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Acoustic Wave Propagation in Horizontally
Variable Media
Cathy Ann Clark, Member, IEEE

Abstract—An overview of the multipath expansion method of
solving the Helmholtz wave equation to describe the underwater
sound field for a fixed point source in a plane multilayered medium
is presented. The approach is then extended to account for hori-
zontal variations in bottom depth, bottom type, and sound speed in
the stationary phase approximation. Comparisons of model results
to a limited number of measured data sets and standard propaga-
tion codes are presented.

Index Terms—Acoustics, multipath expansion, stationary phase,
underwater sound propagation, wave equation.

I. INTRODUCTION

THIS paper presents an overview of the derivation of the
propagation loss model of Leibiger [1], [2], and then ex-

tends this result to shallow water environments by accounting
for changes in bottom depth, bottom type, and sound speed with
range. Comparisons between calculated and measured results
are presented.

A derivation based in part on the work of Leibiger was
published by Weinberg in 1975 [3], [4]. Recent developments
by Weinberg extend the use of ray methods through the use
of Gaussian ray bundles [5] but do not utilize the integration
method discussed in this paper. A comparison of results for
a transmission loss (TL) calculation at 3500 Hz using the
Integrated Mode method described herein and Weinberg’s
Navy standard Gaussian RAy Bundling (GRAB) model is also
presented.

The calculation of sound propagation in the low frequency
portion of the sonic band (20 to 200 Hz) has been addressed
using ray theory, parabolic equation (PE) methods, and normal
mode codes, with which this approach agrees. However, the cal-
culation method described herein is also viable at higher fre-
quencies, from 200 Hz to above 50 kHz. The need for calcula-
tions which are continuous across the operational band of Navy
platforms and systems in shallow water provides motivation for
the current work.

An overview of the Leibiger derivation is presented in
Section III, followed by an extension to range-varying media
in Section IV. Section V provides a comparison of results to a
limited number of measured data sets and other propagation
codes.
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II. PRELIMINARIES

We define sound speed to take values within the vertical
plane of the ocean defined by the positions of the source
and receiver of the acoustic energy. We then define the total
wavenumber to be equal to , where is the radian
frequency of the source and denote the horizontal and vertical
vector components of the wavenumber by and , respec-
tively, where denotes range and denotes depth. We define

to be the angle of the total wavenumber with the horizontal,
and denote the vertical phase function as

(1)

Assuming a region which is homogeneous in range, we evaluate
and its derivatives by partitioning the local sound speed pro-

file (SSP) into linear segments in the usual way, thus defining a
horizontally stratified ocean. In horizontally variable media, we
likewise partition the range of interest into segments for which
1) sound speed variation with depth; 2) bottom slope; and 3)
bottom type are considered invariant. Thus, calculations are al-
ways performed within a rectangle in which the sound speed
variation is the same linear function of depth throughout the
region.

The horizontal range traversed in propagating through a layer
from to with constant sound speed gradient is given by

(2)

where denotes the vertex sound speed at which all propaga-
tion is momentarily horizontal .

Substituting into (1), using the fact that
, performing a change of variable ,

and integrating yields

(3)

Thus the change in vertical phase in traversing a horizontal layer
from to is computed as

(4)
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Note that

differentiating (3) with respect to yields

Multiplying and dividing by and utilizing Snell’s Law yields

For use in the sequel, we note that

(5)

III. OVERVIEW OF THE LEIBIGER DERIVATION

We now give an overview of the Leibiger derivation in prepa-
ration for extending to horizontally variable media; a complete
discussion of the original work may be found in [1]. Derivations
of the acoustic wave equation and further discussion of various
solutions can also be found in multiple references, see, for ex-
ample [6]–[9].

Assuming sound pressure has no azimuthal dependence,
the wave equation can be expressed in cylindrical coordinates
as

(6)

where represents horizontal range, and depth is increasing
down from the ocean surface. After a standard separation of
variables, the depth dependent function is given by

(7)

where is the vertical component of the local wavenumber,
and we assume a harmonic point source of unit intensity at depth

. We construct solutions of the depth dependent wave equation
from the Green’s function for the associated boundary value
problem (see, for example, [11], [12]). At this point, we drop
the subscript from the horizontal wavenumber to simplify the
notation, i.e., in the sequel, the unsubscripted variable implies

. Let be a turning point for the wavenumber , thus
. We assume that can be expressed as a linear

function of in a neighborhood of , and let

where is a positive constant and both and are assumed
real. Integrating from to an arbitrary depth to obtain
the elapsed vertical phase yields

(8)

For we maintain positive values for phase by adopting
the convention . Substitution of the
leading term of from (8) into the homogeneous form of the

-dependent wave (7), letting , and changing
the independent variable to yields Bessel’s equation of order

[10]

(9)

Thus cylinder functions of order provide solutions for ,
for example,

(10)

Noting that is proportional to , a set of allowable
solutions for propagation toward and away from when com-
pared with time dependence are given by

(11)

where is assumed and and are suitable constants.
The leading terms of the asymptotic expansions of

and when are given by [10]

(12)

Substitution of (12) into (11) yields, with the appropriate choice
of constants

(13)

which are valid away from the turning point on the side
where (they become infinite when ). The
Bessel function expressions (11) allow the solution of the dif-
ferential equation to be approximated over a specific -interval,
both near and away from , and they agree with the exponential
solutions (12) in regions where they are oscillatory.

To simplify the notation, we choose the constants and
so that the depth dependent function is simply

(14)

where , and determine the linear combina-
tion of solutions and which solves the boundary value
problem in the -domain.

For the purpose of this paper we defer the discussion of rig-
orous formulations for the boundary conditions and assume that
the reflection loss and phase change at the upper and lower
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boundaries can be characterized as a function of grazing
angle by complex reflection coefficients

(15)

respectively, and thus that the fundamental wave functions
and satisfy the upper and lower boundary conditions, respec-
tively, i.e.

Substituting the fundamental solutions (14), then, we have

(16)

We form the Green’s function solution from the upper and lower
fundamental solutions

(17)

where is the depth of the source and is the Wronskian

(18)

The Green’s function construction extended to the range do-
main yields the pressure as a contour integral in the complex
k-plane

(19)

where the integral encompasses all of the zeros of the Wron-
skian.

We develop a practical expression for by formulating
the Wronskian from the basic asymptotic forms of

and given in (16), which, after substituting
into (18), and performing some algebra, yields

(20)

where

(21)

The normal modes, which correspond to the zeros of ,
take sequential values where is the mode
number. In general, the are complex with small imaginary
part

To extract the roots of , consider first a propagation
medium in which boundary reflections are without loss, i.e., let

. In this special case, the zeros of
are given by real values of for which the total phase change
in traversing the medium in depth from upper turning point to
upper turning point is an integer multiple of , i.e.,

(22)

The nonidealized ocean propagation medium is lossy, re-
quiring . This leads to nonzero imaginary parts
of the eigenvalues , which are found by expansion of (22)
about the real part of . To expand around to
the first order

so

But , so we have

Combining this result with (5), the imaginary part of the eigen-
value for mode is then given by

(23)

as can be verified by substitution of the above into the expression
for (21).

Although some variations of the boundary value problem may
include propagation of an infinite number of normal modes in
the ocean medium, in practical applications a possibly large but
finite number of modes suffices to produce . Evalulating
by the calculus of residues yields

(24)

where . Note that all ex-
pressions in the above sum may be evaluated using the real part
of the eigenvalue with the exception of the range dependent
Hankel function in which the imaginary provides an expo-
nential attenuation factor which accounts for the boundary
losses and .
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An equivalent expansion for is obtained by noting that

(25)

After substitution of (25) into (19), we note that the major con-
tribution to the contour integral occurs within a specific interval

on the real axis (see, for example, [13, ch. 4]). After
some algebraic manipulation, the th term of the resulting se-
ries expansion for is

(26)

Note also that the finite integration interval corresponds to the
use of only modes of a possibly infinite set in the normal
mode sum and each term corresponds to a specific propagation
path in the ocean.

Separation of the th integral into four path types is accom-
plished by substituting the fundamental wave solutions and

from (16) into (26) and noting that they are linearly depen-
dent at an eigenvalue. To simplify the notation, denote the phase
exponents as

Neglecting amplitude terms, then

But so we have

The result of multiplying the two factors yields the four prin-
cipal terms

(27)

These four terms correspond to the four possible combinations
of vertical path direction at the source and receiver, i.e., path (1)

TABLE I
MULTIPATH/ANGLE CORRESPONDENCE

corresponds to a downward source angle and upward receiver
angle, etc. The path correspondence is summarized in Table I.

Evaluating (26) by the method of stationary phase [13], we
note that for fixed receiver depth , each integral evaluated at
range is of the form

(28)

where is slowly varying in comparison to , and
has continuous derivatives to the second order. Thus can
be expanded about an arbitrary point within the integration
interval

If a stationary phase point with can be found
within the interval, (28) simplifies to

(29)

Assuming , the change of variable
yields

(30)

which can be integrated numerically. In cases where the integra-
tion limits can be considered infinite (i.e., in intervals containing
a stationary phase point and integration limits sufficiently far
from ), the integration can be eliminated by noting that

(31)

If , the solution is the complex conjugate of that
for . In some cases the solution is extrapolated into
diffraction regions, and when there is no stationary phase point
within the interval, integration by parts is used to approximate
the basic integral.

IV. EXTENSION TO HORIZONTALLY VARIABLE MEDIA

The extension of the results of Section III to media in which
environmental properties may vary with range is accomplished
in two stages. The first generalizes the calculation of the vertical
phase function (1) and its derivatives to accommodate horizontal
changes in bottom slope, sound speed, and bottom type and the
second accounts for the change in horizontal wavenumber with
range.
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A. Generalization of Vertical Phase Calculations

Following the notation of Section III (28), we generalize the
phase calculations to account for horizontal variations in bottom
depth, bottom type, and sound speed. As before, corre-
sponds to range, and to the derivative of range with re-
spect to horizontal wavenumber , which can be approximated
locally by .

In Section III [e.g., (25), (26)], boundary losses were raised
to a power which represents cycle number. This assumes the
loss on each boundary interaction is the same, and the cycles
of each path are homogeneous. When bottom and sound speed
parameters vary with range, this may not be the case. The no-
tion of cycle carries over as traversal of a wave from one upper
turning point or reflection to the next, but the paths traversed
within these cycles may vary.

To account for horizontal variations in sound speed, phase
velocities are corrected according to Snell’s Law. To account
for variable bathymetry, it suffices to detect when the bottom
is encountered within a given rectangle, and adjust the ray cal-
culations to account for the local bottom slope. On passing a
range at which the bottom type changes, bottom loss calcula-
tions utilize the properties of the new bottom type. As rays are
traced through the medium, the values of the phase derivatives
(4), (2), and are accumulated as a function of
range and used in the minimum phase expansion of the mode
integrals (30).

B. Adjustment for Horizontal Wavenumber Differential

One final adjustment is required to extend the mode integrals
(30) into horizontally variable media. Note that when the ray
calculations are adjusted for SSP and/or bottom depth changes,
a given phase velocity, , or equivalently, horizontal grazing
angle, , is adjusted in accordance with either Snell’s Law
or specular reflection, respectively. This adjustment results in
association of the given ray path with a different horizontal
wavenumber, .

In terms of the integral form (26), this adjustment necessitates
a correction to the integrand to account for the change of vari-
able from the original wavenumber to the local wavenumber

. Considering the mode summation (24), which the inte-
gral approximates, the change in wavenumber corresponds to
a coupling of the normal modes between the two adjacent ver-
tical regions. A discussion to demonstrate the change of variable
which accounts for this coupling is as follows.

Consider the integral form (26) which corresponds to the
th term in the series expansion for , and assume the

asymptotic form of the Hankel function, and exponentials as
fundamental solutions to the Green’s function (16). Assuming
boundary losses (15) are included in the amplitude functions
denoted by , and denoting the elapsed vertical phase
along the ray path including reflection effects by , we
formulate an individual mode integral for a receiver at range
and depth as

(32)

where the subscript denotes accumulation along the path,
and denotes the horizontal component of wavenumber at the
source position.

Fig. 1. Sample path for phase integration.

The final factor of in the integrand is a combination of
and which two factors appear at two different points

in the development. The first is from the factor which
resulted from a change of variable from to in considering
the -plane equivalent to the contour integral in the plane
(see [1, Section 2.1]), i.e., . The second
resulted from use of the asymptotic form of the Hankel func-
tion. In passing to the range dependent formulation, the first of
these factors remains the same, but the second must account for
variation in the local wavenumber.

We reformulate the phase integral (3) by equating spatial and
temporal phase

(33)

and substitute so that (28) be-
comes

(34)

To account for the change in horizontal wavenumber from
source to receiver, some of the s must be replaced by ,
the local wavenumber at field point for the ray with
wavenumber at the source

(35)

where .
The sketch of a sample path in Fig. 1 indicates the compo-

nents of phase for a receiver at range . Clearly, the amplitude
factors associated with source and receiver are to be evaluated
at and , respectively, and the sketch also indicates the
use of and in the phase exponents.

To justify the value in the denominator, consider
the accumulated transmission coefficients across the vertical re-
gions from source to receiver at range . Consider, for example,
a transition at range from region to with horizontal
wavenumbers and , respectively, as depicted in Fig. 2.
Assuming an incident plane wave of unit amplitude, continuity
of the wave function and first derivative at yields
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Fig. 2. Horizontal transmission coefficient.

Fig. 3. Example Case A: TL versus range for a 3520-Hz source in a surface
duct environment.

which implies

Fig. 4. Example Case B: TL versus range for a 350-Hz source in a convergence
zone environment.

Solving for , we obtain the magnitude of the transmission
coefficent

We perform some algebraic manipulation to approximate in
a more convenient form

Thus, to first order, we can approximate

Over vertical regions, the overall transmission coefficient
is approximated by forming the product
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Fig. 5. Example Case C: TL versus range for a 3860-Hz source in shallow water.

Noting that in this case is , then, we see that the am-
plitude of the radial propagation is altered in such a way that the
original in the denominator is replaced by .

To apply the method of stationary phase to the range depen-
dent form of the mode integral (26), following the use of the
Fresnel integral form (28), we have

where , and
. Noting that ,

where and are the ray angles at the source and receiver,
and using the asymptotic form for the amplitude functions

yields

TABLE II
BOTTOM SEDIMENT PARAMETERS FOR EXAMPLE CASE D

Finally, recognizing that is asymptotically
, we have the required result

(36)

This result is the range dependent analog of (30). The ampli-
tude factors are computed as before but as a function of the
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Fig. 6. Example Case D: TL versus range for a 142-Hz source in an environment with horizontally variable bottom depth and sound speed.

local wavenumber at source and receiver. The Fresnel integral
is also computed as in the original derivation, i.e., by substi-
tution of (31) in the case of infinite integration limits, or by an
approximation based on integration by parts. The remaining fac-
tors involving the (range dependent) accumulation of the phase
functions along the path , and the horizontal wavenumber asso-
ciated with the stationary phase point comprise the changes
required to extend the solution to horizontally variable media.

V. DISCUSSION OF RESULTS

The following provides samples of calculations made with the
Integrated Mode model described herein, with comparisons to
predictions computed using other models and measured results.
In each case, measured results or other model calculations are
shown as dots, and the prediction of the Integrated Mode model
is represented by a solid line.

A. Surface Duct Propagation

The first sample case involves propagation of a 3520-Hz
signal in a surface duct [14]. The field is dominated by a small
number of low order modes and both measurements and model
calculations are restricted to propagation within the duct. The

TABLE III
BOTTOM SEDIMENT PARAMETERS FOR EXAMPLE CASE E

source and receiver are in the duct at depths of 20 and 50 feet,
respectively, and the wind speed is 5 knots. The upper 1000
feet of the SSP and the results for Sample Case A are shown in
Fig. 3(a) and (b), respectively.

B. Deep Water Convergence Zone Propagation

The second sample case involves propagation of a 350-Hz
signal in a convergence zone environment [15]. The source, re-
ceiver, and bottom depths are 400, 600, and 16 920 feet, respec-
tively, and the wind speed is 4 knots. The bottom was mod-
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Fig. 7. Sample Case E: TL versus range for a 3500-Hz source in the Norwegian Sea.

eled using a plane wave reflection coefficient with the loss per
bounce as shown with the SSP and the results, in Fig. 4(a), (b),
and (c), respectively.

C. Shallow Water Propagation

The third sample case represents propagation of a 3860-Hz
signal in a shallow water environment with a single downward-
refracting SSP and highly variable downslope bathymetry [16].
The source and receiver were both at a depth of 25 feet. The
bottom was modeled using a plane wave reflection coefficient
with the loss per bounce as shown in Fig. 5(a). The bathymetry
profile for Sample case C and an overlay of the sound speed
variation with depth are shown in Fig. 5(b), and the results for
Sample Case C are presented in Fig. 5(c).

D. Propagation in an Environment With Horizontally Variable
Sound Speed, Bottom Depth, and Bottom Type

The fourth sample case represents propagation of a 142-Hz
signal in a shallow water environment with horizontally vari-
able sound speed, bottom type, and bathymetry [17]. The SSPs
at ranges of 0, 3, 6, 7.5, and 12.09 km are plotted with the ups-
lope bathymetry for Sample case D in Fig. 6(a). The bottom sed-
iment parameters by range are given in Table II, where Sthick is

sediment thickness represented by two-way travel time through
the sediment in seconds, Xratio is the ratio of sediment to water
column sound speed at the sediment interface, Xgrad is the
initial sediment sound speed gradient in 1/s, Beta is a sedi-
ment SSP curvature parameter, Satten is initial sediment atten-
uation in dB/m/kHz, Sagrad is sediment attenuation gradient in
dB/m/kHz/m, Sdense is sediment density in g/cc, Xdense and
Xthick are the density and thickness of a hypothetical thin layer
at the sediment/water column interface in g/cc and m, respec-
tively, and Baslos is the basement reflection coefficient. The
source and receiver are both at a depth of 18 meters.

The results for Sample Case D are presented in Fig. 6(b).

E. Comparison to Navy Standard Grab Model

The fifth sample case represents propagation of a 3500-Hz
signal in the Norwegian Sea in winter with results compared
to those of the Navy Standard Gaussian RAy Bundle (GRAB)
model of Weinberg [5]. The bottom depth is 10 500 feet and the
source and receiver are at depths of 325 and 850 feet, respec-
tively. Bottom parameters are given in Table III with parameters
and units as defined in Sample Case D, and the wind speed is
16 knots. The SSP and results are shown in Fig. 7(a) and (b),
respectively.
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VI. SUMMARY

The multipath expansion method of solving the Helmholtz
wave equation to describe the underwater sound field for a fixed
point source in a plane multilayered medium has been discussed.
This approach has been extended to account for horizontal vari-
ations in bottom depth, bottom type, and sound speed in the sta-
tionary phase approximation. A comparison of calculations with
both measured data and results of the Navy standard model cov-
ering a range of frequencies and environmental variations has
been presented.
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