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Abstract

This paper considers a robot that moves in the plane and is only able to sense the cyclic order of

landmarks with respect to its current position. No metric information is available regarding the robot

or landmark positions; moreover, the robot does not have a compass or odometers (i.e., knowledge of

coordinates). We carefully study the information space of the robot, and establish its capabilities in

terms of mapping the environment and accomplishing tasks, such as navigation and patrolling. When

the robot moves exclusively inside the convex hull of the set of landmarks, the information space can

be succinctly characterized as an order type, which provides information powerful enough to determine

which points lie inside the convex hulls of subsets of landmarks. Additionally, if the robot is allowed to

move outside the convex hull of the set of landmarks, the information space is described with a swap

cell decomposition, which is an aspect graph in which each aspect is a cyclic permutation of landmarks.

We show how to construct such decomposition through its dual, using two kinds of feedback motion

commands based on the landmarks sensed.

1 Introduction

In this paper we consider a robot moving in the plane with very limited sensing: it knows only the cyclic

ordering of landmarks as they appear from the robot’s current position (no distance information can be

measured and there are no other sensors). Given the sensor limitations, we avoid estimation of the position

of the robot and of landmarks, and instead concentrate on the landmarks’ relative orderings to construct the
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Figure 1: The landmark order detector gives the cyclic order of the landmarks around the robot. Note
that only the cyclic order is preserved, and that the sensed angular position of each landmark may be
quite different from the real one. Thus, the robot only knows that the sequence of landmarks detected is
[7,2,8,5,3,6,1,4], up to a cyclic permutation.

algorithms. Eventually, the map, or representation of the environment, is a sequence of cyclic permutations

of landmarks. After establishing what the robot can learn from its simple sensor, we then illustrate the kinds

of tasks that it can solve, including a surveillance/patrolling behavior around the perimeter (convex hull) of

landmarks.

In robotics, landmarks have classically have been used for navigation [BG94, BEF96, HEDL02, HG00,

SM00, Shi02]. For example, in works such as [LL92, TOA95], robot paths that minimized the localization

error were found using preimages [Erd86] for a known arrangement of landmarks. In more recent years,

landmarks have been used to construct geometric models of the environment, along with an explicit estima-

tion of the robot position. In the most well-known form of simultaneous localization and mapping (SLAM)

[PE03, MTKW02, SK95, TFB98, YSA02], the addition of some Gaussian assumptions allows the estimation

of the position of the robot and the landmarks through the use of probabilistic filters. These approaches

have achieved impressive implementation success, but the probabilistic information spaces they generate are

hard to characterize given that they are infinite-dimensional.

In works such as [BD96, DBK93, DFH93, Kui00, KFLP93, RK04, SK97, SC86], the aim is to represent

the environment through a graph-like spatial description. There, a vertex in a graph represents a place, and

edges represent possible paths between places. In this context, places are commonly defined as environment

locations from which a certain arrangement of landmarks is visible.

In our case, we will not try to reconstruct a complete model of the environment, but rather characterize

it with the order type of a configuration of points in the plane [GP83]. This implies that two locations in the

plane become indistinguishable to the sensor if they yield the same cyclic permutation of landmarks. The

models and assumptions used in this paper were inspired by basic sensing issues in robotics. There are also

close connections to sensor networks, which are becoming increasingly important in security applications.

The landmarks can be imagined as “sensors” in a network, and the robot provides the “communication”
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link between them. The insights obtained from our work may help in the development of robust, cost-

effective robotic systems and sensor networks applied to surveillance, tracking, pursuit-evasion, and other

sensor-based problems. In this sense, the work presented in [LL90] is similar to the ideas presented here. In

our case, the cyclic permutation sensor amounts to detecting when two landmarks cross in the field of the

the robot, whereas in [LL90], the sensor detects when the robot becomes collinear with a pair of landmarks.

Therefore, the sensor considered in [LL90] is more powerful.

The ideas in this paper are based on the material presented in [TFL07, FTL07].

2 Basic Definitions

We model a robot as a moving point in R
2. Its configuration q ∈ SE(2) is described by its position in R

2

and heading in S1. Let L be a finite set of n points in R
2, and let s : R

2 → {0, . . . , n} be a mapping such

that every point in L is assigned a different integer in {1, . . . , n}, and s(p) = 0 if p /∈ L. The mapping s is

referred to as a landmark identification function and L is referred to as the set of landmarks. For landmark

p ∈ L, s(p) is referred to as the landmark label of p. In the following, for any landmark pi ∈ L, the subscript

indicates the landmark label (i.e., s(pi) = i).

Let L be the set of all possible finite subsets of R
2 (i.e., L is the set of all possible landmarks arrangements).

We define the state as the pair x = (q, L), and the state space X as the set of all such pairs (SE(2)×L). A

landmark sensor is defined in terms of a landmark identification function s. Such sensor is called a landmark

cyclic order detector, and it is denoted with lcds(x), for x ∈ X . The landmark order detector gives the

counterclockwise cyclic permutations of landmark labels as seen from the current state (see Figure 1). Note

that the robot does not have any coordinate estimate of its position, nor the position of the landmarks,

and that the landmark order detector does respect the cyclic order of landmarks, but does not measure the

angle between them. No metric information is readily available, and moreover, lcds(x) does not provide

by itself any notion of front, back, left or right to the robot. We assume that landmarks do not obstruct

the visibility of the robot (i.e., the landmarks are considered transparent). When two landmarks appear

in the same angular position, their ordering in the sensor reading is arbitrary, but does not change until

the crossing is completed. All of our results do hold for opaque landmarks, but we ignore this case for

clarity of exposition. We also assume that the landmarks are in general position (i.e., no three landmarks

are collinear). Furthermore, the landmark order detector has infinite range. We discuss how some of these

assumptions may be removed in Section 8.

When does the perceived cyclic permutation change? Each pair of landmarks supports two pairs of half

lines, such that each half line has its endpoint in one landmark, but does not contain the other. Specifically,
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Figure 2: Swap lines. Crossing a half-line swaps the order of the respective landmarks in the reading of the
landmark order detector. Such half-lines are called swap lines.

for two different landmarks pi, pj ∈ L (see Figure 2), consider the half-line that starts at pi, and is collinear

with but does not contain pj . We refer to such half-line as the swap-line ~pipj (think of this notation as a

ray in the direction of pi to pj , starting at pj). The swap-line ~pjpi is defined in a similar manner. Note that

when the robot is arbitrarily close to ~pipj or ~pjpi, pi and pj appear consecutive in lcds(x), and when the

robot crosses one of the swap lines, there is a change in the cyclic permutation sensed.

We assume that the robot can choose a particular landmark label s(p) and move towards the landmark

position p. This landmark tracking motion is denoted by track(s(p)). For simplicity, we assume that

track(s(p)) ends when the robot arrives at p, which means that lcds(x) no longer detects the landmark just

tracked1. Although we do not discuss here the real implementation of the landmark order detector, it can

be constructed, for example, with an omnidirectional camera with standard feature tracking software (i.e.,

filter-based tracking [Low03, MTKW02, TBF05, TFB98]).

3 Order Types and Landmarks

Given the sensing, and control models introduced, consider the robot as it moves in the environment. The

only information the robot receives are the changes in the cyclic permutations. For example, for three

landmarks, only two sensing readings are possible. Purely by sensing, the robot cannot even know if it

is inside the convex hull defined by the three landmarks (see Figure 3). Nevertheless, consider the robot

traveling from the landmark with label 1 to the landmark with label 2. Since the reading from the landmark

order detector follows a counterclockwise order, the robot can determine whether the landmark with label 3

is to the left or right of the directed segment that connects landmarks with labels 1 and 2. Thus, the robot

can combine sensing with action histories to recover some structure of the configuration of landmarks.

We generalize the previous idea to encode information states with the concept of order type. Two

ordered sets A and B are said to have the same order type if there is a bijection f : A→ B such that for all

1We might as well define track(s(p)) to stop just before p is reached, but the essence of further developments does not change,
and it clutters some descriptions. Moreover, it already models some robotic systems, e.g., a robotic agent flying over a terrain.
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Figure 3: Cyclic permutations of three landmarks. Purely by sensing, the robot cannot even know if it is
inside the convex hull defined by the three landmarks. Nevertheless, the orientation of the triangle (the
counterclockwise cyclic order of the landmarks as sensed from inside their convex hull) can be determined
with an information state.

a1, a2 ∈ A, a1 ≤A a2 ⇔ f(a1) ≤B f(a2), in which ≤A and ≤B are the relations defining the orders of A and

B, respectively. Think of this definition in the following manner. Sets A and B have the same order type

if they have the same number of smallest elements, the same number of second-to-smallest elements, etc.

For a configuration of labeled points, the order relation ≤ can be defined through the relative orientation of

three points, which is computed as follows [GP83]: The ordered triplet of points p1, p2, p3, with pi = (xi, yi),

is said to have positive orientation if the determinant
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is strictly bigger than 0, and this is denoted by p1p2p
+
3 . Negative orientation is defined in a similar manner,

and denoted by p1p2p
−

3 . Given our general position assumption, this determinant cannot be zero. The order

type of a labeled configuration of points P is determined by the relative orientation of each triplet of points

in P . The order type of the configuration of points can be encoded by a function defined as follows:

Λ(i, j) = {k | pipjp
+
k , for pi, pj, pk ∈ P}. (2)

The function Λ takes the indices i, j of two points pi, pj ∈ P , and returns the indices corresponding to

the points in P \{pi, pj} positively oriented with respect to pi and pj (in that order). For example, following

Figure 1, Λ(3, 7) = {2, 5, 8}, and Λ(7, 3) = {1, 4, 6}. Alternatively, the order type can be specified with the

function λ(i, j) = |Λ(i, j)|. It is not immediately clear that once the function λ is known, Λ can be deduced.

Surprisingly, this is not only true for the plane, but for any dimension [GP83]. The order types generalize

the common notion of linear sorting for real numbers into the so called geometric sorting. Here, minimum

and maximum become extremal subsets of points in P . For example, if λ(i, j) = 0, then there are no points
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to the left of the directed edge pipj , and both pi and pj belong to the boundary of the convex hull. Note

that the other direction works too; in this case λ(j, i) will be a non-unique maximum of λ.

3.1 Oriented matroids

Consider a line arrangements in the plane, and the decomposition it induces. Some properties of this

decomposition do not depend on the fact that the lines are straight, but only on whether any two of them

intersect in at most one point. These lines (that are no necessarily straight) are called pseudo-lines, and such

an arrangement is called an arrangement of pseudo-lines. We refer to properties such as these as combinatorial

properties [BVS+93]. For the order type, the value of Λ is independent to homogeneous transformation we

apply to the set of points. Additionally, we have great freedom in moving points around before the value of

Λ changes. There is a strong connection between the combinatorial properties of pseudo-line arrangements

and sets of points. In fact, they are the same, and the structures that make this apparent are called oriented

matroids.

Oriented matroids are combinatorial abstractions of point configurations over the reals, of real hyperplane

arrangements, of convex polytopes, and of directed graphs [BVS+93]. There are several equivalent ways of

defining an oriented matroid. In our case, given that we are dealing with points in the plane, the one most

useful is in terms of chirotopes. A chirotope (of rank 3) is a mapping χ : L × L × L ← {−1, 0, +1} which

satisfies:

1. χ is not identically zero.

2. χ is alternating, meaning that for all p1, p2, and p3 ∈ L, χ(p1, p2, p3) = χ(p3, p1, p2) = χ(p2, p3, p1),

and χ(p1, p3, p2) = χ(p2, p1, p3) = χ(p3, p2, p1).

3. For all p1, p2, p3, p′1, p′2, and p′3 ∈ L:

(a) χ(p′1, p2, p3) · χ(p1, p
′

2, p
′

3) ≥ 0 =⇒ χ(p1, p2, p3) · χ(p′1, p
′

2, p
′

3) ≥ 0

(b) χ(p′2, p2, p3) · χ(p′1, p2, p
′

3) ≥ 0 =⇒ χ(p1, p2, p3) · χ(p′1, p
′

2, p
′

3) ≥ 0

(c) χ(p′3, p2, p3) · χ(p′1, p
′

2, p3) ≥ 0 =⇒ χ(p1, p2, p3) · χ(p′1, p
′

2, p
′

3) ≥ 0

It is straightforward to prove that a valid choice for χ is the sign of the determinant in equation 1.

Therefore, χ and Λ encode the same information. One nice consequence is that now we can describe the

combinatorial structure of the set of landmarks with the following axioms [Knu92]:

Axiom 1. The orientation of a triangle is independent of a cyclic reordering of its vertices:

p1p2p
+
3 =⇒ p3p1p

+
2

6



Axiom 2. A triangle cannot have two orientations:

p1p2p
+
3 =⇒ ¬p1p3p

+
2

Axiom 3. A triangle has at least one orientation:

p1p2p
+
3 ∨ p1p3p

+
2

Axiom 4. Inside a triangle relation:

p1p2p4 ∧ p2p3p4 ∧ p3p1p4 =⇒ p1p2p3

Axiom 5. Transitivity relation:

p4p5p1 ∧ p4p5p2 ∧ p4p5p3 ∧ p4p1p2 ∧ p4p2p3 =⇒ p4p1p3

We use Λ to record partial information about the landmarks arrangement as the robot moves. Given the

previous axioms, it is clear that Λ cannot have arbitrary values. What is perhaps surprising, is that even if

χ (and therefore Λ) satisfies the previous restrictions, there are ways in which to assign signs to the triplets

such that they do not correspond to points in the Euclidean plane. In particular, they may fail to satisfy

Pappus’s hexagon theorem [BVS+93, Knu92]2. Those oriented matroids that do correspond to points in the

plane are called realizable. In fact, given our definition of order type based on determinants, order type is

just a synonym for realizable oriented matroid. In [GP83], the number of realizable oriented matroids for n

points in the plane was found to be 2θ(n log n).

3.2 The information space

Consider the state x = (q, L), which is unknown to the robot. Although x is unknown, information about

q and L is available to the robot. In particular, partial knowledge of the order type of L can always be

computed. Also, using tracking commands together with readings from lcds(x), the position of the robot

can be determined to be either on a landmark, in the segment between two landmarks, or aligned with two

landmarks but not on the segment joining them (i.e., when one landmark occludes another). An information

state is defined as the pair (Q′, Λ′), in which Q′ refers to the possible positions of the robot with respect to

the landmarks, and Λ′ is the partial knowledge of Λ. The information space I is the space of all such pairs.

Let I(L) be the information states for which Λ′ does not contradict the configuration of landmarks in the

environment. Note that up to a relabeling of the landmarks, |I(L)| is finite. This is because for n landmarks,

there are 2θ(n log n) possibilities for Λ′. Also, the number of distinct sets Q′ of possible positions is bounded

by the number of combinatorial elements of the line arrangement drawn from the lines passing through each

pair of landmarks.

2Pappus’s hexagon theorem specifies the structure of nine lines and nine points, with each line incident to three points, and
each point incident to three lines.
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3.3 Retrieving the order type

The order type concepts extended naturally to our landmark setting, using the landmark labels as the indices

for Λ. Of course, the robot cannot compute the determinants, because it lacks any coordinates. Nevertheless,

it is possible to compute Λ for any pair of landmark labels. For this computation we establish the following

lemma:

Lemma 1. Let the output of the sensor be of the form lcds(x) = [X, i, Y, j, Z], in which X, Y, Z are subse-

quences of lcds(x) separated by the labels corresponding to landmarks pi and pj. If the robot is on the line

segment pipj, and its heading is pointing towards pj, then Λ(i, j) = X ∪ Z and Λ(j, i) = Y .

Proof. To determine Λ(i, j), we are looking for the landmarks to the left of the directed segment pipj .

Consider any point in the interior of pipj as a pivot of a counterclockwise radial sweep starting at pj and

ending at pi. It is clear that all the landmarks swept lie to the left of pipj . If the robot is placed according to

the conditions of the lemma, this sweep can be obtained from the cyclic sequence given by lcds(x), starting

at j, until i is found. By symmetry, Λ(j, i) is also found.

Strategy 1. Given landmarks pi and pj, determine which landmarks lie to the left of the directed line from

pi to pj Λ(i, j).

Description. The value of Λ(i, j) is determined as follows: The robot is commanded to track landmark pi

until i disappears from lcds(x). This means that now the robot is at pi. Next, the robot is commanded to

track pj , and at the moment i is detected again, the robot is guaranteed to be on pipj , pointing towards pj .

Applying Lemma 1 to the sensor reading, Λ(i, j) and Λ(j, i) are found.

4 Solving Some Simple Robotic Tasks

In this section we present some simple tasks that can be solved using the concepts presented previously. In

the following examples, L is the set of landmarks detected, and n = |L|.

4.1 Landmarks inside a triangle

The task is to compute the subset of landmarks of L that are inside of the triangle defined by the landmarks

labeled with i, j and k. In other words, if k ∈ Λ(i, j), the robot should determine Λ(i, j) ∩ Λ(j, k) ∩ Λ(k, i),

or if k /∈ Λ(i, j), then Λ(j, i) ∩ Λ(i, k) ∩ Λ(k, j) should be computed. These two cases correspond to the two
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Figure 4: Triangle orientation error. A small control error may find the wrong orientation for the triangle.
On the bottom, if the robot follows the top-left arrow, the orientation is not computed correctly.

possible orientations of a triangle (as defined before with the determinant). Since both the orientation of

the triangle and the needed values of Λ can be computed with Lemma 1, we use this simple example to

introduce a motion strategy that deals with control uncertainty. Refer to Figure 4. The problem here is that

the internal angle of the triangle at landmark i is obtuse. This gives little margin of error for the control,

and the triangle orientation may not be computed correctly. As it can be seen for landmarks j and k with

acute angles, the error in the control should be almost π before the orientation is computed incorrectly.

Strategy 2. Robust triangle orientation measurement

Description. Given that a triangle has at most one obtuse angle, the robot repeats Strategy 1 three times,

one for each edge of the triangle. If this strategy yields an orientation more than once, it is taken as the

correct orientation of the triangle. This strategy allows for a control error in the direction of the robot up

to 2π/3.

4.2 Determine which landmark is closer to the robot

Consider two different landmarks pi, pj ∈ L, and suppose |L| > 2, such that the robot is one of the swap

lines ~pipj or ~pjpi. From a single reading of lcds(x), we cannot determine whether pi or pj is closer to the

robot. However, combining sensing and actuation, this is easily determined as follows:

Strategy 3. Determine which landmark of a swap line is closer to the robot.

Description: By assumption, there is at least one landmark pk ∈ L, such that k ∈ Λ(i, j) or k ∈ Λ(j, i).

Here we assume that k ∈ Λ(i, j), as the other case follows symmetrically. The robot tracks pk until pi and
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pj are no longer collinear with the robot. There are two possibilities for the reading of lcds(x). If pi is closer

to the robot, then lcds(x) = [i, j, X, k, Y ], in which X and Y are (perhaps empty) subsequences of landmark

labels. Otherwise, if pj is closer, then the reading looks like lcds(x) = [j, i, X, k, Y ].

4.3 Boundary of the convex hull

Let hull(L) be the convex hull of the set of landmarks. In this task the robot should determine which

landmarks that are on the boundary ∂hull(L) of hull(L). This task can be solved easily, if not efficiently, by

finding which landmarks do not belong to the interior of any triangle defined by three landmarks. However,

a significantly more efficient algorithm can be constructed based on the well-known three coin algorithm for

the computation of the convex hull [Gra72, Skl72]. In its regular setting, the three coin algorithm starts by

finding one landmark in the convex hull (e.g., the leftmost), and sorting the remaining landmarks radially

around it. Next the landmarks are considered three by three according to this radial order. Particular

landmarks are included or removed from the boundary of the convex hull depending on if they lie to the left

or right of the landmarks in the triplet.

In our setting, we need to find first a pair of landmarks that appear consecutively ∂hull(L):

Strategy 4. Find a pair of landmarks in ∂hull(L)

Description. The strategy is based on an iteration that tracks some landmarks sequentially. For clarity of

exposition, we make the label of the landmark tracked at step i to be i.

We need a pairs of landmarks for which the value of Λ is zero, and we want to find this pair without

computing the entire Λ. Initially, a pair of landmarks is arbitrarily selected, p1 and p2, and the robot tracks

p1 until 1 disappears from lcds(x). Set i = 1, and thereafter:

1. The motion track(i + 1) is executed. During its execution, Λ(i, i + 1) and Λ(i + 1, i) are computed. If

one of them is zero, then terminate, since the desired pair has been found.

2. Let i + 2 be the label following i + 1 in lcds(x), immediately before i + 1 disappears from lcds(x).

3. Increment i, and go to step 1.

Theorem 2. Strategy 4 finds a pair of landmarks in hull(L) with O(n) tracking motion primitives.
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Proof. Consider the swap line ~pi+1pi+2, and “sweep it” radially counterclockwise around pi+1. Given that

i + 2 is the label following i + 1 in lcds(x) before i + 1 disappears, it follows that the first landmark found

in the sweep is pi+2. There are three cases:

1. pi+1 ∈ ∂hull(L). This implies that pi+2 ∈ ∂hull(L), and the desired pair has been found.

2. pi+2 ∈ ∂hull(L). Similar to the previous case, but the pair is guaranteed to be found in the next

iteration.

3. Otherwise, observe that if p ∈ ∂hull(L) and s(p) ∈ Λ(i, i + 1), then s(p) ∈ Λ(i + 1, i + 2). This implies

that the iteration cannot loop forever. To see this, suppose L′ ⊂ L is a minimal set of landmarks

that cause a loop. Consider the Λ values for consecutive landmarks in ∂hull(L′), and a landmark

p ∈ ∂hull(L). Since p /∈ ∂hull(L′), then for some i, s(p) ∈ Λ(i, i + 1), but s(p) /∈ Λ(i + 1, i + 2), which

is a contradiction.

Based on Strategy 4, ∂hull(L) is easily computed:

Strategy 5. Find ∂hull(L) of the set of landmarks L

Description. Perform Strategy 4, and assume that the pair of landmarks found on ∂hull(L) is (pi, pj), with

Λ(j, i) = ∅. Using Strategy 1, the robot can be positioned somewhere along the line segment joining pi and

pj . At this point, if we assume |L| > 2, the sensor reading has the form lcds(x) = [i, j, k, X ], in which X is

a (perhaps empty) sequence of landmarks. It follows that Λ(k, j) = ∅, since pk is the first landmark found

after a radial sweep around pj . This process is repeated, but now between pj and pk, until pi is found again.

In Strategy 5, the more expensive action in terms of motion primitives is the execution of Strategy 4.

Therefore, Strategy 5 finds the convex hull of L using O(n) tracking motion primitives.

5 Patrolling

In this section we model robotic tasks in which a robot carefully monitors some area of the environment. As

a concrete example, imagine an unmanned flying vehicle above a terrain. The flying vehicle is given a set

of way points, which are visited sequentially. In this example, we solve a version of the patrolling problem

in which the robot performs loops around a given subset of the landmarks. Formally, let W ⊂ L, with
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Figure 5: Retrieving the permutations that encode the configuration of landmarks. In (a) the robot travels
outside the convex hull of a set of landmarks. This is naturally expressed in the dual line arrangement on
(b).

W ∩ ∂hull(L) = ∅. The patrolling task for set W is defined as follows: Find M ⊂ L, such that W ⊂ M ,

∂hull(M) ∩W = ∅ and the size of M is minimal.

To solve this task, the dual of the configuration of landmarks is introduced. The dual of a landmark pi,

with pi = (px
i , py

i ), is defined as the line p∗i = (px
i x + py

i y). There are well-known properties of such dual

arrangements [dBvKOS97, Ede87], such that the intersection of two lines p∗i and p∗j , which defines a vertex

in the dual, corresponds to the line passing through pi and pj in the primal space. Also, ordering relations

are respected. Namely, if a point p is above a line m in the primal space, then the point m∗ is above the

line p∗ in the dual. Figure 5 shows the dual arrangement for a configuration of four landmarks.

A line arrangement can be encoded with a sequence of permutations [Ede87]. This is done by sweeping

a vertical line from left to right in the line arrangement, recording the vertical order of the intersections

of the vertical line with the lines of the arrangement. Such permutations can be obtained from the primal

space. As shown in Figure 5, when the robot travels outside a convex hull of a set of landmarks, a vertex

of the line arrangement is read whenever two labels swap places from one permutation to the other. Since a

vertex in the dual corresponds to a line in the primal, only
(

n
2

)

+ 1 permutations are needed to describe the

line arrangement, when actually 2
(

n
2

)

could be read by the robot traveling outside the convex hull. These

permutations have other nice symmetric properties, and the reader is referred to [Ede87].

There some minor complications for obtaining such permutations with the robot model described. First,

the robot cannot, in general, travel outside a convex hull, since it only knows how to track landmarks. To

solve this, we need the following lemma:

Lemma 3. Let L be a set of landmarks, let Z be a subsequence of lcds(x) and containing only the labels

corresponding to the landmarks in ∂hull(L) (elements of Z may not necessarily appear consecutively in
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lcds(x)). Then Z is the same circular subsequence for any position of the robot inside hull(L).

Proof. For labels i and j to switch places in Z, at some point they should map to the same position in the

landmark order detector. This means that pi, pj and the robot are collinear, and that either pi is contained

in the line segment from the robot position to pj, or pj is contained in the line segment from the robot

position to pi. Since no three landmarks are collinear, the robot must be outside hull(L).

From Lemma 3, the robot can obtain the counterclockwise order of the landmarks on the boundary

of the convex hull. Instead of traveling properly outside the convex hull, the robot tracks each of the

landmarks in the boundary sequentially, following the order found. When the robot arrives at a landmark,

the corresponding permutations are generated in the natural manner from the reading of the landmark

order detector at such a location. Finally, the landmark order detector gives cyclic permutations, but the

arrangement description needs the extremal point in a particular direction to come first. This is easily solved

by ordering the cyclic permutation such that the label of the landmark being tracked appears first. The

following lemma is a well-known result for dual line arrangements (expressed in our framework):

Lemma 4. Let L∗ be the set of lines dual to the set of landmarks L. Let mv be a vertical line, and let

[p∗1, p
∗

2, . . . , p
∗

n] for p∗i ∈ L∗ be sorted according to the y-coordinate of the intersection between mv and p∗i .

Then the landmarks p1 and pn belong to ∂hull(L).

Proof. Let mv intersect the x− axis at x. Consider all the lines intersecting the convex hull of L with slope

x. Since the duality transformation is order-preserving, then p1 is below and pn is above all such lines.

Corollary 5. Let L∗ be the set of lines dual to the set of landmarks L. Let mv be a vertical line, and let

[p∗1, p
∗

2, . . . , p
∗

n−1, p
∗

n] for p∗i ∈ L∗ be sorted according to the y-coordinate of the intersection between mv and

p∗i . Let p1, p2, pn−1, and pn be the duals of p∗1, p
∗

2, p
∗

n−1, and p∗n respectively. Then p2 is in ∂hull(L \ {p1}),

and pn−1 is in ∂hull(L \ {pn}).

Proof. Consider L∗ \ {p∗1} and L∗ \ {p∗n}, and apply Lemma 4.

Strategy 6. Given a set W ⊂ L of landmarks to patrol, find M ∈ L such that W ⊂ M , |M | is minimal,

and ∂hull(W ) ∩ ∂hull(M) = ∅.

Description. The patrolling problem can be solved as follows: Assume the robot has computed the permu-

tations encoding the dual arrangement of L. The strategy is based on the following iteration. Set L0 = L.

For u ≥ 0, find p ∈ ∂hull(Lu) such that ∂hull(Lu \ {p}) does not contain any landmark in W. If no such

landmark exists, set M = Lu. Else, set Lu+1 = Lu \ {p} and repeat.
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By Corollary 5, landmarks can be removed from Lu, and the boundary of the convex hull can be read

directly from the permutations encoding the dual arrangement. Moreover, those permutations with the

landmark removed encode the dual arrangement of Lu+1. A landmark may not be removed if this will make

a landmark in W become the first, or last, in the permutations encoding the dual arrangement. The robot

can then patrol the landmarks in W by following the landmarks on the boundary of M in counterclockwise

order.

6 Navigation

The final task described is navigation. Consider the partition of the plane in which locations inside the

same cell generate the same reading in the landmark order detector. This can be considered as an aspect

graph [KvD76], in which a cyclic permutation is an aspect of the configuration of landmarks. This partition

is uniquely determined by the swap lines. In this framework, a navigation goal is a sequence g of landmark

labels. Formally, the navigation task is defined as follows: Move the robot such that a state x with lcds(x) = g

is reached. Report if g cannot be realized given the configuration of landmarks in the plane.

6.1 Swap cell decomposition

We refer to the decomposition induced in R
2 by all the swap lines as the swap cell decomposition. The 0-cells

are landmarks, the 1-cells are swap lines, and the 2-cells, called the swap cells, are connected open regions

of R
2 from which lcds(x) reports the same cyclic permutation. For a set of landmarks L, let KL be the set

of all of the swap cells. Abusing notation, for swap cell C ∈ KL, let lcd(C) be the reading of the landmark

cyclic order detector from a point in C.

The swap cell decomposition can be naturally encoded in a graph, which is an aspect graph [KvD76]

in which a cyclic permutation is an aspect of the configuration of landmarks. We will explore this idea in

Section 7. For now, in this section we are interested in moving the robot between swap cells without the

complete knowledge of the swap cell decomposition. As in Section 5, the robot can easily learn the order

type of a set of landmarks L, by traveling once around the convex hull boundary. Therefore, in this section,

we assume that a complete knowledge of Λ is available.

Given that the robot cannot travel outside hull(L), the navigation task is only defined for cells whose

intersection with hull(L) is not empty. The navigation task is meaningful if different cells generate different

cyclic permutations for the landmark order detector. To prove this, the following lemma is proposed:

14



Lemma 6. Let KL be the set of swap cells of the swap cell decomposition induced by the landmark set L,

and let Cu, Cv ∈ KL. If Cu 6= Cv and they are bounded by the same swap line ~pipj, then they generate

different readings in the landmark order detector.

Proof. Consider a motion of the robot from Cu to Cv in a straight line arbitrarily close to ~pipj . This makes

labels i and j to appear consecutive in lcds(x) for the duration of the motion. Since Cu and Cv are different,

there are two cases: 1) Either Cu and Cv are neighboring cells whose closure intersects at ~pipj , or 2) at least

another swap line intersects ~pipj between cells Cu and Cv. In the first case, going from Cu to Cv crosses

~pipj , and lcd(Cu) is the same as lcd(Cv), but with the pair of labels i and j transposed. For the second

case, assume that the intersecting swap line is ~pkpl. Crossing this line swaps the order of k and l. This

transposition could be reverted only if ~pkpl is crossed, or if one of k or l transposes with all of the other

landmarks labels. The first situation is not possible, since both swap lines lie on the same line, and ~pipj

can only intersect one of them. Furthermore, the other case would imply that i and j are at some instant

not consecutive in lcds(x). This is not possible by traveling arbitrarily close to ~pkpl. Thus, the readings of

lcds(x) from Cu and Cv will differ in at least a pair of landmarks.

The next theorem states that the landmark order detector generates different readings for cells intersecting

the convex hull of the configuration of landmarks.

Theorem 7. Let K̂L be the set of swap cells of the swap cell decomposition induced by the landmark set L

whose intersection with hull(L) is not empty. For any two different cells Cu, Cv ∈ K̂L, the cyclic permuta-

tions generated by lcds(x) when the robot is inside Cu or Cv are different.

Proof. By induction on the the number of landmarks n = |L|. When n = 3, there is a single cell intersecting

hull(L). For n > 3, assume the statement is true for n landmarks. Then, for n+1, adding the new landmark

generates 2n swap lines, some of which stab cells in C. Cells stabbed by the same swap line will have different

cyclic permutations, by Lemma 6. Since the new landmark does not change the relative ordering of any of

the other landmarks, by the induction assumption, cells that do not share one of the new swap lines will also

have different permutations.

Note that in Theorem 7, the conditions refer only to K̂L, the set of cells that intersect hull(L). This fact

is used in the base of the induction. For three landmarks, there is only one cell that intersects hull(L), but

there are three swap cells outside hull(L), all associated with the same cyclic permutation.
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Figure 6: Different swap cell decompositions with the same order type.

6.2 Is a cyclic permutation realizable?

Given a goal cyclic permutation g, the first issue we need to settle is whether it is realizable. That is, is

there a swap cell C ∈ K̂L for which lcd(C) = g?. We would like a result that, given a cyclic permutation

g and the order type Λ, determines whether g is realizable. For example, with Lemma 3, we can establish

that g cannot be realizable if the subsequence of landmarks in the convex hull boundary of L appears in the

wrong order in g. However, in general it is not possible to determine whether g is realizable solely from the

order type:

Lemma 8. Two different sets of landmarks may have the same order type, but induce different swap cell

decompositions.

Proof. See Figure 6.

Given Lemma 8, we would like to find necessary conditions for cyclic permutations to be realizable. The

main motivation here is to determine whether the permutation is not realizable by moving the robot as little

as possible. To achieve this, we need to somehow relate the ordering of a cyclic permutation with the order

type. This is done by finding polar pairs. A pair (i, j) is called a polar pair of a cyclic permutation g if i

and j appear consecutively in g, and g can be partitioned into subsequences g = [i, j, X, Y ], such that either

Λ(i, j) = X or Λ(j, i) = X . The line supported by the landmarks with labels i and j is called a polar line.

Take two landmarks pi and pj . Suppose (i, j) is a polar pair of some cyclic permutation g. We can think

of the polar line supported by pi and pj as composed of three line segments: the swap line ~pipj , the line

segment with endpoints at pi and pj, and the swap line ~pjpi. We can easily find a relation between g and

swap lines supported by polar lines:

Lemma 9. If a cyclic permutation g is realizable in the landmark set L at cell C ∈ KL, then the swap lines

in the boundary of C are supported by polar lines.

Proof. With lcd(C) = g, assume ~pipj is a swap line in the boundary of C. Clearly, the labels i and j appear
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consecutively in g. Now, separate the rest of the labels of g into two sets, according to on which side of ~pipj

they appear. These two sets correspond to Λ(i, j) and Λ(j, i).

The necessary condition on polar lines of Lemma 9 becomes stronger with the following lemma:

Lemma 10. If a cyclic permutation g is realizable in the landmark set L at cell C ∈ KL, with |L| > 2, then

g has at least two polar pairs, and every polar line intersects at least another polar line with this intersection

occurring in the swap line sections of both polar lines.

Proof. Observe that for |L| > 2, every swap cell is bounded by at least two swap lines, and that every

landmark is an endpoint of |L| − 1 ≥ 2 swap lines. Therefore, a swap line cannot appear isolated in the

boundary of a swap cell, as it has to intersect another swap line. Lemma 9 tells us that the swap lines in

the boundary of a swap cell are supported by polar lines, and the result follows.

Note that Lemma 10 considers |L| > 2. For L ≤ 2, determining whether g is realizable is trivial, since

there is only one swap cell. One issue remains for Lemma 10. We need to determine whether two polar lines

intersect, and if they do, whether the intersection is at the swap line sections. The next two lemmas are

useful:

Lemma 11. For four different landmarks pi, pj, pk, pl ∈ L, the line segment pipj intersects one of the swap

lines ~pkpl or ~plpk if (1) |Λ(k, l) ∩ {i, j}| = 1, and (2) k ∈ Λ(i, j) ⇐⇒ l ∈ Λ(i, j).

Proof. Condition (1) states pi and pj appear on different sides of the line supporting the swap lines ~pkpl and

~pkpl. Condition (2) states that both pk and pl appear on the same side of the line supported by pi and pk.

With these two conditions, the result easily follows.

Lemma 12. For four different landmarks pi, pj, pk, pl ∈ L, the line segments pipj and pkpl intersect if

|Λ(i, j) ∩ {k, l}| = 1 and |Λ(k, l) ∩ {i, j}| = 1.

Proof. When line segment pkpl intersects pipj, endpoints pk and pl appear on different sides of the line

supporting line segment pipj . This implies that exactly one of k or l is in Λ(i, j) ∩ {k, l}, and similarly for i

or j and Λ(k, l) ∩ {i, j}.

Lemmas 11 and 12 fall short of the desired result. They give conditions for when two polar lines do

not intersect at their swap line sections. In particular, they cannot determine whether two polar lines are

parallel. As we illustrate in Figure 7, polar lines may be parallel or not, independently of the particular

order type. In Section 8 we propose a general position assumption that makes Lemmas 12 and 11 sufficient

to determine whether two polar lines intersect at their swap lines sections.

Now we are ready to present a navigation strategy:
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Figure 7: By order type alone, it cannot be determined whether two swap lines intersect.

Strategy 7. Navigation to a cyclic permutation of landmarks

Description. Assume that the robot has gathered the order type information for the set of landmarks L,

and now it is commanded to navigate to a swap cell in which a cyclic permutation of landmark labels g

appears on the sensor. The first step is to compute the polar pairs of g, and determine which polar lines

may intersect at their swap line sections (Lemmas 11 and 12). Now the robot needs to visit each of the

intersections, until g appears on its sensor. If there are no intersections on which g appears on the sensor,

then according to Lemma 10, g is not realizable.

We need to determine how the robot may move to an intersection point of two polar lines. Assume (i, j)

and (k, l) are two different polar pairs which may intersect, and assume for the time being, that neither pk

or pl belong to ∂hull(L). The main insight here is to note that every swap line that belongs to a boundary

of a swap cell that intersects hull(L), also intersects ∂hull(L). From Strategy 6, we know which landmarks

belong to ∂hull(L), together with their counterclockwise cyclic order. Using Lemma 12, we can find the

line segments of ∂hull(L) that intersect ~pipj and ~pjpi. Such segments are easily transversed by tracking the

respective landmarks in ∂hull(L) until i and j swap places in the sensor. At this point, the robot tracks pi

(or pj , it does not matter), until k and l swap or the robot reaches pi. This guarantees that one of the swap

lines of the polar pair (i, j) is transversed. If the robot reaches pi, the other swap line of (i, j) should be

transversed in a similar manner, until k and l swap, or the tracked landmark is reached.

If one of pi or pj belong to ∂hull(L), then the unique swap line that intersects hull(L) may be transversed

following the previous procedure. If both pi and pj belong to ∂hull(L), then a valid intersection for Lemma 10

may occur only at pi or pj , which the robot may easily track.

7 The Swap Graph

In the previous section we introduce the swap cell decomposition, for a set of landmarks L. In this section

we introduce the swap graph GL = (VL, EL), which is simply the dual of the swap cell decomposition. A
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vertex in VL is a swap cell, and an edge (Cu, Cv) ∈ EL indicates that swap cells Cu and Cv are neighbors,

separated by exactly one swap line.

As we saw on the previous section, the order type sometimes provides incomplete information about KL.

In this section, we study the construction of the swap graph for a set of landmarks, focusing on the cells of

KL that intersect hull(L). This construction is more complex that that for the order type, but it provides

all the combinatorial information about KL. Furthermore, we do not need to develop new tools to construct

the swap graph, as we can reuse the techniques developed for Lemmas 7 and 11, and Strategies 6 and 7.

Strategy 8. Swap Graph construction inside hull(L)

Description: From Strategy 6 we learned ∂hull(L), and from Strategy 7, we know how to transverse the

portion of all the swap lines that intersect hull(L). To construct the swap graph GL for a set of landmarks

L, the robot simply tracks each of the swap lines. Lemma 7 ensures that there is a bijection between sensor

readings and swap cells, so that vertices and edges of the graph are created in the natural manner: Every

unique sensor reading correspond to a vertex, and there is an edge between two vertices if and only if there

is a swap line separating the two readings.

We can view the swap cell decomposition as a line arrangement with some of the “middle segments”

removed. Therefore, all of the complexity results of for arrangements of m half lines hold for the swap cell

decomposition, such as number of swap cells, O(m2), the number of edges, O(m2), or the complexity of the

boundary of a swap cell, O(m) [BYB98].

8 Extensions

8.1 Guaranteed intersection of swap lines

In Section 6, we presented Lemmas 11 and 12 as a mean to determine whether two polar lines did intersect at

their swap lines sections. As we explained, these lemmas fall short of this goal, since we could not determine

whether two polar lines were parallel. One alternative is to ban parallel lines from existence. This is certainly

not very intellectually satisfying, but can be easily be done with a standard general position assumption, in

which no two lines supported by four different landmarks are parallel. This general position assumption is

justified by the fact that, given a finite set of lines in the plane, choosing one point at random in the plane

to be collinear with one of the lines has probability zero.
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Figure 8: A set of landmarks and its swap graph.
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8.2 Outside the Convex Hull

Until now, we assumed that the robot could only move tracking landmarks. This restricts the robot to

movement inside the convex hull of the set of landmarks. We can extend the robot model with a second

motion primitive, called repel. Unlike track, a repel command is only applicable when the robot is arbitrarily

close to a swap line. The motion primitive repel(i, j) moves away from the landmarks pi, pj ∈ L, along the

swap line ~pipj .

The first complication we encounter with repel is the termination of the motion primitive. If the set of

landmarks satisfies the general position assumption of Section 8.1, then from Λ we can determine which of

the swap lines intersect with a particular swap line ~pipj. Thus, repel(i, j) terminates once a particular swap

line intersection is found. A second alternative is to modify the landmarks model more aggressively. We

could assume that all the landmarks are contained inside a convex, compact, path-connected subset of the

plane, and provide the robot with a contact sensor that indicates whether the robot is in contact with the

boundary of the environment.

In Theorem 7 we proved that two swap cells inside the convex hull of L generate different cyclic permu-

tations. Unfortunately, this is not true in general for all swap cells in the decomposition:

Theorem 13. If Cu and Cv are two different swap cells that do not intersect hull(L), then lcd(Cu) and

lcd(Cv) are not guaranteed to be different cyclic permutations, independently of the size of L.

Proof. Refer to the construction on Figure 9.

However, the following theorem extends the uniqueness of sensor readings inside the hull(L):

Theorem 14. If Cu is a cell that intersects hull(L), then lcd(Cu) = lcd(Cv) implies Cu = Cv.

Proof. If Cv does not intersect hull(L), then by Lemma 3 lcd(Cu) 6= lcd(Cv). Otherwise, lcd(Cu) 6= lcd(Cv)

by Theorem 7.

Strategy 9. Swap Graph construction

Description: Using Strategy 8, the robot constructs the swap graph for hull(L). To learn the swap graph

outside hull(L), the robot performs a repel motion primitive on the portion outside the convex hull of every

swap line. Every time the cyclic permutation changes, a vertex C is added to the swap graph, together with

the corresponding edges found through the swap lines’ crossings. Additionally, the robot records the swap

lines known to bound the associated swap cell for every vertex. Following Lemma 6, two vertices in the
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Figure 9: Construction of a set of landmarks, such that two swap cells are associated with the same cyclic
permutation. First, two points x1 and x2 outside hull(L) are chosen. Second, the cyclic permutation
[1, 2, 3, 4, 5, . . . , n] is represented on two segments in the form of two equivalent permutations. Third, each
landmark pi is found as the intersection of two correspondent rays emanating from x1 and x2 and pass-
ing trough the points labeled i. Suitable label arrangements on the two segments allows the retrieval a
deployment for which x1 and x2 belong to different swap cells.

.

graph are merged into one vertex if they are associated with the same cyclic permutation, and share at least

one swap line.

In the previous section we described a goal-based navigation algorithm without assuming a priory knowl-

edge of the environment. Now, given a swap graph representation of the environment, we can easily drive

the robot from one cell to another. A swap cell is identified by a vertex of G and its incident edges (two

distinct vertices can share the same cyclic permutation but cannot have the same incident edges). Given a

vertex C ∈ G, the corresponding swap cell can be reached with a repel motion along one of the swap lines

labeling an edge incident in C.

9 Conclusions and Open Questions

In this paper we established the capabilities of a robot which is only able to detect the cyclic angular order

of landmarks (distinguishable points in the plane) around it. The combinatorial properties of the set of

landmarks were studied and established in terms of its order type. We computed the convex hull of the set

of landmarks, and solved the tasks of patrolling and navigation uniquely in terms of cyclic permutations

of landmarks. We did not use any coordinates to express these tasks, which made it unnecessary to model

errors in the positions of the robot and the landmarks, and which made any precise measurements of angles

and distances traveled unnecessary.

Given the information provided the permutations, one may wonder if it is possible to recover the co-

ordinates of an equivalent set of landmarks. That is, is it possible to construct the coordinates of a set
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Figure 10: Encoding the sensor history with braids. There is a natural description of the information space
of n landmarks with the braid group on n strands, Bn. Each strand represents a landmark, and each crossing
represents a change in the circular order. In the figure, the robot follows a path that surrounds landmark 1.
The changes in the circular order are encoded with the braids on the right.

of landmarks such that this construction has the same order type as the original set? This turns out to

be a very hard question. Simply deciding if a sequence of permutations can be realized in the plane is

NP-hard [Sho91]. Moreover, representing such coordinates may require exponential number of bits [GPS89].

Nevertheless, our problem may be simpler, since the robot proves that the permutations are realizable by

sensing them. If not for the general case, realizations can be easily found for small subsets of landmarks.

Further work is necessary to remove some of the assumptions made. One of them is the infinite range

assumption for the landmark order detector, since the concepts presented still hold for local neighborhoods

of landmarks. One inefficient solution is to apply directly the algorithms presented in [GLPS06] directly, in

the context of sensor networks. Determining the relations between neighborhoods of landmarks also allows

the introduction of environment obstacles.

There is a natural description for the information space of n landmarks with the braid group Bn on n

strands. Each strand represents a unique landmark, and a crossing between two strands represents a swap in

the cyclic order of the landmarks. The strand corresponding to the landmark closer to the robot is defined

to cross over the other strand. See Figure 10 for an example. Given that we are dealing with circular

permutations, this suggests the robot’s paths that are loops. We are hopeful that this description will raise

other interesting questions.

Finally, given that the functions Λ and λ provide equivalent information, it is plausible to allow some

recognition error of landmarks. This idea is as follows: If the landmark order detector is not able to identify a

landmark, but it is able to detect that a landmark is indeed present, this recognition error may be corrected

using the λ function. For example, the robot may be able to detect landmarks much farther than the

maximum distance for a perfect identification. The λ function seems to be the appropriate tool for such

situations.
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