, V1 and V2 are randomly chosen.

In the following, we demonstrate the utility of the proposed
sufficient and necessary conditions by reviewing some exam­
ples, in which FDMA is sum capacity optimal.

Example 1: nr = 1, nt1 , nt2 ≥ 1.
In this case, both channels have only one singular value

||H1||2σ1 = ||H1||, σ2 = ||H2||, m = 1, k = ||H2||2 , and
U1 = U2 = 1. From (10) and (11) we obtain vi =( )

1Pi 1 + ||H1||2P1+||H2||2P2
, i = 1, 2. Therefore all the con­

ditions in Theorem 2 hold and CF = C.
Example 2: H1 = γH2A, γ is a constant and AA† = I.
Define nt £ nt1 = nt2 and r = r1 = r2, we have U1 = U2

σ2

and k = 1i , i = 1, · · ·  , r, with these and (10) and (11) we
σ2
2i

have
r ( )+f γ2v1 − 

P1 σ1i (γ2P1 + P2)i=1
r ( )+f γ2v2= − 

P2 σ1i (γ2P1 + P2)i=1

= 1.

= v2Then v1 . Depending on P1, P2, m can be any integerP1 P2
between 1 and r. Therefore, all the conditions of Theorem
2 are satisfied and CF = C. Intuitively, as A is a unitary
matrix, one can apply capacity-preserving precoding A to x2,
resulting in

y = H1x1 + H2Ax2 + z = H2A (γx1 + x2) ,

i.e., effectively reducing the MAC channel to a single user
channel, where H2A is the channel matrix, and γx1 and x2

are two independent signals transmitted by this single user.
Therefore FDMA achieves the sum capacity.

Example 3: nr ≤ min{nt1 , nt2}, H1 and H2 have identi­
cal singular values σij = σi, i = 1, 2; j = 1, 2, · · ·  , nr.

σ2

In this case, k = 1 , m = nr, and S{u11, · · ·  ,u1nr} =σ2
2S{u21, · · ·  ,u2nr} = Rnr , using the same argument in Exam­

ple 2 one can show v1P2 = v2P1. Therefore all the conditions
in Theorem 2 are satisfied and CF = C.

Two special cases of Examples 2 and 3 are shown in Fig.1
with CF = C when α = 0.8. The example in [5, page 148]
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1 1 1 1
kt − < kP1 + P2 ≤ kt − (23)

σ2
σ22 σ2

σ221,t 1,t+11,t 1,t

is also achievable by FDMA with α = 0.5. In the above
examples, the channel matrices make the power constraint F 

automatically satisfied regardless of the values of P1 and P2, 1.01 
E 

NM 

i.e., the water-filling level vi is always proportional to Pi.
However, there are cases that, even if the channel matrices
satisfy the singular value/vector constraints, one still need the

R
at

io
 o

f C
 a

nd
 C

F

1 

0.99 

0.98 

right P1 and P2 as Proposition 2. Here is an example.( )
1 1Example 4: For a MAC with H1 = diag 1, √ , √
3 8

, we show in Fig.2 the relation of

and( )
1 1 √1H2 = diag √ , √ ,
2 6 10

v.s. (P1, P2).

0.97 
0 0 

CF It can be shown from Proposition 2 thatC
CF = C when 2P1 + P2 ≤ 12 and

P1 = {(P1, P2) |2P1 + P2 ≤ 4, P1 > 0, P2 > 0} ,
P2 = {(P1, P2) |4 < 2P1 + P2 ≤ 12, P1 > 0, P2 > 0} .

In Fig.2, P1 denotes the area between the axis and the line
segment EF , in which, CF = C by allocating the power only
to the first eigenmode, and P2 denotes the area between the
line segment EF and MN , in which, CF = C by allocating
the power up to the second eigenmode.

We will show in the following example that although FDMA
is suboptimal in a fading MAC, the ergodic sum capacity
can be asymptotically achieved when the number of antennas
becomes large.

Example 5: The ergodic sum capacity of a fading MAC is

P1 P2
Ce = E log H1H

† + H2H
† + I ,1 2nt1 nt2

where, all entries of H1 and H2 are assumed to be zero mean
independent complex Gaussian with unit variance. From [8]
and [9] the ergodic sum capacity can be achieved by choosing

P1 P2S1 = Int1×nt1
; S2 = Int2×nt2

.
nt1 nt2

For the same reason the ergodic maximum sum rate of
FDMA is

CFe = max E α log
P1 H1H

† + I1
0<α<1 αnt1

P1+ᾱ log H2H
† + I

ᾱnt2
2 .

For each realization of H1 and H2, with probability 1, the
condition of theorem 1 can not be satisfied. But when nt1 and
nt2 increase while nr is fixed, from Law of Large Number,

1 1
H1H

† → I; H2H
† → I.1 2nt1 nt2

So we have

lim Ce = nr log(P1 + P2 + 1),
nt1 ,nt2→∞ ( )

P1lim CFe = max nrα log + 1
nt1 ,nt2→∞ 0<α<1 α ( )

P2+nrᾱ log + 1
ᾱ

5 
10 5 

15P
2 P

120 10 

CFig. 2.
CF

as a function of P1, P2 for Example 4.

P1where the maximum is achieved when α = .P1+P2

Therefore, in fading MAC, with increasing number of
transmit antennas, ergodic sum capacity can be asymptotically
achieved by FDMA and the bandwidth allocation factor is
proportional to the power of the corresponding user. This
result can also be explained by Theorem 2. Example 5 can
be considered as a counterpart of Example 3, since all the
singular values of H1 and H2 asymptotically become identical
respectively when nt1 , nt2 become large while nr is fixed.
In both the fading and non-fading cases, the optimal power
allocation for FDMA is to evenly distribute the power among
all transmit antennas. However, k is dropped in the expression
of the optimal α for the fading case because the singular values√ √ P1converge to nt1 and nt2 while the allocated power is nt1

P2and .nt2
Intuitively, the asymptotic achievability of ergodic sum

capacity by FDMA can be seen from the degrees of freedom’s
point of view. For a Gaussian vector MAC, the degrees of
freedom is min(nt1 +nt2 , nr) if overlay transmission is used,
and is min(nt1 , nt2 , nr) if FDMA is used. So when both
nt1 > nr and nt2 > nr, the total degree of freedoms is not
decreased by orthogonal transmission, which makes it feasible
for FDMA to achieve the sum capacity.

In Figure 3, as nt becomes large, CFe becomes close to
Ce.

IV. QUANTIFICATION OF SUM-CAPACITY SUBOPTIMALITY

OF FDMA
σ11A simple example for FDMA to be subpotimal is σ21

=
σ12 and u11 = ±u21. Next, we decouple the singular valueσ22
and vector conditions, and use Theorem 2 to evaluate their
individual impact on the sum capacity achievability of FDMA.

1) Singular vector: In this section the singular value con­
ditions are assumed to be satisfied, but the subspaces spanned
by the corresponding singular vectors are now different. In
practice it applies to the low SNR case, in which the power

= nr log(P1 + P2 + 1), for both users is allocated only to the largest eigenmode and
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Fig. 4. Example 6. The top plot is the ratio of CF and C, and the bottom
= P2 = 1. plot is the angle of subspaces versus the rotation angle.

Fig. 3. Ratio of FDMA sum rate and ergodic sum capacity, where nr = 8,
nt1 = nt2 , P1

σ2 1 
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. However, the singular vector conditions in Theoremk =
σ2
21

2, which require that the singular vectors of H1

expand the same subspace, are seldom satisfied in practice.
and H2 0.95 

0.9 

0.85 

If the singular vector subspaces associated to σ11 and σ21

are both rank 1, we can use the Euclidean inner product to
measure the angle of these two subspaces. Otherwise, in order Angle of the subspaces φ (π) 

C
have a mechanism that allows us to quantify the difference of

Cto evaluate the relation of singular vectors and F , we must
1 

0.95 

0.9 

0 0.2 0.4 0.6 0.8 1 

two subspaces. We use the distance between two subspaces,
defined in [10, page 76] as

dist(U1,U2) £ ||Q1 − Q2|| = σmax (Q1 − Q2) , (26)
0.85 

where Ui, i = 1, 2 are the subspaces, Qi is the orthogonal sin2φ

and C versus φ, the principal angle of the subspaces

( )−1

U† U†projection matrix for Ui, i.e., Qi = Ui Ui , wherei i
Fig. 5. The ratio of CFthe column vectors of matrix Ui consist of the orthonormal for Example 6.

basis of the subspace Ui, and the 2-norm of Q1 − Q2 is its
largest singular value. In this definition U1 and U2 can have ( )

1 1Example 6: U1 = V1 = V2 = I, Σ1 = diag 1, 1, , ,9 10

0 1
different ranks. When U1 and U2 have the same rank, we can �T0 0( )

1 1use their largest principal angle φ to quantify their distance, Σ2 = diag 2, 2, 8 , , A115
which is shown to be [10]

0 0

, A2 == 1 1 1 1�T1 1
, U2 = rot(I,A, θ), θ ∈ [0, 2π], P1 =

φ = sin−1 (dist (U1,U2)) . (27) 0 0 1 1
P2 = 1.

With (26) and (27) we can calculate φ and C
C
F for a given The singular value conditions are satisfied and power is allo-

MAC, if U1 and U2 are two n × n real matrices. However, cated to only the first two eigenmodes. Signals are transmitted
in order to have a complete picture of the relation between in the subspaces Ui spanned by [ui1,ui2], where ui1 and ui2
φ and C

C , we must develop a mechanism to allow φ to vary are unitary and orthogonal vectors. The projection matrix for
F

continuously from 0 to 2π to access its effect on C
C
F . Toward Ui is,

TQi = [ui1,ui2][ui1,ui2] . (28)this end, we introduce the idea of rotation. The unitary matrix
U2 can be obtained by rotating U1 along an axis defined by From (26)-(28), the angle of U1 and U2 is
the subspace A of dimension n − 2 and by an angle θ, (  )−1 T T T Tφ = sin σmax u11u11 + u12u12 − u21u21 − u22u22 .

U2 = rot (U1,A, θ) ,
The results are shown in Figs. 4 and 5. While different choices

where rot(·) is derived in the Appendix. In the rotation of the rotation axes A1 and A2 result in different curves of
Cθ and φ, the curves ofoperation, each column vectors of U1 has been rotated along F coincide and are monotonicallyC

CA by θ, the principal angles of singular vector subspaces of U1 decreasing with φ. As shown in Fig.5, F is approximatelyC
and U2 for each corresponding eigenmode can be different. linear with sin2 φ. When θ = 0, 2π, if A1 is the rotation
The relation between θ and φ depends on the choice of A. By axis, or when θ = 0, π, 2π if A2 is the rotation axis, φ = 0,
choosing A and let θ vary in [0, 2π], different U2 is generated consequently U1 = U2, the conditions of Theorem 2 are

Cresulting in φ ∈ [0, 2π]. This mechanism allows us to quantify satisfied and = 1. This is when the mutual interferencesF

C
the relation of C

C
F and φ. Here is an example.     41 from the two users are the worst, and FDMA benefits the
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TABLE I 8 

OVERLAY TRANSMISSION.

σ (dB) user 1 user 2 C (bit/Hz/s)
< 0 (0, 1) (1, 0) 2
= 0 (a, 1 − a) (1 − a, a) 2
> 0 (1, 0) (0, 1) 1 + log(1 + σ2) C

 
an

d 
C

 (
bi

t/u
se

)
F

6 

4 

2 

0 

Sum capacity 
Maximum sum rate of FDMA 

−20 −15 −10 −5 0 5 10 15 20 
σ (dB) 

1 

−20 −15 −10 −5 0 5 10 15 20 

TABLE II
FDMA TRANSMISSION.

σ (dB) user 1 user 2 C (bit/Hz/s)
≤ −4.8 ( 1

2
, 1

2
) (1, 0) 1.79

> −4.8 ( 1
2
, 1

2
) (αo

2
+ 1−αo

2σ2 , 1 − αo
2

− 1−αo
2σ2 ) max CF (α)

R
at

io
 o

f C
 a

nd
 C

F

0.95 

0.9 

0.85 

0.8 

σ (dB) 

most via orthogonization. Notice that in this case, generally
it is not necessary for the corresponding subspaces of all the
eigenmode to coincide, but only the subspace of the active
eigenmodes effective. When θ = 0.66π, 1.33π for A1, and

3πθ = π
2 , 2 for A2, φ = 0.5π, U1 ⊥ U2 and C

C
F becomes the

minimum. This agrees with intuition: the orthogonality of the
subspaces allows both users to communicate simultaneously
at maximum rate without interfering each other. Therefore
overlay transmission outperforms FDMA since the latter
unnecessarily orthogonizes transmission while the effective
channels [u11,u12] and [u21,u22] are already orthogonal.

2) Singular value: We still assume H1 and H2 are n × n
real matrices. The singular vector conditions are satisfied,
but the singular value conditions are not. Since there are no
general matrices to represent this case and the involvement
of power conditions as in Proposition 2, there is no uniform
way to show the individual effect of singular value conditions
in FDMA sum capacity achievability. Hence, we use the
following example and, without loss of generality, we assume
U1 = U2 = V1 = V2 = I.

1 0 1 0
Example 7: H1 = , H2 = , −20dB ≤0 1 0 σ

σ ≤ 20dB, P1 = P2 = 1.

The results are shown in Fig. 6, the sum rate and optimal
power allocation for overlay and FDMA are shown in Table I
and II. For overlay transmission, the second user always puts
all the power to the eigenmode of the largest eigenvalue, while
the first user adaptively puts all the power to the orthogonal
direction. For FDMA, the optimal frequency allocation is( )− 1

αo = 0.48 when σ ≤ 1 + P2
2

= −4.8dB, and1−α1

αo = argmaxα∈[0,1] CF (α) when σ > −4.8dB, where

( )2 ( )2
P1 σP2 1 + σ2

CF (α) = α log + 1 + ᾱ log + .
2α 2ᾱ 2σ

So when σ = 0dB, Sf2 = 0.5I, αo = 0.5, CF = C = 2bit.

Fig. 6. C, CF and their ratio versus σ for Example 7.

from 0dB. When σ → ∞, αo → 0 and

lim (C − CF )
σ→∞ ( ( ))2( ) σ σ 1
= lim 1 + log 1 + σ2 − log + 1 +

σ→∞ 2 2 σ2

( )2

= lim 1 + log σ2 − log
σ

+
σ

σ→∞ 2 2
= 1.

One user’s rate becomes dominant, thus FDMA asymptotically
achieves the sum capacity with bandwidth allocation increas­
ingly favoring the dominant user. The difference between
C and CF approaches to 1bit/Hz/s. However, CF is notC
monotone in σ.

V. CONCLUSION AND EXTENSION

Orthogonal transmission in vector Gaussian MAC was
studied in this paper. We derived sufficient and necessary
conditions for FDMA to achieve the sum capacity. The sum
rate degradation of orthogonal transmission was quantified by
the distance of singular vector subspaces and disproportional
singular values. Parallel results for Gaussian vector MAC with
more than two users can also be similarly obtained.

APPENDIX A
ROTATION OF SUBSPACE

We use Fig.7 as an example to derive rot(U1,A, θ). A is a
rank n − 2 subspace in Rn, and is the rotation axis depicted
as a line in Fig.7. A⊥ is a n× (n− 2) matrix, whose column
vectors consist of the orthonormal basis of the subspace A.
Vector OB is the ith column vector of U1 and is denoted as
ui. Then from the definition of OM and ME we have

Iu £ OBI = OM + ME + EBI. (29)i

Define Q as the projection matrix of the subspace A, then
Q = A⊥ · A† . With this we have⊥

OM = Qu, (30)( )
ME = OB − OM cos θ

In the neighborhood of 0dB, CF decreases as σ moves away     42 = (ui − Qui) cos θ. (31)C
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B’ 

θM 
E 

B
A C’ 

N θ
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O 

Fig. 7. Rotation of the subspace U1 in Rn by the angle θ along the
axis A, where A can be any subspaces of dimension n − 2 and U1 can
be any subspaces formed by some column vectors of matrix U1. O is the
origin of the space, vectors OM and ON are in A, OB and OC are
two linearly independent vectors of U1 and are rotated to vector OB′ and
OC′ respectively. The projections of OB and OC in A are OM and ON
respectively. θ = ∠CNC′ = ∠BMB′ is the rotation angle. ME is the
projection of MB′ on MB.

Since S MB, MBI ⊥A, then EBI⊥S MB,A . Define a
n × n matrix ⎡ ⎤ 

1T

⎣ ⎦W = (ui − Qui)
T cos θ , (32)

AT
⊥

where 1T is a 1× n row vector with all elements equal to 1.
Define the adjugate of W as W∗ and the first column vector of
W∗ as w1, then w1⊥MB and w1⊥A since WW∗ = |W|I.
With this, we have

EBI
EBI = EBI · 

EBI

= ||ui − Qui|| sin θ · w1
. (33)||w1||

From (29)-(33) we have

Iu = Pui + (ui − Qui) cos θi
w1+ ||ui − Pui|| sin θ · (34)||w1|| 

Then we have U2 = rot {U1,A, θ} = [uI
1, ·,uI ], as uI , i =n i

1, · · ·  , n defined in (34).
In Fig.7, although the rotation angle is θ, depending on the

choice of A, the angle of the two vectors OB and OBI and
the principle angle φ of the two subspaces S OB, OC and
S OBI, OCI can be different from θ.
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