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Abstract—The problem of distributed fusion for binary hy-
pothesis testing in a multihop network is considered. The sensor
measurements are spatially correlated according to a Markov
random field (MRF) under both the hypotheses. A fusion scheme
for detection involves selection and localized processing of a
subset of sensor measurements, fusion of these processed values to
form a sufficient statistic, and its delivery to the fusion center. The
goal is to find a fusion scheme that achieves optimal linear trade-
off between the total routing costs and the resulting detection
error exponent at the fusion center. The Neyman-Pearson error
exponent, under a fixed type-I bound, is shown to be the limit
of the normalized sum of the Kullback-Leibler distances (KLD)
over the maximal cliques of the MRF under some convergence
conditions. It is shown that optimal fusion reduces to a prize-
collecting Steiner tree (PCST) with the approximation factor
preserved when the cliques of the MRF are disjoint. The PCST
is found over an expanded communication graph with virtual
nodes added for each non-trivial maximal clique of the MRF
and their KLD assigned as the node penalty.

Index Terms—Detection and Estimation, Error Exponents, In-
network Processing and Cost-Performance Analysis.

I. INTRODUCTION

The classical paradigm of layered architecture separates

design of routing data from the resulting end application

performance. Traditionally, data is routed along shortest paths,

according to some measure such as energy consumption,

without any fusion at the intermediate nodes. However, the

severe resource constraints faced by a sensor network has led

to recent advances, e.g., network coding [1] and in-network

function computation [2] depart from the classical setup and

incorporate a data-centric philosophy to reduce routing costs.

For distributed detection, the data-centric paradigm can

be taken a step further; only a sufficient statistic of the

sensor measurements is needed at the designated fusion center

for optimal performance. Hence, significant resource savings

can be achieved by delivering only the likelihood ratio, the

minimal sufficient statistic for detection, without destroying

information about the underlying phenomenon. However, in

general, in-network processing and delivery of the likelihood

ratio is a non-trivial problem. By incorporating a Markov
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random field (MRF) statistical model for sensor measurements,

we obtained a tractable form for the likelihood ratio and a

minimum-cost fusion scheme for optimal detection in [3].

In this paper, we relax the constraint of optimal detection

at the fusion center to obtain further savings in resource

consumption. Instead, we aim to achieve tradeoffs between

resource consumption and the end detection performance by

selecting only a subset of “useful” sensor measurements for

routing and fusion. Many questions arise with regard to this

tradeoff. Can a tractable form of the sufficient statistic and

the detection performance for any subset of measurements be

obtained? If so, does it have a decentralized form, thereby

making the selection process tractable? What is the complexity

of the fusion scheme that achieves this optimal tradeoff? Are

there efficient approximations to the optimal solution?

A. Related Work

In-network processing algorithms for computing certain

aggregate functions are considered in [2]. However, they

are applicable only for detection of conditionally-independent

data. An overview of routing for detection can be found in [4].

The works in [5] and [6], [7] consider energy-efficient detec-

tion for conditionally independent data and one-dimensional

Gauss-Markov process, respectively. In [8], we considered the

problem of optimal sensor density in an energy-constrained

random network, where nodes are placed according to Poisson

or uniform distribution. However, in this paper, we assume that

the node placement is arbitrary.

The use of Markov random fields in sensor networks is

relatively new. The MRF model can capture the full range of

correlation between the sensor measurements by varying the

edges in a graph, called the dependency graph. In [3], we

considered the optimal fusion scheme for a MRF model that

minimizes the sum routing costs and delivers the likelihood

ratio to the fusion scheme. This involved the use of the MRF

model to derive a structured form of the likelihood ratio. We

describe this problem in detail in the book chapter [9].

B. Our Approach and Contributions

The log-likelihood ratio (LLR) is a minimal sufficient

statistic for detection. Hence, maximum reduction in data is

achieved by in-network processing of the LLR. The Markov

random field (MRF) leads to a succinct form of the LLR.

In [3], we proved that the minimum cost fusion scheme that
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(b) Forwarding subgraph computes
selected clique potentials

+

(c) Aggregation subgraph to add
the potentials

Forwarding graph

Dependency graph

Aggregation graph

Processor

Fusion center

(d) Legend

Fig. 1. Schematic of the statistical dependency structure of Markov random field (MRF) and stages of aggregation for detection. The likelihood function is
a sum over cliques of MRF. The set of all communication links used during the entire fusion process is the fusion digraph and ensures that the likelihood
ratio reaches the fusion center. Its forwarding and aggregation subgraphs transport raw data and aggregated values from selected sensors.

aggregates data from all the sensors, computes the likelihood

ratio and delivers it to the fusion center is given by the Steiner

tree on an expanded communication graph.

In this paper, we consider data fusion over any subset of

measurements such that optimal linear tradeoff between the

total routing costs and detection error exponent is achieved.

First, we obtain a decentralized performance measure over

each maximal clique of the MRF. Second, we consider a

special class of MRFs and node-selection policies, for which

the tradeoff is tractable. Third, we show that optimal tradeoff

has a prize-collecting Steiner tree (PCST) reduction with the

approximation-factor preserved.

We first show that under some technical conditions of con-

vergence, the Neyman-Pearson type-II error exponent under

a fixed type-I bound is given by the sum of the KLD over

the maximal cliques of the MRF. Hence, the KLD of each

MRF clique serves as a decentralized performance measure.

Since we need to compute and deliver the marginal likelihood

ratio of the selected node set to the fusion center, a tractable

form is needed. In general for a given subset, computing the

marginal likelihood ratio from the joint likelihood ratio is NP-

hard. When the MRF contains only disjoint cliques and our

policy selects all or none of the nodes of each clique, the

marginal likelihood ratio retains its succinct form as product

of functions over the selected cliques.

We now design a fusion scheme that can deliver the

marginal likelihood ratio of the selected node set to the fusion

center and achieve the optimal tradeoff. This optimal fusion

scheme is shown to be a prize-collecting Steiner tree (PCST)

on an expanded graph. The PCST reduction of optimal fusion

implies that any approximation algorithm used for PCST can

be applied for the optimal-tradeoff problem with same factor.

Note that the approximation factor ρ of any polynomial-time

algorithm means that its performance is always no worse than

ρ times the optimal value.

A few comments on the use of Markov random field

model are in order. The MRF model can incorporate any

possible correlation between the measurements. In the trivial

case of a general field, the dependency graph of the MRF is

complete or fully connected. However, many environmental

phenomena such as rainfall or temperature data have been

found to possess local dependencies [10] and our scheme has

substantial resource savings for such scenarios. However, the

use of the MRF model raises issues of learning it from training

data and its robustness under changing conditions. These are

topics of future interest and in this paper, we assume that all

the sensors and the fusion center are aware of the MRF model.

II. SYSTEM MODEL

We adopt the system model from our previous work in [3]

and provide a brief description in the subsequent sections.

A. MRF Statistical Model for Sensor Data

We assume that the sensor measurements are drawn from

a Markov random field. Let YV = [Yi, i ∈ V ]T denote the

random vector of measurements in set V . YV is a MRF with

an undirected dependency graph G = (V,E), if ∀ i ∈ V ,

Yi ⊥ YV \{i,Nu(i)}|YNu(i), (1)

where ⊥ denotes conditional independence. In words, the

value at any node, given the values at its neighbors, is

conditionally independent of the rest of the network. The

Hammersley-Clifford theorem [11] states that for PDF f

− log f(YV ; Υ) =
∑
c∈C

ψc(Yc), (2)

where C is a collection of (maximal) cliques in G, the

functions ψc, known as clique potentials, are non-negative

and the tuple Υ = {G, C, ψ} specifies the MRF. From (2),

the complexity of the likelihood function is vastly reduced for

sparse dependency graphs and is a product of components,

each of which depends on a small set of variables.

B. Detection of Markov Random Field

For binary hypothesis testing with null hypothesis H0 and

alternative hypothesis H1, we assume that the measurement

are drawn from distinct Markov random fields,

H0 : Υ0 = {G0(V ), C0, ψ0} vs. H1 : Υ1 = {G1(V ), C1, ψ1}.
(3)
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Let f(YV ;Hj) be the PDF of the measurements YV of

sensors in set V under hypothesis Hj . The optimal decision

rule is a threshold test based on the log-likelihood ratio (LLR),

LLR(YV ):= log
f(YV ;H0)

f(YV ;H1)
. (4)

In [3], it is shown that the LLR has a succinct form

LLR(YV ; Υ) =
∑
c∈C

φc(Yc), (5)

where Υ = {GΥ(V ), C, φ} is the “effective” MRF with

dependency graph GΥ = G0∪G1, clique set C = C0∪C1, with

only maximal cliques retained, and potential functions φc. In

this paper, we limit to the scenario where |C| is polynomial in

|V | and the cliques in C are also the connected components

of the dependency graph G(V). In other words, the cliques of

the effective MRF are disjoint

c1 ∩ c2 = ∅, ∀c1, c2 ∈ C. (6)

One of the scenarios satisfying (6) is when the measurements

are independent conditioned on either hypothesis. Another

scenario is when there is low-resolution information about the

measurement dependencies and sensors are placed in widely-

spaced clusters. Here, each cluster is fully connected and

there is no edge between different clusters. We can ensure

any dependency graph to possess disjoint cliques by adding

edges between any two nodes in a connected component and

defining new potential functions. However, it is not the sparsest

representation for that model.

C. Network and Cost Model

The network is connected via a communication graph con-

taining a set of feasible bidirectional communication links.

Note that this communication graph is different from the

dependency graph of the MRF. We consider the unicast mode

of routing, where a packet from a node is routed to a single

destination. The routing of a real number is represented by a

packet and quantization error is ignored in our formulation.

A symmetric routing cost function is assumed, denoted by

Ci,j > 0. For a set of communication links G, let C(G) denote

the total cost routing using its links.

III. COST-PERFORMANCE TRADEOFF

We consider the Neyman-Pearson (NP) detection, where

for a fixed false-alarm probability, the detector is optimal in

terms of the mis-detection probability PM . We are interested in

selecting the measurements from a subset of sensors Vs ⊂ V ,

processing them using the set of communication links G and

delivering them to the designated fusion center. The goal is

to achieve optimal linear tradeoff between the total routing

cost C(G(Vs)) and the resulting detection performance at the

fusion center. Formally, the optimization is

min
Vs⊂V

[
C(G(Vs)) + μ log

PM (Vs)

PM (V )

]
, μ > 0, (7)

where log PM (Vs)
PM (V ) represents the fraction of detection perfor-

mance we can achieve by selecting the node subset Vs and μ is

the tradeoff factor chosen based on the relative importance of

the two parameters. When μ is sufficiently large, (7) reduces

to minimum cost fusion, considered in [3], where optimal

detection is required and hence, all the nodes are selected.

A. Detection Error Exponent

In general, the mis-detection probability PM (Vs) for an

arbitrary node set Vs does not have a closed-form expression

and hence, cannot serve as a tractable measure of performance

in (7). We focus on the large-network scenario, where PM (V )
decays exponentially with the sample size |V | and we have the

NP error exponent

D:=− lim
|V |→∞

1

|V |
logPM (V ). (8)

Hence, a large exponent implies faster decay of error prob-

ability with increasing sample size. In the lemma below, we

now exploit the graphical structure of the MRF to obtain the

exponent D as the limit of a succinct form.

Lemma 1 (NP Error Exponent for MRF): For the NP-

detection of (3), under a fixed type-I error bound, when the

sequence of normalized LLR random variables 1
|V |LLR(YV )

are uniformly integrable and converge in probability under

the null hypothesis H0, the type-II error exponent in (8) is

D = plim|V |→∞

1

|V |

∑
c∈C

D(f c
0 ||f

c
1 ), (9)

where plim denotes convergence in probability,

f
c
i :=f(Yc;Hi) is the PDF of measurements Yc in clique

c under Hi, C is the MRF clique set, and D(·||·) is the

Kullback-Leibler distance (KLD).

Proof: When the sequence of normalized LLR converges

in probability under null hypothesis1 , the NP type-II error

exponent under a fixed type-I error bound is [13, Theorem 1]

D = plim|V |→∞

1

|V |
LLR(YV ), YV ∼ H0, (10)

= plim|V |→∞

1

|V |
E[LLR(YV );H0], (11)

where plim denotes convergence in probability. The reduction

from (10) to (11) holds when the sequence of the normalized

LLR variables is uniformly integrable [12, (16.21)]. Note that

E[LLR(YV );H0]:=D(fV
0 ||f

V
1 ). (12)

1Random variables Xn converge in probability to X , if limn P[|Xn −
X| ≥ ε] = 0, for each positive ε. [12, p. 268].
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Using the form of LLR for a MRF in (5),

D(fV
0 ||f

V
1 ) =

∑
c∈C

D(f c
0 ||f

c
1 ). (13)

�

Hence, as the number of nodes goes to infinity, the normal-

ized sum of the clique KLDs tends to the error exponent D in

(15). For the special case when YV are i.i.d. conditioned under

each hypothesis, Lemma 1 reduces to the Stein’s lemma [14,

Theorem 12.8.1] and the limit in (9) to the single-letter KLD.

Another case where the exponent D exists and has a closed

form is when the effective dependency graph is the Euclidean

nearest neighbor graph, the nodes are placed according to

Poisson or uniform distribution and the correlation is a well-

defined function of inter-node distance [15].

We now make the asymptotic approximation of mis-

detection probability for large networks

− logPM (V ) ≈ |V |D. (14)

From (9), we have

− logPM (V ) ≈
∑
c∈C

D(f c
0 ||f

c
1 ), (15)

From the disjoint clique property, for any large subset Vs

spanning a set of cliques Cs, we have

− logPM (Vs) ≈
∑
c∈Cs

D(f c
0 ||f

c
1 ). (16)

Hence, the fraction in (7) can be approximated as

log
PM (Vs)

PM (V )
≈

∑
c∈C\Cs

D(f c
0 ||f

c
1 ). (17)

This can also be viewed as the penalty or the foregone

improvement in error exponent due to non-selection of the

cliques in C\Cs. Therefore, the KLD of each clique c of

the MRF D(f c
0 ||f

c
1 ) serves as a decentralized metric that

contributes to the end detection performance. We assume that

D(f c
0 ||f

c
1 ) > 0 for all cliques; otherwise, the clique can be

trivially ruled out for selection.

B. Optimal Tradeoff with Localized Processing

Since the log-likelihood ratio (LLR) is the minimal suf-

ficient statistic, maximum savings in routing costs can be

achieved by computing the marginal LLR of the selected node

set Vs ⊂ V in (7). Although the LLR over the complete set of

sensors V has a succinct form, in terms of the clique potentials

in (5), computing the marginal LLR over a general subset Vs

is NP-hard. Hence, we limit to the class of policies where we

choose all or none of the vertices vi of each clique. In other

words, sensor selection in (7) is limited to the selection of

cliques Cs ⊂ C,

Vs = {i : i ∈ V, i ⊂ Cs}, ∀ Cs ⊂ C. (18)

For the special case of disjoint cliques in (6), the marginal

LLR for this node selection policy is still a sum of selected

clique potentials,

LLR(YVs
; Υ) =

∑
c∈Cs

φc(Yc), ∀ Cs ⊂ C. (19)

In order to compute a clique potential function φc in (19),

access to measurements of all the clique members are needed.

Therefore, if selected for computation, a clique c is assigned

a unique computation site, known as its processor, denoted

by Proc(c). We assume that the clique potential functions are

processed “locally”, at one of its members, i.e., Proc(c) ⊂ c,

∀c ∈ Cs if selected, otherwise, no processor is assigned.

The set of communication links G used by any fusion

scheme fall into two categories, viz., those transporting raw

measurements to the processor to compute the specified po-

tential function, known as the forwarding subgraph FG(G)
and the set of links that transport/aggregate these processed

values, known as the aggregation subgraph AG(G). The tuple

consisting of the forwarding and the aggregation subgraphs

{FG(G),AG(G)} of a fusion scheme is known as the fusion

digraph. A schematic of a fusion scheme is shown in Fig.1.

Hence, given a MRF Υ = {GΥ, C, φ}, a fusion scheme is

specified by the tuple Π:={Proc,FG,AG, CΠ}, with selected

clique set CΠ, processor assignment mapping Proc and a

fusion digraph {FG,AG}. Let AggV al(i; Π) be the value at

node i at the end of fusion. Formally, the constraints on a

fusion scheme Π are

1) the measurements from a node set VΠ spanning a set of

cliques CΠ ⊂ C is selected for fusion,

2) the marginal LLR of the selected node set VΠ is deliv-

ered to the fusion center v0,

AggV al(v0) = LLR(YVΠ
; Υ) =

∑
c∈CΠ

φc(Yc), (20)

3) processor assignment is local for selected cliques,

Proc(c) =

{
i ⊂ c, i ∈ V, if c ∈ CΠ, (21a)

∅ o.w. (21b)

The fusion scheme achieving optimal tradeoff is given by

Π∗ = arg min
Π

[C(G) + μ
∑
c/∈CΠ

D(f c
0 ||f

c
1 )], (22)

over all the fusion schemes Π satisfying the above constraints.
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IV. PRIZE-COLLECTING STEINER-TREE REDUCTION

In this section, we show that the fusion scheme achieving

optimal tradeoff in (22) has a prize-collecting Steiner-tree

reduction with the approximation factor preserved. We specify

the graph transformations required for such a reduction.

The prize-collecting Steiner tree (PCST) is the sub-tree

rooted at a specified vertex that minimizes the sum of edge

costs in the tree plus the penalties of the vertices not spanned

by the tree. Formally, given an undirected graph G = (V,E),
a root vertex v0 ∈ V , nonnegative edge costs ce ≥ 0, e ∈ E,

and nonnegative vertex penalties πi > 0, i ∈ V , the PCST is

the tree T ∗ = (V ∗, E∗) rooted at v0,

T ∗:= arg min
T=(V ′,E′)

{
∑
e∈E′

ce +
∑
i/∈V ′

πi}. (23)

The penalty associated with a node represents the foregone

“profits” for not selecting it and in our setup, the profits

represent the end detection error exponent. In general, finding

the PCST is NP-hard. The approximation factor ρ of any

polynomial-time algorithm guarantees that its performance is

no worse than ρ times the optimal value. An approximation al-

gorithm for the PCST, referred to as the Goemans-Williamson

(GW) algorithm, was proposed in [16]. It has an approximation

ratio of 2− (n− 1)−1 and runs in O(n2 log n) time, for a n-

node network.

We now provide an algorithm for PCST reduction (Ag-

gPCST) of optimal fusion on the lines of the Steiner tree

reduction algorithm (AggApprox) [3, Fig.3] for minimum cost

fusion. AggApprox incorporates an expansion Map(Gt) [3,

Fig.4] on the metric communication graph Gt. It involves

adding new virtual nodes called the clique-representative

nodes corresponding to each non-trivial clique (size greater

than one) and connecting it to all its corresponding clique

members. The edge cost from a representative node to a clique

member incorporates the raw-data routing costs to compute a

clique potential function. After constructing the Steiner tree

(or its approximation) on the transformed graph Map(Gt),
it is mapped to a feasible fusion scheme using the operation

RevMap [3, Fig.5]. For the PCST reduction (AggPCST), the

following changes are made in AggApprox:

• In Map(Gt), every virtual node representing a clique c ∈
C is assigned a penalty μD(f c

0 ||f
c
1 ), and penalty is zero

for all other nodes,

• instead of the Steiner-tree approximation algorithm, the

GW-algorithm for PCST is used,

• fusion center is assigned as the root v0.

In the theorem below, we formally state the PCST reduction.

Theorem 1 (PCST reduction): Given a Markov random

field Υ = {GΥ(V ), C, φ}, with dependency graph GΥ(V ),
clique set C with polynomial cardinality and disjoint cliques

and potentials φ, the AggPCST algorithm outputs a feasible fu-

sion scheme for the optimal cost-performance tradeoff problem

in (22) with an approximation factor of 2− [|V |+ |C′|−1]−1,

where C′ is the non-trivial clique set (size greater than one).

Proof: The GW-algorithm for PCST is on the expanded

graph Map(Gt) with |V | + |C′| nodes. On lines of [3, Thm.

2], the reduction preserves the approximation factor. �

V. CONCLUSION

We considered the problem of selection and fusion of sensor

measurements such that optimal linear tradeoff between the

routing costs and the resulting detection performance at the

fusion center is achieved. We exploited the structure of the

Markov random field model of sensor measurements to cast it

as a prize-collecting Steiner tree, a well-studied combinatorial

optimization problem.

We have ignored many issues to keep the problem tractable.

We have not addressed the effect of quantization, a difficult

problem even for independent measurements. Also, we have

only considered offline and centralized sensor selection. Ex-

tension to the case where nodes locally decide to transmit

based on their measurement values is of interest.
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