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Abstract—The problem of hypothesis testing against indepen-
dence for a Gauss-Markov random field (GMRF) is analyzed.
Assuming an acyclic dependency graph, an expression for the
log-likelihood ratio of detection is derived. Assuming random
placement of nodes over a large region according to the Poisson
or uniform distribution and nearest-neighbor dependency graph,
the error exponent of the Neyman-Pearson detector is derived
using large-deviations theory. The error exponent is expressed as
a dependency-graph functional and the limit is evaluated through
a special law of large numbers for stabilizing graph functionals.
The exponent is analyzed for different values of the variance
ratio and correlation. It is found that a more correlated GMRF
has a higher exponent at low values of the variance ratio whereas
the situation is reversed at high values of the variance ratio.

Index Terms—Detection and Estimation, Error exponent, Gauss-
Markov random fields, Law of large numbers.

I. INTRODUCTION

FOr distributed detection, the so-called conditionally IID

assumption is mathematically convenient and is widely

assumed in the literature. The assumption states that condi-

tioned on a particular hypothesis, the observations at sen-

sors are independent and identically distributed. In practice,

however, spatially distributed sensors often observe correlated

data, since natural spatial signals have stochastic dependence.

Examples of correlated signals include measurements from

temperature and humidity sensors, or from magnetometric

sensors tracking a moving vehicle. Audio data is also rich

in spatial correlations, due to the presence of echoes.

Spatial random signals are typically acausal in contrast

to temporal signals. In the literature, the two are usually

distinguished by referring to acausal signals as random fields

(RF) and causal signals as random processes (RP). Random

fields are of interest in a variety of engineering areas and

may represent natural phenomena such as the dispersion of

atmospheric pollutants, groundwater flow, rainfall distribution

or the mesoscale circulation of ocean fields [2].

In this paper, we consider the problem of hypothesis testing

for independence, shown in Fig.1. Specifically, under the
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(a) H1: Gauss-Markov random field

with nearest-neighbor dependency.

(b) H0 : Independent observations.

Fig. 1. Illustration of the hypothesis-testing problem.

alternative hypothesis, sensors collect samples from a Gauss-

Markov random field (GMRF), whereas the samples are in-

dependent under the null hypothesis. We model the GMRF

through a graphical approach, in which a dependency graph

(DG) specifies the stochastic dependence between different

sensor observations. This dependency graph can have different

degrees of sparsity and can even be fully connected. However

typically, spatial interactions are based on proximity, where

the edges are included according to some specified rule based

on the local point configuration [3], [4]. With a regular lattice

structure (e.g., in image processing, Ising model), a fixed set

of neighbors can be specified in a straight-forward manner

[5]. However, the situation is more complicated for arbitrarily

placed nodes. In this paper, we consider the nearest-neighbor

graph (NNG), which is the simplest proximity graph. The

nearest-neighbor relation has been used in several areas of

applied science, including the social sciences, geography and

ecology, where proximity data is often important [6], [7].

We consider the Neyman-Pearson (NP) formulation, where

the detector is optimal at a fixed false-alarm probability. But,

under this formulation, analysis of performance metrics such

as error probability is intractable for an arbitrary number of

observations. Hence, we focus on the large-network scenario,

where the number of observations goes to infinity. For any pos-

itive fixed level of false alarm or the type-I error probability,

when the mis-detection or the type-II error probability PM (n)
of the NP detector decays exponentially with the sample size

n, we have the error exponent defined by

D:= − lim
n→∞

1

n
log PM (n). (1)

The error exponent is an important performance measure since

a large exponent implies faster decay of error probability with

increasing sample size.
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Additionally, we assume that the sensors observing the sig-

nal field are placed i.i.d. according to the uniform or Poisson

distribution. Since nodes are placed irregularly, it results in a

non-stationary GMRF (for the definition of stationary GMRF,

see [8, P. 57]). We assume that the number of nodes goes

to infinity, by way of the coverage area of the nodes going

to infinity, while keeping the node density fixed. Under this

formulation, we derive the detection error exponent, assuming

access to all the observations.

A. Related Work and Contributions

The kind of hypothesis testing we consider is called testing

for independence. In [9], [10], problems of this kind are

considered with rate constraints on the channels and for two

sources, using a large number of samples at each source. In this

paper, we assume that there are no constraints on the channel

and that the observations have the correlation structure of the

GMRF. Our formulation is different since there is a single

observation at every sensor, and the number of sensors goes

to infinity.

GMRF is also known as conditional auto-regression (CAR)

in the seminal work of Besag [11], [12]. They have a wide ar-

ray of applications in fields such as speech recognition, natural

language processing, coding, geo-statistics, image analysis and

AI. The literature is too vast to mention here. For an exposition

on GMRF, see [8], [13].

Another related problem is the detection of Gauss-Markov

random processes (GMRP) in Gaussian noise, which is a

classical problem [14]. There is an extensive literature on

the large-deviations approach to the analysis of detection

of GMRP [15]–[25], but closed-form expressions have been

derived only for some special cases, e.g., [26]–[28]. GMRP

has been characterized via inversion algorithms for block-

banded matrices [29], [30]. However, these approaches are not

amenable to the extension of the problem to planar and higher

dimensional spaces, since they deal with random processes

rather than random fields, or to the random placement of

nodes.

Related to the GMRF, there is an alternative and more

restrictive approach, known as the spatial auto-regressive

model (SAR) and has been extensively studied in the field

of spatial data-mining. In [7], this formulation is considered

with (directed) nearest-neighbor interaction and a closed-form

ML estimator of the AR spatial parameter is characterized. We

do not consider this formulation in this paper.

To our knowledge, large-deviation analysis of the detection

of acausal non-stationary GMRF has not been treated before.

We first express the likelihood function of a GMRF with an

arbitrary acyclic dependency graph, in terms of its covariance

matrix. The joint distribution can also be derived by expressing

it in terms of the marginal probability of the nodes and the

joint probability at the edges of the dependency graph [31],

[32].

We consider the detection problem represented in Fig.1,

under the additional assumptions of nearest-neighbor depen-

dency. We consider the location of the sensors as a random

point set drawn from uniform or Poisson distribution and

defined on expanding regions. This framework allows us to

exploit recent advances in computational geometry [33], [34].

By casting the error exponent as a limit of the sum of graph

functionals, we are able to apply the special law of large

numbers (LLN) for functionals on graphs derived in [33].

We obtain the final form of the exponent by exploiting some

special properties of the NNG. We then numerically evaluate

the exponent for different values of the variance ratio and

correlation, for exponential and constant correlation functions.

We conclude that at a fixed node density, a more correlated

GMRF has a higher exponent at low values of variance ratio,

whereas the opposite is true at high values of variance ratio.

B. Notation and Organization

Vectors and matrices are written in boldface. Random

variables are in capital letters, random processes and random

fields in boldface capitals and sets in calligraphic font. For

the matrix A = [A(i, j)], A(i, j) denotes the element in the

ith row and j th column and |A| its determinant. For sets A and

B, let A\B = {i : i ∈ A, i /∈ B} and let | · | denote cardinality.

An undirected graph G is a tuple G = (V, E) where V =
{1, 2, . . . , n} is the vertex1 set and E = {(i, j), i, j ∈ V, i 6=
j} is the edge set. When i and j have an edge between them,

i and j are neighbors denoted by i ∼ j (otherwise it is i ≁ j).

For a directed graph, we denote the edges by E = {< i, j >
, i, j ∈ V, i 6= j}, where the direction of the edge is from i
to j. The neighborhood function of a node i is the set of all

other nodes having an edge with it, i.e.,

N (i) = {j ∈ V : j 6= i, (i, j) ∈ E}. (2)

The number of neighbors of a node i is called its degree,

denoted by Deg(i). A node with a single edge i.e., its degree

is 1 is known as a leaf and the corresponding edge as a leaf

edge, otherwise it is known as an internal or interior edge. Let

dist(i, j) be the Euclidean distance between any two nodes.

Let Rij denote the (random) Euclidean edge-length of (i, j)
in graph G = (V, E),

Rij = dist(i, j), ∀ (i, j) ∈ E . (3)

Our paper is organized as follows. We provide a description

of the GMRF in section II, focusing on the acyclic dependency

graph in section III and providing an expression for the

likelihood function in section III-A. We define the hypothesis-

testing problem in section IV and specify additional assump-

tion on the covariance matrix of the GMRF in section IV-A.

In section IV-B, we assume additionally that the dependency

graph is the nearest-neighbor graph. We provide an expression

for the log-likelihood ratio in section IV-C. We define the error

exponent under the Neyman-Pearson formulation in section V

and specify the random placement of nodes in section V-A. In

section VI we evaluate the error exponent, expressing it as a

graph functional in section VI-A, applying the LLN for graphs

in section VI-B, and providing an explicit form for NNG in

section VI-C. We provide numerical results for the exponent

in section VI-D, and section VII concludes the paper.

1We consider the terms node, vertex and sensor interchangeable.
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Fig. 2. Dependency graph and potential matrix of a GMRF.

II. GAUSS-MARKOV RANDOM FIELD

A GMRF, in addition to being a Gaussian random field,

satisfies special conditional independence properties. A simple

example is the first-order auto-regressive process, where the

conditional independence of the observations is based on

causality. However, a spatial random field has a far richer

set of conditional independencies, requiring a more general

definition [8, P. 21].

Definition 1 (GMRF): Given a point set V = {1, . . . , n},

YV = {Yi : i ∈ V} is a GMRF with an (undirected)

dependency graph G(V, E) if YV is a Gaussian random field,

and ∀i, j ∈ V , Yi and Yj are conditionally independent given

observations at all other nodes if i and j are not neighbors,

i.e.,

Yi ⊥ Yj |Y−ij ⇐⇒ i ≁ j, ∀i, j ∈ V, i 6= j, (4)

where ⊥ denotes conditional independence and Y−ij :=(Yk :
k ∈ V, k 6= i, j).

A common approach to formulating a GMRF is to specify

the dependency graph through a neighborhood rule and then

to specify the correlation function between these neighbors.

Thus, in a GMRF, local characteristics completely determine

the joint distribution of the Gaussian field.

The following Markov properties are equivalent in a GMRF:

1) pairwise-Markov property

Yi ⊥ Yj |Y−ij ⇐⇒ (i, j) /∈ E . (5)

2) local-Markov property

Yi ⊥ Y−(i,N (i))|YN (i), (6)

3) global-Markov property

YA ⊥ YB|YC , (7)

for disjoint sets A, B, and C, with A and B non-empty,

where the set C separates A and B i.e., on removing the

nodes in C from the graph, nodes in A are no longer

connected to the nodes in B.

Thus, in (6), the local-Markov property states that the condi-

tional distribution at a node in the DG given the observations at

its neighbors is independent of the rest of the network. By the

global-Markov property in (7), all the connected components

of a dependency graph are independent. As an illustration, in

Fig.2 we have Y6 ⊥ Y7 given the rest of network, Y1 ⊥ Y2|Y3,

and so on.

III. ACYCLIC DEPENDENCY GRAPH

A special case of the dependency graph is an acyclic

or a cycle-free graph. Here, the neighbors of a node are

not themselves neighbors. The joint distribution is somewhat

easier to evaluate in this case. We note that an acyclic graph

with at least one edge, always has a leaf i.e., it has a node

with degree 1 and has utmost n− 1 edges in a n-node graph.

The covariance matrix Σ of a GMRF satisfies some special

properties. For instance, consider the cross covariance between

the neighbors of a node, i.e., nodes that are two hops away

in an acyclic DG. By the global-Markov property we have2,

assuming Σ(i, i) > 0, for i ∈ V, Deg(i) ≥ 2, j, k ∈ N (i), j 6=
k,

Σ(j, k) =
Σ(i, j)Σ(i, k)

Σ(i, i)
. (8)

For example, in Fig.2,

Σ(1, 2) =
Σ(1, 3)Σ(2, 3)

Σ(3, 3)
. (9)

We can similarly find an expression for the covariance between

any two nodes of the GMRF. Thus, the covariance matrix of

a GMRF with acyclic dependency can be expressed solely

in terms of the auto covariance of the nodes and the cross

covariance between the neighbors of the dependency graph.

A. Potential Matrix

The inverse of the covariance matrix of a non-degenerate

GMRF (i.e., with a positive-definite covariance matrix) is

known as the potential matrix or the precision matrix or the

information matrix. The non-zero elements of the potential

matrix A are in one to one correspondence with the edges of

its graph G(V, E) [8, Theorem 2.2] in the sense that

i ≁ j ⇐⇒ A(i, j) = 0, ∀i, j ∈ V, i 6= j, (10)

and is illustrated in Fig.2.

This simple correspondence between the conditional inde-

pendence of the GMRF and the zero structure of its potential

matrix is not evident in the covariance matrix, which is

generally a completely dense matrix. Therefore, it is easier

to evaluate the joint distribution of the GMRF through the po-

tential matrix. In practice, however, estimates of the covariance

matrix are easier to obtain through the empirical observations.

Therefore, it is desirable to have the joint distribution in terms

of coefficients of the covariance matrix. Thus, an explicit

expression between the coefficients of the covariance and the

potential matrix is needed. We provide such an expression

and also obtain the determinant of the potential matrix in the

theorem below.

2For X, Y jointly zero mean Gaussian, E(X|y) = ΣxyΣ
−1
yy y.
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Theorem 1 (Elements & Determinant of Potential Matrix):

The elements of the potential matrix A:=Σ
−1, for a positive-

definite covariance matrix Σ and acyclic dependency graph

G(V, E), are

A(i, i) =
1

Σ(i, i)

(

1 +
∑

j∈N (i)

Σ(i, j)2

Σ(i, i)Σ(j, j) − Σ(i, j)2

)

,

A(i, j) =







−Σ(i, j)

Σ(i, i)Σ(j, j) − Σ(i, j)2
if i ∼ j,

0 o.w.

(11)

The determinant of the potential matrix of A is given by

|A| =
1

|Σ| =

∏

i∈V Σ(i, i)Deg(i)−1

∏

i∼j
i<j

[Σ(i, i)Σ(j, j) − Σ(i, j)2]
. (12)

Proof: The proof is based on acyclicity of dependency

graph. See Appendix A. 2

IV. HYPOTHESIS-TESTING PROBLEM

Let V = {1, . . . , n} be a set of n nodes on the plane and let

Yn be the random vector of observation samples Yi, i ∈ V ,

Yn:=[Y1, . . . , Yn]T . (13)

The hypothesis-testing problem is as follows (also see Fig.1),

H0 : Yn ∼ N (0, σ2
0I) vs. H1 : Yn ∼ N (0,Σ1,V), (14)

where Σ1,V is a positive-definite covariance matrix under the

alternative hypothesis and is dependent on the configuration

of nodes in V and σ2
0 > 0 is the uniform variance under the

null hypothesis.

The optimal decision-rule under both NP and Bayesian

formulations is a threshold test based on the log-likelihood

ratio (LLR). Let p[Yn|V;Hj ] be the conditional PDF of the

observations given the point set V under hypothesis j. The

LLR given by

LLR(Yn,V) := log
p[Yn,V;H0]

p[Yn,V;H1]
= log

p[Yn;H0]

p[Yn|V;H1]
, (15)

=
1

2

(

log
|Σ1,V |
|σ2

0I|
+ Y

T
n [Σ−1

1,V − (σ2
0I)

−1]Yn

)

,

where in (15), we have used the fact that the sensor observa-

tions are independent of V under H0.

A. Covariance Matrix of GMRF

We make additional assumption on the structure of the

covariance matrix Σ1,V of the GMRF under H1 viz., that

the nodes have the same measurement variance for any node

configuration V , i.e.,

Σ1,V(i, i):=σ2
1 > 0, i = 1, . . . , n. (16)

We denote the ratio between the variances under the alternative

and the null hypothesis at each node by

K:=
σ2

1

σ2
0

. (17)

We also assume that under H1, the amount of correlation

between the neighbors i, j of the dependency graph is specified

by an arbitrary function g, which has the Euclidean edge length

Rij as its argument. From (16), we have

g(Rij):=
Σ1,V(i, j)

σ2
1

< 1, ∀ (i, j) ∈ E . (18)

The correlation function g is required to satisfy some regularity

conditions, which will be stated in Lemma 2. In general, g is

a monotonically non-increasing function of the edge length,

since amount of correlation usually decays as nodes become

farther apart. Moreover, g(0) = M < 1, or the so-called

nugget effect, according to geo-statistics literature [35], [36].

It has been observed in mining applications, where the micro-

scale variation is assumed to be caused by the existence of

small nuggets of the enriched ore. Many other ecological

phenomena such as soil bacteria population [37], aquatic

population [38] etc. also exhibit this behavior. Note that the

presence of nugget effect has the same effect on correlation as

imposing an exclusion region on how near two nodes can be

placed. However, for such an exclusion constraint to hold, we

need more complicated node placement distributions than the

uniform or Poisson assumption. Although such distributions

can be handled in principle, they are not analytically tractable.

Some examples of the correlation function are

g(R) = Me−aR, g(R) =
M

1 + Ra
, a ≥ 0, 0 ≤ M < 1.

Note that these conditions together with an acyclic dependency

graph G assure that the covariance matrix Σ1,V is positive

definite. This is because ∀ i, j ∈ V ,

Σ1,V(i, i)Σ1,V(j, j)−Σ2
1,V(i, j) = σ4

1 [1−
∏

(k,l)∈path(i,j)

g2(Rkl)] > 0,

where path(i, j) is the unique edge-path between i and j in

graph G if it exists. From Theorem 1, we have |Σ| > 0.

B. Nearest-Neighbor Graph

We assume the dependency graph to be the nearest-neighbor

graph. The nearest-neighbor function of a node i ∈ V , is

defined as,

nn(i):= arg min
j∈V,j 6=i

dist(i, j), (19)

where dist(·, ·) is the Euclidean distance. The inter-point

distances are unique with probability 1, for uniform and

Poisson point sets under consideration here. Therefore, nn(i)
is a well-defined function almost surely. The nearest-neighbor

(undirected) graph G(V, E) is given by

(i, j) ∈ E ⇐⇒ i = nn(j) or j = nn(i). (20)
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Fig. 3. Directed & undirected versions of nearest-neighbor graph.
[ No. of undirected edges = No. of directed edges - 0.5× No. of
biroots.]

NNG has a number of important properties. It is acyclic with

a maximum3 node degree of 6 [40].

In section VI-C, it turns out that we need to analyze the

directed NNG, in order to obtain the final form of the error

exponent. We now mention some of its special properties. The

directed NNG G′(V, E ′) is defined by

E ′ = {< i, nn(i) >, i ∈ V}, (21)

For a directed NNG with at least two nodes, each connected

component contains exactly one 2-cycle. This is known as

the biroot of the component [40]. See Fig.3. Also note, the

directed NNG counts the edges from these biroots twice, while

the undirected version counts only once.

C. Expression for Log-Likelihood Ratio

Since the NNG is acyclic, equations (11-12) are valid. We

incorporate additional assumptions (16-18) in the theorem to

obtain the LLR for detection.

Theorem 2 (Log-Likelihood Ratio): Under the assumptions

(16-18), the log-likelihood ratio in (15) for the hypothesis-

testing problem in (14), given an arbitrary point set V =
{1, . . . , n}, is

LLR(Yn,V) = n log
σ1

σ0
+

1

2

[

∑

i∈V

( 1

σ2
1

− 1

σ2
0

)

Y 2
i

+
∑

(i,j)∈E
i<j

{

log[1 − g2(Rij)]

+
g2(Rij)

1 − g2(Rij)

Y 2
i + Y 2

j

σ2
1

− 2g(Rij)

1 − g2(Rij)

YiYj

σ2
1

}

]

, (22)

where Rij is the Euclidean edge length of (i, j) ∈ E , that

depends on the configuration of V . The condition i < j ensures

that every edge is counted only once.

Theorem 2 gives a closed-form expression for the log-

likelihood ratio, in terms of the edges of the nearest-neighbor

dependency graph of the GMRF. Note in (22), the cross-terms

are only between the neighbors of the dependency graph,

which can be exploited to yield explicit data-fusion and routing

schemes [41].

3The node degree is finite for NNG in any dimension and is called the
kissing number [39].

Fig. 4. Illustration of point process Un,λ or Pn,λ: n nodes distributed i.i.d.
uniform or Poisson in regular Borel regions (such as squares or circles) of
area n

λ
with constant density λ. For error exponent, we consider n → ∞.

V. NEYMAN-PEARSON ERROR EXPONENT

The spectrum of the log-likelihood ratio is defined as the

distribution of the normalized LLR evaluated under the null

hypothesis. In [25, Theorem 1], it is proven that for Neyman-

Pearson detection under a fixed type-I error bound 4, the LLR

spectrum can fully characterize the type-II error exponent of

the hypothesis-testing system and is independent of the type-I

bound.

A special case of this result is when the LLR spectrum

converges almost surely (a.s) to a constant D

1

n
LLR(Yn,V) =

1

n
log

p[Yn;H0]

p[Yn|V;H1]

a.s.→ D, under H0.

In this case, the NP type-II error exponent is given by the

above constant D. In other words, the error exponent D of

NP detection in (1) is

D:= lim
n→∞

1

n
log

p[Yn;H0]

p[Yn|V;H1]
, under H0, (23)

where lim denotes the almost-sure limit, assuming it exists.

Note that when Yn are i.i.d. conditioned under either H0

or H1, the result reduces to the Stein’s lemma [43, Theorem

12.8.1] and the limit in (23) to the Kullback-Leibler distance.

A. Random Point Sets

It is intractable to evaluate the error exponent D in (23) for

an arbitrary point set. Therefore, we assume that the nodes

are placed randomly, according to a point process defined on

expanding regions. We consider two related point processes :

the Poisson process and the binomial point process on a large

region, which we define below.

Definition 2 (Poisson and Binomial Processes [44]):

Let (Bn)n≥1 denote a sequence of squares or circles5 of

area n
λ

, centered at the origin, for any λ > 0. A binomial

point process on Bn, denoted by Un,λ, consists of n points

distributed i.i.d. uniformly on Bn. A homogeneous Poisson

process of intensity λ on Bn, denoted by Pn,λ, satisfies the

following properties:

1) for any set A ⊂ Bn with area A, the number of points

in A is Poisson distributed with mean λA,

4The generalization to an exponential type-I error bound [25], [42] is not
tractable since a closed-form cumulative distribution of the LLR is needed.

5The results hold for regular Borel sets under some conditions [4, P. 1007].
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n → ∞

Origin

Normalized sum of edge weights Expectation of edges

of origin of Poisson process
∑

e∈G(V)

Φ(Re)

n

1
2 E

∑

X:X∈Pλ
(X,0)∈G(X∪0)

φ(R0,X)

Fig. 5. Pictorial representation of LLN for graph functionals of uniform or
Poisson point sets.

2) for any n ∈ N and A ⊂ Bn with area A > 0, conditioned

on n number of points in A, the point process on A is

a binomial process.

We are interested in evaluating the error exponent under

both the binomial or Poisson point processes, when the mean

number of nodes goes to infinity, with fixed node density, i.e.,

n → ∞ with λ fixed.

VI. CLOSED-FORM ERROR EXPONENT

A. Error Exponent as a Graph Functional

In order to derive the error exponent, we cast the error

exponent as the limit of sum of node and edge functionals

of the dependency graph of a marked point set in the lemma

below. This formulation is required in order to apply the law

of large numbers for graph functionals.

Lemma 1 (D as a Graph Functional): Given the marked

point set V drawn from the binomial process Un,λ or the

Poisson process Pn,λ, with marking variable Yi
i.i.d.∼ N (0, σ2

0),
the error exponent D in (23) is given by the limit of sum of

edge and node functionals of the nearest-neighbor graph as

D = log
σ1

σ0
+ lim

n→∞
1

2n

[

∑

i∈V

( 1

σ2
1

− 1

σ2
0

)

Y 2
i

+
∑

(i,j)∈E
i<j

{

log[1 − g2(Rij)] +
g2(Rij)

1 − g2(Rij)

Y 2
i + Y 2

j

σ2
1

− 2g(Rij)

1 − g2(Rij)

YiYj

σ2
1

}

]

, Yi
i.i.d.∼ N (0, σ2

0), (24)

where Rij is the (random) Euclidean edge length of (i, j) ∈ E ,

that depends on the underlying point process. The condition

i < j ensures that every edge is counted only once.

Proof : Substitute (22) in (23).

In the lemma above, the point set forming the graph is drawn

from a marked binomial or Poisson point process, with the

marking variable Yi
i.i.d.∼ N (0, σ2

0). This is because evaluating

the error exponent (23) under H0 implies that the sensor

observations Yi are i.i.d. and independent of the locations of

the nodes, and therefore can be viewed as a marking process.

B. Law of Large Numbers for Graph Functionals

The law of large numbers for functionals on graphs enables

us to evaluate the limit6 in (24). This law applies to graphs

which are random in the sense that the vertex set is a marked

random point set. LLN on graphs is based on the so-called

objective method. Steele [45] coined this term for a philosophy

whereby, loosely speaking, one describes the limiting behavior

of functionals on finite point sets of binomial process in terms

of related functionals defined on infinite Poisson point sets.

Also see Fig.5. Penrose and Yukich [4], [33], [34] introduce a

concept of stabilizing functionals and use the objective method

to establish a strong law of large numbers for graph functionals

[33, P. 287]. In order to apply this law, some conditions need

to be satisfied in terms of bounded moments. In the lemma

below, we place these conditions on the correlation function.

Lemma 2 (Conditions for LLN): The graph functional in

(24) satisfies the conditions for law of large numbers for

graph functionals derived in [33, P. 287], when the correlation

function g is monotonically non-increasing with the edge-

lengths, g(∞) = 0, and g(0) = M < 1. Hence, the graph

functional in (24) converges almost surely to a constant.

Proof : See appendix B.

Theorem 3 (LLN): Under the conditions stated in Lemma 2,

for nodes placed according to Un,λ or Pn,λ, with node density

λ and region area n
λ

, from the law of large numbers for graph

functionals, the expression for the error exponent D in (24)

for Neyman-Pearson detection of the GMRF defined by the

NNG is given by

D =
1

2

[1

2
E

∑

X:X∈Pλ,
(0,X)∈NNG(X∪0)

f(g(R0,X)) + log K +
1

K
− 1

]

, (25)

where

f(x):= log[1 − x2] +
2x2

K[1 − x2]
, (26)

K is the ratio of variances defined in (17), and R0,X are

the (random) lengths of edge (X,0) incident on the origin

in a NNG, when the nodes are distributed according to

homogeneous Poisson process Pλ, of intensity λ.

Proof : Apply LLN to (24). See appendix C.

In the theorem above, the law of large numbers yields

the same limit7 under the Poisson or the binomial process.

Thus, we provide a single expression for the error exponent

under both the processes. Also, the above theorem provides

the error exponent in terms of the expectation of a graph

functional around the origin, with the points drawn from an

infinite Poisson process. Thus, the functional is reduced to

a localized effect around the origin. This is an instance of

the broad concept of stabilization which states that the local

behavior of the graph in a bounded region is unaffected by

6Nature of convergence is convergence of means and complete convergence
(c.m.c.c) and implies almost-sure convergence.

7In general, the limit is not the same for Poisson and binomial processes.
For a different problem, we show that the error exponents are affected by a
random sample size [46].
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points beyond a finite (but random) distance from that region.

NNG is one such stabilizing graph with translation and scale-

invariance [4, Lemma 6.1].

C. Explicit Form for Nearest-Neighbor Graph

The evaluation of the expectation of the edge functional in

(25) is complicated and needs further simplification. In order

to obtain the final form of the exponent, we exploit some

special properties of the NNG. It turns out that the expectation

term is easier to evaluate for the directed nearest-neighbor

graph rather than the undirected version. We therefore split the

sum of edge functionals in (24), using the fact that the directed

NNG counts the weights from biroots or mutual neighbors

twice, while the undirected version counts only once. See

Fig.3. We therefore split the sum of the edge functionals of

the undirected NNG as

∑

e∈NNG(V)

f(g(Re)) =
∑

e∈DNNG(V)

f(g(Re))

− 1

2

∑

e∈MNNG(V)

f(g(Re)), (27)

where NNG(V), DNNG and MNNG ⊂ DNNG are the undi-

rected NNG, the directed NNG, and edges between the biroots

or the mutual neighbors of the directed NNG, respectively.

Now, we evaluate the expectation for the two terms separately,

since expectation is linear. A similar approach is employed in

[47].

We now provide an expression for the limit of the edge

functional based on the distribution of distances of the directed

NNG, which are related to hitting or vacancy probabilities of

the spatial point process, which are typically exponential or

gamma distributed, similar to their one-dimensional counter-

parts [48].

Lemma 3 (Expectation of Edge Functional): The expecta-

tion term of the edge functional in (25) is given by

1

2
E

∑

X:X∈Pλ,
(0,X)∈NNG(X∪0)

f(g(R0,X)) = Ef(g(Z1))−
π

2ω
Ef(g(Z2)), (28)

where Z1 and Z2 are Rayleigh distributed with variances

(2πλ)−1 and (2ωλ)−1, and ω is given by

ω =
4π

3
+

√
3

2
≈ 5.06, (29)

and is the area of the union of two unit- radii circles with

centers unit distant apart.

Proof : See appendix D.

In the theorem below, we combine Lemmas 2, 3, and

Theorem 3 to obtain the final form of the error exponent.

Theorem 4 (Expression for D): Under the assumptions

(16-18) and conditions stated in Lemma 2, for a GMRF with

NNG dependency and correlation function g and nodes drawn

from the binomial or the Poisson process with node density λ

and region area n
λ

, the error exponent D for Neyman-Pearson

detection is

Dg(K,M, λ) =
1

2

[

Ef(g(Z1),K) − π

2ω
Ef(g(Z2),K)

+ log K +
1

K
− 1

]

, (30)

where

f(x,K):= log[1 − x2] +
2x2

K[1 − x2]
. (31)

Z1 and Z2 are Rayleigh distributed with second moments

(2πλ)−1 and (2ωλ)−1.

The above theorem holds for any general correlation func-

tion. In (30), except for the first two f -terms which capture

the correlation structure of the GMRF, the remaining terms

represent the detection error exponent for two IID Gaussian

processes. In the corollary below, we specialize (30) to the case

of constant correlation. In this case, the two f -terms reduce

to a single term.

Corollary 1 (Constant Correlation): For constant values of

the correlation, the error exponent D is independent of the

node density λ and

1) for constant positive correlation or g(Re) ≡ M <
1, ∀e ∈ E , we have

D(K,M) =
1

2

[

log K +
1

K
− 1

+ (1 − π

2ω
)f(M,K)

]

, (32)

where f and ω are given by (26) and (29).

2) for the independent case or g(Re) ≡ 0, ∀e ∈ E , we have

D(K, 0) =
1

2

[

log K +
1

K
− 1

]

. (33)

In the above corollary, we verify that (32) reduces to (33),

on substituting M = 0. In (32), the effect of correlation can

be easily analyzed through the sign of the function f(M,K).
Also,

f(M,K)

{

< 0, for K > 2
1−M2 , (34a)

> 0, for K < 2. (34b)

Therefore, at large variance-ratios, the presence of correlation

hurts the asymptotic performance, when compared with the

independent case. But the situation is reversed at low values of

the variance ratio and the presence of correlation helps in de-

tection performance. In the next section, we will draw similar

conclusions when the correlation function is the exponential

function through numerical evaluations.
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Fig. 6. Error exponent D vs. ratio of variances K, node density λ = 1. See (32-35).

D. Numerical Results

In this section, we focus on a specific correlation function

namely the exponential-correlation function,

g(R) = Me−aR, a > 0, 0 < M < 1. (35)

Using Theorem 4, we numerically evaluate D through Monte-

Carlo runs. In (30), the error exponent is an implicit function of

the correlation coefficient a, through the correlation function

g. For fixed values of K and M , we have

D(K,M, λ, a) = D(K,M, 1,
a√
λ

), (36)

which we obtain by changing the integration variable in the

expectation term in (30). Therefore, in terms of the error

exponent, increasing the node density λ is equivalent to a

lower correlation coefficient at unit density. Here, we plot only

the effects of correlation coefficient a and nugget M on D.

In Fig.6(a), we plot the error exponent at λ = 1 and

M = 0.5, for different values of correlation coefficient a.

Note, the cases a = 0 and a → ∞ correspond to (32) and

(33). We notice that a more correlated GMRF or the one with

smaller a, has a higher exponent at low value of K, whereas

the situation is reversed at high K. Equivalently, increasing

the node density λ improves the exponent at low value of K,

but not at high K. Also, when the variance ratio K is large

enough, D appears to increase linearly with K (in dB), and

the correlation coefficient a and nugget M appear to have

little effect, as expected from Theorem 4. In Fig.6(b), we plot

the exponent at constant correlation coefficient a = 0.5 for

different values of the nugget M . Also note, M = 0 reduces

to the independent case. We notice a similar behavior as the

correlation coefficient. A higher value of M results in a higher

exponent at low K, but not at high K.

VII. CONCLUSION

In general, finding the closed form detection error exponent

is not tractable. The graphical structure of the Markov random

field allows us to exploit existing results in spatial probability

literature. We employed the law of large numbers for graph

functionals to derive the detection error exponent for a Gauss-

Markov random field with nearest-neighbor dependency graph.

We then investigated the influence of model parameters such

as the variance ratio and the correlation function on the error

exponent.

In this paper, we have assumed identical variance at every

sensor. However, a spatially varying SNR model can be

incorporated into our results. We have focused on the GMRF

defined by the acyclic dependency graph and derived the

exponent for the nearest-neighbor graph. This is a simplifying

assumption. Although, the law of large numbers is valid for

a number of proximity graphs, which have edges between

“nearby” points, the actual evaluation of the log-likelihood

ratio and the exponent are intractable for most of these graphs.

We have not considered correlation under null hypothesis for

which one requires a LLN with correlated marks. We have

also not considered the case when the signal field is not

directly observable, resulting in a hidden GMRF. The sparse

structure of the potential matrix is no longer valid under such

a scenario. However, note, GMRF with small neighborhood

has been demonstrated to approximate the hidden GMRF [49]

as well as Gaussian field with long correlation lengths [50],

reasonably well.

The error exponent can be employed as a performance

measure for network design. In [51], we utilize the closed

form derived in this paper to obtain an optimal node density

that maximizes the exponent subject to a routing energy con-

straint. We have also proposed minimum energy data fusion

and routing schemes that exploit the correlation structure

of Markov random field in a related publication [41]. We

further investigate tradeoffs between the routing energy and

the resulting error exponent in [52].
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APPENDIX

A. Proof of Theorem 1

Using the expression AΣ = I, we have the following

identities:

A(i, i) +
∑

j∈N (i)

A(i, j)
Σ(i, j)

Σ(i, i)
=

1

Σ(i, i)
, (37)

A(i, i) + A(i, j)
Σ(j, j)

Σ(i, j)
+

∑

k∈N (i)
k 6=j

A(i, k)
Σ(j, k)

Σ(i, j)

= 0, ∀j ∈ N (i), (38)

where (37) is obtained by the sum-product of ith row and

ith column of A and Σ. Similarly, (38) is obtained by sum-

product of ith row of A and j th column of Σ and dividing by

Σ(i, j). In (38), by acyclicity for k ∈ N (i) and k 6= j, we

have j ≁ k. From (8), we have

Σ(j, k)

Σ(i, j)
=

Σ(i, k)

Σ(i, i)
, ∀ j, k ∈ N (i), k 6= j.

Subtracting (38) from (37), only the terms with A(i, j) survive

and hence, we obtain A(i, j). Substituting all the A(i, j)’s in

(37), we obtain A(i, i). Hence, all the coefficients of potential

matrix A are given by (11).

Let |A(n)| be the determinant of the potential matrix of n
nodes. Assume n > 1, since we have |A(1)| = Σ(1, 1)−1.

The determinant of the potential matrix is the product of

determinants of the connected components. We therefore con-

sider only one component G′(V ′, E ′) ⊆ G. Assume G′ has

at least one edge, otherwise we have for diagonal matrix

|A(n)| =
∏

i∈V′ Σ(i, i)−1. Since G′ is acyclic, it has a leaf,

i.e., there is some vertex a with degree 1. Let b be its

only neighbor. We assume the vertices have been ordered

V ′ = {V1, . . . , Vn} so that Vn−1 = b, Vn = a. Then A
(n)

has the following form

A
(n) =















· · · · · · 0
...

...
...

...
...

· · · · · · 0
· · · · · A(n − 1, n − 1) A(n − 1, n)
0 · · · 0 A(n, n − 1) A(n, n)















,

where we have from (11),

A(n, n) =
Σ(n − 1, n − 1)

[Σ(n, n)Σ(n − 1, n − 1) − Σ(n, n − 1)2]
,

A(n − 1, n) =
−Σ(n, n − 1)

[Σ(n, n)Σ(n − 1, n − 1) − Σ(n, n − 1)2]
,

A(n − 1, n − 1) =
1

Σ(n − 1, n − 1)
− A(n − 1, n)

Σ(n, n − 1)

Σ(n − 1, n − 1)
+ C,

where C represents contributions from nodes in V ′\Vn i.e.,

with node Vn removed, and having an edge with Vn−1.

Multiplying the nth column by

A(n, n − 1)

A(n, n)
=

−Σ(n, n − 1)

Σ(n − 1, n − 1)

and subtracting it from (n − 1)th column and using the

determinant rule, we have

|A(n)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · · · · 0
...

...
...

...
...

· · · · · · 0
· · · · · A′(n − 1, n − 1) A(n − 1, n)
0 · · · 0 0 A(n, n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(39)

where

A′(n − 1, n − 1) :=A(n − 1, n − 1)

+
Σ(n, n − 1)

Σ(n − 1, n − 1)
A(n, n − 1). (40)

Hence, we have

|A(n)| = A(n, n)|Mn|, for n > 1,

where Mn is the minor of A(n, n) in (39). Substituting in

(40), we have A′(n − 1, n − 1) = C, where as noted before,

C is the contributions from nodes in V ′\Vn and having an

edge with Vn−1. This implies that A′(n − 1, n − 1) is the

coefficient in the potential matrix for the subgraph induced by

V ′\Vn. Since only Vn−1 has an edge with Vn, coefficients of

nodes other than Vn and Vn−1 are unaffected by the removal

of Vn. Hence, Mn is the potential matrix for the subgraph

induced by V ′\Vn,

Mn = A
(n−1).

Since V ′\Vn is acyclic, a leaf is always present, rearrange the

rows such that A
(n−1) has a leaf in the last two rows, i.e.,

it has the same structure as in (39). Remove a leaf in each

step of the recursion, until all the edges are removed, then

find the determinant with the diagonal matrix consisting of

the remaining nodes and we obtain (12).

B. Proof of Lemma 2

We can regard Yi’s as marking, since under H0 they are i.i.d.

independent of spatial point process. The strong stabilization

condition is satisfied for NNG [4, P. 1023, Lemma 6.1]. We

therefore only need to prove the uniform bounded moment

condition. We express the edge functional as the sum of two

functionals, for i ∼ j, given by

φ1(Rij) := − log[1 − g2(Rij)], (41)

φ2(Rij) :=
g2(Rij)[Y

2
i + Y 2

j ] − 2g(Rij)YiYj

1 − g2(Rij)
. (42)

Given a finite marked set V , the sum functional is denoted by

H i.e.,

Hk(V):=
∑

(i,j)∈NNG(V)
i,j∈V

φk(Rij)

2
, k = 1, 2. (43)

Given Hk, we denote the add one cost [33, (3.1)], which is

the increment in H , caused by inserting a marked point at the

origin into a finite marked set V , by
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∆k(V):=Hk(V ∪ {0}) − Hk(V). (44)

H1 satisfies the polynomial-bounded condition [33, (3.3)],

since φ1 in (41) is a finite function, and the number of edges

in NNG is at most n−1, for n points. However, the functional

H2 does not satisfy the polynomial-bounded condition since

the measurements Yi in (42) are unbounded. Instead, we define

truncated random variable Z as

Z:=

{

Y, if |Y | ≤ C log n, (45a)

sgn(Y )C log n, o.w, (45b)

where sgn is the sign function and C > 0 is a constant.

Consider the functionals H ′
2, φ

′
2 by replacing Yn with Zn in

H2 and φ2 respectively. Now, H ′
2 is polynomially bounded.

Further, we have limn→∞ Z
a.s.→ Y and hence, limn→∞(H ′

2−
H2)

a.s.→ 0.

Definition 3 (Uniform Bounded Moments for φi): Define

Um,A to be m uniform random variables on A ∈ B and R0,X

to be the (random) lengths of the edge (0,X) in graph G
incident on the origin. Then, the bounded p-moment condition

[33, (3.7)]

sup
A∈B,0∈A

sup
m∈[

λ|A|
2 ,

3λ|A|
2 ]

E[
∑

(0,X)∈G
X∈Um,A

φk(R0,X)]p

< ∞, k = 1, 2, (46)

is true for some p ≥ 1.

Without the above condition, nothing can be said about the

almost sure convergence, although, by Fatou’s lemma, the limit

of the LLN would be a bound on D.

Since φ1 and φ2 are decreasing functions edge length, with

maximum at zero, we have

E[
∑

(0,X)∈NNG(X)
X∈Um,A

φk(R0,X)]p < CpE[φk(0)]p, k = 1, 2, ∀p > 0,

where C is the kissing number, a constant, and Deg(0) ≤ C
for the NNG. Now, φ1(0) = − log[1−M2] < ∞, since g(0) =
M < 1, and

E[φ2(0)p] <
Mp

(1 − M2)p
E[Yi − Yj ]

2p < ∞,

since Yi, Yj
i.i.d.∼ N (0, σ2

0). Hence, the uniform-bounded

moment for φk in (46) holds.

Now, we show the uniform-bounded moment for H [33,

(3.2)], obtained by replacing φk in (46) by ∆k. The positive

part of ∆k is bounded by Deg(0)φk(0), whose expectation is

shown to be finite. For the negative part ∆k(Um,A)−, along

the lines of [4, Lemma 6.2], let 1{nn(i) = 0} be the event

that the origin is the nearest neighbor of i ∈ Um,A. Then,

the number of deleted edges on adding the origin is given by
∑m

i=1 1{nn(i) = 0} ≤ C, we have ∆k(Um,A)− ≤ Cφk(0),
whose expectation is shown to be finite. Hence, the bounded-

moment condition for H holds and LLN is applicable.

0 nn(0)
Z1

Fig. 7. Illustration of the event that the origin is a biroot in the directed
NNG. This implies that there is no other point in the union of the circles
shown above. See (53).

C. Proof of Theorem 3

We have the distribution of Yn under the null hypothesis

p[Yn|V;H0] =
1

(2πσ2
0)

n
2

exp
(

−
∑n

i=1 Y 2
i

2σ2
0

)

.

Therefore, the limit of the determinant is given by

lim
n→∞

log |Σ0,V |
2n

= log σ0. (47)

We have
∑n

i=1
Y 2

i

n
→ E[Y 2

1 ;H0] = σ2
0 a.s. under H0.

Therefore, the term in (24)

n
∑

i=1

( 1

σ2
1

− 1

σ2
0

)Y 2
i

n
→

(σ0

σ1

)2

− 1.

By Lemma 2, the conditions for LLN hold and therefore as

n → ∞,

− 1

n

∑

e∈NNG(V)

log[1 − g2(Re)]

→ −E
∑

X:X∈Pλ

(0,X)∈NNG(X)

log[1 − g2(R0,X)], (48)

1

n

∑

(i,j)∈NNG(V)
i<j

g2(Rij)[Y
2
i + Y 2

j ] − 2g(Rij)YiYj

[1 − g2(Rij)]σ2
1

→ E
∑

X:X∈Pλ

(0,X)∈NNG(X)

2g2(R0,X)

1 − g2(R0,X)

(σ0

σ1

)2

, (49)

where, in (49) we first take the expectation over Yi’s and

use the fact that E[
Y 2
0

+Y 2
X

σ2
1

] = 2(σ0

σ1
)2 and E[Y0YX] = 0.

Collecting all the terms we have (25).

D. Proof of Lemma 3

We use an approach similar to [47]. Let Bz(X) denote a

circle of radius z, centered at X. We take expectation on both

sides of (27) for graphs over all the Poisson points X∪0. Let

NNG(V), DNNG and MNNG ⊂ DNNG be the undirected

nearest-neighbot graph, the directed nearest-neighbor graph,

and edges between the biroots or the mutual neighbors of the

directed nearest-neighbor graph. See Fig.3.
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E[
∑

X:X∈Pλ

(0,X)∈NNG(X)

f(g(R0,X))]=E[
∑

X:X∈Pλ,

(0,X)∈DNNG(X)

f(g(R0,X))]

−

1

2
E[

∑

X:X∈Pλ

(0,X)∈MNNG(X)

f(g(R0,X))]. (50)

The first term on the right-hand side in (50) simplifies as

E[
∑

X:X∈Pλ,
(0,X)∈DNNG(X)

f(g(R0,X))] = E[f(g(Z1))], (51)

where Z1 is the unique directed nearest-neighbor distance of

the origin with points distributed according to Pλ, the Poisson

point process of intensity λ on ℜ2. The random variable Z1

is like a waiting time, and can be visualized as the time taken

for an inflating circle to first touch a point from the Poisson

process. We therefore have Z1 > z iff. Bz(0) does not contain

any points from the Poisson process, i.e.,

P[Z1 > z] = P[∄X 6= 0 ∈ Bz(0) ∩ Pλ] = e−λπz2

. (52)

Therefore, Z1 is Rayleigh with second moment (2πλ)−1.

Similarly, for the second term, we need to find the PDF

of the nearest-neighbor distance of the origin when the origin

is a biroot or a mutual nearest neighbor. This event occurs

when the union of the circles centered at origin and its nearest

neighbor contains no other Poisson point. See Fig.7. Let A be

the intersection of the events that the directed nearest-neighbor

distance of origin lies in the interval [z, z + dz] and the event

that origin is a biroot

A := (Pλ ∩ (Bz(0) ∪ Bz(nn(0)))\{0, nn(0)} = ∅)
∩(Z1 ∈ [z, z + dz]). (53)

Its probability is given by,

P[A] = P(origin is biroot|Z1)P(Z1 ∈ [z, z + dz])

= e−(ω−π)λz2

2λπze−λπz2

dz (54)

= 2λπze−ωλz2

dz =
λ

ω
[2ωπze−ωλz2

dz] (55)

=
λ

ω
P(Z2 ∈ [z, z + dz]), (56)

where nn(0) is the nearest-neighbor of the origin and

ω:=|B1(0) ∪ B1(1)| = 4π
3 +

√
3

2 , the area of the union of

circles unit distant apart and Z2 is a Rayleigh variable with

variance (2πω)−1. Hence, the second term on the right-hand

side in (50) simplifies as

1

2
E[

∑

X:X∈Pλ

(0,X)∈MNNG(X)

f(g(R0,X))] =
π

2ω
E[f(g(Z2))]. (57)

From (27, 52, 56), we obtain (28).
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