Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats

Gregor J. Devinea,1 Elvira Zamora Pereab, Gerry F. Killeenc,d, Jeffrey D. Stanciln,2 Suzanne J. Clarka, and Amy C. Morrisonf

aDepartment of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden AL5 2QJ, United Kingdom; bLaboratorio de Salud Publica, Iquitos, Peru; cIfakara Health Institute, Dar es Salaam, United Republic of Tanzania; dVector Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; eNaval Medical Research Center Detachment, United States Navy, Lima, Peru; and fDepartment of Entomology, University of California, Davis, CA 95616

Edited by Barry J. Beaty, Colorado State University, Fort Collins, CO, and approved April 14, 2009 (received for review February 7, 2009)

Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3–5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95–100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42–98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique.

Globaly, 50 million dengue infections annually result in 500,000 cases of dengue hemorrhagic fever and 22,000 deaths (ref. 1 and www.who.int/mediacentre/factsheets/fs117/en/print.html). Aedes aegypti (Linnaeus) transmits the bulk of dengue infections (2), and vector control is the only means of combating this disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective means of controlling mosquito vectors of disease are insecticidal and include the use of adulticides as space sprays or indoor residual applications, insecticide-treated materials (ITMs) such as curtains and bed nets, and the application of larvicides to aquatic habitats (refs. 3–5 and http://whqlibdoc.who.int/trs/trsdocs/WHO-TRS.857.pdf). These tools may be augmented by source reduction campaigns targeted at mosquito breeding sites (6, 7). The primary challenge for the effective implementation of any of these measures is in realizing sufficient coverage of the insect population given local constraints on financial and human resources (3, 7–9).

The application of adulticides and the use of treated bed nets can have a powerful impact on the abundance of mosquito vectors (10, 11) and disease transmission (12, 13) because the host-seeking and resting behaviors of the vector ensure a number of potentially lethal interactions with insecticide-treated surfaces during those parts of the lifecycle when pathogens are acquired, incubated, and transmitted. Mosquito density, longevity, and feeding success, which are some of the key determinants of vectorial capacity and disease transmission (14, 15), are all affected. The efficacy of these tools, however, against many disease vectors, is often constrained by the difficulty in achieving sufficiently high coverage of resting surfaces, sleeping spaces, or adult vectors (7–9, 16). Aquatic habitat management can also contribute to decreasing transmission of mosquito-borne diseases (17, 18) but is often considered inferior to adulticiding and ITMs because it does not impact directly on the most important determinants of vectorial capacity. To exert a significant effect on transmission, aquatic habitat management methods depend on simply maximizing their impacts on adult mosquito density. At large or spatially complex scales this is challenging, because of uncertainty over the relative productivity of specific habitats and the consequent need to seek out, identify, and treat all potential sites (6, 7).

The strategy that we describe here exploits the innate behaviors of adult mosquitoes to effectively target a persistent juvenile hormone analogue (JHA) at their aquatic habitats. Adult females, exposed to JHA deposits at their resting sites, contaminate aquatic habitats and the larvae developing therein when they oviposit. The tiny doses of JHA that they transfer then interfere with the metamorphosis of those juvenile stages. We demonstrate, in theory and practice, that high coverage of aquatic habitats with a JHA is possible through the treatment of only a small proportion of the adult resting area. This has a marked impact on the emergence of adults from contaminated sites. The impetus for our field demonstrations was given by some highly artificial, laboratory-based explorations of the insecticide-transfer principle (19–21) and by a further characterization of the technique’s potential using large cages and free-flying mosquitoes (SI Text and Figs. S1 and S2).

Results

In 3 separate trials, undertaken in each of 2 sites in a public cemetery in the Amazon (Iquitos, Peru), we examined the impact of deploying 10 JHA “dissemination stations” on the productivity of 40 uncontaminated sentinel oviposition sites (Fig. 1). Each of these sentinel habitats contained a cohort of 25 uncontaminated third-instar Aedes aegypti larvae. When no JHA was deployed, the juvenile stages developing in the sentinel sites exhibited average mortalities of 8% (site A) and 7% (site B). During the postdeployment phase, mortality increased to 84% at site A (all dates combined; F = 78.9, P < 0.001) and 49% at site B.

Author contributions: G.J.D., G.F.K., J.D.S., and A.C.M. designed research; G.J.D. and E.Z.P. performed research; G.F.K. contributed new reagents/analytic tools; S.J.C. analyzed data; and G.J.D. wrote the paper.

The authors declare no conflict of interest.

This article is PNAS Direct Submission.

Freely available online through the PNAS open access option.

To whom correspondence should be addressed. E-mail: greg.devine@bbnrc.ac.uk.

2Present address: Joseph H. Pendleton Marine Corps Base Camp, San Diego, CA 92055.

This article contains supporting information online at www.pnas.org/cgi/content/full/0901369106/DCSupplemental.
Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats

University of California, Department of Entomology, Davis, CA, 95616

Approved for public release; distribution unlimited
B (all dates combined; $F = 55.7, P < 0.002$). The maximum mortality seen in individual trials was 98% and 59% at sites A and B, respectively (Fig. 2). The effects of the JHA were most apparent on the nonfeeding pupal stage. Pupae accounted for 91.5% ($n = 3552$) of posttreatment mortality but only 32.5% ($n = 156$) of pretreatment mortality ($F = 264, P < 0.0001$).

The dissemination of the insecticide was extremely efficient. By placing a JHA-treated station in just 3% and 5% of the tombs available at sites A and B, respectively, we exerted a lethal effect on almost every sentinel site. After JHA deployment, only 3 sentinel sites (1 at site A and 2 at site B) exhibited mortality rates equal to or lower than those noted during the predeployment period (Fig. 3). This result suggests that the vast majority of sentinel sites (95%) in any trial were visited by contaminated mosquitoes. Distances between dissemination stations and sentinel sites were small and, at these scales, the mortality observed in individual aquatic habitats was not related to their distance from the 10 dissemination stations (Fig. 3).

A simple deterministic simulation model was used to demonstrate how the persistence of the JHA and/or multiple contaminations by disseminating adults can amplify the effective coverage of aquatic habitats. Further details of the model assumptions and explanations of its parameters are provided in SI Text and Table S1). The model proposes that the relationship between the coverage of adult resting sites (C_r) and the larval habitats that the JHA is disseminated to (C_h) can be crudely described as a simple exponential function of the duration for which habitats remain unproductive after contamination (U), the number of ovipositions by the vector population (O) relative to the number of habitats (H), and the mean number of contaminated ovipositions required to render a single habitat unproductive (Ω):

$$C_h = 1 - \exp(C_r U [O/H \Omega]).$$

Fig. 4A illustrates that, by using 1/20th of the available resting sites ($C_r = 0.05$) to disseminate the insecticide, more than half of the larval habitats ($C_h > 0.5$) can be affected (an amplification in coverage by a factor of >10) given the following criteria: (i) aquatic habitats are rendered unproductive for at least 1 week, $U \geq 7$ days; (ii) mosquito abundance or habitat availability is such that aquatic habitats are oviposited in more than once per 24 h, $O/H \geq 2$; and (iii) only 1 contamination event is necessary to render a habitat unproductive, $\Omega = 1$. Increasing the persistence of the insecticide ($U \geq 14$) and the number of oviposition events in each habitat ($O/H \geq 5$) leads to almost complete habitat coverage ($C_h > 0.95$; Fig. 4A). Fig. 4B uses the same model to illustrate how the persistence of the insecticide (U) is the key to
amplifying coverage between resting exposure (C_r) and aquatic habitats (C_h). These outcomes approximate the results of our field demonstrations in which the placement of dissemination traps treated with a persistent JHA in /H11021 5% of available tombs ($C_r/H110210.05$) for 12-day periods resulted in the almost complete coverage of sentinel sites ($C_h/H113500.95$) with the insecticide.

Discussion

The strength and impact of the strategy that we have described derives from the amplification in JHA coverage that results from the repeated contamination of adult mosquitoes at their resting sites and the persistence of the insecticide. This efficient dissemination process is facilitated by the cyclical nature of mosquito feeding, resting, and oviposition behaviors.

Our trials showed that the wild mosquito population moved the JHA around the cemetery very effectively. Almost all of the sentinel sites were affected, despite the fact that the various avenues and niches of the cemetery presented myriad resting and oviposition opportunities. Moreover, there was no loss of impact on the sentinel site cohorts with increasing distance from the JHA dissemination stations. This suggests that the JHA was being disseminated beyond the boundaries of our study site and that we might reduce resting site coverage further while maintaining similar or greater impacts on larval habitats, at larger scales.

The JHA that we used (pyriproxyfen) does not interfere with the fundamental behaviors that we are exploiting because it is neither lethal nor repellent to adults (21). It is the act of oviposition that contaminates the aquatic habitat, so the technique explicitly and precisely targets the mosquitoes' preferred larval development sites. This may help overcome one of the most important constraints on the successful application of larvicidal or pupacidal interventions, the inefficient waste of expensive insecticides and human resources on treating inappropriate or cryptic oviposition sites.

Previous studies have shown that *A. aegypti* oviposit in a number of different habitats over the course of their gonotrophic cycle (22, 23) thus permitting a number of transfer events between resting and oviposition sites. In urban Iquitos, water volumes of 3–15 L account for the majority of *Aedes*-positive containers and the greatest pupal abundance (24). Positive containers tend to be those that are unmanaged (i.e., passively collected water is left standing for some days), which may facilitate the accumulation of lethal JHA concentrations through successive contamination events. Once lethal doses are achieved, pyriproxyfen can render domestic water storage containers unproductive for months rather than weeks (21). Adult *A. aegypti* mosquitoes are well suited for exploitation using this transfer technique because their resting sites have been well-described [e.g., dark spaces in houses (25, 26)] and appropriate dissemination traps are therefore simple to design and distribute. The concentration of pyriproxyfen that prevents adult emergence from local populations of third-instar *A. aegypti* larvae (LC$_{50}$) is 0.012 parts per billion (ppb) (21), which is equivalent to the transfer of ~0.4 µg of JHA dust to a 200-mL aquatic sentinel site; just 1/1,000th of the dry weight of an *A. aegypti* adult (27). Scanning electron microscopy of contaminated mosquitoes helps visualize the ease with which such tiny doses can be picked up on the tarsi of resting mosquitoes (Fig. 5). Adult *Aedes fig. 3. Postdeployment mortality in individual sentinel sites during the field trials. Points marked with * denote the only 3 sentinel sites that showed ≥ control mortality (i.e., ≤ the higher 95% CI displayed in Fig. 2). Simple regressions of sentinel site mortality against average distances from JHA dissemination stations are shown for trials 1 (black circles and line), 2 (gray circles and line), and 3 (white circles and dashed lines).

![Fig. 3](image-url)
juveniles may be adept at such pick-up and transfer through their oviposition behaviors but our study also revealed that several species of mosquito, of both sexes, rested in the dissemination stations. A number of species, in a variety of physiological states, might transfer JHA through oviposition or by resting behavior alone.

Pyriproxyfen acts mainly on the nonfeeding pupal stage. The significance of this is that its impact is largely unaffected by the compensatory, density-dependent mortality that can negate the effect of larvicides that act on earlier juvenile stages that compete for resources (28, 29). Therefore; even where pyriproxyfen kills <100% of juveniles, that mortality will translate into real decreases in adult emergence. Further intriguing characteristics of this JHA are that it sterilizes adult female mosquitoes (21) and decreases male spermiogenesis (30). These features might further enhance the impact of this JHA dissemination strategy. Pyriproxyfen also has favorable characteristics relevant to its widespread dissemination in the environment. It has a recommended drinking water limit of 300 ppb (ref. 31; www.who.int/water_health/dwq/chemicals/pyriproxyfen.pdf), well above the doses required for mosquito control (aquatic habitats are rendered unproductive at <1 ppb) and minimal environmental impact at such tiny quantities (21).

We did observe differences in mortality between our 2 test sites. The greater efficacy at site A may reflect the fact that it was more shaded and may therefore have sustained a greater abundance of mosquitoes (32) and a larger number of contamination events. Caged work in the laboratory established the positive relationship between the number of contaminated ovipositions, the accumulation of JHA, and the subsequent mortality of the juvenile cohorts developing therein (SI Text and Fig. S2). It is notable that our trials only deployed dissemination stations for very limited times (12 days) and measured mortality in sentinel habitats for these same brief periods. Given that the repeated contamination of stable aquatic sites will encourage the accumulation of JHA and increase the effective dose of insecticide, the longer-term deployment of dissemination stations should further increase the technique’s impact.

This insecticide application method might be particularly suited to the control of mosquitoes that develop in small, protected aquatic habitats in urban environments. The cemetery provided a plethora of small-volume habitats, protected from the flushing effects of rainfall, and A. aegypti is known to exhibit limited dispersal (33). The opportunities for the effective transfer and accumulation of lethal doses of JHA between dissemination stations and nearby sentinel sites were therefore maximized. It is however, interesting to speculate that it might be possible to apply this larviciding strategy to the control of Anopheles malaria vectors despite their greater dispersal capacities and their often larger-volume oviposition site preferences (34). For species such as Anopheles gambiae and Anopheles funestus the strategy might be suited to interventions during the dry season when the availability of larval habitats is restricted (35) and the remaining, stable water bodies are crucial to survival (6, 36). Using the terminology of our model, the smaller number and greater permanence of suitable dry season habitats would maximize the persistence of the larvicide (thereby optimizing U) and allow successive contamination events to the same site (increasing O/H). Resting and feeding habitats for these Anophelines have been well-described (34), and it is simple to envisage the design of JHA dissemination techniques involving the treatment of bed nets, interior walls, or even cattle. Aggressive dry-season control was central to the elimination of A. gambiae from huge tracts of Brazil and Egypt with far less elegant application methods (17).

For both malaria and dengue, integrated vector management approaches that attack both adult and juvenile stages can have a powerful impact on disease transmission (7, 37). One high-coverage, precision-targeted technique, which uses a relatively benign insecticide class with an unusual mode of action, is safe and simple. It may prove ideal for integration and alternation with other vector control tools. This chemical class is not yet resisted by any mosquito population (38); if adopted, the technique would need to be implemented within an integrated resistance management plan, probably involving the rotation or alternation of alternative control tools (39).

Methods

Trial Site. The city of Iquitos (73.2W, 3.75) lies in the Amazon forest, 120 m above sea level, in the department of Loreto, northeastern Peru. Iquitos has been described in detail in earlier studies (24). Our trials were carried out between April and September 2007 in the public cemetery. During this period, the local health authority did not carry out any vector control operations at this location, so our results were not confounded by any public health initiatives. During these months, Iquitos experienced average high temperatures of 30–32 °C and average lows of 21–22 °C. The cemetery has an abundance of container-breeding Culex spp. and A. aegypti (40). During the course of our study, adult A. aegypti, Culex spp and Psorophora spp were commonly observed resting in the tombs and in our dissemination stations. A brief “snapshot” survey during the trials revealed that 6/20 dissemination stations across sites A and B contained resting adult A. aegypti, 6/20 contained Culex spp, and 4/20 contained Psorophora spp. Both Culex spp and A. aegypti/larvae were also common in standing water in the cemetery.

The cemetery consists of a number of avenues (~50 m long and 6 m wide) running between walls of tombs. Two walls within neighboring and parallel avenues were chosen as our study sites. Site A (a wall of 318 tombs) was more shaded than site B (a wall of 204 tombs) and had a number of trees growing in its adjacent avenue (Fig. 1A). These walls contain 4–6 rows of sealed crypts between ground level and ~4 m. The mouth of each tomb is inset, leaving a shelf for a memorial plaque and, commonly, cement flower pots (Fig. 1B).

Experimental Procedure. It was not possible to run both the pre-JHA deployment controls and the post-JHA deployment treatments concurrently, because dispersal by a variety of adult mosquito species from treated sites might have contaminated control areas and confused the results. Instead we separated the controls and treatments in time. During both pretreatment and posttreatment periods we ran 3 trials in each avenue. After each test, all deployment, collecting, and monitoring materials were discarded to ensure that there was no accidental contamination of the sites with the JHA.

For each of the 3 trials, at both sites, we deployed 10 dissemination stations made from 1-L, plastic disposable pots containing 200 mL of water and lined with black cloth (Fig. 1C). During the reintervention period these cloths were left untreated. During the treatment phase, they were dusted with the
equivalent of 5 g of pyriproxyfen/m² (Sumitano 0.5G; Sumitomo Chemical Corporation; a 0.5% granular formulation) pulverized to the consistency of talcum powder. The water in these stations served to dampen the cloth lining and ensure that the pyriproxyfen remained attached to the cloth and available to resting mosquitoes.

In addition to the 10 dissemination stations, we distributed 40 sentinel oviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall. These consisted of 1-L disposable containers holding 200 mL of water and 25 unoviposition sites among the lower 3 rows of tombs in each wall.

The Epidemiology and Control of Malaria

ACKNOWLEDGMENTS

The Directors of the local Dirección de Salud, the Laboratorio de Salud Pública, and the Comité de Investigaciones in Peru gave written consent for the trials and associated protocols. Sra. Rosa Ochoa de Zamora, president of the Beneficencia Pública de Iquitos, allowed us access to the public cemetery. We thank Ernesto Curto, the director of the Laboratorio de Salud Pública, and Wagner Orellana Rios and Andras Rojas Estrella for expert technical assistance. G.J.D. was supported by the U.S. Army Medical Research and Development Command, Fort Detrick, Maryland. G.F.K. was supported by Research Career Development Fellowship 076806 from the Wellcome Trust.