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ABSTRACT 

Pseudospectral methods are used to efficiently solve complex, non-linear optimal control 

problems and can be used to develop rapid and robust control solutions in astrodynamics 

applications.  With the renewed efforts in resuming future manned missions to the moon 

or near-earth asteroids, fuel optimal flight trajectories are desired in order to alleviate the 

need for overestimates in fuel carried onboard, which has a negative impact on the 

overall spacecraft design. 

This thesis uses a pseudospectral optimal control solver, DIDO©, to solve for a 

fuel optimal moon-to-earth trajectory using only the auxiliary engines of the Orion Crew 

Exploration Vehicle (CEV) for the entire mission.  Additionally, higher-order necessary 

conditions are examined to test the extremality of the computed solution.  Singular arcs 

that appear in a main engine variable thrust, fuel optimal trajectory are examined by 

applying the Bellman Pseudospectral method. The feasibility of using the CEV auxiliary 

engines in place of the main engines for the singular arc maneuver is also investigated. 
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I. INTRODUCTION 

A. BACKGROUND 

The NASA Orion Crew Exploration Vehicle (CEV) program has more stringent 

safety requirements as compared to the Apollo missions of the 1960s and 1970s.  One 

such requirement is for “anytime return” of the spacecraft in the event of a mission abort 

scenario.  The increased safety margins that need to be incorporated into the spacecraft 

design begin to form a competing set of requirements.  The design of spacecraft, whether 

manned or unmanned, is primarily driven by the mass of fuel carried onboard to perform 

maneuvers while performing its mission.  This, in turn, drives the total mass of the 

spacecraft, which further constrains the design for mission essential equipment and can 

heavily influence the design and/or selection of the launch vehicle.  Excess safety 

margins should be avoided, however, in order to maximize mission effectiveness. 

The application of optimal control theory to astrodynamics applications allows for 

designers to generate engineering solutions that maximize desirable performance 

characteristics as well as minimizing the need for excess design margins.  Current design 

practices may unwittingly limit the solutions being created by enforcing seemingly 

practical constraints.  As the spacecraft design matures, clearly there is a need to start 

imposing design constraints due to the available technology, product specifications, and 

material. However, early in the design it is possible to find “best” solutions by limiting 

the number of constraints imposed on the design and mathematically validating the 

solutions using existing optimal control theory.  The tools for solving complex optimal 

control problems allow for rapid and robust solutions and straightforward methods are 

available for ascertaining their feasibility. 

B. SCOPE OF THE RESEARCH 

This thesis investigated the feasibility of using solely the lower thrust auxiliary 

engines of the Orion CEV for return to earth from low lunar orbit.  Using DIDO©, which 

utilizes MATLAB to solve complex, non-linear optimal control problems, solutions were 
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generated which demonstrate the existence of trajectories which would allow the 

spacecraft to return using only the auxiliary engines while meeting specific mission 

timeline and fuel consumption requirements.  Furthermore, the solutions generated are 

shown to meet the necessary conditions of optimality by applying Pontryagin’s Theory.  

While there exists a range of possible solutions, two significant solutions are presented:  

(1) the absolute minimum time required for the maneuver with no constraint on fuel, and 

(2) the minimum fuel required to reach the given final boundary conditions within 48 

hours. 

The first case is shown primarily to show the absolute lower limit on time 

required for the maneuver with the given engine characteristics and the dynamics of the 

problem.  The necessary conditions for optimality of this solution are shown and a 

feasibility analysis is conducted to check the solutions.  The feasibility of the control 

solution is conducted by the application of the Bellman technique.  While the Bellman 

technique is not shown for the second, minimum fuel case, it demonstrates a method to 

verify the fidelity of the generated solutions and determine if the solution is “flyable” 

given a nominal set of discrete control points.  The second case shows that the auxiliary 

engines can be used to complete the entire moon-to-earth Trans-earth Injection (TEI) 

maneuver sequence and still meet the 48-hour time requirement and use less fuel that the 

capacity of the Orion’s fuel tank.  In all cases, the necessary conditions for optimality are 

demonstrated using Pontryagin’s Hamiltonian Minimization Condition (HMC) and where 

singular arcs appear in the trajectory, further analysis is performed to show optimality. 

Another problem investigated in this thesis is the control of the singular arc 

segment of a previously determined DIDO© solution using the CEV main engines.  The 

main engine solution resulted in the return trajectory consisting of three separate TEI 

burns.  The first and third burns are maximum thrust burns, known as bang-bang 

maneuvers.  The first burn raises the apoapsis of the low lunar orbit, while the final burn 

provides the necessary velocity to escape the moon’s gravity on its way towards earth.  

The middle burn is given as a finite burn of varying thrust where the spacecraft conducts 

a plane change maneuver.  A study of the high thrust singular arc solution was conducted 

in order to attain more in-depth details of the control trajectory in order to determine the 
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feasibility of using the auxiliary engines to conduct the singular burn segment of the high 

thrust return trajectory.  Figure 1 shows the thrust profile for the minimum fuel, fixed 

time return solution using the Orion CEV main engines found by Yan et al. (Yan, Gong, 

Park, Ross, & Souza, 2010). 
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Figure 1.   Thrust Profile Using Main Engine 

Singular Arc  
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II. EQUATIONS OF MOTION 

A. INTRODUCTION 

For interplanetary trajectories, the two body problem no longer suffices as the 

spacecraft will pass through areas of varying gravitational influence as it gets further 

away from one body and gets closer to another.  Even outside the sphere of influence of a 

particular body, the gravitational acceleration of that body may provide a minimal, but 

influential gravitational affect, often referred to as a gravitational perturbation.   This 

chapter first defines the specific reference frame used for each case in this thesis.  

Secondly, it describes the gathering of ephemerides data on the gravitational bodies 

which have significant effect on the spacecraft trajectory which is ultimately used in 

setting up the dynamics of the moon-earth return mission.  Finally, a brief description of 

the dynamics is given, followed by an example of why the problems require n=4 for 

moon-earth return missions.  

B. DEFINING THE REFERENCE FRAME (J2000) 

If one has to move from one specific location to another, one has to have good 

knowledge of the current position as well as an accurate description or knowledge of the 

intended final position.  In common terms, it is called navigation.  On the surface of the 

earth, the art of navigation is generally simple.  Barring any obstacles, one simply takes 

the shortest distance between two points (which are fixed) and travels along the line that 

connects the two points.  This is done by establishing a reference frame.  Assuming that 

the travel is in only two dimensions, a planar reference frame can be used.  Longer 

distances on the surface of the earth can be referenced to the surface of a sphere.  Despite 

the rotations of the earth, the two dimensional traveler need only stay on the line 

connecting the two points.  The reference frame, whether a flat plane or surface of the 

sphere is considered inertial since it is not accelerating with respect to the traveler. 

Depending on the specific application, such as interplanetary space missions or 

tracking satellites in orbit, a number of different reference frames are used.  For rough 
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calculations, the reference systems used can use an object’s center of mass as the center.  

However, for spaceflight in the vicinity of the earth and moon, it might be useful to use 

the earth-moon barycenter, or system center of mass.  Synodic systems are also used 

which are systems that rotate about the barycenter.  In synodic coordinate systems, it is 

assumed that the rotation about the barycenter is with constant velocity with respect to an 

inertial frame. 

The Heliocentric Coordinate System (XYZ) is a sun centered system with the 

primary axis, X, pointed at the vernal equinox.  It is a right handed system with respect to 

the direction of earth’s orbit around the sun with Z perpendicular to the ecliptic plane.  

With the correct transformations, this coordinate system could be converted into a 

synodic coordinate system, by using the barycenter of the solar system which is a point 

slightly off from the geometric center of the sun. 

 

 

Figure 2.   Heliocentric Reference Frame (From Vallado, 1997) 

A commonly used coordinate system in astrodynamics is called the Geocentric 

Equatorial Coordinate System (IJK) which is a non-rotating system with the primary 
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axis, I, pointed at the vernal equinox.  The J axis is 90 degrees to the east and the K axis 

points out of the earth’s north pole.  This system is also known as the Earth Centered 

Inertial (ECI) system.  The ECI system in actuality does move over time due to effects 

such as precession and nutation.  The J2000 system is essentially the ECI system at a 

fixed epoch, previously noted.  This is considered an inertial frame from which 

calculations known as reduction formulas can be used to advance (or regress) to another 

epoch. 

 

 

 

Figure 3.   Earth Centered Inertial Reference Frame (From Vallado, 1997) 

The problem with space travel is in determining and characterizing an inertial 

reference frame, since by nature all the objects in the solar system are in a state of 

continual motion, and in most cases non-uniform motion due to the effects of 

gravitational forces between them.  For short time spans, it may suffice to assume an 

inertial frame with the earth at its center; however the nonuniform motion of the earth 

and other solar system bodies have an increasingly perturbing effect over time.  

Therefore, to accurately determine the position of a body (celestial body or spacecraft) 

traveling through the solar system, one has to have a method to accurately determine the 

locations of all the gravitational bodies, or at least the ones which have the most 
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significant effect on the motion of that body.  The positions of the solar system bodies 

can be determined by observation and the future positions can be determined, assuming 

the motions are well characterized, at a future time. 

For consistency, it has been useful to designate a specific time, or epoch, as a 

reference time with which the reference frame used for navigation purposes can be 

advanced or rotated.  The current system in use today is called J2000.  The J2000 epoch 

is specified to be, January 1, 2000 at 11:59:27.816 TAI (International Atomic Time), or 

about noon UT (Universal Time).  Therefore, J2000 refers to a specific epoch from which 

to attach a coordinate system as a basis for all celestial observations (Vallado, 1997).  

Typically, an ECI reference frame is used as the basis.  If a moon-centered inertial frame 

was desired, then with the proper transformation, the frame could be translated from the 

earth to the moon’s location at the J2000 epoch.  

In addition to planetary motion about the sun, the Earth’s position and orientation 

with respect to the J2000 ECI frame varies due to gravitational interactions with other 

bodies in the solar system, but primarily due to the Moon and Sun.  The four primary 

transformations which must be made are for precession, nutation, sidereal time, and 

polar motion.  Precession results from perturbations from the Sun, Moon, and planets and 

it changes the orientation of the ecliptic with respect to the J2000 frame.  The reduction 

formulas for precession allow for the calculation of the mean equator of date from the 

mean equator at epoch (J2000).  Nutation is largely caused by the moon and is the 

lengthiest transformation, consisting of over 100 trigonometric terms and is a periodic 

perturbation.  Taking into account the effects of nutation transforms the mean equator of 

date into the true equator of date.  The third transformation, sidereal time, transforms the 

non-rotating true of date frame to the Earth-fixed coordinate system.  Finally, polar 

motion accounts for the changing location of the North Pole.  The motion of the North 

Pole follows a circular spiral pattern and has a maximum variation of about only 9 meters 

in any direction (Vallado, 1997). 
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Figure 4.   Precession and Nutation (From Vallado, 1997) 

The problems studied in this thesis use a J2000 moon-centered frame of reference 

since the spacecraft originates in close proximity to the moon.  In this way, the moon is 

the primary gravitational body exerting a force on the spacecraft, while other celestial 

bodies, including the earth, exert a perturbing force on the spacecraft. 

C. JPL HORIZONS DATA 

The Jet Propulsion Lab (JPL) HORIZONS on-line system provides accurate 

ephemeris data for solar system objects to include 538186 asteroids, 3066 comets, 170 

planetary satellites, 8 planets, the Sun, L1, L2, select spacecraft, and system barycenters 

(Jet Propulsion Laboratory).  Using the web interface, ephemeris data was collected for 

earth, sun, Mars, and Venus as target bodies with the origin body as the moon.  The 

ephemeris data was collected in the form of position (X, Y, Z) and velocity (VX, VY, 

VZ) vectors from the moon to the target bodies in the J2000 frame covering a time span 

of ten days starting at midnight on April 2, 2024, until midnight on April 12, 2024, in 

increments of one minute.  The vectors were with respect to the ecliptic and mean 

equinox of the J2000 epoch. 
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In order to have access to accurate position vectors to the target bodies at any 

time, the relative motion of the target bodies can be characterized as a smooth function of 

time.  In this study the Matlab function, polyfit, was used to be able to compare the 

accuracy of the data used by Yan et al., who used the same function (Yan et al., 2010).  

Even though the data points are very close together in comparison to the total duration, it 

is desired to create a smooth function in order to determine the position vectors between 

the discrete points.  The goal for the overall project is to ensure that the accuracy of the 

position of the spacecraft and the celestial bodies is within one kilometer.  At spacecraft 

interplanetary velocities, one minute is actually a long duration.  Take for example a 

spacecraft travelling at a velocity of 7.7 km/sec.  In one minute, the spacecraft has 

travelled 462 km. 

The polyfit function in Matlab interpolates between the data points by fitting a 

polynomial of specified order between the data points, x, by solving for P(x) in a least 

squares approximation.  In order to minimize calculation errors when solving for the state 

vectors using polynomials, the order of the polynomial should be minimized but balanced 

against desired accuracy.  For the position vectors, an accuracy on the order of one meter 

was desired and was accomplished by using polynomials of degree n = 12.  The 

coefficients for the position and velocity vector polynomials are given in TABLES 1 and 

2.  The position and velocities of the bodies can then be determined simply by applying 

the following equation, where P applies to either the Earth or Sun position or velocity at 

the specific time. 

 
0

,
n

n k
k

k

P a t t days from start of epoch



   (1.1) 

 

Figures 5 and 6 show the polynomial fitting errors for the sun and earth positions 

taken from the Horizons ephemeris database; increasing the order of the polynomial did 

not result in an increase in accuracy. 
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ak Coef. Of XS Coef. Of YS Coef. Of ZS 

a0 -0.000000118999244 0.000000051363297 0.000000031235814

a1 0.000007535524407 -0.000001813763037 -0.000001195202237

a2 -0.000193935822284 0.000008603741722 0.000010044635361

a3 0.002551670749774 0.000411412069435 0.000153255992774

a4 -0.018494484604858 -0.006223615168335 -0.002874344419063

a5 0.096450588487681 0.029031951945015 0.013126497005896

a6 -0.48791534224999 -0.245917701266308 -0.120333635274365

a7 -1.80818923330034 1.47692100379431 0.853535973780927

a8 -0.265672427554903 45.0362084788201 24.5131154837513

a9 844.693396988081 58.7951095944313 21.8949581954112

a10 -18090.2205317641 -13291.5876493955 -6819.90286281822

a11 -620971.753444483 2278260.71520781 986430.475751975

a12 145573547.288563 31280330.2617121 13595979.9986218

ak Coef. Of VXS Coef. Of VYS Coef. Of VZS 

a0 0.000000000000876 0.00000000000134 0.000000000000705

a1 -0.000000000035468 -0.000000000085042 -0.000000000045286

a2 0.000000000400585 0.000000002222538 0.000000001198091

a3 0.000000001838394 -0.000000030441403 -0.000000016612406

a4 -0.000000065594787 0.000000235708378 0.000000130050108

a5 0.000000409285064 -0.000001185558201 -0.000000656321966

a6 -0.000002045604444 0.000005206853674 0.000002889371779

a7 0.000016616317898 -0.000004789036079 -0.000003062311659

a8 0.000138708440174 -0.000043909789614 -0.000027726262746

a9 -0.000029838214692 -0.002134339196159 -0.001160538240461

a10 -0.029299757820009 -0.002008086029233 -0.000742891068896

a11 0.418744847880383 0.307664738921479 0.157862474895167

a12 7.18717422343139 -26.3687571226232 -11.417018798621

Table 1.   Moon-to-Sun Coefficients 
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ak Coef. Of XE Coef. Of YE Coef. Of ZE 

a0 -0.000000120465923 0.000000052002009 0.000000031622897

a1 0.000007628381257 -0.000001836460056 -0.000001210064749

a2 -0.000196325470881 0.000008719042669 0.000010172147384

a3 0.002583117149928 0.000416339321152 0.000155085108346

a4 -0.018722521992485 -0.006298978841759 -0.002909197790503

a5 0.097640301438211 0.029382066258909 0.013284992773766

a6 -0.493926539477772 -0.248911414493782 -0.121800436698966

a7 -1.829533259726210 1.49341919298633 0.863311162886425

a8 -0.794558172099937 45.4263751279875 24.7436327304441

a9 821.8742589348 173.57690416087 71.6075269802601

a10 3527.10796729054 -8812.29966356204 -4891.3375699089

a11 -82856.1140443406 -31492.1606624715 -14834.6697711603

a12 -124996.868758181 310520.160006487 172373.588579813

ak Coef. Of VXE Coef. Of VYE Coef. Of VZE 

a0 0.000000000000886 0.000000000001357 0.000000000000714

a1 -0.000000000035905 -0.000000000086088 -0.000000000045843

a2 0.000000000405515 0.000000002249876 0.000000001212828

a3 0.000000001860981 -0.000000030815843 -0.000000016816749

a4 -0.000000066401389 0.000000238607693 0.000000131649824

a5 0.000000414317781 -0.000001200141256 -0.000000664395353

a6 -0.000002070757641 0.000005270899291 0.000002924912661

a7 0.000016820396625 -0.000004848188830 -0.000003100088483

a8 0.000140364902077 -0.000044357520552 -0.000028027227578

a9 -0.000005874216492 -0.002153003638943 -0.001171523674705

a10 -0.028507056638794 -0.005993158263952 -0.002468810366489

a11 -0.081656401977571 0.203977384449362 0.113219690991780

a12 0.958983966914624 0.364493769544924 0.171698170715951

Table 2.   Moon-to-Earth Coefficients 



 13

0 2 4 6 8 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Julian Day (JD
0
=2455347.5)

E
rr

or
 (

km
)

Polyfit Accuracy

 

 

X
Y
Z

 

Figure 5.   Sun Position Error wrt Moon 
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Figure 6.   Earth Position Error wrt Moon 
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D. THE IMPORTANCE OF ACCURACY 

One might ask why it is so important to take into account what seems like very 

small variations and perturbations.  Obviously, over long periods of time, the effects of 

the perturbations would increase, but these could be taken into account using frequent 

observations and updates to spacecraft navigation systems and simply make course 

adjustments during flight.  The greatest constraint on spacecraft is typically its mass, due 

to launch constraints imposed by launch vehicles.  A portion of this mass is fuel which 

the spacecraft requires for orbit transfers, station keeping, and attitude control.  While the 

spacecraft could conceivably make correction maneuvers in flight, it comes at a cost of 

fuel.  Any additional fuel to a spacecraft comes at a cost to allocated mass in other 

systems.  For interplanetary missions, especially for future manned exploration missions, 

the payload and support systems are critical to maximize mission duration and ultimately 

mission viability.  In practice, the spacecraft design should minimize the amount of fuel 

required to conduct its mission.  Therefore, for design purposes, it is important to take 

into account additional gravitational effects that act on the spacecraft. 

If the target body’s motion, such as the Moon or Mars, is very accurately 

determined, then optimal trajectories and thrust regimes could be used without the need 

for correction maneuvers during transit.  An analogy might be a bullet travelling 

downrange to a target at a distance of 1,000 meters.  If the bullet’s initial trajectory is off 

by 0.1 degrees, it will only miss the center of the target by 1 millimeter.  However, 

suppose a spacecraft travelling in a straight line, travels a distance of 80,000,000 

kilometers, the rough straight line distance between Earth’s orbit around the Sun and 

Mars’ orbit.  A trajectory error of the same, 0.1 degrees will have the spacecraft miss its 

intended target by over 120 kilometers.  Considering the great distance travelled, this 

may not seem like a significant number, however when trying to hit the target on the 

mark, with minimum fuel, this is indeed a considerable error.  This highlights the need 

for a very accurate description of the motion of the planetary bodies and this primarily 

relies on an accurate accounting of time from the inertial reference frame time. 
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For a spacecraft returning to Earth from the Moon, in order to minimize fuel, 

optimal control trajectories are being created such that the spacecraft has a 1 km window 

for earth orbit insertion.  This means that in order for the trajectory to be accurately 

designed, the spacecraft dynamics need to be of very high order of accuracy.  It can be 

shown that for a moon-earth return trajectory, the perturbation effects of the Earth and 

Sun must be taken into account in order to achieve the accuracy required.  In order to 

demonstrate this fact, a portion of the trajectory from Yan et al. moon to earth trajectory 

using the CEV main engines was investigated to show the effects of changing the number 

of bodies included in the dynamics equations  (Yan et al., 2010).  The segment 

investigated has the initial position immediately following the first TEI maneuver and the 

target position immediately prior to the second TEI maneuver.  The trajectory was 

propagated using the MatLab ode45 function and allowed to propagate until the time of 

the second burn maneuver.  Starting with a simple restricted two-body dynamics equation 

using only the Moon’s gravity (Body 2), successive runs were conducted, each adding the 

gravitational effects of the Earth (Body 3), Sun (Body 4), and finally Mars (Body 5).  The 

time-varying positions of the earth and sun with respect to the moon were taken into 

account as described previously as well as the governing equations of motion as 

described in the following section.  The initial conditions are as follows: 
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Figures 7 and 8 show that the four-body dynamics, which includes the moon, 

earth and sun, satisfy the accuracy requirements while the addition of the fifth body do 

not contribute a significant effect on the trajectory, therefore its effect need not be 

included. 
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Figure 7.   Effects of Additional Gravitational Bodies on Displacement 
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Figure 8.   Effects of Additional Gravitational Bodies on Velocity 
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E. EQUATIONS OF MOTION 

1. The Restricted Two-Body Problem 

In the restricted two-body dynamic model, the mass of the spacecraft is deemed 

negligible and equation of motion is: 

 

 
2

GM r
r

r r
    
 


  (1.2) 

 

This equation describes the force of attraction between two bodies, namely a 

planet (moon or sun) and a spacecraft where G is the universal gravitational constant, M 

is the mass of the large body, m is the mass of the spacecraft, and r is the position vector 

indicated by the negative sign to be from the spacecraft to the large body (Figure 9).  For 

generality, the origin of the inertial reference frame will not be located at the center of the 

large mass.  Therefore, the position vector r will be the difference between the vectors 

from the origin to each of the bodies as follows: 

 

 SC Mr r r   
 (1.3) 
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Figure 9.   2-body Dynamic Model 

Since the data from HORIZONS is in XYZ vector format, the r vector is 

converted into Cartesian coordinates, substituting M forGM .  Three equations of 

motion are generated, one for each axis of motion where: 
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 (1.4) 
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2. The n-Body Problem 

From the point of view of an inertial observer, the restricted n-body equation of 

motion with respect to the primary body is shown in Equation (2.5) below.  Figure 10 

shows a diagram of the n-body geometry when there are only three bodies (n=3). 

 

 ,2 1,1 1,2
1,2 3 3 3

31,2 ,2 1,

n
j j

j
j j j

r rr
r

r r r






 
     

 


 
  (1.5) 
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Figure 10.   Three-Body Geometry (After Vallado, 1997) 

The first term in Equation (1.5) is the 2-body part of the equation of motion, 

where the subscript “1” represents the primary gravitational body.  The spacecraft in the 

equation is body number “2.”  The summation term on the right represents the 

gravitational perturbation forces due to additional bodies j through n, starting with body 

number “3.”  The perturbation term itself has two parts, the left term called the direct 

effect because it represents the force acting directly on the spacecraft by the body.  The 
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right hand perturbation term is called the indirect effect because it represents the 

gravitational effect on the primary, or number one, body.  This form of the equation of 

motion for the n-body problem is known as the relative form and is used because the 

motion of the spacecraft is calculated relative to the primary body (Vallado, 1997). 

The indirect effect of the perturbation effects can be neglected if the motion of the 

n-bodies is adequately characterized.  Because the relative positions between the 

gravitational bodies can be found by celestial observation, the gravitational forces acting 

between the bodies can be ignored.  Using the available JPL Horizons data, it is assumed 

that the effects of the gravitational bodies on each other are already taken into account, 

therefore the only perturbation effects that need be considered acting on the spacecraft 

are the direct effects.  Therefore, Equation (1.5) reduces to: 

 

 ,21 1,2
1,2 3 3

31,2 ,2

n
j

j
j j

rr
r

r r






 
     

 



  (1.6) 

 

3. Equations of Motion for Moon to Earth Return Mission 

The specific equations of motion used in this thesis are driven by the 

establishment of a J2000 moon-centered, translating Cartesian frame.  The origin is fixed 

to the moon’s center and the primary axes are aligned with the J2000 sun-centered 

inertial Cartesian frame (SXYZ).  The SXYZ frame has the X-Y plane aligned with the 

plane of Earth’s orbit and the X direction points to the First Point of Ares.  The SXYZ is 

a right handed system, with the Z axis perpendicular to the X-Y plane. 

Cartesian coordinates are selected first, for ease of using JPL Horizons ephemeris 

data, and secondly because it avoids singularities in spherical coordinates that may arise 

due to trigonometric constraints (Yan et al., 2010). 
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Figure 11.   J2000 Sun and Moon Centered Frame (From Yan et al., 2010) 

The position of the spacecraft is represented by / / /P S M S P Mr r r   
, where /M Sr


is 

the position of the Moon with respect to the center of the Sun, and /P Mr


is the position of 

the spacecraft with respect to the Moon.  Taking into account that the position of the 

spacecraft is with respect to the moon in a sun-centered inertial frame, then the following 

equation holds for /P Sr


: 

 

 / / ˆ ˆ ˆP S M S x y zr r xe ye ze    
 (1.7) 

 

Defining the velocity as: 

 

 , ,x y zv x v y v z      (1.8) 

 

Taking the first and second derivative of Equation (1.7) with respect to the J2000 

Sun-centered inertial frame yields: 
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 / / / /ˆ ˆ ˆP S M S x x y y z z M S P Mr r v e v e v e r     
     (1.9) 

 

 / / / / / /ˆ ˆ ˆP S M S x x y y z z M S P M M S P Mr r v e v e v e r r        
          (1.10) 

 

Noting that / 0M S  because the orientation of the Moon-centered frame is 

aligned with the Sun-centered frame, Equation (1.10) simplifies to: 

 

 / / ˆ ˆ ˆP S M S x x y y z zr r v e v e v e   
 
      (1.11) 

 

The fully expressed spacecraft dynamics also have to be expressed in the Sun 

centered inertial frame and will include the dynamics as in Equation (1.11) as well as the 

controls or forces that the spacecraft will generate as part of the complete equations of 

motion.  There are three control variables which are necessary for describing the three 

dimension Cartesian components of the thrust.  T is the magnitude of the thrust and α and 

β respectively define the azimuth and elevation angles. 

The dynamics can be succinctly expressed by applying Newton’s second law in 

vector form as follows: 

 

 /P S M E Smr G G G T   
   

  (1.12) 

 

Where m is the mass of the spacecraft, T


is the thrust vector, and MG


, EG


, 

and SG


are the gravitational forces of the Moon, Earth, and Sun respectively.  The Moon’s 

translating acceleration, also a required portion of the overall system dynamics can be 

defined as: 
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 (1.13) 

 

 

The thrust vector is defined in the Moon centered frame defining α as the azimuth, 

and β as the elevation by the following: 
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 (1.14) 

 

The time-varying components of the displacement between the spacecraft and the 

center of the Moon are given by  , ,x y z .  Between the perturbing bodies of the sun and 

earth, and the primary body (moon), they are  , ,S S Sx y z and  , ,E E Ex y z respectively so 

that the magnitude of the displacements of the spacecraft from the gravitational bodies 

can be defined by: 

 

      

     

2 2 2
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2 2 2

M

E E E E

S S S S

r x y z

r x x y y z z

r x x y y z z

  

     

     

 (1.15) 

 

With  , ,M E S   representing the gravitational constants for the Moon, Earth, 

and Sun respectively and ev representing the exhaust velocity of the spacecraft, the final 

form of the system dynamics can be written, which includes the time-varying mass of the 

rocket in the following equations of motion.  Equation (2.16) becomes the governing set 

of equations of motion that are used in the problems solved in this thesis. 
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III. OPTIMAL CONTROL THEORY 

A. THE OPTIMAL CONTROL PROBLEM 

Problems concerning “optimization” have a long history dating back to the 

ancient Greeks where through geometry they were able to determine answers to problems 

such as the shortest distance between two points (a line) and the maximum area enclosed 

by a given length of perimeter (a circle).  These two problems are part of a class of 

problems known as optimization theory, where the former is a minimization problem and 

the latter a maximization problem.  The calculus of variations is a theory that emerged 

during the eighteenth century that deals with the optimization of integrals.  John 

Bernoulli (1667–1748) posed a problem concerning the minimization of an integral in his 

famous brachistochrome problem (Greek, brachist = shortest, chromos = time) of 1696 

involving a bead sliding under gravity  along a smooth wire in which he asks what shape 

the wire must be to reach the end point in minimum time.  During the 1950s, the theory 

of optimal control emerged as a direct consequence of space exploration efforts by the 

Americans and the Soviets.  The theory would allow a spacecraft’s trajectory to be 

controlled in such a manner as to reach a desired destination using minimal fuel and in 

minimum time (Pinch, 1993).  

Optimal control theory, however, is not limited to the physical guidance and 

control of a spacecraft.  It has applications for mission planning and in spacecraft design.  

Consider the case for a manned spacecraft mission in which time is a critical design 

factor.  The mission duration drives requirements such as the fuel required for navigation 

and control of the spacecraft and amount of life support equipment and supplies needed 

to sustain the crew.  Once the mission objectives are specified and the physics, or 

dynamics, of the problem are understood, the designer will seek for feasible solutions to 

problems such as the minimum time to be able to complete the mission and how much 

fuel to carry can be solved.  Therefore, optimal control theory can be used in the design 
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process to determine feasible solutions to engineering problems.  The strength of the 

results gained lie in the fact that the theory has a sound basis in mathematics, and can 

therefore be proved in a straightforward manner. 

B. DERIVATION OF THE NECESSARY CONDITIONS USING THE 
CALCULUS OF VARIATIONS 

The problem being solved is to determine the control  u t , such that the path, or 

trajectory, from an initial state  0x t  to a final state  fx t  minimizes the some cost 

functional  J x , where: 

 

      
0

,
ft

ft
J x F x u dt E x   (2.1) 

 

The integral term represents the running cost and  fE x represents the end-point 

cost.  Since real systems are being considered, it is safe to assume that any trajectory 

of  x t will be continuous and twice differentiable within the domain of the state space.  

It is also allowable to have the controls be piecewise continuous and bounded within 

some finite control space.  In order to show that a curve *( )x x t  is optimal, necessary 

conditions can be shown, under some assumptions of smoothness, using the calculus of 

variations and are as follows (Pinch, 1993): 

 Hamiltonian 

 
     

 
, , , ,

where ,

TH x u F x u f x u

x f x u

  


 (2.2) 

 

 Euler-Lagrange Equation 

 0
H

u





 (2.3) 

 



 27

 Adjoint Equation 

   H
t

x
 

 


  (2.4) 

 

 Transversality Condition 

  f
f

E
t

x
 




 (2.5) 

Where,          , : T
f f fE x t E x t e x t   is called the Endpoint Lagrangian. 

 

The variable, , represents the co-state and while it has no physical meaning, it 

has corresponding values that mirror the state variables.  The adjoint equation represents 

the co-state dynamics and has a direct relationship to its corresponding state variable via 

the Hamiltonian equation.  The transversality condition looks at the endpoint cost based 

on the final state in order to find final conditions of the co-states. 

C. PONTRYAGIN’S PRINCIPLE 

In 1955, it was discovered that a problem existed with the Euler-Langrange 

equations in that it was impossible to solve for bounded controls.  The problem was not 

with the engineering or the physics of the controls in question, rather with the math.  

Pontryagin then invented a new theory known as the Hamiltonian Minimization 

Condition (HMC) which then replaced the Euler-Lagrange equations. The HMC was able 

to handle bounded controls, which is typically the case in any control system.  In most 

cases, steering or attitude control is unbounded since all the angles in a circle can be 

described in positive or negative multiples of 2 .  In the case of an applied torque or 

thrust for control, the realities of physics dictate that there will be upper and lower limits 

to such a control.  Therefore, Pontryagin’s HMC was therefore a necessary development 

in the practice of optimal control theory (Ross, 2009).   

An example of the constrained control problem can be described in a two-

dimensional case of an orbit transfer problem where the state and controls are given by 
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[ , , , , ]T
x yx x y v v m  and  ,

T
u T  .  The state is described by the position and velocity 

in two dimensions, and mass.  The control variables describe the magnitude of thrust and 

angle with respect to the reference frame.  The Hamiltonian for this problem becomes: 

 

      , , cos sinx x y y vx x vy y m
e

T T T
H x u v v K t K t

m m v
       

               
     

(2.6) 

 

The portion of the dynamics equations that do not depend on the controls are given 

by  iK t .  The exhaust velocity, ev , is constant and is a function of the physical 

characteristics of the rocket motor.  The dynamics portions of the equation are excluded 

for brevity because they do not contain any control components. 

 From the Euler-Lagrange equation, the optimal steering law is determined by: 

 

 sin cos 0vyvx
TTH

m m

  



   


 (2.7) 

 

 tan vy

vx





  (2.8) 

 

However, determining the optimal thrust law proves problematic since T vanishes: 

 

 cos sin 0vyvx m

e

H

T m m v

  
   


 (2.9) 

 

The Euler-Lagrange equations give areas where the slope of the Hamiltonian is 

zero, thus giving potential locations where maxima and minima may exist.  However, if 

the slope is not zero at the endpoints, then these points would be excluded even though 

they might also contain maxima and minima.  Example Hamiltonian curves are given in 
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Figure 12 where the Euler-Lagrange equations would give an incorrect value of the 

controls if the minimized Hamiltonian was only realized where the slope was zero. 

 

 

 

Figure 12.   Hamiltonian as a function of u only (From Ross, 2009) 

Pontryagin’s HMC, therefore replaces the Euler-Lagrange equation and 

minimizes  , ,H x u  subject to the upper and lower bounds of the control, L Uu u u  .  

He also proved that the minimized Hamiltonian is constant with respect to time and that 

for minimum time problems the constant is equal to zero and for fixed time, minimum fuel 

problems is equal to -1. 

It can be shown that from the HMC that a relationship exists between the 

direction of the thrust vector and the direction of the co-state related to velocity.  

Equation (3.10) shows that the angle between them is 180 degrees. 

 

 v

v

T

T




 


 (2.10) 
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D. THE SWITCHING FUNCTION 

Noting that the Hamiltonian as a function of T is linear, and is bounded subject 

to max0 T T  , the right hand side of (2.9), which is the coefficient of T in H, becomes 

the switching function, S . 

 

 : cos sinvyvx m

e

S
m m v

      (2.11) 

 

Figure 13 shows the Hamiltonian as a linear function of T, where S is either the 

positive or negative slope of the line.  This result implies that when the switching 

function is negative, the thrust is maxT  and when positive, the thrust is equal to zero.  

These two cases refer to what is known as bang-bang control, where the control is either 

maximum or minimum.  There is a special case where the switching function is equal to 

zero which implies that the thrust lies between the maximum and minimum bounds that is 

covered in the next section.  It can be shown that for unconstrained steering controls, the 

HMC yields the same result as the Euler-Lagrange equation, so Pontryagin’s Principle is 

the general case of the Euler-Lagrange condition (Ross, 2009).   

 

 

 

Figure 13.   H as a function of T only (From Ross, 2009) 
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E. NECESSARY CONDITIONS FOR SINGULAR ARC OPTIMALITY 

The case where the switching function equals zero occurs when an intermediate, 

or singular, thrust arc appears as part of the optimal trajectory where the thrust will 

assume a value between the upper and lower bounds.  Singular optimal control theory 

was developed as a result of the examination of intermediate thrust arcs in central 

inverse-square gravity fields and what resulted was the Higher Order Maximum 

Principle.  The Principle follows the results of Pontryagin’s HMC and then takes the 

derivative of the switching function repeatedly to develop the necessary conditions for an 

optimal singular arc.  This requires the derivation of an explicit function of the thrust in 

order to develop a singular optimal control law.  Since the switching function equals zero, 

each subsequent derivative must clearly also equal zero.  Taking the derivative of the 

switching function with respect to time shows that T does not appear explicitly until the 

fourth derivative, which implies that the problem contains a second order singular control 

(Park, C., Yan, H. Gong, Q., and Ross, I.M., 2010).  Determining that the fourth order 

derivative is equal to zero is especially important when verifying numerical solutions as 

the results are typically close, but never exactly equal to zero. 

  The problem Yan et al. were solving was identical to the problem solved in this 

thesis, the only difference in that the rocket specifications were for the Orion spacecraft 

main engines.  Since the equations of motion and dynamics of the problems are identical, 

the derived necessary conditions hold here. 

 

 0r v

v v

dS

dt m

 

 


 



 
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S
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  
4

24

1

v v

d S d d
S

dt dt dtm  
    

   (2.15) 

 

The resulting third and fourth order derivative equations are rather long, and the 

control variable T only appears explicitly at the fourth derivative.  The explicit forms for 

the first through fourth derivatives of S with respect to time are found in Appendix A.  

With these equations, it is now possible to verify the optimality of singular arcs that 

appear as part of an optimal earth return trajectory, however as alluded to previously, 

numerically validating equality to zero can be troublesome.  Therefore applying another 

result using the calculus of variations known as the Generalized Legendre-Clebsch, or 

General Convexity, condition, see Equation (3.16), the numerical verification is made 

straightforward (Bryson, 1975).  In the equation below, the subscript i represents the 

terms for the earth and sun.  Terms without a sub-script are the terms for the moon. 
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     
  
 

      
   

 (2.16) 

 

F. TRANSVERSALITY CONDITION 

The derivation of the transversality conditions are outlined in Appendix B and the 

following condition holds for the minimum fuel problem. 

 

   1m ft    (2.17) 
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G. SUMMARY OF NECESSARY CONDITIONS FOR OPTIMALITY 

In summary, the following necessary conditions hold for optimal control: 

1. Hamiltonian is constant.  (-1for minimum time, 0 for fixed-time, minimum 

fuel) 

2. v

v

T

T




 


 

3. max

0, 0

0

0

v m

e

when S

T T when S where S
m v

Singular when S

 
 

      
  

 

4. Verify optimality of singular arcs. 

a. Numerically verify that 
4

4
0

d S

dt
 for singular arcs. 

b. Check Generalized Legendre-Clebsch Condition, 
4

4
0

d S

T dt





 

5.   1m ft    (for minimum fuel cases only) 

H. GENERIC PROBLEM FORMULATION 

The format for the problems solved in this thesis follow Pontryagin’s method for 

solving optimal control problems.  The format is useful, as the formulation of the 

problems in DIDO© are made easier as the boundary conditions and constraints are 

clearly stated.  There are primarily two types of optimal controls problems that are 

solved, namely a minimum time and minimum fuel.  Each type of problem has a special 

set of boundary conditions that are expressed in the problem formulation.  For example, 

the minimum time solution will have a free condition on the final mass and final time.  In 

the coding of the problem, the final mass will have to be fixed at zero, or close to zero to 

prevent an unrealistic negative mass solution.  In the minimum fuel problem formulation, 

the final time would be fixed and the final mass would be free. 
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Each of the problems solved in this thesis include a third physical dimension, z, 

start with the following format and the conditions derived for the two-dimensional case 

described earlier still hold. 

 

Generic Problem Formulation 

Where , , , , , ,
T

x y zx x y z v v v m     and  , ,u T   , 

   

 
   0

0

, ,

, ,

,

And any other boundary conditions and/or constraints

f f f

f
f

Minimize J x u t t or m

Subject to X f x u t

x t x x t x

    
 

  



 
  
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IV. USING DIDO© 

A. INTRODUCTION 

The use of computer-based software packages such as DIDO© allow for solving 

of complex optimal control problems, however there are many challenges associated with 

solving the types of problems discussed in this thesis.  Primarily, a solid understanding of 

the underlying physics of the problem being solved should be well understood, especially 

during the verification and validation process.  This also includes an understanding of 

what is being optimized in the problem and checking to see if the result makes physical 

sense as well as meeting the necessary conditions for optimality.  Finally, an 

understanding of the limits of numerical computation is useful in order to make the code 

run more efficiently.  The verification and validation steps taken for the problems in this 

thesis are described, following a brief description of how the problems were formulated 

in DIDO©. 

B. PROBLEM FORMULATION IN DIDO© 

DIDO© is a software module that works with Matlab.  It implements Legendre 

pseudospectral methods which are used to solve complex, non-linear optimal control 

problems (Ross I.M. , 2007).  Its primary advantage is that it can solve the problems with 

as few or many discrete points, or LGL nodes, as defined by the user, which makes the 

computation time relatively short.  However, this requires at iterative process of 

increasing the number of nodes, until the desired fidelity is achieved.  It has a 

straightforward interface that allows the user to set up an optimal control problem using 

the previously described Generic Problem Formulation.  The problem formulation is 

broken up into two parts, namely the cost function, which specifies what design 

parameter is being minimized, and the constraints.  The constraints can be further divided 

into two parts.  The spacecraft in each of the problems is constrained to move subject to 

the equations of motion, or the dynamics.  In each of the problems, there is also a set of 

boundary conditions describing the initial and final states of the spacecraft which were 
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given parameters.  The problem formulation in DIDO© follows this separation of the 

problem formulation by requiring separate M-files that are called by a main problem file.  

An additional file may be used to specify a path constraint, but it is not always required, 

and is typically problem dependent. 

The files used in addition to the main program file, then are: 

 Cost Function – outputs are the endpoint cost and running cost.  In the 

problems being examined, only endpoint costs are required and are 

problem specific.  In the following cases it is either the final time, 

ft (minimum time case), or the final mass, fm (minimum fuel case). 

 Dynamics Function – provides the differential equation 

      , ,x t f x t u t t
    as described by the problem dynamics.  The same 

set of dynamics equations is used for all cases studied. 

 Events Function – used to describe the boundary conditions to include the 

initial and final states of the problem.  For example, in the minimum-fuel, 

constrained-time problem, the initial state is 

0 0 0 0 0 0 0
0 , , , , , , ,x y zx x y z v v v m   


 and the final state is 

, , , , ,f f f f f f
f x y zx x y z v v v   


, noting that there is no final mass specified 

since that is the parameter being solved for. 

The main program file calls these files and then requires the establishment of 

upper and lower bounds on the states and the controls.  This is important step for 

primarily computational reasons.  It provides a range of values that the DIDO© algorithm 

can use in the output of state and control trajectories.  Given that the physical 

displacement and velocities of the spacecraft should be limited to a region near the earth 

and moon, the upper bounds of the state variables should be provided accordingly.   

However, if the bounds are too small, the resulting trajectories might result in either an 

infeasible or non-optimal solution.  Excessively large bounds will start to affect 

computation time.  DIDO© also allows for an initial guess of the trajectories that gives 

the program a starting point, however it is possible to get acceptable results without an 
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initial guess.  The actual algorithm that solves the problem is called in Matlab by a single 

command line and its outputs are the final cost, as well as primal and dual structures.  

The primal structure includes the state and control vectors and associated discrete times 

with their lengths being equal to the number of LGL nodes used.  The dual structure 

includes the co-state and Hamiltonian vectors, also equal to the number of nodes.  These 

outputs can then be used for further analysis for verification of optimality and feasibility. 

C. BEST PRACTICES 

1. Scaling 

Most computational numerical methods make use of unit scaling, without loss of 

generality, to increase computational efficiency by increasing rate of convergence while 

increasing accuracy (Ross I.M., 2009). There are no set ground rules on how to scale 

units, however a uniform range of values can make the program run smoother (Betts, 

2001).  In astrodynamics problems in particular, scaling becomes an important factor in 

problem formulation because of the scale at which spacecraft are operating.  Typically, 

the range of values for the distances travelled can be on the order of 107 meters, but the 

timeframe of interest may only be on the order of a few hours.  Also to be considered are 

the values of forces in kilonewtons, for example, which depend on the standard units of 

mass, distance, and time. 

For the problems discussed in this thesis, the following “canonical” units were 

used to scale the variables for computation. 

 1 Displacement Unit (DU) = 1,737 km (mean radius of the Moon) 

 1 Mass Unit (MU) = 20,339.9 kg (wet mass of spacecraft) 

 1 Time Unit (TU) = 
 33

3 2

1,737
1,033.9sec

4,902.8 sec

Where is the moon'sgravitationalconstant.
M

M

kmDU

km


 
 

 1 Velocity Unit  = 
1 1,737

1.68 / sec
1 1,033.9sec

DU km
km

TU
   
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 1 Force Unit = 
 22

1 1 20,339.9 1,737
33.1

1 1,003.9sec

MU DU kg km
kN

TU

 
   

The units scaled in this fashion are sufficiently close in order of magnitude to 

maintain computational efficiency and are able to be converted to and from the actual 

(un-scaled) values for analysis. 

2. LGL Nodes 

Typically, these types of complex optimal control problems cannot be solved in a 

single step with a large number of LGL nodes primarily due to computation time.  The 

software used allows the user to choose the number of discrete points as the output and 

allows for taking the output of a lower node solution and using it as a guess for a higher 

node solution.  If the problems are well scaled and the problem is properly formatted, this 

allows for a rapidly converging solution without excess computational time.  In the 

problems studied in this thesis, the typical starting point was at 30 or 40 LGL points and 

then each incremental step increase in nodes was of the same order.  The exception was 

the study of the high thrust singular arc in which a much lower number of nodes was used 

to start because of the short time duration of the event. 

3. Providing an Initial Guess 

It is possible, though not required, to provide DIDO© with a “guess” trajectory 

for the controls and states.  Providing a reasonable guess will, in most circumstances, 

produce a faster result.  Each of the cases studied in this thesis started with a low number 

of LGL nodes and with no initial guess, however as the number of nodes and subsequent 

fidelity of the solutions were increased, the preceding solutions were used as an initial 

guess for the next iteration.  This concept of using an initial guess was used in two 

different ways depending on the situation. 

Starting at the low fidelity solution, typically 30 to 40 LGL nodes, it is possible to 

take the resulting primal structure (controls, discrete time values, and states) and use 

them as the initial guess for a subsequent run of DIDO© at a higher number of nodes.  

Experience shows that increasing in increments of no more that 30 to 40 works best.  
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This method is called bootstrapping, but cannot be used without analysis of the preceding 

result so as not to propagate errors caused by bad problem formulation, scaling, etc.  

Therefore, each step of the problem solution process should be checked for optimality 

conditions, feasibility, and other verification and validation techniques discussed below. 

The difficulty with the angles is that as previously mentioned they are unbounded 

controls, however, in coding the problem it is typically unwise to allow infinite bounds 

for computational reasons.  The problem as coded must establish small enough bounds so 

that it can be handled by the computer, but must also be large enough to facilitate the 

possible range of solutions.  With  , 2 ,2     , this allowed for a wide range of 

angles from which the solution could be found. 

The resulting control angles are allowed within the program to reach the limits of 

the bounded region, however when this happens it is difficult to determining whether the 

control has hit a “physical” limit imposed by the code or the angle is equal to that limit, 

which in this case is zero degrees.  Because of the non-unique nature of trigonometric 

functions, a one-to-one mapping of solutions is not possible and computer algorithms 

typically cannot discern the difference between them (i.e.    sin 2 sin 5 2 1   ).  

Therefore, for any computer algorithm additional conditions may have to be imposed. 

In certain cases, angle reduction formulas could be used to convert the output 

angles into a set of angles that fall between  , ,      which would then provide the 

full range necessary for the problem solution.  From Equation (1.16), the Cartesian 

components of the thrust vector can be re-written as: 
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 (4.1) 

 

From these equations, explicit formulas for the angles can be derived. 
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 (4.2) 

 

Noting that a singular condition occurs when 0F  , this can be neglected by the 

fact that any combination of angles has no effect on a spacecraft’s trajectory when the 

thrust is zero, therefore when this is the case the angles can be forced to zero with no loss 

of generality to the problem.  Figures 14 and 15 show how a set of resulting angles from 

DIDO© can be recalculated using Equation (4.2) which can then be used as the initial 

guess for the angles for the next iteration. 
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Figure 14.   Recalculation of Azimuth Control Angle 
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Figure 15.   Recalculation of Elevation Control Angle 

As the problem increases in fidelity and the control angles start to fall within a 

tighter range of values, it is then possible to tighten up the coded bounds to help speed up 

computation.   

D. VERIFICATION AND VALIDATION 

1. Examining Initial Output 

One of the first steps in the analysis conducted was to generate plots of the state 

and control trajectories as well as the evolution of the Hamiltonian and the co-states.  One 

of the first checks is to determine if any unexpected or undesired limits of the imposed 

bounds were met.  In the case of thrust, the limits are expected because of the actual 

physical limitations of the thruster (no negative thrust and a maximum attainable thrust).  

Hitting the bounds on the control angles was covered above.  For a minimum time 

problem, the final time should not hit the upper bound because it usually results in an 
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infeasible solution indicating that the time horizon should be longer.  In the minimum 

fuel problem, the upper time bound is typically fixed, and therefore coded appropriately.   

2. Checking Necessary Conditions for Optimality 

From the dual variables output of DIDO© the Hamiltonian and co-state vectors 

can be plotted with respect to time and using the necessary conditions from Chapter III 

can be used to verify the optimality of the solution. 

3. Checking Feasibility 

The DIDO© endpoint conditions can be validated against the given endpoint 

conditions, however the purpose of performing the feasibility analysis is to validate the 

DIDO© solution and determine if the solution has enough fidelity to be “flyable.”  A 

method of verifying the feasibility of the solution is to take the same initial conditions for 

the problem and propagate the same dynamics, using Matlab’s ode45 solver, over the 

same timeframe to evaluate how closely the state trajectories follow the DIDO© solution.  

This requires an interpolation of the generated controls for areas between the nodes since 

there many more points used in the ode45 solver compared to the sparse number of points 

generated by DIDO©.  Plotting the DIDO© and propagated state trajectories 

simultaneously can provide a good visual indicator of whether the solution is making 

physical sense, assuming the dynamics are correct.  However, for problems that cover a 

large time horizon, the results will tend to diverge as time goes on and this is primarily a 

result of interpolation and propagation errors inherent to numerical solutions. 

A technique that has been proven to be successful in reducing the propagation 

errors of the interpolated controls from the optimal solution generated by DIDO© is 

called the Bellman Pseudospectral (PS) Method (Ross, I.M., Gong, Q., and Sekhavat, P., 

2008).  Its application is based on the Bellman Principle of Optimality that states that for 

an optimal path between two points, any point taken along the path will follow the 

optimal path to the final point. 

The Bellman Principle of Optimality states that along a given optimal trajectory, a 

segment starting from some intermediate point on that trajectory and ending at the 
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original termination point will also be optimal.  If some trajectory AB meets the 

necessary conditions for optimality, then a segment starting from point C on the path will 

follow the same optimal path to the final point.  In Figure 16 the total cost of the optimal 

trajectory AB  is 0J .  If the pointC lies on the trajectory AB , then the trajectory from CB  

will also be an optimal path on AB , and 0 1 2J J J   (Kirk, 1970). 

  

 

Figure 16.   Bellman Principle 

Yan et al. use the Bellman PS Method as a means for mesh refinement and taking 

advantage of DIDO© node distribution which puts a higher concentration of nodes near 

the beginning and end of the time horizon of the optimal trajectories.  Hence, the 

resolution of data near the beginning and end of the trajectory is higher than in areas in 

the middle.  Increasing the number of nodes would only offer a limited increase in 

resolution near the middle of the trajectory which would come at a high cost in 

computational efficiency.  They found that by applying the technique in this manner, the 

interpolation and propagation errors were significantly mitigated by a few orders of 

magnitude (Yan et al., 2010).  The application of the corollary statement was used in the 
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detailed analysis of the singular arc which used two points on the trajectory prior to and 

after the second TEI maneuver of the main engine solution as a segment which lay on an 

existing optimal path. 

4. Comparison to Previous Studies 

Finally, the results of the case studies in this thesis can be compared to the results 

by Yan et al. study of optimal moon to earth trajectories using the Orion spacecraft main 

engines as well as the study conducted by Park et al. on numerical verification of singular 

arcs for the same problem using a low thrust engine.  The rocket engine parameters, 

resulting fuel consumption, and control maneuvers can be compared for analysis. 
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V. AUXILIARY ENGINE FOR MOON TO EARTH RETURN 
MISSION  

For the three cases for the moon to earth return mission, the scenario depicted is a 

loss of the main engine with the same mission time requirement and fuel constraint.  The 

initial position and velocity, or state, of the spacecraft is at a designated point in a low-

lunar orbit from which the mission commences.  The final state achieves the conditions 

that will take the spacecraft to the earth interface point without any further burn 

maneuvers.  The initial epoch is given as April 4, 2024, 15:30:00 TDT.  Each of the three 

cases studied, the final position and velocity remain the same and the results of changing 

the boundary conditions on time and fuel consumed are examined for the purpose of 

determining the overall feasibility of using the auxiliary engines as an alternative to the 

main engines for the return mission. 

The spacecraft characteristics and fixed initial and terminal conditions are as 

follows (Scarritt, S., Marchand, B., and Weeks, M., 2009): 

 Initial Mass:  20,339.9 kg (wet mass) 

 Total Fuel Mass:  8,063.65 kg 

 Auxiliary Engine Thrust:  4,448.0 N 

 Auxiliary Engine Isp:  309 sec 

 Initial State in the J2000 Moon centered inertial frame: 
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 Final State (to reach specified earth interface point)  
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A. THE MINIMUM TIME, FUEL FREE PROBLEM 

1. Problem Formulation 

The first case of this problem was formulated as a minimum time solution with 

the final mass allowed to be free, but limited to a lower bound of 10% of the total 

spacecraft wet mass.  While this problem did not satisfy the fuel requirements, it was an 

important first step in determining an overall feasible engineering solution.  By making 

both the time and fuel constraints ‘free,’ it was possible to first determine the feasibility 

of the mission time requirement imposed on this segment of the return mission.  With 

time as the cost function to be minimized, the spacecraft was allowed to burn as much 

fuel as needed, even beyond the maximum fuel capacity of 8,063.65 kg.  In the Matlab 

code, however, an artificial lower limit of 10% of the spacecraft dry mass was imposed to 

prevent the mass from going negative.  Provided an optimal solution existed, the goal was 

to determine if the minimal final time was less than the 48-hour mission constraint.  This 

in turn implied that the use of the specified auxiliary engine would be feasible, at least in 

terms of the mission time constraint. 
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Minimum Time Formulation 
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2. Results and Analysis 

This case was solved, starting at 30 LGL nodes and bootstrapping the solution up 

to 80 LGL nodes in order to achieve a smooth and convergent solution.  As expected, in 

order to achieve the desired end point condition in minimum time, the spacecraft will 

burn fuel at a maximum rate, using maximum thrust, throughout the maneuver as 

depicted in Figure 17.   Figures 18 and 19 show that the azimuth and elevation control 

angles are continuous and while they are not physical constraints on the problem, the 

angles do not hit the bounds specified in the Matlab code.  While the fuel mass consumed 

exceeds the actual fuel capacity of the spacecraft, the total time of the maneuver is much 

less than the 48 hours required by the mission.  This implies that the auxiliary engines,  
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subject to the dynamics of the problem, can be used and will satisfy the time 

requirements of the mission.  Further analysis follows to verify that the auxiliary engines 

can be used to meet the fuel requirements as well. 
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Figure 17.   Thrust Profile 
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Figure 18.   Azimuth Control Profile 
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Figure 19.   Elevation Control Profile 
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a. Feasibility of the Solution 

As part of the feasibility analysis, the solution is propagated using the 

ode45 function in Matlab, using the initial boundary condition and interpolating the 

controls over the course of the trajectory and comparing the continuous solution against 

the DIDO© solution of discrete points.  By examining the profiles of the state vectors for 

position, velocity, and mass, it was found that the DIDO© solution follows the 

propagated solution and is deemed a feasible solution.  Figures 20, 21, and 22 show the 

displacement, velocity, and mass trajectories.  Table 3 shows the differences between the 

DIDO© and the propagated solutions.  While the DIDO© solution achieves the specified 

boundary conditions, the propagated solution shows an error greater than the required 

limits of 1 km for displacement and 1 m/s for velocity. 
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Figure 20.   Displacement Vector  
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Figure 21.   Tangential Velocity Vector 
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Figure 22.   Fuel Consumption 



 52

 Final Position Error (km) Final Velocity Error (m/s) 

DIDO© 4.5e-13 2.2e-13 

Propagated Solution 17.0 4.2 

Table 3.   DIDO vs. Propagated Solution 

The discrepancies in the final position and velocities are due to the 

numerical sensitivities of this type of problem.  Very slight interpolation errors at the start 

of the orbit transfer can cause very large errors at the terminal position (Yan et al., 2010).  

In this particular problem, the total time horizon is shorter than the 48-hour requirement 

and thus results in a relatively small error.  Within two iterations of the Bellman 

technique, the required end-point errors are achieved.  For brevity, the Bellman technique 

is demonstrated for this problem only, but can be used to resolve the difference between 

the DIDO© solution and the propagated solution in the minimum fuel case. 

The Bellman pseudo-spectral (PS) technique is summarized as follows 

(Ross et al., 2008): 

1. Solve the optimal control problem using a reasonably low number 

of LGL nodes to generate a discrete time solution. 

2. Partition the time interval 0 , ft t   into Bellman segments 

0 1 ... BN nt t t t    .  The segments do not need to be uniformly 

spaced, however extend from a specified time until the terminal 

time, ft . 

3. Propagate the system dynamics from 0t to 1t using 0x as the initial 

condition and any method of continuous-time reconstruction of the 

controls,   0 1
1 , ,u t t t t    . 

4. Set  1 1
0x x t  and 0 1t t and go back to Step 1. 

5. This algorithm ends when the final required conditions are met. 
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Using the Bellman technique in two iterations, the final required accuracy 

was attained.  The first Bellman segment 1, ft t   was set to start at 0.8363 hours.  For 

simplicity, a time associated with one of the discrete time points was chosen.  For the 

second Bellman segment 2 , ft t   , a start time of 0.9640 hours was chosen. Table 4 shows 

the segment partition and the resulting final position and velocity errors.  After two 

iterations, the required errors for both position and velocity are attained. 

 

 Position Error (km) Velocity Error (m/s) 

Without Bellman technique 17.0 4.2 

First Bellman segment 1.2 0.31 

Second Bellman segment 0.29 0.16 

Table 4.   Effects of the Bellman PS Technique 

Another verification of the feasibility of the solution is to examine the 

osculating orbital elements throughout the maneuver.   Figure 23 shows the evolution of 

the changing semi-major axis throughout the maneuver. Towards the end of the 

maneuver, the semi-major axis goes to infinity which is consistent with a parabolic 

trajectory, but then completes the maneuver at a finite semi-major axis value.  Figure 24 

shows the eccentricity constantly changing throughout the orbit and eventually passes 

through e = 1, a parabola, and ends on a value greater than one which defines a 

hyperbolic trajectory.  Both parabolic and hyperbolic trajectories imply that a spacecraft 

has sufficient energy to overcome the gravity well of the body which it has been orbiting 

(Curtis, 2005).  This result shows that the spacecraft in this case has escaped the moon’s 

gravity.  Finally, Figure 25 shows a continual change in the inclination of the trajectory 

with respect to the moon’s equator.  The final states of the semi-major axis, eccentricity, 

and inclination are consistent with the end point conditions found for the minimum fuel 

solution for the main engines (Yan et al., 2010). 
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Figure 23.   Semi-major Axis 
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Figure 24.   Eccentricity 
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Figure 25.   Inclination 

b. Verification of the Optimality of the Solution 

The necessary conditions for optimality are met and are examined as 

prescribed in Chapter III.  In Figure 26, the Hamiltonian is constant throughout the 

maneuver and its value is consistent for a minimum time solution.  From the 

transversality condition, the co-state related to mass has a terminal value equal to zero as 

shown in Figure 27. 
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Figure 26.   Hamiltonian Evolution 
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Figure 27.   Co-state (λm) Evolution 
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The condition derived from the HMC that the angle of thrust is opposite 

the velocity co-state is depicted in Figure 28.  During the maneuver, the angle maintains a 

value of 180 degrees as the thrust is “on” throughout.  And finally, the Switching 

Function as defined by the HMC should be negative if the constrained control, thrust, is 

at maximum which is true in this case.  Figure 29 shows that the switching function is 

indeed negative throughout the maneuver which is consistent with the thrust being at its 

maximum value throughout the maneuver. 
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Figure 28.   Primer Angle 
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Figure 29.   Switching Function 

3. Conclusion for Minimum Time Case 

The results show that the solution determined in the minimum time problem is 

optimal with respect to time.  The maneuver achieves the final boundary conditions well 

within the 48-hour time constraint for the TEI maneuvers for the moon to earth return 

mission, which informs that the auxiliary engines are capable for meeting the mission 

time requirements.  The next step is to determine the minimum fuel required that satisfies 

the mission time requirements and determine the feasibility of using the auxiliary engines 

subject to the fuel capacity constraints of the spacecraft. 
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B. THE MINIMUM FUEL, FIXED TERMINAL TIME PROBLEM 

1. Problem Formulation 

The auxiliary engine specifications as well as the initial and terminal boundary 

conditions remain the same as in the minimum time optimal control problem formulation.  

In this case, the problem is formulated as to minimize the fuel consumption over a fixed 

time horizon.  The time horizon is constrained to 48 hours and represents the allowable 

window for the Orion spacecraft to conduct the TEI burns for an expedited return to 

earth.  The goal was to find a feasible solution to the problem of conducting the return 

mission using solely the auxiliary engines.  Because of the rocket characteristics, the 

auxiliary engine uses more fuel for a given duration of burn than does the main engine.  

This solution, if found, was to show that the spacecraft would have enough fuel onboard 

to conduct the return mission.  Additionally, verification of the optimality of the solution 

is necessary. 
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Minimum Time Formulation 
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2. Results and Analysis 

Figures 30, 31, and 32 show the resulting control profiles for the minimum fuel 

problem.  The problem was initially started using 30 LGL nodes and then bootstrapping 

the solution to a final solution using 300 LGL nodes.  The goal was to balance 

computation time by limiting the number of nodes at the same time as achieving a 

smooth and viable control solution.  As the number of LGL nodes was increased for each 

iteration of the solution, the control angles were forced to zero whenever the thrust was 

zero.  This helped speed up the computation of the DIDO© results and was assumed that 

this would have no effect on the optimal solution since the control angles only influence 

the spacecraft trajectory whenever there is a thrust associated with them.  The thrust 
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profile is similar to the main engine trajectory solved by Yan et al. in that it contains three 

distinct TEI maneuvers, with the second burn having the characteristics of a singular arc. 
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Figure 30.   Thrust Control Structure 
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Figure 31.   Azimuth Control Angle 
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Figure 32.   Elevation Control Angle 
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The entire series of maneuvers are completed within the bounded time horizon 

and, as depicted in Figure 33, uses a total of 7,215.6 kg of fuel, less than the given fuel 

capacity of the spacecraft which is 8,063.65 kg. 
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Figure 33.   Fuel Consumption 

a. Feasibility of the Solution 

A feasibility analysis of the solution was conducted, similarly to the 

previous case, where the solution is propagated using the Matlab ode45 function.  The 

controls are interpolated over the propagated dynamics to see how well the discrete 

DIDO© solution maps to the integrated solution.  Figures 34 and 35 illustrate that the 

displacement and tangential velocities of the discrete solution follow the propagated state 

trajectories.  Some divergence exists towards the end of the trajectory due to numerical 

propagation errors.  The difference in the terminal condition of the propagated solution 

and the DIDO© solutions are 502.1 km in displacement and 0.10 km/sec in velocity.  The 

variation in final mass was approximately 0.1 kg.  While DIDO© finds a solution that 
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meets the given boundary conditions, a resolution to the validation and verification of the 

results need be conducted since the propagated solution does not meet the displacement 

error and velocity error requirements of 1 km and 1 m/s respectively.  These errors can be 

eliminated using the Bellman technique described in the minimum time problem.  

However, the initial analysis shows that since the propagated solution and discrete 

solutions are closely matched, the solution appears feasible. 
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Figure 34.   Displacement State Trajectory 
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Figure 35.   Velocity State Trajectory 

Again, like the analysis performed in the minimum time problem, the 

evolution of the osculating orbital elements was investigated.  In Figure 36, the semi-

major axis changes primarily due to the first and last TEI burns.  The first burn is an 

apoapsis raising maneuver and the final burn provides the kinetic energy required for the 

spacecraft to achieve escape velocity from the moon.  In a parabolic trajectory, the semi-

major axis is not defined, hence the singular spike in the figure.  Figure 37 shows that the 

eccentricity of the orbit increases to a value greater than one, which means that the 

spacecraft departs the moon’s orbit on a hyperbolic trajectory, requiring a transition 

through a parabolic trajectory where the eccentricity equals exactly one.  Figure 38 shows 

an inclination change of about 15 degrees corresponding to the second, singular arc 

maneuver.  The terminal values of the osculating orbital elements match those of the 

main engine TEI maneuver sequence (Yan et al., 2010).  It should be noted that in each of 

the TEI burns, a combination of inclination and eccentricity changes is found.  This 

appears to be the case since each of the maneuvers is finite in duration, rather than 
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impulsive.  This effect is amplified because of the lower thrust engine which requires a 

longer burn time to perform a given maneuver than one with higher thrust. 
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Figure 36.   Semi-major Axis With Respect to Moon Centered Frame 
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Figure 37.   Eccentricity With Respect to Moon Centered Frame 
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Figure 38.   Inclination With Respect to Moon Centered Frame 
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A final check to ascertain the feasibility of the solution is to compare the 

final fuel consumption to the results from several authors who solved the same minimum 

fuel earth return problem using the same initial and final boundary conditions, but used 

different engine characteristics.  In Yan et al., as previously described solve the problem 

using the main engine with a thrust of 33.6 kN and an Isp of 326 seconds.  Park et al. 

used a rocket engine with a thrust of 3 kN and an Isp of 326 seconds.  The results in 

Table 5 show the resulting fuel consumption of the present problem using only the 

auxiliary engines for the entire return mission compared to each of these cases.  The fuel 

consumption value of 7,215.6 kg should be close to the value reached by Park with 

similar engine characteristics and greater than the main engine which with a higher thrust 

can perform the maneuvers with shorter burn durations and greater fuel efficiency 

(greater Isp). 

 

Engine Configuration Isp (sec) LGL Nodes Fuel Consumed (kg) 

Auxiliary Engines (4.4 kN) 309 300 7,215.6 

Auxiliary Engines (3 kN) 326 160 7,245.1 

Main Engines (33.6 kN) 326 500 6,657.3 

Table 5.   Fuel Consumption Comparison 

b. Verification of the Optimality of the Solution 

Figures 39 and 40 show the Hamiltonian constant at a value of zero, and 

the transversality condition of the co-state related to mass equal to -1 at the terminal 

point. 
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Figure 39.   Hamiltonian Evolution 
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Figure 40.   Co-state (λm) Evolution 
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Figure 41 shows the evolution of the switching function over the entire 

maneuver sequence.  The switching function is negative for maximum thrust and positive 

for zero thrust, however at the singular arc the switching function also appears to be 

negative.  The singular arc is demonstrated to be optimal by examining the derivatives of 

the switching function up to the fourth derivative.  Figure 42 shows that the fourth 

derivative is equal to zero during the singular arc.  The generalized Legendre-Clebesch 

convexity condition during the singular arc burn is shown in Figure 43. Figure 44 is 

included solely to demonstrate that it is possible to have regions where the Legendre-

Clebesch condition is non-positive.  
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Figure 41.   Thrust and Switching Function 
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Figure 42.   Derivatives of the Switching Function During Singular Arc 
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Figure 43.   Generalized Legendre-Clebesch Condition During Singular Arc 
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Figure 44.   Generalized Legendre-Clebesch Condition Over Entire Trajectory 

Figures 45, 46, and 47 show in detail the features of the TEI burns; they 

show the thrust and control angles and also that for each burn, the primer angle between 

the thrust and the velocity co-vector is equal to 180 degrees as necessary to meet the 

Hamiltonian Minimization Condition.  With the exception of the sparse nature of the 

control trajectory of the second, singular TEI burn, the control solution appears smooth 

enough for a control solution.  From a practical control perspective, however, it is desired 

to increase the fidelity of the discrete solutions into a more continuous solution.   
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Figure 45.   First TEI Burn 
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Figure 46.   Second TEI Burn 
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Figure 47.   Third TEI Burn 

As pointed out in the feasibility analysis, the final displacement and 

velocity errors are due to the interpolation errors propagated over a long time horizon.  

Figures 48 and 49 show how the error between the DIDO© solution and the interpolated 

solution increases over the entire solution trajectory.  Using the Pseudospectral Bellman 

Technique used by Ross et al., and demonstrated in the minimum time problem, it is 

possible to minimize the errors caused by interpolation of the controls. 
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Figure 48.   Displacement Error 
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Figure 49.   Velocity Error 
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C. CONCLUSIONS FOR USE OF AUXILIARY ENGINES FOR RETURN 
MISSION 

The resulting optimal control trajectory shows that in the event of a total main 

engine failure, the auxiliary engines could be used for the entire return mission, meeting 

the 48-hour minimum time requirement to complete the third TEI maneuver.  

Additionally, the fuel optimal solution shows that 7,215.6 kg is the theoretical minimum 

required fuel to be carried onboard, not including any design margins.  This result then 

potentially reduces the total amount of fuel required, thus freeing up additional mass for 

other aspects of the spacecraft design. 
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VI. MAIN ENGINE SINGULAR ARC ANALYSIS 

The Yan et al. results for the minimum fuel solution for the earth return mission 

using the main engines, they found a singular arc as part of the control trajectory for the 

second TEI maneuver.  In their solution, the singular burn is made up of only three 

distinct, non-zero thrust points.  Since a high fidelity control solution is desired, it would 

be advantageous to have additional points from which to approximate a continuous 

solution.  As a secondary investigation, NASA is interested in determining the feasibility 

of using the auxiliary engines in place of the main engines for the singular arc TEI 

maneuver.  Therefore, the purpose of the singular arc study is to: 

 

(1) Generate a higher fidelity control solution from the existing singular arc 

data generated by Yan et al. 

(2) Determine the feasibility of using the auxiliary engines for the singular arc 

and ascertain the fuel penalty if any 

(3) Verify and validate the necessary conditions for optimality for any feasible 

solution(s) generated 

 

The separation between the nodes from the original main engine solution is due 

primarily to its location along the entire trajectory solution.  The output data points from 

DIDO© are non-uniformly spaced, being more dense at the beginning and end of the 

trajectory and sparse in the middle.  The singular arc was in the sparse region of the 

original solution covering a time span of approximately 29 minutes.  The data points 

around the singular arc were spaced approximately 7 minutes apart as compared to the 

points around the final TEI burn had a spacing range of approximately 0.4 to 0.8 minutes 

between them.  The approach therefore was to examine the singular arc by fixing 

boundary conditions close to and around the start and completion of the maneuver.  Since 

the goal is to increase the number of discrete points for a solution with higher resolution, 
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the problem uses a small number of LGL nodes to compute a solution and then using the 

bootstrap technique to increase the nodes until the control trajectories converge in a 

smooth fashion. 

Recalling that the Bellman Principle of Optimality states that along a given 

optimal trajectory, a segment starting from some intermediate point on that trajectory and 

ending at the original termination point will also be optimal.  It says nothing about an 

intermediate segment.  Suppose there are two points,C and D , forming a segment along 

the same optimal trajectory.  Even though the original optimal trajectory can pass through 

these points, it does not mean that the original path on AB  between them is optimal on 

the path betweenC and D .  There exists an optimal path CD that may not lie on AB as 

shown in Figure 50.  If the minimized cost along AB is 0J , and the sum of the segments 

on AB is 0 1 2 3J J J J   , then the cost of an optimal trajectory CD not on AB must be 

2 2J J  .  Put another way, 1 2 3 1 2 3J J J J J J     . 

 

 

Figure 50.   Bellman Curve and Segment 
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The singular arc generated from the Yan et al. solution can be said to lie on a 

segment of a fuel-optimal trajectory.  In order to maintain the same cost along that 

segment, so that from the example above, 2 2J J  , then the dashed line trajectory must lie 

on the solid line CD .  This implies that the segment has fixed state and time horizon 

boundaries and the control and state trajectories will lie on the original trajectory.  In the 

problem formulation in DIDO© this poses a difficulty since to solve an optimal control 

problem, one needs to determine the cost to be minimized.  If both mass (part of the state) 

and time are fixed boundary conditions, then there is no cost to minimize.  Therefore, the 

problem was formulated to minimize the final fuel cost, fixing the initial boundary 

condition at some 0 0 0 0 0 0 0
0 , , , , , , ,x y zx x y z v v v m   


 
and the final boundary condition at 

some
 

, , , , ,f f f f f f
f x y zx x y z v v v   


 
such that the initial and final states are relatively 

close to the initiation and termination of the maneuver.  This problem is solved with the 

knowledge that an optimal solution can be found on the segment, but that the cost can be 

no less than the segment on the original optimal path. 

A total of six experiments were run, using three different sets of boundary 

conditions each associated with a different time horizon around the original singular arc 

(TH1, TH2, and TH3).  For each specified time horizon, DIDO© was supplied with two 

initial guesses to choose from:  (1) the original, coarse solution bound by the time 

horizon, and (2) a two-point guess using only the initial and final nodes of the original 

primal solution bounded by the time horizon.  Figure 51 shows the thrust profile for the 

singular arc in the original main engine solution and the three time horizons examined. 
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Figure 51.   Three Time Horizons Around Original Main Engine Singular Arc 

The spacecraft main engine characteristics (Scarritt et al., 2009) and fixed initial 

and terminal conditions are as follows: 

 Main Engine Thrust:  33,631.6621 N 

 Main Engine Isp:  326 sec 

 Initial and terminal boundary conditions for TH1  
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 Initial and terminal boundary conditions for TH2  
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 Initial and terminal boundary conditions for TH3  
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Theoretically, the initial mass for each of time horizon should be the same, since 

from the original solution the thruster is not firing, thus not burning fuel at the first three 

nodes of TH3.  The differences come from the sensitivity of the scaled mass values.  The 

scaled initial mass value for TH3 starts to differ at the fourth significant digit and results 

in a difference of about 1.6 kg. 

 TH1 and TH2 Initial Mass = 0.825953636218675 

 TH3 Initial Mass = 0.825875239089155 
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A. PROBLEM FORMULATION 

The problem formulations for each time horizon are identical, with only the initial 

and terminal boundary conditions changed for each case.  For each case, two different 

initial guesses were provided, which in each case influenced the final solution. 

Minimum Time Formulation 
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B. TH1 RESULTS 

Solving this problem using the TH1 boundary conditions and supplying two 

different initial guesses to DIDO© results in two different solutions, each satisfying the 

necessary conditions for optimality.  The solutions are each solved up to 80 LGL points 

each.  Comparing the two cases, the control and state trajectories differ between the fixed 

boundary conditions, however both use the same amount of fuel.  Figures 52, 53, and 54 
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show the resulting control trajectories compared to the initial guess trajectory provided.  

Note that the coarse guess is the same trajectory given by the original problem using the 

main engine.  Also, the differences in the fuel consumed are negligible as shown in 

Table 6.  The solutions for each of the time horizons are compared against the original 

coarse solution for the corresponding time horizon.  The fuel consumed for each region 

has differences due to numerical variations of the scaled mass in the original coarse 

solution, therefore the fuel consumed in each of the regions appear to have different 

values.  In scaled units the differences are small between the time horizons. 

 

 Fuel Consumed (kg) Variation 

Original Coarse Solution 1,360.2 — 

Using Coarse Guess 1,361.0 0.0006 % 

Using 2-point Guess 1,361.2 0.0007 % 

Table 6.   TH1 Fuel Consumption 
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Figure 52.   Thrust Trajectories for TH1 
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Figure 53.   Azimuth Angle Trajectories for TH1 
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Figure 54.   Elevation Angle Trajectories for TH1 
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Of note is the aliasing that occurs when the initial coarse solution is used as an 

initial guess (Ross, I.M., Gong, Q., and Sehkavat, P., 2007).  The higher fidelity solution 

follows closely with the original solution.  Similarly, the state trajectories are also closely 

aliased when given the original solution.  Using the two-point guess, the state and control 

trajectories deviate from the original solution; however, the final minimized cost is the 

same.  Therefore, both of these solutions appear feasible and as described below they 

both meet the necessary conditions for optimality. 

Figures 55, 56, and 57 show that the Hamiltonian is constant, the end point 

transversality condition is met, and the primer angle is equal to 180 degrees and thus, the 

Hamiltonian Minimization Conditions are met.  Additionally, both solutions meet the 

necessary conditions for optimality for singular arcs and the Legendre-Clebesch 

condition as shown in Figures 58–63. 

38.1 38.15 38.2 38.25 38.3 38.35 38.4 38.45 38.5
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Time (hrs)

H
am

ilt
on

ia
n 

V
al

ue

 

 
Coarse Guess
2-pt Guess

 

Figure 55.   Hamiltonian Evolution (TH1) 
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Figure 56.   End-point Transversality Condition (TH1) 
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Figure 57.   Primer Angle (TH1) 
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Figure 58.   Switching Function For Coarse Guess Solution 
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Figure 59.   Switching Function for 2-Point Guess Solution 



 88

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (hrs)

F
 &

 d
4
S

/d
t4

 (
sc

al
ed

)

 

 

Thrust (F)

d4S/dt4

 

Figure 60.   Fourth Time Derivative of Switching Function for Coarse Guess Solution 
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Figure 61.   Fourth Time Derivative of Switching Function for 2-Point Guess Solution 
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Figure 62.   Generalized Legendre-Clebesch Condition for Coarse Guess Solution 
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Figure 63.   Generalized Legendre-Clebesch Condition for 2-Point Guess Solution 
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Examination of the state vector trajectories shows that each of the two cases for 

the TH1 bounds start and complete the maneuver at the specified state boundary 

conditions.  While the final mass was not posed as a constraint on the problem, the 

resulting final mass is the same as in the original main engine problem within very tight 

tolerances.  In Figures 64 and 65, the position and velocity state vector trajectories for the 

TH1 singular arc problem are shown and are described below.  The position, or 

displacement, state trajectories differ slightly, however the velocity state trajectories are 

more varied due to the immediate relationship between thrust and change in velocity. 
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Figure 64.   Displacement State ( r


) Trajectories for TH1 
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Figure 65.   Velocity State ( v


) Trajectories For TH1 

The overall change in mass is the same for the two feasible solutions as shown in 

Figure 66.  The mass state trajectory is clearly related to the shorter duration, but higher 

magnitude of thrust in the 2-point guess solution as compared to the solution from the 

coarse guess. 
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Figure 66.   Fuel Consumption for TH1 

C. TH2 RESULTS 

The same analysis conducted for the TH1 solutions was performed for TH2 and 

TH3.  The Hamiltonian Minimization Conditions for optimality were met, as well as the 

additional conditions for singular arcs.  Each case resulted in different feasible solutions 

for the controls, with the state variable trajectories satisfying the fixed boundary 

conditions.  And while the state trajectories vary slightly between the cases, the fuel 

consumption is the same between the original coarse solution and the optimal solutions.  

These results further indicate the range of possibilities for conducting the singular arc 

maneuver. 

In TH1, the maximum thrust exceeded the maximum thrust of the auxiliary 

engines; however the resulting control trajectories for TH2 and TH3 achieved maximum 

thrust less than the auxiliary engines (4.4 kN).  This gives some indication that the 
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auxiliary engines can indeed be used for the singular burn maneuver; however the fuel 

consumption will necessarily be greater due to the lower rocket specific impulse as 

compared to the main engines. 

Figures 67, 68, and 69 show the control trajectories for TH2.  The maximum 

thrust for both solutions is about the same, around 4 kN.  The control angles during the 

burn are identical to the angles arrived at in the TH1 solutions.  They are also found to be 

equal in the TH3 solutions as well.  Clearly, a rocket engine with maximum thrust of 4.4 

kN would be able to execute these maneuvers.  The difference will be in fuel 

consumption alone. 
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Figure 67.   Thrust Trajectories for TH2 
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Figure 68.   Azimuth Angle Trajectories for TH2 
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Figure 69.   Elevation Angle Trajectories for TH2 
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Neither of the state trajectories have the same aliasing that was seen in TH1, 

however the two solutions, using different initial starting guesses, are very similar as seen 

by the control trajectories above and the state trajectories shown in Figures 70, 71 and 72. 
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Figure 70.   Displacement State ( r


) Trajectories for TH2 
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Figure 71.   Velocity State ( v


) Trajectories for TH2 
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Figure 72.   Fuel Consumption for TH2 
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The fuel consumption for TH2 is listed in Table 7 and the differences are again 

negligible as compared to the original coarse solution within the specific time horizon. 

 

 Fuel Consumed (kg) Variation 

Original Coarse Solution 1,339.7 -- 

Using Coarse Guess 1,339.1 0.0007 % 

Using 2-point Guess 1,339.2 0.0004 % 

Table 7.   TH2 Fuel Consumption 

D. TH3 RESULTS 

By expanding the time horizon to TH3, the control trajectories begin to deviate 

from the original solution.  These solutions also meet the optimality conditions for 

singular arcs and are also feasible solutions.  In both solutions arrived at from different 

initial guesses, the maximum thrust is again less than 4.4 kN indicating that this particular 

control profile could be used with the auxiliary engines.  The solution from the 2-point 

guess is interesting in that the thrust profile is starting to appear as a bang-bang 

maneuver, however in this situation remains a singular arc solution.  In general, these 

solutions are not as “clean” from a control perspective because neither solution has a zero 

to zero thrust trajectory.  In both cases there is a non-zero initial thrust as seen in Figure 

73.  In Figures 74 and 75 the control angles are approximately the same for both initial 

guesses even though the coarse gain has a single burn while the 2-point guess solution 

has a two burn solution. 
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Figure 73.   Thrust Trajectories for TH3 
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Figure 74.   Azimuth Angle Trajectories for TH3 
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Figure 75.   Elevation Angle Trajectories for TH3 

The state trajectories as shown in Figures 76, 77, and 78 illustrate a more extreme 

example of varying state trajectories with the minimized cost of fuel being equal, 

emphasizing the result that multiple local minimal solutions exist around the singular arc.  

Table 8 shows the negligible difference in fuel from the original coarse solution for the 

given time horizon. 
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Figure 76.   Displacement State Trajectories (TH3) 
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Figure 77.   Velocity Trajectories (TH3) 
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Figure 78.   Fuel Consumption (TH3) 

 

 Fuel Consumed (kg) Variation 

Original Coarse Solution 1,345.8 -- 

Using Coarse Guess 1,346.3 0.0007 % 

Using 2-point Guess 1,346.7 0.0004 % 

Table 8.   Fuel Consumption for TH3  

E. FEASIBILITY OF USING AUXILIARY ENGINES FOR SINGULAR ARC 
MANEUVER 

In the analysis of the singular arc using the main engine, it was found that for the 

TH2 and TH3 time horizons, it appeared feasible to use the auxiliary engines in place of 

the main engines to conduct the singular arc maneuver.  However, the TH1 solutions 
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using the main engine resulted in thrust profiles that exceeded the capacity of the 

auxiliary engines.  It was expected that the lower Isp would result in a higher fuel 

consumption as compared to the main engine, given the same magnitude of thrust.  The 

same six simulations as examined in the previous section were performed using the same 

optimal control problem formulation, but using the thrust and Isp parameters for the 

auxiliary engines. 

As expected, the control profiles around TH2 and TH3 using the auxiliary engines 

were identical to those found using the main engines.  The TH1 solution for the auxiliary 

engines however, was constrained in maximum thrust and resulted in a different, yet 

feasible control structure.  Figure 79 shows the different thrust profiles attained in the 

TH1 time horizon using the same initial primal guess from the main engine singular arc.  

In this case, the two different initial guesses resulted in very similar control profiles. 
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Figure 79.   Auxiliary Engine Thrust Profile (TH1) 
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In all three time horizons, using the auxiliary engines resulted in an increase in 

fuel consumption as shown in Table 9.  The results show that for a relatively small 

increase of fuel, the singular arc maneuver can be conducted using the auxiliary engines.  

In order to solve for the total trajectory fuel consumption where the main engines are 

used for the first and third TEI burn and the auxiliary engine is used for the singular arc 

maneuver, another step using the minimum fuel problem formulation needs to be 

conducted between the boundary conditions of the singular arc time horizon and the 

original boundary conditions provided to solve the full moon-to-earth trajectory problem. 

 

 Main Engine 

(33.1 kN) 

Aux Engine 

(4.4 kN) 

Singular Arc on Full Trajectory (Yan et al., 2010) 1,333.6 kg --- 

TH1 1,361.0 kg 1,432.6 kg 

TH2 1,339.1 kg 1,409.6 kg 

TH3 1,346.3 kg 1,417.1 kg 

Table 9.   Fuel Consumption Comparison Between Main Engine and Auxiliary Engines 
Over Singular Arc 

F. CONCLUSIONS 

The reason that multiple feasible and optimal solutions appear is because of the 

existence of the singular arc.  Recalling that the switching function equals zero for a 

singular arc, it is clear that the resulting magnitude of thrust can lie between the minimum 

and maximum thrust.  If the initial and final boundary conditions are established at 

varying positions in time before and after the singular arc, it is possible to generate 

different control solutions and thus, different state trajectories that are also optimal 

solutions.  This gives rise to the possibility of multiple feasible solutions between two 

given boundary conditions with a singular arc between them.  From an engineering point 

of view, this offers greater flexibility in designing a solution that closer resembles the 
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imposed physical constraints on the available controllers.  The difficulty though, is in 

finding a fuel optimal solution that meets the given constraints and requirements from a 

possible myriad of solutions.  For example, while some modern rocket engines may have 

the ability to throttle, many typical rockets are forced to apply a bang-bang type control.  

In seeking for a bang-bang solution to perform the same maneuver as the singular arc, 

additional constraints will have to be imposed, thus changing the problem formulation.  It 

is possible to use pseudo-spectral tools such as DIDO© to find a range of optimal bang-

bang solutions, however it is likely that the fuel cost will be greater. 

The singular arc maneuver results in a slight change in the orbits eccentricity 

(semi-major axis); however it appears that the maneuver is used primarily to change the 

orbit plane (inclination).  Further study of orbit maneuvers may show that singular arcs 

will appear in fuel optimal orbit transfers whenever an inclination change occurs, 

assuming that the rocket thrust is allowed the full range from null to maximum.  To 

further examine the nature of fuel-optimal plane change maneuvers, it would be prudent 

to examine pure plane change maneuvers as well as combined plane change and apogee 

raising (or lowering) maneuvers using similar n-body dynamics equations as used here. 
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APPENDIX A. SINGULAR ARC NECESSARY CONDITIONS 

From Park et al., 2010: 
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Legendre-Clebesch Condition (convexity) 
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APPENDIX B. END-POINT TRANSVERSALITY CONDITION 

The transversality condition states: 

           , where , T
f f f f

f

E
t E x t E x t e x t

x
  

  


 

The variable, , represents the Lagrange multiplier vector associated with the end-

point state condition,   fe x t .  The end-point cost is   fE x t .  The given end-point 

boundary condition is defined as , , , , ,f f f f f f f
x y zx x y z v v v    .  As can be seen in each 

of the problems, the only additional information yielded is   m ft . 
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Minimum Time Problem End-point Transversality Condition 
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