Concept of Operations
for the Next Generation Air Transportation System

Joint Planning and Development Office | Version 3.2
Concept of Operations for the Next Generation Air Transportation System. Version 3.2

1. REPORT DATE
2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Concept of Operations for the Next Generation Air Transportation System. Version 3.2

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Joint Planning and Development Office, Next Generation Air Transportation System (NextGen), 1500 K St NW Ste 500, Washington, DC, 20005

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
153

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prepared by ANSI Std Z39-18
Preface

The Joint Planning and Development Office (JPDO) is continuing to refine a Concept of Operations (ConOps) for the Next Generation Air Transportation System (NextGen). This version of the ConOps provides an overall, integrated view of NextGen operations for the 2025 time-frame, including key transformations from today’s operations.

The development of the ConOps is an iterative and evolutionary process that encompasses the input and feedback of the aviation community. Version 3.2 of the document includes accepted comments resulting from an internal review and an expanded vision of the NextGen concepts and capabilities. Interested individuals can find details of the JPDO comment and review process at jpe.jpdo.gov under the Joint Planning Environment (JPE) section.
Document Revision Register

<table>
<thead>
<tr>
<th>Version</th>
<th>Document Content Added</th>
<th>Reviewer</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Initial document that includes the major “day-of-flight” air navigation elements that support operational activities of a flight moving from “block to block”</td>
<td>JPDO Staff and Integrated Product Teams</td>
<td>May 9, 2006</td>
</tr>
<tr>
<td>0.2</td>
<td>Major comments from Version 0.1 review</td>
<td>Aviation Stakeholder Community</td>
<td>July 24, 2006</td>
</tr>
<tr>
<td>1.0</td>
<td>Major comments from Version 0.2 review</td>
<td>Submitted to JPDO Board for Approval</td>
<td>Unreleased</td>
</tr>
<tr>
<td>1.1</td>
<td>Initial addition of remaining key NextGen Concepts that support operations from “curb to curb” as well as planning and strategic support functions</td>
<td>JPDO Staff and Integrated Product Teams</td>
<td>November 14, 2006</td>
</tr>
<tr>
<td>1.1a</td>
<td>Revised Version 1.1, including air navigation and flight operation concepts as well as revised Executive Summary</td>
<td>JPDO Staff and Integrated Product Teams</td>
<td>December 6, 2006</td>
</tr>
<tr>
<td>1.1b</td>
<td>Major comments from Version 1.1/1.1a review</td>
<td>Integrated Product Team Leads</td>
<td>January 29, 2007</td>
</tr>
<tr>
<td>1.2</td>
<td>Major comments from Version 1.1/1.1a/1.1b review</td>
<td>Aviation Stakeholder Community</td>
<td>February 28, 2007</td>
</tr>
<tr>
<td>2.0</td>
<td>Major comments from Version 1.2 review</td>
<td>Submitted to JPDO Board for Approval</td>
<td>June 13, 2007</td>
</tr>
<tr>
<td>3.0</td>
<td>Incorporated NextGen Capabilities, Comments from Version 1.2 review, SSA and NCO ConOps</td>
<td>JPDO Staff and Working Groups</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>3.1</td>
<td>Addressed Deferred Comments from Version 3.0</td>
<td>JPDO Staff and Working Groups</td>
<td>April 10, 2010</td>
</tr>
<tr>
<td>3.2</td>
<td>Addressed comments from 3.1 and revised section 3.2 “Airside Operations”</td>
<td>JPDO Staff and Working Groups</td>
<td>September 30, 2010</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

PREFACE... I

DOCUMENT REVISION REGISTER .. II

TABLE OF CONTENTS ... III

EXECUTIVE SUMMARY ... 1

1 INTRODUCTION ... 1-1

1.1 NEXTGEN ENVIRONMENT .. 1-1

1.2 BACKGROUND .. 1-2

1.2.1 Key Characteristics of NextGen ... 1-3

1.2.2 NextGen Planning Organization ... 1-7

1.3 NEXTGEN STAKEHOLDERS .. 1-9

1.4 OVERVIEW OF NEXTGEN CONCEPTS AND CAPABILITIES ... 1-10

1.5 DOCUMENT SCOPE AND ORGANIZATION .. 1-14

2 AIR TRAFFIC MANAGEMENT OPERATIONS ... 2-1

2.1 INTRODUCTION .. 2-1

2.2 COLLABORATIVE AIR TRAFFIC MANAGEMENT .. 2-8

2.2.1 Capacity Management .. 2-10

2.2.2 Flow Contingency Management ... 2-12

2.3 TRAJECTORY-BASED OPERATIONS .. 2-13

2.3.1 Trajectory Management (TM) Process ... 2-15

2.3.2 Separation Management Process .. 2-15

2.3.3 TBO Aircraft Procedures .. 2-17

2.4 TRANSFORMED ROLES AND RESPONSIBILITIES .. 2-25

2.4.1 Functional Task Allocation ... 2-26

2.4.2 Human-to-System Interactions ... 2-26

2.4.3 Flight Operator Roles and Vehicle Types .. 2-27

2.4.4 Transformations in ANSP Processes .. 2-32

3 AIRPORT OPERATIONS AND INFRASTRUCTURE SERVICES ... 3-1

3.1 INTRODUCTION .. 3-1

3.2 AIRSIDE OPERATIONS .. 3-2

3.2.1 Enhanced Airside Safety & Security ... 3-3

3.2.2 Improved Airside Operational Efficiency Especially in Non-Movement Areas 3-4

3.2.3 Enhanced Airside Facility Management .. 3-5

3.2.4 Enhanced Airside Maintenance ... 3-6

3.2.5 Enhanced Winter Operations ... 3-6

3.2.6 Surface Data Availability and Management ... 3-7

3.3 TRANSFORMED LANDSIDE AND PASSENGER TERMINAL OPERATIONS 3-7
Table of Contents

3.3.1 Landside Resource and Passenger Flow Management ... 3-7
3.3.2 Passenger Processing and Security ... 3-8
3.3.3 Off-Airport Passenger and Baggage Processing Enabled through Integrated Trip Tracking .. 3-8
3.3.4 Intermodal Ground Access .. 3-8
3.4 TRANSFORMED AIRPORT DEVELOPMENT ... 3-9
 3.4.1 Airport Preservation .. 3-9
 3.4.2 Catalysts for Airport Development Actions .. 3-11
 3.4.3 Efficient, Flexible, and Responsive Airport Planning Processes 3-11
 3.4.4 Regional System Planning .. 3-12
 3.4.5 Flexible Terminal Design ... 3-14
 3.4.6 Optimized Airfield Design ... 3-14
 3.4.7 Airport Congestion Management .. 3-16
3.5 CHALLENGES TO NEXTGEN AIRPORTS ... 3-17
4 NET-CENTRIC OPERATIONS .. 4-1
 4.1 INTRODUCTION .. 4-1
 4.2 TRANSFORMED NET-CENTRIC OPERATIONS ... 4-3
 4.2.1 NextGen Enterprise Network ... 4-4
 4.2.2 Network Management & Security ... 4-5
 4.2.3 Air-Ground Networking ... 4-6
 4.3 INTEGRATED NEXTGEN INFORMATION .. 4-7
 4.3.1 Transformed Network-Enabled Trajectory Management (TM) 4-7
 4.3.2 Transformed Network-Enabled Collaborative Capacity Management 4-8
 4.3.3 Transformed Network-Enabled Collaborative Flow Contingency Management ... 4-9
 4.3.4 Transformed Network-Enabled Weather .. 4-9
 4.4 AIR DOMAIN AWARENESS ... 4-9
5 SHARED SITUATIONAL AWARENESS SERVICES .. 5-1
 5.1 INTRODUCTION .. 5-1
 5.2 INTEGRATED NEXTGEN INFORMATION .. 5-1
 5.2.1 Integrated Surveillance Information ... 5-1
 5.2.2 Positioning, Navigation, and Timing Services 5-3
 5.2.3 Aeronautical Information Services .. 5-6
 5.3 INTEGRATED AIR DOMAIN AWARENESS ... 5-7
 5.3.1 Coordinated Security ... 5-8
 5.3.2 Domain Awareness .. 5-10
 5.4 INTEGRATED WEATHER INFORMATION .. 5-11
 5.4.1 Weather Information Operations ... 5-12
 5.4.2 Weather Information Enterprise Services .. 5-14
Table of Contents

6 Layered, Adaptive Security Services

- **6.1 Introduction** ... 6-1
- **6.1.1 NextGen Security Management and Collaborative Framework** .. 6-2

6.2 Integrated Risk Management (IRM) .. 6-4

6.3 Security Services .. 6-5

- **6.3.1 Secure People** ... 6-5
- **6.3.2 Secure Airports** ... 6-6
- **6.3.3 Secure Checked Baggage** ... 6-7
- **6.3.4 Secure Cargo/Mail** ... 6-7
- **6.3.5 Secure Airspace** ... 6-8
- **6.3.6 Secure Aircraft** .. 6-9

7 Environmental Management Framework 7-1

- **7.1 Introduction** .. 7-1
- **7.2 Improved Environmental Performance of System Components** .. 7-2

7.2.2 Environmental Management Framework Policies and Capabilities 7-5

7.2.3 Environmental Management Framework Support .. 7-9

8 Safety of Air Transportation Services ... 8-1

- **8.1 Introduction** .. 8-1
- **8.1.1 National Aviation Safety Strategic Plan** ... 8-2
- **8.1.2 Safety Improvement Culture** ... 8-2
- **8.1.3 Safety Risk Management** ... 8-2
- **8.1.4 Safety Information Integration** .. 8-3
- **8.1.5 Enhanced Safety Assurance** .. 8-3

8.2 Safety Management Enterprise Services and Capabilities 8-4

- **8.2.1 Aviation Safety Strategic Plan Service** 8-4
- **8.2.2 Safety Promotion Service** ... 8-4
- **8.2.3 Safety Risk Management Service** 8-4
- **8.2.4 Safety Information Integration Service** 8-5
- **8.2.5 Safety Assurance Service** ... 8-5

8.3 Integration of SMS into NextGen Services 8-5

Appendix A: Acronyms ... 1

Appendix B: Glossary ... 1
LIST OF FIGURES

125 Figure 2-1 Air Traffic Management Operations and Services .. 2-3
126 Figure 2-2 ATM Decisions—Interactive and Integrated Across Time Horizons 2-6
127 Figure 2-3 Collaborative ATM Among the ANSP and Operators .. 2-10
128 Figure 2-4 Four-Dimensional Trajectory .. 2-19
129 Figure 2-5 Flow Corridors ... 2-21
130 Figure 2-6 High-density Operations ... 2-23
131 Figure 2-7 Relative Influence of the ANSP and Aircraft/Pilot in ATM Decisions 2-26
132 Figure 2-8 Space Operations in the NextGen NAS .. 2-31
133 Figure 4-1 NextGen Information Users .. 4-1
134 Figure 4-2 Net-Centric Infrastructure Overview ... 4-2
135 Figure 4-3 NextGen Enterprise Network .. 4-5
136 Figure 5-1 Positioning, Navigation, and Timing Overview ... 5-4
137 Figure 5-2 Surveillance Overview ... 5-8
138 Figure 5-3 NextGen Weather Dissemination Foundation .. 5-14
139 Figure 6-1. Net-Centric Operations with Shared Situational Awareness 6-2
140 Figure 6-2. Secure Airspace - Security Restricted Airspace .. 6-9
141 Figure 7-1. Environmental Management Framework ... 7-6

LIST OF TABLES

145 Table 1-1 NextGen Goals and Objectives .. 1-3
146 Table 2-1 Summary of En Route and Oceanic Trajectory-Based Operations 2-21
147 Table 2-3 NextGen Surface Operation Transformations .. 2-24
148 Table 2-4 Flight Operator Roles ... 2-29
149 Table 2-5 Air Navigation Service Provider Personnel Roles .. 2-33
150 Table 2-6 Personnel Management Transformations .. 2-34
Executive Summary

The U.S. air transportation system is under significant stress. With demand in aircraft operations expected to grow significantly through the 2025 time frame, there are well-founded concerns that the current air transportation system will not be able to accommodate forecasted growth. Many legacy systems are unable to process and provide flight information in real-time. Current processes and procedures do not provide the flexibility needed to meet these growing requirements. New security requirements are affecting the ability to move people and cargo efficiently. In addition, the growth in air transportation has heightened community concerns over aircraft noise, air quality and climate impacts, and congestion. New technologies and processes are necessary to meet the need for increased capacity and efficiency, while maintaining safety and mitigating environmental impacts. In response to these concerns, the Joint Planning and Development Office (JPDO) developed the Next Generation Air Transportation System (NextGen) Concept of Operations (ConOps).

The ConOps serves as a steering vision for 2025. It is not intended to describe the specific details needed for program planning or implementation. Its intended outcome is to provide a baseline, that forms a widely understandable summary of the 2025 NextGen goals, objectives, concepts, capabilities, and planned transformations needed to realize the NextGen vision.

Figure ES-1 JPDO NextGen Planning
A combination of new procedures and technological advances currently developed, deployed or planned for the National Airspace System (NAS) make NextGen Goals attainable. The Next Generation Air Transportation System’s Integrated Plan (2004) and NGATS 2005 Progress Report detailed the problems facing the NAS and identified six goals, and 19 objectives to achieve the NextGen vision:

Table ES-1 NextGen Goals and Objectives

<table>
<thead>
<tr>
<th>GOALS</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retain U.S. Leadership in</td>
<td>Retain role as world leader in aviation</td>
</tr>
<tr>
<td>Global Aviation</td>
<td>Reduce costs of aviation</td>
</tr>
<tr>
<td></td>
<td>Enable services tailored to traveler and shipper needs</td>
</tr>
<tr>
<td></td>
<td>Encourage performance-based, harmonized global standards for U.S. products</td>
</tr>
<tr>
<td></td>
<td>and services</td>
</tr>
<tr>
<td>Expand Capacity</td>
<td>Satisfy future growth in demand and operational diversity</td>
</tr>
<tr>
<td></td>
<td>Reduce transit time and increase predictability</td>
</tr>
<tr>
<td></td>
<td>Minimize impact of weather and other disruptions</td>
</tr>
<tr>
<td>Ensure Safety</td>
<td>Maintain aviation’s record as safest mode of transportation</td>
</tr>
<tr>
<td></td>
<td>Improve level of safety of U.S. air transportation system</td>
</tr>
<tr>
<td></td>
<td>Increase level of safety of worldwide air transportation system</td>
</tr>
<tr>
<td>Protect the Environment</td>
<td>Reduce noise, emissions, and fuel consumption</td>
</tr>
<tr>
<td></td>
<td>Balance aviation’s environmental impacts with other societal objectives</td>
</tr>
<tr>
<td>Ensure Our National Defense</td>
<td>Provide for common defense while minimizing civilian constraints</td>
</tr>
<tr>
<td></td>
<td>Coordinate a national response to threats</td>
</tr>
<tr>
<td></td>
<td>Ensure global access to civilian airspace</td>
</tr>
<tr>
<td>Secure the Nation</td>
<td>Mitigate new and varied threats</td>
</tr>
<tr>
<td></td>
<td>Ensure security efficiently serves demand</td>
</tr>
<tr>
<td></td>
<td>Tailor strategies to threats, balancing costs and privacy issues</td>
</tr>
<tr>
<td></td>
<td>Ensure traveler and shipper confidence in system security</td>
</tr>
</tbody>
</table>

The following eight key NextGen concepts were identified as necessary to achieve the NextGen goals and objectives. A brief description of the NextGen concepts is contained below:

- **Net-Centric Operations (Network-Enabled Information Access)** - provides secure information access, available in real-time for Communities of Interest (COI) and air transportation domains. This greater accessibility enables better distribution of information and improves the speed, efficiency, and quality of the decision-making process.

- **Performance-Based Operations and Services** – through regulations and procedural requirements in addition to technology or equipment, minimum performance levels are required to maximize capacity in congested airspace during specific periods. Service providers can define capability improvements in terms of users’ existing equipage maximizing the value of the service providers’ and users’ investments.

- **Weather Assimilated into Decision Making** – directly applies both probabilistic and observed weather information to Air Traffic Management (ATM) decision tools, increasing the effective use of weather information and minimizing the adverse effects.

- **Layered, Adaptive Security** – deploys a multi-layered security system (including techniques, tools, sensors, processes, information, and a robust integrated risk
management [IRM system] that leverages technology and net-centric information sharing to deter threats proportional to the assessed risk.

- **Positioning, Navigation, and Timing (PNT) Services (Broad-Area Precision Navigation)** - utilizes satellite navigation to accurately and precisely determine one’s current location and orientation in relation to one’s desired path and position.

- **Trajectory-Based Operations (TBO)** - dynamically adjusts a flight path in space (longitude, latitude, altitude) and time using a known position and intent; more accurately allowing the decrease in separation and increase in NAS capacity.

- **Equivalent Visual Operations (EVO)** - provides aircraft operators with the critical visual information needed to maintain safe distances from other aircraft, terrain, and airport infrastructure during night and instrument metrological conditions utilizing advanced cockpit technologies supported by ground based infrastructure.

- **High-density Arrival/Departure Operations** – utilizes advanced technologies and procedures in congested airspace/airports to improve terminal aircraft movements, reducing spacing and separation requirements, while improving arrival and departure sequencing.

These transformational concepts described above are the driving factors for NextGen. They encompass air traffic management, airports, security, and environmental management, to achieve greater safety and efficiency; protect our airspace, people and infrastructure; and leverage innovative technologies, such as satellite-based navigation and surveillance in order to create a scalable NAS. Furthermore, these concepts are flexible enough to manage variations in demand, capacity, and aircraft fleet types both manned and unmanned, seamlessly integrating civil, commercial, and military operations.

Building upon the NextGen concepts, this ConOps is organized around a set of NextGen capabilities which detail the overall effect desired through the implementation of specific standards, processes and conditions. The nine NextGen capabilities identified by the JPDO provide:

- Collaborative Capacity Management
- Collaborative Flow Contingency Management
- Efficient Trajectory Management (TM)
- Flexible Separation Management (SM)
- Air Transportation Security
- Improved Environmental Performance
- Improved Safety Operations
- Flexible Airport Facility and Ramp Operations
Integrated NextGen Information

NextGen capabilities emphasize system flexibility, scalability, robustness, and resiliency. They also stress the importance of distributed decision making, international coordination, increased user focus, and the provisioning of information to users while reducing the need for government intervention and resource control.

NextGen capabilities create a top-down, architectural perspective, laying out a performance-based rationale. The ConOps expresses each capability in operational terms that are implemented through various combinations of operational improvements, enabling solutions, policies, programs, and systems. With NextGen capabilities, the JPDO incorporates a planning framework to organize the collection of pertinent information to provide a coherent and compelling value proposition for the 2025 air transportation system. The nine NextGen capabilities provide clear alignment between the investment portfolio and the resulting value to the following stakeholders:

- **Airport Communities** - cities and towns located in the vicinity of airports that have a vested interest in and are affected by the operation of the airport
- **Airport Operators** - responsible for enabling passenger, flight, and cargo operations conducted within an airport with consideration for safety, efficiency, resource limitations, and local environmental issues
- **Airport Tenants** - who are involved in airport operations, such as fueling, maintenance or catering services
- **Air Navigation Service Provider (ANSP)** - engaged in providing ATM and Air Traffic Control (ATC) services for flight operators for the purpose of safe and efficient flight operations. ATM responsibilities include Communications, Navigation, and Surveillance (CNS). They also include ATM facility planning, investment, and implementation; procedure development and training, and ongoing system operation and maintenance of seamless CNS/ATM services.
- **Users** - including civil, government, and military, using NAS services.
- **Flight Operators** - responsible for planning and operating a flight within the NAS. This includes flight crews, Flight Operations Centers (FOC), private, business, scheduled air transport, government, and military operators.
- **Manufacturers** - who produce items that support flight operations to include: airframes, aircraft engines, avionics, aircraft systems and parts, airport and ATM equipment and infrastructure, Decision Support Systems (DSS), and other components.
- **Resource Owners** - responsible for making investment decisions related to development and implementation.
- **Regulatory Authorities** - responsible for governing aspects of the overall performance of the aviation industry including safety, security, standardization, certification, environmental effects, and international trade.
• **Researchers** - engaged in conducting Research and Development (R&D) activities that support the evolution of the air transportation system, including academia and government organizations.

• **Security and Defense Providers** - responsible for national security and homeland defense, law enforcement, and information security, as well as the physical and operational security of the NAS.

• **Weather Service Providers** - engaged in the provision of aviation weather products.

The transformation from clearance-based operations to TBO, as required by demand and complexity, increases system capacity, flow management, and efficiency. Advancements in aircraft systems allow for reduced separation and facilitate the transition from rules-based operations to performance-based operations. In addition, the transition of separation responsibility from the controller to the flight crew, in certain areas, allows controllers to focus on overall flow instead of individual flight management.

Airports, which incorporate Air Traffic Management (ATM), security, and environmental goals, are the nexus of many of the NextGen transformational elements. New technology and procedures will improve access to airports, enabling better utilization of existing infrastructure. Accordingly, the sustainability and advancement of the airport system is critical to the growth of the NAS. A preservation program to increase community support and protect against encroachment will enhance sustainability of existing airports. Finally, new airport infrastructure will be developed using a comprehensive planning architecture that integrates facilities, finance,
regional systems, and environmental improvements to enable a more efficient, flexible, and responsive system.

At the heart of the NextGen concept is an information-sharing component known as Net Centric Operations (NCO). Its features adapt to growing operations and shifts in demand, making NextGen a scalable system. NCO also provides the foundation for robust, efficient, secure, and timely flow of information to and from a broad community of users and individual subscribers. This flow results in a system that minimizes duplication, achieves integration, and facilitates distributed decision making by ensuring that all users have relevant and reliable information upon which to base a decision.

Embedded in NCO is Shared Situational Awareness (SSA). SSA offers a suite of tools and information designed to provide participants with real-time aeronautical and geospatial information, communicated and interpreted electronically without the need for human intervention. A reliable, common weather picture provides data and automatic updates to a wide range of users, aiding optimal air transportation decision making. Additionally, PNT services reduce dependence on costly, ground-based navigational aids by providing users with a more precise and reliable source of global positioning and timing information. This allows users to accurately and efficiently determine their orientation, course, and speed necessary to arrive at their desired destination. Real-time situational awareness integrates cooperative and non-cooperative surveillance data from all air vehicles to safely navigate in the NAS.

Security services are provided by a risk-informed security system that deploys multiple technologies adaptively scaled and arranged to defeat a given threat. New policies and procedures also aid in passenger screening and checkpoint responsibilities. Baggage screening improvements include integrated Chemical, Biological, Radiological, Nuclear, and high-yield Explosives (CBRNE) detection in a range of sizes that facilitates portability and remote screening.

The development and implementation of an integrated environmental management system proactively addresses aviation ecological issues. Technologies incorporated before and during operations enable optimized route selection, as well as landing and take-off patterns based on a range of data feeds to reduce noise, air emissions and fuel burn, while increasing operational efficiency. At airports, a flexible, systematic approach identifies and manages environmental resources that are critical to sustainable growth. Additionally, aircraft design continues to incorporate environmental considerations that proactively address noise reduction, while reducing aircraft engine emissions.

Aviation safety steadily improves to accommodate the anticipated growth in air traffic through an integrated Safety Management System (SMS). A national aviation safety policy implements and oversees safety requirements for all participants. This policy encourages a safety improvement culture and uses non-reprisal reporting systems to identify concerns or incidents. Safety assurance focuses on a holistic view of operators’ processes and procedures, rather than the individual pieces of the system. Prognostic assessments using modeling, simulation, data analysis and data sharing improve Safety Risk Management (SRM). Technological advances will
be utilized in both airborne and ground systems to provide improved decision making by improving situational awareness and safety for the flight crews and controllers.

NextGen is a complex system with many public and private sector stakeholders that must smoothly, promptly, and capably integrate with the envisioned changes to the global air transportation system. Federal agencies, national defense, homeland security, ATM, scheduled air transport and General Aviation (GA) operators, and airports must work together to support passenger, cargo, recreational, and military operations. Through a seamless and transparent information infrastructure and shared services environment, users gain a common picture of the operational information necessary to safely and efficiently perform in the NextGen NAS. Implementation of these integrated NextGen capabilities will enable us to meet the nation’s future demand for the most effective, efficient, safe, and secure air transportation system.
1 Introduction

The Next Generation Air Transportation System (NextGen) Concept of Operations (ConOps) describes the operational concept as envisioned in the 2025 time frame. It provides a robust framework for the aviation stakeholder community to discuss the vision of improvements needed to achieve national and global goals for air transportation. The concepts and capabilities presented in this ConOps provide an operational view of how air traffic and airports are managed and how security is provided to protect our airspace and people. It also depicts how goals for protecting and enhancing our environment are achieved, and how advanced technologies and processes in government and civil organizations provide increased safety and efficiency.

1.1 NextGen Environment

In the NextGen time-frame, demand for air transportation and other airspace services will grow from today’s levels, in terms of passenger volume, amount of cargo shipped, and overall flights. With respect to air traffic, changes will occur not only in the number of flights, but also in the characteristics of those flights. NextGen planning is required to meet anticipated demand. Figure 1-1 illustrates some of the potential variations in demand characteristics. NextGen must be flexible enough to manage variations in number of passengers, types of aircraft flown, and overall number of flights.

Overall, NextGen will accommodate significantly increased traffic levels with broader aircraft performance envelopes and more operators within the same airspace, increasing the complexity and coordination requirements of ATM. The NextGen concepts and capabilities will be critical to meet NextGen goals and objectives.
1.2 BACKGROUND

Public Law 108-176, Vision 100--Century of Aviation Reauthorization Act, December 12, 2003, established a mandate for the design and deployment of an air transportation system to meet the nation’s needs in 2025. The legislation also established the Joint Planning and Development Office (JPDO) to manage the public/private partnership and coordinate the transformation efforts required to carry out the NextGen mission.

The JPDO is a joint initiative of the Departments of Commerce (DOC), Defense (DOD), Homeland Security (DHS), and Transportation (DOT), as well as the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA), Office of the Director of National Intelligence (ODNI), and the White House Office of Science and Technology Policy (OSTP). In addition to these government agencies, the JPDO includes the NextGen Institute, which provides access to the knowledge, skills, and subject matter expertise of the private aviation stakeholder communities. Furthermore, the NextGen Institute facilitates, two-way communication process between the government and the private sector.

In accordance with the requirements of the legislation, on December 12, 2004, the Secretary of Transportation and the FAA Administrator delivered to Congress the Next Generation Air Transportation System Integrated Plan (NGATS Integrated Plan). This plan sets forth the National Vision for Air Transportation in 2025, as well as JPDO’s approach to achieving air transportation system transformation. The vision emphasizes a shift in how information is accessed, allowing those who use the air transportation system to have more direct access to information affecting their operations.

The NGATS Integrated Plan clearly defines the problem: The U.S. air transportation system, as we know it, is under significant stress. With demand in aircraft operations expected to grow significantly through the 2025 time frame, there are well-founded concerns that the current air transportation system will not be able to accommodate this growth. Many legacy systems are unable to process and provide flight information in real time, while current processes and procedures do not provide the flexibility needed to meet growing demand. New security requirements are affecting the ability to move people and cargo quickly and efficiently. In addition, the growth in air transportation has elicited community concerns over aircraft noise, air quality, and congestion. New technologies and processes are required to meet the need for increased capacity and efficiency while maintaining safety.

The NGATS Integrated Plan recognizes these national needs and identifies six national and international goals and 19 objectives for successful NextGen implementation (Table 1-1.)
Separately, each goal represents an ambitious agenda. Meeting these NextGen goals and objectives requires a transformation that embraces new concepts, technologies, networks, policies, and business models.

<table>
<thead>
<tr>
<th>GOALS</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retain U.S. Leadership in Global Aviation</td>
<td>Retain role as world leader in aviation</td>
</tr>
<tr>
<td></td>
<td>Reduce costs of aviation</td>
</tr>
<tr>
<td></td>
<td>Enable services tailored to traveler and shipper needs</td>
</tr>
<tr>
<td></td>
<td>Encourage performance-based, harmonized global standards for U.S. products and services</td>
</tr>
<tr>
<td>Expand Capacity</td>
<td>Satisfy future growth in demand and operational diversity</td>
</tr>
<tr>
<td></td>
<td>Reduce transit time and increase predictability</td>
</tr>
<tr>
<td></td>
<td>Minimize impact of weather and other disruptions</td>
</tr>
<tr>
<td>Ensure Safety</td>
<td>Maintain aviation’s record as safest mode of transportation</td>
</tr>
<tr>
<td></td>
<td>Improve level of safety of U.S. air transportation system</td>
</tr>
<tr>
<td></td>
<td>Increase level of safety of worldwide air transportation system</td>
</tr>
<tr>
<td>Protect the Environment</td>
<td>Reduce noise, emissions, and fuel consumption</td>
</tr>
<tr>
<td></td>
<td>Balance aviation’s environmental impacts with other societal objectives</td>
</tr>
<tr>
<td>Ensure Our National Defense</td>
<td>Provide for common defense while minimizing civilian constraints</td>
</tr>
<tr>
<td></td>
<td>Coordinate a national response to threats</td>
</tr>
<tr>
<td></td>
<td>Ensure global access to civilian airspace</td>
</tr>
<tr>
<td>Secure the Nation</td>
<td>Mitigate new and varied threats</td>
</tr>
<tr>
<td></td>
<td>Ensure security efficiently serves demand</td>
</tr>
<tr>
<td></td>
<td>Tailor strategies to threats, balancing costs and privacy issues</td>
</tr>
<tr>
<td></td>
<td>Ensure traveler and shipper confidence in system security</td>
</tr>
</tbody>
</table>

The NGATS Integrated Plan lays out challenges facing the air transportation system. It also highlights the motivation for the air transportation system to grow and continue to serve the national and international community while responding to tremendous social, economic, political, environmental, and technological changes worldwide. During the next two decades, demand is expected to increase, creating a need for a system that (1) supports increased capacity, (2) is agile enough to accommodate a changing fleet that includes Very Light Jets (VLJ), Unmanned Aircraft Systems (UAS), and space vehicles, (3) addresses security and national defense requirements, and (4) can ensure that aviation remains an economically viable industry.

1.2.1 Key Characteristics of NextGen

To meet the goals and objectives, the NextGen vision involves a transformed air transportation system that allows all communities to participate in the global marketplace.

1.2.1.1 User Focus

A major theme is an emphasis on providing more flexibility and tailored information to users, while reducing the need for government intervention and control of resources. NextGen enables operational and market freedom through greater situational awareness and data accessibility. It aligns government structures, processes, strategies, and business practices with customer needs.
With a focus on users, NextGen is also more agile in responding to user needs. Capacity is expanded to meet demand by investing in new infrastructure and shifting resources (e.g., airspace structures and other assets). More efficient procedures allow reductions in separation between aircraft to safely increase airport throughput thereby minimizing the effects of constraints such as weather on overall system capacity. The system will be flexible enough to cost effectively adjust to varying levels of demand, allowing more creative sharing of airspace capacity for law enforcement, military, scheduled air transport, and General Aviation (GA) users. Users will have greater access to airspace unless restrictions are required to address a safety or security need.

Aircraft must have a wider range of capabilities (e.g. improved avionics, airframes, and engines) than are available today. These capabilities must support varying levels of total system performance via onboard systems and associated crew training. Many aircraft will have the ability to perform self-separation, spacing, and merging tasks to precisely navigate and execute 4DT. Along with navigation accuracy, these aircraft will have improved levels of cooperative surveillance performance via transmission and receipt of real-time cooperative surveillance information. Aircraft will also have the ability to observe and share up-to-date weather information. In terms of flight operational performance, a wider range of improvements in cruise speed, cruise altitudes, turn rates, climb and descent rates, stall speeds, reduced noise/ emissions will exist. Aircraft without an on-board pilot (e.g., Remotely Piloted Aircraft [RPA], UAS) will operate among traditional manned, piloted aircraft. Domestic supersonic cruise operations are also expected to be more prevalent.

Operators will have a diverse range of abilities and modes that will focus on the user. Many operators will have sophisticated flight and fleet planning capabilities to manage their operations. Operations will include traditional hub/spoke operations, point-to-point flights, military, training, and recreational flying. Operational demand may vary among highly structured flights (e.g., today’s air carrier, cargo, or operators), irregularly scheduled flights with frequent trips to regular destinations with variable dates and times (e.g., air taxi operators or business operators with regular customers), and unscheduled, itinerant flights driven by individual events (e.g., lifeguard flights, personal trips, or law enforcement missions). In addition, new types of operations, including widespread UAS activity that perform various government and civil missions (e.g., National Defense, border security, disaster response, public safety, search and rescue, environmental research, and cargo delivery) and more frequent commercial space vehicle operations (e.g., suborbital flights to low-earth-orbit payload delivery and return missions) will make the skies more diverse. Commercial space transport operations will grow, increasing pressures to balance competing needs for airspace access and efficiency.

1.2.1.2 Distributed Decision Making

To the maximum extent possible, decisions are made at the local level with an awareness of system-wide implications. This includes an increased level of decision-making ability by the flight crew and Flight Operations Centers (FOC). Stakeholder decisions are informed by access to a comprehensive information exchange environment and a transformed Collaborative Decision-Making (CDM) process that allows wide access to information by all parties (both airborne and on the ground). Information is timely, relevant, accurate, quality assured, and within
established security procedures. Decision makers have the ability to request information when they need it, publish information as appropriate, and use subscription services to receive desired information automatically. This information environment enables more timely access to information and increased situational awareness while providing consistency of information among decision makers. As a result, decisions can be made more quickly, required lead times for implementation can be reduced, responses can be more specific, and solutions can be more flexible to change. To ensure that locally developed solutions do not conflict, decision makers use National Airspace System (NAS)-wide objectives and test solutions to identify interference and conflicts with other initiatives.

1.2.1.3 Integrated Safety Management System (SMS)

Safety is promoted through use of an integrated SMS approach for identifying and managing potential hazards. This includes equipment, organizational, operational or systems problems. Specifically, NextGen uses a formal, top-down, business-like approach to manage safety risk, which includes systematic procedures, practices, and policies for safety management.

Components of SMS include the following items:

- **Safety Policy.** Defines how the organization will manage safety as an integral part of its operations, and establishes SMS requirements, responsibilities, and accountabilities.

- **Safety Risk Management (SRM).** The formal process within the SMS that consists of describing the system; identifying the hazards; and assessing, analyzing, and mitigating the risk. The SRM process is embedded in the processes used to provide the product or service—it is not a separate process.

- **Safety Assurance.** SMS process management functions that systematically ensure that organizational products or services meet or exceed safety requirements. This includes the processes used to ensure safety, including audits, evaluations, and inspections and encompasses data tracking and analysis.

- **Safety Promotion.** Training, communication, and dissemination of safety information to strengthen the safety culture and support integration of the SMS into operations.

1.2.1.4 International Harmonization

The ATM system is globally harmonized through collaborative development and implementation of identified best practices in both standards and procedures. International harmonization also requires advocating for the highest operational standards for aircraft operators and Air Navigation Service Providers (ANSP) to ensure a safe and secure global air transportation system. International Civil Aviation Organization (ICAO) Planning and Implementation Regional Groups (PIRG) or multilateral agreements enable the planning and implementation of NextGen transformations to harmonize the application of technology and procedures. This harmonization allows airspace users to realize the maximum benefits of the NextGen transformations.

1.2.1.5 Taking Advantage of Human and Automation Capabilities

NextGen capitalizes on human and automation capabilities to increase airspace capacity, improve aviation safety, and enhance operational efficiency. This capitalization is accomplished
by building processes and systems that help humans do what they do best—choose alternatives
and make decisions. Additionally, automation systems accomplish what they do best—acquire,
compile, monitor, evaluate, and exchange information. Research and analysis will determine the
appropriate functional allocation of tasks among ANSP, flight operators, and automation. This
includes determining when decision support tools are necessary to support humans (e.g.,
identifying conflicts and recommending solutions for pilot approval) and when functions are
necessary to be completely automated.

1.2.1.6 Weather Operations

Users stop seeing weather information as separate data viewed on a “stand-alone” display.
Instead, weather information is integrated with decision-oriented automation and human
decision-making processes. Improved communications and information sharing allows all
stakeholders access to a single authoritative weather source. Weather data is translated into
information presented to NAS users and service providers, such as the likelihood of flight
deviation, airspace permeability, and capacity. Flight trajectory plans have an increased
understanding of the potential severity and probability of weather hazards. As a result, less
airspace is constrained because of weather. Operators of aircraft equipped with capabilities to
mitigate the effects of weather may choose to fly through certain weather-impacted areas.

Decision Support Systems (DSS) directly incorporate weather data and bypass the need for
human interpretation. This allows decision-makers to determine the best response to weather’s
potential operational effects (both tactical and strategic) and minimizes the level of traffic
restrictions. This integration of weather information, combined with the use of probabilistic
forecasts to address weather uncertainty and improved forecast accuracy, minimizes the effects
of weather on operations.

1.2.1.7 Environmental Management Framework

Environmental management is performed in the context of the NextGen objectives. Capacity
increases will be consistent with environmental protection goals to allow for sustained aviation
growth. New technology, procedures, and policies reduce impacts on community noise and local
air quality. They also mitigate water quality impacts, energy use, and climate effects.
Environmental compatibility combines improvements in aircraft design, aircraft performance and
operational procedures, land use around airports, and policies and incentives to accelerate
technology introduction into the fleet. Intelligent flight planning and improved flight
management enables the optimization of route selection, landing, and approach procedures based
on a range of data, including noise, emissions, and fuel burn, thereby reducing environmental
effects. Research and Development (R&D) and refined technology implementation strategies
balance near-term technology development and maturity needs with long-term cutting-edge
research, helping aircraft keep pace with changing environmental requirements.

1.2.1.8 Robustness and Resiliency

NextGen is more resilient and robust in responding to failures and/or disruptions to the NAS.
This includes contingency measures to provide continuity of operations in the face of major
outages, natural disasters, security threats, or other unusual circumstances. Moreover, increased
reliance on automation pairs will not require full reliance on human cognition as a backup.
NextGen maintains a balance of reliability, redundancy, and procedural backups to ensure safety in the event of individual systems or component failure. Ultimately NextGen provides a system that has high availability and requires minimal time to restore functionality.

1.2.1.9 Scalability

NextGen is adaptable to meet the changes in traffic loads and demands that occur every day and for decades to come, providing an overall system design that can handle a wide range of operations. Increased use of automation, reduced separation standards, high-density arrival/departure operations, and additional runways allow busy airports to move a large number of aircraft through the terminal airspace during peak traffic periods. Each of these features contributes to an environment that supports growth in operations. New improvements, such as Staffed NextGen Towers (SNT), enable the cost-effective expansion of services to a significantly larger number of airports than is possible with traditional methods of service delivery. Because of its scalability, NextGen is able to adapt to changes in short-term or long-term demand, even when the changes are not predicted.

1.2.2 NextGen Planning Organization

To achieve the 2025 vision, goals, and objectives identified in the NGATS Integrated Plan, today’s systems and processes must be rigorously and systematically transformed through the sustained, coordinated, and integrated efforts of many stakeholders. The NextGen goals identified in the NGATS Integrated Plan will be achieved through the deployment of new operational concepts and capabilities as well as procedures and technologies to manage passenger, cargo, and aircraft operations. To support this endeavor, the JPDO has developed and will continue to refine key areas of planning which include:

- ConOps
- Enterprise Architecture (EA)
- Integrated Work Plan (IWP)
- Portfolio Analysis

As identified in Figure 1-2, these planning areas describe “what” the NextGen end-state will be, “how” it will operate, and “when” capabilities and improvements will be introduced. They also reference “who” will be responsible for implementing the capabilities and improvements, and “why” the investment is beneficial to the nation.
The intent of this ConOps is to describe a vision that meets these national goals and to establish how to transform the air transportation system. Part of this transformation involves integrating and reshaping air transportation so that the entire system operates as an interconnected structure. In many cases, this builds on visionary material that captures the aviation community’s goals for different aspects of transportation. For ATM, many of the concepts build on the National Airspace System (NAS) Concept of Operations and Vision for the Future of Aviation and the ICAO Global ATM Operational Concept, which represents a globally harmonized set of concepts for the future.\(^1\)

The JPDO recognizes the need to develop an interoperable system with the international community because the effects of implementing NextGen technologies and procedures throughout the NAS will extend far beyond the borders of the United States. Coordination and collaboration on policy, system standards, operational procedures, avionics capabilities, and equipage milestones across international borders will promote global harmonization.

The overarching international aim of NextGen is the harmonization of systems and procedures to ensure civil and military interoperability across international boundaries and timely adoption of

\(^1\) RTCA, 2002
global standards and operational procedures that satisfy U.S. requirements. In order to realize
NextGen’s full benefits, efforts must be taken to ensure it will be capable of transcending
borders.

NextGen encompasses all aerospace transportation, not just aviation, and not just ATM. In
addition to technological innovation, NextGen emphasizes changes in organizational structure,
processes, strategies, policies, and business practices. Where applicable, NextGen includes shifts
in government and private sector roles that are required to exploit new technological solutions.

1.3 **NextGen Stakeholders**

The list of key NextGen stakeholders includes:

- **Airport Communities** - Cities and towns located in the vicinity of airports that have a
 vested interest in and are affected by the operation of the airport.

- **Airport Operators** - responsible for enabling passenger, flight, and cargo operations
 conducted within an airport with consideration for safety, efficiency, resource limitations,
 and local environmental issues.

- **Airport Tenants** - who are involved in airport operations, such as fueling, maintenance
 or catering services.

- **ANSP²** - engaged in providing ATM and Air Traffic Control (ATC) services for flight
 operators for the purpose of safe and efficient flight operations. ATM responsibilities
 include Communications, Navigation, and Surveillance (CNS). They also include ATM
 facility planning, investment, and implementation; procedure development and training,
 and ongoing system operation and maintenance of seamless CNS/ATM services.

- **Users** - including civil, government, and military, using NAS services.

- **Flight Operators** - responsible for planning and operating a flight within the NAS. This
 includes flight crews, FOC, private, business, scheduled air transport, government, and
 military operators.

- **Manufacturers** - who produce items that support flight operations to include: airframes,
 aircraft engines, avionics, aircraft systems and parts, airport and ATM equipment and
 infrastructure, DSSs, and other components.

- **Resource Owners** - responsible for making investment decisions related to development
 and implementation.

- **Regulatory Authorities** - responsible for governing aspects of the overall performance
 of the aviation industry including safety, security, standardization, certification,
 environmental effects, and international trade.

- **Researchers** - engaged in conducting R&D activities that support the evolution of the air
 transportation system, including academia and government organizations.

² Air Navigation Service Providers (ANSP) includes both civilian and military personnel.
Security and Defense Providers - responsible for national security and homeland
defense, law enforcement, information security, as well as the physical and operational
security of the NAS.

Weather Service Providers - engaged in the provision of aviation weather products.

1.4 OVERVIEW OF NEXTGEN CONCEPTS AND CAPABILITIES

As previously described, this ConOps provides an overall, integrated view of operations in the
2025 time frame. Many future outcomes are possible but they will depend on the insights gained
by the evolution of this ConOps.

The NextGen goals significantly increase the safety, security, capacity, efficiency, and
environmental compatibility of air transportation operations. These benefits can be achieved
through a combination of new procedures and advances in the technology deployed to manage
passenger, air cargo, and air traffic operations. The NGATS 2005 Progress Report identifies the
following concepts that will help achieve these goals and objectives:

- Net-Centric Operations (Network-Enabled Information Access). Through network-
 enabled information access, information is available, securable, and usable in real-time
 for Communities of Interest (COI) and air transportation domains. This greater
 accessibility enables better distribution of information and improves the speed,
 efficiency, and quality of this process. Information can be automatically provided to users
 with a known need and be available to users not previously identified as new needs arise.
 Information access improves operational decision making, enabling system operators the
 use of risk management practices to enhance safety. Cooperative surveillance for civil
 aircraft operations, where aircraft constantly transmit their position, is used with a
 separate sensor-based, non-cooperative surveillance system as part of an overall
 integrated federal surveillance approach.

- Performance-Based Operations and Services. Performance-based operations provide a
 foundational transformation of NextGen. Regulations and procedural requirements are
 described in performance terms rather than in terms of specific technology or equipment.
 Minimum performance levels are expected to be required to maximize capacity in
 congested airspace during specific periods of time. Service providers can use service tiers
 to create guarantees for different performance levels so that users can make the
 appropriate tradeoffs between investments and level of service desired to meet their
 needs. A benefit of performance-based operations and services is that service providers
 can define capability improvements in terms of users’ existing equipage, thus potentially
 maximizing the value of the service providers’ and users’ investments.

- Weather Assimilated into Decision Making. By assimilating weather into decision
 making, weather information becomes an enabler for optimizing NextGen operations.
 Directly applying both probabilistic and observed weather information to ATM decision
 tools increases the effective use of weather information and minimizes the adverse effects
 of weather on operation.
Layered, Adaptive Security. Layered, adaptive security includes a security system that consists of “layers of defense” (including techniques, tools, sensors, processes, information, and a robust Integrated Risk Management [IRM] system). This type of security system helps reduce the overall risk of a threat reaching its objective while minimally affecting efficient operations. Layered security is additive; failures in any one component should not have a catastrophic effect on other components. For that reason, the system is well suited to handle attacks and incidents, intrusions or attacks with minimal overall disruption. Layered, adaptive security adjusts the deployment of security assets in response to the changing IRM profile of risks; responses to anomalies and incidents are proportional to the assessed risk.

Positioning, Navigation, and Timing (PNT) Services (Broad-Area Precision Navigation). PNT services are near ubiquitous, in accordance with demand and safety considerations, to enable reliable aircraft operations in nearly all conditions. Rather than being driven by the geographic location of a ground-based Navigational Aid (NAVAID), NextGen PNT services allow operators to define the desired flight path based on their own objectives.

Trajectory-Based Operations (TBO). The basis for TBO is knowing each aircraft’s expected flight profile and time information (such as departure and arrival times) beforehand. The specificity of 4DT matches the mode of operations and the requirements of the airspace in which an aircraft operates. A major benefit of 4DT is that it enables service providers and operators to assess the effects of proposed trajectories and resource allocation plans, allowing service providers and operators to understand the implications of demand and identify where constraints need further mitigation.

Equivalent Visual Operations (EVO). Improved real-time information allows aircraft to conduct operations in less than direct visual observation. For aircraft, this capability, in combination with PNT, enables increased accessibility, both on the airport surface and during arrival and departure operations. This capability also enables those providing services at airports (such as ATM or other ramp services) to provide services in all visibility conditions, leading to more predictable and efficient operations.

High-density Arrival/Departure Operations. An even greater need exists to achieve peak throughput performance at the busiest airports, in the most crowded airspace, during peak times. New procedures to improve airport surface movements, reduce spacing and separation requirements, and better manage overall flows in and out of busy metropolitan airspace, maximize the use of the highest-demand airports. Airport terminals also optimize efficiency of egress and ingress, matching passenger and cargo flow to airside throughput while maintaining safety and security levels.

These concepts have been further incorporated into the NextGen capabilities (described further below). These concepts are used as a common framework among the JPDO planning elements to describe, organize, and align the NextGen portfolio.

Figure 1-3 provides an overall operational view of the environment envisioned in 2025. The air transportation system is a complex global system with many public and private sector stakeholders. NextGen integrates national defense and civilian functions to provide globally
harmonized services to both civil and military users. The integrated concepts provide the
capacity needed to meet the nation’s need for an optimized air transportation system in the most
effective, efficient, safe, and secure manner possible.

To help further describe the NextGen concept, the JPDO has identified a comprehensive set of
capabilities to provide a framework for synthesizing and aligning the advanced concepts with the
NextGen EA and IWP. The capabilities represent transformational improvements to the current
air transportation system. Employing various combinations of enabling solutions, such as
policies, programs, and systems will make NextGen capabilities a reality.

Figure 1-3 NextGen Community Model
The nine NextGen capabilities defined by the JPDO provide:

Collaborative Capacity Management (CM) - provides the ability to dynamically balance anticipated/forecasted demand and utilization. It allocates NAS resources through proactive and collaborative strategic planning with enterprise stakeholders and automation (e.g., DSS), that consider airspace and airport design requirements, standards, and configuration conditions. This is all conducted with the consideration of other air transportation system resources.

Collaborative Flow Contingency Management (FCM) - provides optimal, synchronized, and safe strategic flow initiatives and ensures the efficient management of major flows of traffic while minimizing the impact on other operations in collaboration with enterprise stakeholders, through real- or near-real-time resolutions informed by probabilistic decision making within established Capacity Management (CM) plans.

Efficient Trajectory Management (TM) - provides the ability to assign trajectories that minimize the frequency and complexity of aircraft conflicts through the negotiation and adjustment of individual aircraft trajectories and/or sequences when required by resource constraints.

Flexible Separation Management (SM) - provides the ability to establish and maintain safe separation minimums from other aircraft, vehicles, protected airspace, terrain and weather by predicting conflicts and identifying resolutions (e.g., course, speed, altitude, etc.) in real time. It facilitates increased capacity demands and traffic levels by using automation (e.g., DSS) while also introducing reduced separation standards into the trajectory equation.

Flexible Airport Facility and Ramp Operations - provide the ability to reallocate or reconfigure the airport facility and ramp assets to maintain acceptable levels of service that will accommodate increasing passenger and cargo demands. This includes changes in operational requirements, through infrastructure development, predictive analyses, and improvements to technology (e.g., automation and DSS) and procedures.

Integrated NextGen Information - provides authorized aviation stakeholders timely, accurate, and actionable information (e.g., weather, surveillance, aeronautical information, operational and planning information, and position, navigation and timing information), shortening and improving decision cycles situational awareness using a net-centric environment managed through enterprise services that meet the information exchange requirements of the NextGen stakeholder community.
Air Transportation Security - provides layered, adaptive security, based on IRM that yields the ability to identify, prioritize, and assess risks and effectively allocates resources in support of national defense and homeland security to facilitate the defeat of an evolving threat critical to the NAS infrastructure or key resources.

Improved Environmental Performance - provides the ability to proactively identify, prevent, and address environmental impacts in the air transportation system. This is accomplished, through a CDM process, improved tools, technologies, operational policies, procedures, and practices that are consistent and compatible with national and international environmental regulations.

Improved Safety Operations - provides integrated safety management throughout the air transportation system by increased collaboration and information sharing tools, equipment, and products for stakeholders. This capability employs improved automation (e.g., DSS), technology innovations, prognostic safety risk analysis, and enhanced safety promotion and assurance techniques that are consistent and compatible with national and international regulations, standards, and procedures.

With these capabilities, the JPDO has an effective joint planning framework to organize the significant collection of information in NextGen planning documents. This collection of information will provide a coherent and compelling value proposition for the 2025 air transportation system. The NextGen capabilities allow the JPDO and stakeholders to communicate using common terminology and provide clear alignment between the investment portfolio and the resulting value to the stakeholders and the Nation.

1.5 Document Scope and Organization

This document, organized into the following chapters, describes the operational concepts for the 2025 time frame. The implementation, research, and policy issues fundamental to the information contained in this document are available at www.jpdo.gov and within the Joint Planning Environment (JPE) at http://jpe.jpdo.gov.

- **Chapter 2.** Provides a description of *Air Traffic Management Operations*, including interactions among the ANSP and operators

- **Chapter 3.** Provides a detailed overview of the *Airport Operations and Infrastructure Services* that address the activities surrounding the airport

- **Chapter 4.** Addresses *Net-Centric Operations* that enable enterprise services

- **Chapter 5.** Provides an initial overview of specific *Shared Situational Awareness Services* that support the ATM-related concepts
Chapter 6. Provides a detailed perspective of Layered, Adaptive Security Services

Chapter 7. Describes how environmental impacts will be addressed and reduced in an Environmental Management Framework

Chapter 8. Addresses the Safety Management Services, including risk management efforts

Included in the document are the following appendices, which contain supplemental information for the reader:

Appendix A. Provides a list of acronyms used in this document

Appendix B. Provides a glossary of terms

Additional information on the glossary of terms and acronyms is located within the NAS/JPDO Enterprise Architectures Controlled Vocabulary contained within the JPDO JPE, in addition to supplemental information for the reader for all of the JPDO products.

This ConOps is part of the overall EA and will help formulate roadmaps and research recommendations to improve overall inter-governmental collaboration to achieve national goals for air transportation. This document, along with other engineering artifacts is applicable to all stakeholders and provides the basis for deriving top-level requirements.

The JPDO will update this document periodically as research, implementation, models, policy, budget realities, and other findings are assessed and as further dialogue helps refine common goals and priorities. This document also serves as the official record and repository for operational concept insights that emerge from the in-progress national debate on the scope, characteristics, and capabilities of NextGen.
2 Air Traffic Management Operations

2.1 INTRODUCTION

Air Traffic Management (ATM) is the dynamic, integrated management of air traffic and airspace—safely, economically, and efficiently—through the cost-effective provision of facilities and seamless services performed in collaboration with all parties. ATM evolves into an agile, robust, and responsive set of operations that can keep pace with the growing needs of an increasingly complex and diverse mix of air transportation system users. The three major goals, as described in the NGATS Integrated Plan, for ATM are:

- Meet the diverse operational objectives of all airspace users and accommodate a broader range of aircraft performance characteristics.
- Meet the needs of flight operators and other stakeholders for access, efficiency, and predictability in executing their operations and missions.
- Be fundamentally safe, secure, environmentally acceptable, affordable, and of sufficient capacity for both flight operators and service providers.

Today’s ATM system performs well, but it is susceptible to disturbances such as weather events, and is reaching its capacity limits. The ATM system should be scalable enough to respond quickly and efficiently to meet growing demand and flexible enough to respond to changes in fleet mix, customer schedules, and operational constraints (e.g., weather).

The overall philosophy driving the delivery of ATM services is to achieve a flexible system that accommodates flight operator performance optimization when and where possible while minimizing imposed restrictions by applying them only when user actions are not sufficient to balance demand and capacity. This philosophy also includes the need to meet capacity, safety, security, and environmental constraints. In other words, the ATM system, to the maximum extent possible, adjusts airspace and other assets to satisfy forecast demand, rather than constraining demand to match available assets.

Transformation of the ATM system is necessary because of the inherent limitations of today’s system, including limits driven by human cognitive processes and verbal communications. The ATM system integrates safety, capacity, security, and environmental requirements into all aspects of the system, including operations, decision support, automation, procedures, and airspace design.

To achieve the three major goals for ATM, a number of NextGen capabilities and changes in operations and services, which will change roles and responsibilities, are needed to change how ATM is performed. To assist in further achieving these ATM goals and describing the concepts, a set of capabilities has been identified to provide a framework for organizing the NextGen...
portfolio. These capabilities represent transformational improvements to the current air
transportation system and various combinations of enabling solutions, such as policies,
programs, and systems that will make these capabilities a reality.

The four ATM capabilities provide:

Collaborative Capacity Management - provides the ability to
dynamically balance anticipated/forecasted demand and utilization. It
allocates NAS resources through proactive and collaborative strategic
planning with enterprise stakeholders and automation (e.g., DSS), that
consider airspace and airport design requirements, standards, and
configuration conditions. This is all conducted with the consideration of
other air transportation system resources.

Collaborative Flow Contingency Management - provides optimal,
synchronized, and safe strategic flow initiatives and ensures the efficient
management of major flows of traffic while minimizing the impact on
other operations in collaboration with enterprise stakeholders, through
real- or near-real-time resolutions informed by probabilistic decision
making within established CM plans.

Efficient Trajectory Management (TM) - provides the ability to assign
trajectories that minimize the frequency and complexity of aircraft
conflicts through the negotiation and adjustment of individual aircraft
trajectories and/or sequences when required by resource constraints.

Flexible Separation Management (SM) - provides the ability to establish
and maintain safe separation minimums from other aircraft, vehicles,
protected airspace, terrain and weather by predicting conflicts and
identifying resolutions (e.g., course, speed, altitude, etc.) in real time. It
facilitates increased capacity demands and traffic levels by using
automation (e.g., DSS) while also introducing reduced separation
standards into the trajectory equation.

The ATM capabilities for collaborative capacity, flow contingency, trajectory, and separation
management describe at a high level vision for managing the increases in demand by maximizing
the use of available airspace, while increasing the safety, security, capacity, efficiency, and
environmental compatibility of air transportation operations. Automation is used to a greater
extent to manage complexity and expand the information that is available, and individual roles
migrate to more strategic management and decision making. As part of this shift in roles,
automation integrates the flight crew into ATM more, leveraging onboard aircraft capabilities to
achieve a scalable\(^3\) system design.

\(^3\) In this instance, scalability refers to the ATM ability to respond quickly and efficiently to increases in demand.
Additionally, aircraft equipage would provide improvements to the ATM process and result in enhancements of ANSP services. Typical aircraft equipage functionality and user benefits for most aircraft would include:

- Area Navigation (RNAV)/Required Navigation Performance (RNP) and Automatic Dependent Surveillance-Broadcast (ADS-B) In/Cockpit Display Traffic Information (CDTI)
- Improved data communications
- Enhanced weather sensors
- Improved navigation ability (accuracy and integrity)
- Satellite-based precision instrument approach ability

These additional equipage functionalities provide improvements in aircraft to ANSP information exchange, access, and throughput at non-towered or uncontrolled airports, and weather forecasting for reduced weather impacts. Additional equipage functionalities also provide direct and indirect benefits to the aircraft associated with improved overall NAS efficiency. These benefits include:

- Improved controller productivity
• Improved operational efficiency in convective weather by reducing flight time
• Improved operational predictability enabled by reduced impact of disruptions
• Improved access to congested resources for more capable (or higher-performing) aircraft
• Reduced fuel usage and related costs through reduction in delay
• Optimal flight paths
• Increased flexibility for aircraft self-separation

Collaborative Air Traffic Management. With the increase and diversification in the number of
airspace users—each possessing a unique operating need—and the increased importance and
impact of other airspace uses, Collaborative Air Traffic Management (C-ATM) mechanisms
support a diverse set of participants. The participants share a common awareness of overall
constraints and the impacts of individual and system-wide decisions. Automation tools and
system-wide information exchange capabilities improve decision making, enabling participants
to understand the prevailing constraints, short- and long-term effect of decisions, and
interdependence among national, regional, and local operations. To manage information across
all phases of flight, advanced automation is utilized to make the system more agile in responding
to changes in environment or demand.

Trajectory Based Operations (TBO). Perhaps the most fundamental requirement is to safely
accommodate significantly increased traffic. Aircraft will fly negotiated trajectories allowing
precise management of an aircraft’s current and future position, to increase throughput. This
trajectory prediction ability facilitates separation assurance and allows delegation responsibility
for separation for some operations to capable aircraft, further improving efficiency and
throughput. Within TBO, high-density arrival/departure operations, in which advanced aircraft
and ANSP capabilities support optimized and efficient runway throughput, accommodate peak
demand at the busiest airports.

Using 4DTs and probabilistic decision making for weather events, entire flows of aircraft as well
as individual trajectories can be dynamically adjusted, providing an advantage for opportunities
to meet constraints safely while efficiently reducing the overall impact of such events. These
operations replace the broad, static directives that are characteristic of today’s operations.

Digital data exchange is the primary mode of communication between flight operators and the
ANSP replacing verbal delivery of clearances. Aircraft transmit and receive precise digital data
including aircraft routes, negotiated trajectories, and a 4DT, specifying a time and key crossing
point in the airspace.

ATM Service Delivery. TBO enables the integration of trajectory planning and execution across
the spectrum of time horizons, from strategic planning to tactical decision making. Figure 2-2
describes the four ATM service delivery functions covering this spectrum. The use of real-time
performance measurement to assess the effectiveness, efficiency, and capacity of the system
against established performance metrics is an integral part of the transformation. ANSP and
flight operators collaboratively use the results of the analysis for integrated decision making between the functions. The functions are:

- **Capacity Management (CM)** is the design and configuration of airspace and the allocation of other NAS resources. CM is the preferred means of responding to dynamic forecast demand—resources and performance-based services match with the expected demand (Section 2.2.12.1).

- **Flow Contingency Management (FCM)** comprises strategic flow initiatives addressing large demand/capacity imbalances within CM plans resulting from severe or localized weather conditions and airspace restrictions. FCM ensures the efficient management of major flows of traffic while minimizing the impact on other operations (Section 2.2.2).

- **Trajectory Management (TM)** is the adjustment of individual aircraft within a flow to provide efficient trajectories, manage complexity, and ensure that conflicts can be safely resolved (Section 2.3.1).

- **Separation Management (SM)** is the provision of safe distance between aircraft. SM tactically resolves conflicts among aircraft and ensures avoidance of weather, airspace, terrain, or other hazards (Section 2.3.2).
A number of key principles are associated with the delivery of ATM services:

- Resources are managed to maximize utility to flight operators. Restrictions are imposed only for projected congestion or to meet safety, security, or environmental constraints.
- Support a range of operator goals and business models to not inherently favor one business model over another; however, public policy may provide incentives for one or more business models, if desired.
- Stakeholders maximize their ability to achieve their goals and business objectives by actively participating in the C-ATM process. This involves not only information exchange and negotiation with respect to flight trajectories, but also involvement in the process of allocating ATM resources. Tools are in place to allow virtually any operator to participate in the C-ATM process.
When performance-based operations and C-ATM cannot address excess demand, known policies will prioritize access to resources among all operators.

Access to NAS resources considers all national objectives. For example, military, state, and civil aircraft that are involved in national security, homeland defense, disaster response, public safety, life-guarding actions, and movement of high-ranking government officials receive appropriate priority.

Airspace is a national resource, used for the “public good.” Government mandates are an acceptable means of meeting “public good” objectives when incentives are insufficient.

Key ATM Services Assumptions

Key assumptions for the ATM system and services include the following:

- Performance-based operations are the basis for defining requirements. In particular, Communication, Navigation, and Surveillance (CNS) performance becomes the basis for operational approval, rather than specific equipage or technologies. Performance-based operations simplify regulatory activities in the presence of technology proliferation and allow the opportunity to define “pre-approved” operations based on performance levels.

- The ANSP provides performance-based services, allowing operational benefits to aircraft that have advanced capabilities. For a given airspace volume, the minimum level of ability may vary depending on the environment and overall demand characteristics. Flight operators choose ability levels for their aircraft according to their needs and to make the economic tradeoff between level of service and aircraft investment.

- Network-enabled services provide a broad ability to move, store, and access information. All stakeholders have a consistent view of factors that affect their decision making, while data security and privacy mechanisms ensure that information is not misused or inappropriately disclosed.

- Advanced automation performs routine tasks and supports distributed decision making between flight operators and the ANSP. New automation systems and procedures are in use by both aircraft and the ANSP, enabling TBO and other transformations critical to achieving NextGen objectives.

- There is a wider range of aircraft capabilities and performance levels than exists today.

- Environmental outcomes are increasingly important in designing and conducting ATM operations.

- International interoperability in performance-based operations is a requirement as capabilities and procedures are defined.

Dynamic Resource Management. The move toward dynamic resource management supports the need to provide improved services to all users. ATM system resources and services are delivered to meet demand, rather than constraining demand to match the available resources (including people, facilities, and airspace). Delivery of services is no longer tied directly to the
geographic location of the aircraft. ANSP personnel acquire needed information and communicate with flight operators independent of their facility location.

Weather Impact Reductions. The impact of weather is reduced through the use of improved information sharing, new technology to sense and mitigate the impacts of weather, improved weather forecasts, and improved decision making through the integration of weather into automation. Using better automation to manage uncertainties associated with weather will minimize airspace capacity limitations and reduce the likelihood of overly conservative actions.

Key aircraft flight deck advancements that may improve airport accessibility include aircraft-based technologies such as Head-Up Display (HUD), or auto-land capabilities, Enhanced Flight Vision Systems (EFVS), and Synthetic Vision Systems (SVS), Sense and Avoid, as well as the ground-based augmentation system (GBAS) in combination with a Global Navigation Satellite System (GNSS). These new aircraft flight technologies will allow greater access and throughput at airports that would otherwise be unavailable due to insufficient ground infrastructure. By equipping with technologies such as HUDs or EFVS, the aircraft operator will have greater flexibility and predictability of operations at a variety of airports with less dependence on existing ground infrastructure.

Modernized Surface Operations. Finally, another transformation in ATM is the advent of modernized surface operations. Surface operations move from a highly visual, tactical environment to a more strategic set of operations enabled by enhanced or synthetic vision in low/no-visibility conditions that will better achieve operator and ANSP efficiency objectives, and better integrate surface, airspace, and traffic flow decision making. Modernized surface operations delivers surface and tower services more affordably, enabling access to ANSP services at more airports than is practical today, resulting in greater value to flight operators and airport operators.

2.2 Collaborative Air Traffic Management

All airspace users are able to collaborate on ATM decisions. This ability ranges from today’s large-scale FOCs with a complete set of C-ATM automation tools to individual pilots with mobile devices, personal computers or onboard the aircraft for appropriately scaled C-ATM collaboration access. Those who participate in the collaboration process are better able to achieve their own objectives within the constraints imposed by overall traffic demand or short-term effects such as weather or airspace restrictions.

Collaboration involves the exchange of information to create mutual understanding of overall objectives among participants and to share decision making among stakeholders. With the collaborative capabilities, stakeholders are aware of constraints, system strategies, and the performance metrics that describe the past and predicted behavior of the ATM system. The service provider is aware of stakeholder route preferences, performance capabilities, and flight-specific performance limitations. Key stakeholders in ATM decision making include the ANSP, flight operators (including both flight planners and flight crews), airport operators and regional authorities, security providers, and U.S. military and state organizations. These groups and others collaborate in developing and assessing strategies to expand NAS capacity, addressing short-
Key benefits from the collaborative environment include the following:

- Airspace users benefit from improved collaborative Decision Support Tools (DST), which better assess the potential impacts of decisions, reducing the likelihood of unintended consequences. Improved DSTs also increase the system’s ability to maintain capacity and increase predictability in the presence of continuous uncertainty. Less conservative operational decisions are made because decision support capabilities can better integrate large amounts of data over multiple time horizons.

- Today’s collaboration process is characterized by poor information distribution and is limited by verbal negotiations. The future system will be characterized by increased participation wherein flight operators gain benefits in efficiency, access, and overall performance and other national needs are accommodated effectively.

- Information exchange is more clearly targeted to the appropriate decision makers, reducing workload and unnecessary actions by those not affected. Machine-to-machine negotiation replaces labor-intensive, voice, or text-based processes.

- Needs for managing airspace security are integrated into overall collaboration and decision making.

- Participants are assured of data privacy and protection, so that sensitive or proprietary information can be utilized in a way that helps to achieve their objectives.

- By participating in the collaborative process and providing user preferences, the airspace users benefit from flying their desired routes based on their business need.

C-ATM is the means by which flight operator objectives are balanced with overall NAS performance objectives and accomplishes many of the objectives for CM, FCM, and TM. Flight planners or an operator’s flight planning automation interact with the ANSP via a set of services that provide all stakeholders with the opportunity to participate in the C-ATM process. Among these services is a common flow strategy and trajectory analysis service that enables Shared Situational Awareness (SSA) of current and projected NAS status and constraints. This service provides stakeholders with the ability to examine the individual or aggregate impacts of proposed strategies for CM or FCM.

With information sharing, flight operators and the ANSP have a common understanding of overall national goals and desired performance objectives for the NAS. A transparent set of strategies is in place to achieve overall performance objectives, including airspace management to maximize capacity when demand is high and, as required, flow management initiatives to ensure that safe levels of traffic are not exceeded when capacity limits are reached. The ANSP is better able to communicate and collaborate on the effects of procedures for flights transiting airspaces managed by different ANSP entities (e.g., for different Flight Information Regions [FIRs], for specially managed SAA). Figure 2-3 provides a pictorial view of C-ATM.
The rest of this section provides greater depth on the C-ATM process. Section 2.2.1 describes the CM process. Section 2.2.2 describes the FCM process. FCM is used only when CM cannot fully adjust resources to match anticipated demand.

2.2.1 Capacity Management

CM has two components, short term and long term. “Short-term” CM is the reallocation of assets and the use of procedures to maximize capacity to match anticipated demand. In contrast, “long-term” CM includes planning for major changes to airspace design, significant airport infrastructure improvements, and the establishment of new operational procedures. The CM process allocates NAS resources to meet overall system goals based on user plans, including the designation of airspace (e.g., for performance requirements) and the determination of procedures required for access to airspace. CM structures routings, where required, to manage complexity and reserves airspace, as needed, for special uses. CM responds to an aggregation of airspace users’ expected or desired trajectories, infrastructure, geographic, and environmental constraints, and it provides airspace assignments and dynamic routings to manage the resulting demand.
The CM process begins years before flights are in operation and continues up to and including the day of operation. It includes the long-term and short-term management and assignment of NAS airspace and trajectories to meet expected demand, assignments of related NAS assets, and coordination of long-term staffing plans for the airspace assignments. Significant structural changes to airspace or operations (e.g., building a new runway or introducing a new flight procedure) are planned years in advance. The best usable solutions selected are through iterative collaboration across decision horizons.

2.2.1.1 Short-Term Capacity Management

Short-term CM involves the allocation of existing assets (e.g., allocation of personnel, adjustment of airspace structures, or designation of performance-based services) to appropriately create the required capacity to meet anticipated demand. Resource management is flexible and dynamic, which enables the ATM system to apply people where their services are most needed, to manage and configure facilities appropriately, and to designate the use and design of airspace to complement operations. Delivery of services is no longer tied directly to the geographic location of the flight operator or the aircraft; instead, ANSP personnel have the ability to acquire needed information and communicate with flight operators independent of their facility location.

As operators plan flights, they share information with the ANSP about the planned trajectory of the aircraft. These trajectories may have different levels of precision based on the expected operations to be performed. For TBO, the operator’s flight plan includes a 4DT. As more information about the conditions affecting a flight becomes available, operators are automatically informed and in turn, update their flight plans to provide current and intent information. In general, operators use predefined routes less and have more flexibility in designating preferred routings. Some route structures remain, where needed, to manage complexity, especially at lower altitudes and in terminal airspace where ANSP personnel require more knowledge about the airspace, and where environmental restrictions exist. Airspace designated for high-capacity or high-complexity operations may hold a specific designation for a certain set of hours in the day or over a set period of days. This dynamic use of airspace is complemented with the move toward performance-based services that specify minimum performance criteria that an aircraft is required to meet for operating in a volume of airspace. Further, this dynamic nature is transparent, allowing flight operators the ability to plan and execute their flights.

CM and FCM functions are interactive, as are airspace and TM functions. The demand-capacity balancing process determines which CM strategies to employ across the NAS. Part of the CM process also includes the use of metrics and analyses to determine which strategies were most effective under which conditions. Examples of CM strategies include the following:

- Increasing the capacity of a given area of airspace to accommodate projected traffic growth through reassignment of resources (e.g., personnel, RNP routes).
- Instituting structured routes to reduce traffic complexity.
- Establishing flow corridors to better accommodate high levels of traffic.
- Adjusting the boundaries or activation times of SAA.
- Balancing workload among ANSP personnel for a forecast demand “surge”.
An important area of short-term collaboration for CM is in addressing the use of SAA and assessing the impacts of proposed SAA use. For example, the military operator will reserve the airspace and then activate it upon commencing operations with the ANSP (possibly pilot-to-controller). Depending upon the required operations, the ANSP with the operator’s concurrence could adjust boundaries and activation times to maximize civil use of the airspace when it is not being used. For instance, if a pilot is only using a small section of a military operations area, they might be willing to open up the rest of the airspace to civil uses. The military and the ANSP will define the appropriate criteria for this process.

Collaboration among the ANSP, flight operators, defense services providers, and security services providers is critical in determining effective use of airspace for security and defense needs. A default strategy of static restrictions is no longer used to address security needs. Instead, management of security and defense needs is based on flight-specific access requirements where practical (also see Chapter 6.3.5 for secure airspace concepts). The overall goal for airspace collaboration is to recognize national defense and security needs and to minimize disruption of air traffic. This is done by dynamically and efficiently assessing airspace needs and adjusting as needed in order to ensure the military’s requirements, such as live firing ranges, pilot training, security of sensitive assets, etc. are met. Flight operators receive this information, so they can better plan flights and be aware of likely restrictions.

Both defense and homeland security restrictions are dynamically managed to enhance airspace access. When airspace restrictions are proposed to address security concerns, the impacts of a proposed restriction are weighed against identified risks, and mitigations are identified to reduce the impact on flight operator plans. The philosophy in applying airspace restrictions is to ensure national defense needs are met while providing maximum available airspace to other users via priority 4DT reservations, and facilitating immediate user notification of "just-in-time" national needs for restricted airspace. In addition to improved SSA and automated conformance monitoring, management of security and defense needs evolve, wherever possible, toward flight-specific access requirements and away from blanket restrictions for airspace access.

2.2.1.2 Long-Term Capacity Management

Long-term CM generally requires months to several years to implement, depending on the solution set (e.g., build a new runway, or develop a new automation system). CM solutions requiring the development of new operational procedures, design of airspace, or implementation of a new technology require the ANSP to perform pre-implementation activities including R&D, environmental impact assessment and mitigation, and safety and security analysis. The solutions typically also involve external collaboration with manufacturers, flight operators, regulators, or other stakeholders. As proposed changes are defined, the ANSP addresses U.S. or international regulatory and policy bodies in a more effective and streamlined manner than is possible today.

2.2.2 Flow Contingency Management

FCM is the process that identifies and resolves congestion or complexity resulting from blocked or constrained airspace or other off-nominal conditions. FCM deals with demand-capacity imbalances that cannot be addressed through the CM process. FCM involves managing the conflicting objectives of multiple stakeholders, regarding the operational use of over-subscribed
airspace and airports, while taking advantage of available capacity to address demand. The collaborative process among flow contingency managers, flight operators, and airport operators allows flight operators to find solutions that best meet their priorities and constraints while satisfying the conditions specified in a given FCM plan.

Several guiding principles govern the concept of FCM:

- FCM addresses multiple types of constraints, including airspace, airport, and metroplex constraints.
- FCM becomes more agile in dealing with uncertainties, developing adaptive traffic management plans that use capacity as it becomes available, and safely dealing with scenarios that become more constrained than expected.
- FCM provides equitable treatment of flight operators and, as much as possible, gives them the flexibility to meet their objectives.
- FCM becomes more focused, affecting only those flights necessary to deal with a constraint.

FCM strategies can include establishing multiple trajectories and/or flow corridors to reduce complexity (Section 2.2.2), restructuring the airspace to provide more system capacity, or allocating time-of-arrival and departure slots to runways or airspace. Operators with multiple aircraft involved in an initiative have the flexibility to adjust individual aircraft schedules and trajectories, within those allocations, to accommodate their own internal priorities. The ability for automation to monitor conditions and identify new trends facilitates dynamic refinement of Traffic Management Initiatives (TMI) and reduces the likelihood that TMIs are overly conservative in managing the NAS. Various FCM functions and activities may occur months or days in advance of a flight or during a flight. As with all TMIs, probabilistic decision making is used to assess the likely regional and local effects of anticipated flows, weather patterns, and other potential constraints and take incremental actions to reduce the probability of congestion to acceptable levels without overprotecting NAS resources.

FCM may also be achieved by integrating the aircraft’s navigation ability with data link. The precision and reliability of RNP routes, for example, can also be applied to dynamically defined routes to enhance user access and ATM. Many current aircraft have some functionality (e.g., Future Air Navigation System [FANS-1A]) to negotiate a trajectory. A negotiated trajectory may be as simple as an expected path from top-of-descent or as complex as a 4DT path.

2.3 Trajectory-Based Operations

Currently, controllers manage separation by using radar screens to visualize trajectories and to make cognitive operational judgments, with some automation decision support to help identify and resolve conflicts. TBO are used as the mechanism for managing traffic. TBO utilize 4DTs as the basis for planning and executing all flight operations supported by the ANSP. The traditional roles and responsibilities of pilots/controllers based upon verbal and route based clearances will evolve through the use of digital data exchange due to the increase in automation, support, and integration inherent to TM.
The use of TBO as the main mechanism for managing traffic in high-density or high-complexity airspace is a major transformation. TBO represents a shift from clearance-based to trajectory-based control. Aircraft will fly open and closed negotiated trajectories as ATC moves to TM. With a closed trajectory, automation between the ANSP and the aircraft is synchronized. An aircraft may be permitted to fly an open trajectory as needed to maneuver for weather avoidance, a vector, Visual Flight Rule (VFR) operations, etc. To the maximum extent possible, an aircraft on an Instrument Flight Rules (IFR) flight plan will maintain its closed trajectory. If the aircraft is unable to maintain performance requirements, then a controller would be able to intercede to update the aircraft’s trajectory. Overall, controllers will manage flows of traffic rather than individual aircraft. The traditional responsibilities and practices of pilots/controllers will evolve due to the increase in automation, support, and integration inherent to TM.

In high-density or high-complexity airspace, TBO aligns all TM functions across all time horizons based upon the aircraft’s 4DT. Digital data communication and ground-based and airborne automation to create, exchange, and execute 4DTs are prerequisites for TBOs. The use of precise 4DTs dramatically reduces the uncertainty of an aircraft’s future flight path, in terms of predicted spatial position (latitude, longitude, and altitude) and times along points in its path. This enables airspace to be used much more effectively than is possible today to safely accommodate high levels of demand and maximize the use of capacity-limited airspace and airport resources. TBO and high-density arrival/departure operations are likely to be used during peak periods at the busiest metropolitan areas. High-altitude en route and oceanic airspace, and areas where major flows occur, also use TBO. With TBO, less airspace is needed for these major flows, resulting in reduced impact and improved access for other flights.

With TBO, differing types of operations are conducted, distinguished by the manner in which procedures are selected and clearances are initiated, transmitted, negotiated, monitored, and revised. Performance-based services are applied based on the anticipated traffic characteristics; minimum requirements for operations and procedures to be used are selected to achieve the necessary level of capacity. Overall, preferences for all users are accommodated to the greatest extent possible, and trajectories are constrained only to the extent required to accommodate demand or other national concerns, such as safety, security, or environmental concerns. With TBO, the ANSP provides services to aircraft of differing ability in proximity to each other. Operators that equip their fleets to conduct TBO receive services from the ANSP that allow them to achieve operating benefits.

Trajectory-based SM is a major element of TBO. SM uses automation and shared trajectory information to manage separation among aircraft, airspace, and hazards such as weather and terrain better. Trajectory-based SM may also include delegation of separation tasks to the flight crew. Improved information sharing, improved sensors and forecasting, and better integration of weather into automated DSTs help reduce the impact of weather on the entire system. Finally, the ATM framework builds on surface operations that are modernized and better integrated into airspace operations to achieve efficiencies not possible today. A number of capacity, efficiency, and general benefits have resulted from the increased predictability of operations, which is based on use of precise trajectories. These benefits include safety and increased ANSP productivity. Benefits from the use of TBO include the following:
• **Capacity/Better Airspace and Runway Utilization.** One of the primary uses of TBO is to increase the inherent capacity of airspace to better accommodate demand from flight operators. As a result, TBO and trajectory-based planning, together with improved weather information integrated into decision making and integration of military, security, environmental, and other requirements, allow access to more airspace more of the time, with reduced impact to traffic flows. The flexible management of aggregate trajectories enabled by TBO allows the ANSP to maximize access for all traffic, while adhering to the principle of giving advantage to those aircraft with advanced capabilities that support the ATM system. TBO minimizes excess separation resulting from today’s control imprecision and lack of predictability and enables reduced separation among aircraft, allowing increased capacity. TBO is also a key element of high-density arrival/departure procedures. Implementing these procedures enables new runways to be built much closer to existing runways and potentially reduces the cost of new runway construction.

• **Efficiency and Environment.** Operational management of TBO (via an aircraft’s 4DT) enables efficient control and spacing of individual flights, especially in congested arrival/departure airspace and busy runways. This enables use of noise-sensitive and/or reduced-emissions arrival/departure flight paths. For long flights, particularly in oceanic airspace, the increased predictability afforded by TBO improves fuel efficiency and facilitates optimal fuel loading. Overall, flight operations are more consistent and operators are able to maintain schedule integrity without the excess built into today’s published flight times.

• **Other Benefits.** In addition to supporting increased flows, TBO enables collaboration between the ANSP and operators to maximize utility of airspace to meet ANSP productivity and operator goals. TBO also allows for scalability of the entire system, as operators become more active in collaborations with the ANSP to manage their own trajectories. Finally, TBO is seen as a key enabler to increase ANSP productivity, so services can be provided at a much lower per-operation cost.

2.3.1 Trajectory Management (TM) Process

TM is the process by which individual aircraft trajectories are managed just before and during the flight to ensure efficient individual trajectories within a flow. TM corrects imbalances within an established flow to ensure that congestion is manageable. The TM process considers any active FCM initiatives and known airspace plans in establishing the best mitigation to resource contention. TM assigns trajectories for aircraft transitioning out of self-separation operations and for aircraft entering or leaving flow corridors. For arrival/departure operations, including high-density operations, TM assigns each arriving aircraft to an appropriate runway, arrival stream, and place in sequence. TM supports SM by reducing, but not eliminating, the need for tactical separation maneuvers.

2.3.2 Separation Management Process

The SM process ensures that aircraft maintain safe separation from other aircraft, from certain designated airspace, and from any hazards (e.g., terrain, weather, or obstructions). SM relies significantly on automation for predicting conflicts and identifying solutions. Use of automation also allows SM to move away from fixed human-based standards to ones that allow variable...
separations that factor in aircraft capabilities, encounter geometries, and environmental conditions. Flight crews approve the recommended conflict resolution before it is implemented, whether it is generated on the ground or in the cockpit.

In managed airspace, the ANSP has overall responsibility for SM and may delegate this responsibility to separation-capable aircraft. The operating norm is that the ANSP delegates tasks to aircraft to take advantage of aircraft capabilities. ANSP automation manages separation and negotiates short-term, conflict-driven updates to the 4DT agreements with the aircraft. Delegated separation operations include both a single aircraft with separation authority for a specific maneuver (e.g., for crossing or passing another aircraft) or more general separation responsibility, such as operating in flow corridors (Section 2.3.3.2). ANSP and aircraft automation track the delegation of responsibility and its limits and ensure that the delegation is always unambiguous.

Aircraft performing self-separation procedures separate themselves from one another as well as from aircraft whose separation is managed by the ANSP without intervention by the ANSP. The ANSP provides neither separation nor TM services in self-separation airspace, but the aircraft may still be subject to TM in downstream transition airspace. Standardized algorithms detect and provide resolutions to conflicts at least several minutes ahead of the predicted loss of separation. The resolution maneuver is usually very small (because of the increased precision in TBO) and generally includes course, speed, or altitude changes. Rigorous right-of-way rules determine which aircraft should maneuver to maintain separation when a conflict is predicted. These rules specify the conflict resolution maneuver options for resolving the conflict with minimum disruption to the maneuvering aircraft and for preventing a conflict with a third aircraft in the short term. Contingency procedures, requiring the other aircraft to execute an avoidance maneuver, are invoked in the event the “burdened” aircraft does not make the appropriate maneuver within a specified time.

Self-separating aircraft have 4DTs with sufficient flexibility defined to allow for separation maneuvers. After such maneuvers, the aircraft is expected to return to its route toward its next waypoint defined in the 4DT or negotiate a new 4DT. Usually the aircraft is able to achieve and maintain its most efficient trajectory without renegotiating its 4DT. In oceanic or remote airspace, the aircraft may have sufficient flexibility to deviate around weather. A FCM function may be needed in self-separation airspace to impose sufficient structure to ensure that traffic density remains safe, especially around convective weather or other constraints.

Transition airspace around self-separation airspace exists to allow for the safe transfer of separation responsibility from the aircraft back to the ANSP. For aircraft entering self-separation airspace, separation responsibility is transferred so that the aircraft is safely able to assume it, implying that there are no very near-term conflicts with other aircraft or hazards. For aircraft exiting self-separation operations, the transition may include waypoints with Controlled Time of Arrivals (CTA) to enable sequencing and scheduling by the ANSP. In this transition zone, the ANSP provides CTAs and possibly TM to maintain safe separation between the aircraft exiting the airspace. As with delegated separation, the ANSP and aircraft automation track the transfer of separation responsibility and communicate it to those affected.
Today, most high-performance aircraft are equipped with an aircraft-based collision avoidance system that is independent of the ATC system. In the United States, this system is referred to as the Traffic Alert and Collision Avoidance System (TCAS) II. Internationally, this system is referred to as the Airborne Collision Avoidance System (ACAS). TCAS II reduces the risk of collision between aircraft when the separation assurance process fails. A collision avoidance system independent of the separation assurance system, and which acts only in the event the separation assurance process fails, will still be required (see ICAO AN-Conf/11, ASAS Circular).

2.3.3 TBO Aircraft Procedures

The procedures performed by 4DT-capable aircraft are described in this section. The procedures used most include:

- **4DT Procedures.** In addition to basic RNP ability, aircraft must meet specified timing constraints at designated waypoints along their route. Aircraft comply with the resulting 4DT procedure in flight. Several levels of 4DT operations exist, defined by the level of navigational and timing constraints.

- **Delegated Separation Procedures.** The ANSP delegates responsibility to capable aircraft, performing the basic 4DT procedures described above, to perform specific separation operations using onboard displays and automation support. Examples include passing, crossing, climbing, descending, and turning behind another aircraft. In these operations, the ANSP is responsible for separation from all other traffic while the designated aircraft performs the specific maneuver.

- **Airborne Merging and Spacing Procedures.** 4DT aircraft are instructed to achieve and maintain a given spacing, in time or distance, from a designated lead aircraft as defined by an ANSP clearance. Cockpit displays and automation support the aircraft conducting the merging and spacing procedure to enable accurate adherence to the required spacing. Separation responsibility remains with the ANSP.

- **Airborne Self-Separation Procedures.** Aircraft are required to maintain separation from all other cooperative aircraft (and other obstacles or hazards) in the airspace. Aircraft follow the “rules of the road” and avoid any maneuvers that generate immediate conflicts with any other aircraft. The ANSP does not provide TM or SM, except as needed to safely sequence and schedule aircraft exiting self-separation airspace.

- **Low-Visibility Approach/Departure Procedures.** Aircraft with appropriate cockpit displays and automation support conduct landings and takeoffs safely in low-visibility conditions without relying on ground-based infrastructure by using onboard navigation, sensing, and display capabilities.

- **High-density Arrival/Departure Procedures.** Aircraft conduct delegated separation procedures, such as Closely Spaced Parallel Approaches (CSPA), within very precise tolerances for position and timing to maximize runway throughput.

- **Surface Procedures.** Trajectory-based procedures may be used on the airport surface, at high-density airports, to expedite traffic and schedule active runway crossings. Equipped
aircraft may perform delegated separation procedures, especially in low-visibility conditions.

The procedures listed above are not mutually exclusive, and the flight object captures the abilities and authority of aircraft to perform these procedures.

2.3.3.1 Four-Dimensional Trajectories

A 4DT is a precise description of an aircraft path in time and space: the “centerline” of a path plus the position uncertainty, using waypoints to describe specific steps along the path (See Figure 2-4). This path is Earth-referenced (i.e., specifying latitude and longitude); containing altitude descriptions and the time(s) the trajectory will be executed. The required level of specificity of the 4DT depends on the flight operating environment. Information regarding the operator’s flight plan is managed as part of the flight object.4 The flight object provides access to all relevant information about a particular flight.

Some of the waypoints in a 4DT path may be associated with CTAs. CTAs are time “windows” for the aircraft to cross specific waypoints within a prescribed conformance tolerance and are used when needed to regulate traffic flows. Both the flight crew and the ANSP may need to renegotiate CTAs during the flight for reasons such as winds encountered that are different from forecast or a change in the destination airport acceptance rate. Larger windows in time are allotted to cross all other waypoints not designated as CTAs, allowing operators more flexibility to optimize their flight operations.

4 The flight object is a software representation of the relevant information about a particular flight. The information in a flight object includes aircraft identity, CNS and related capabilities, flight performance parameters, flight crew capabilities including for separation procedures, and the flight plan (which may or may not be a 4DT), together with any alternatives being considered. [R-7] Once a flight is being executed, the flight plan in the flight object includes the “cleared” flight profile, plus any desired or proposed changes to the profile, and current aircraft position and near-term intent information (See Figure 2-6). For Visual Flight Rules (VFR) aircraft, the level of detail on the flight profile varies (e.g., it may consist of only information needed for Search and Rescue [SAR] operations). Allocation of responsibility for separation management along flight segments is also likely to be stored. International collaboration on the development of standards for the definition of a flight object is ongoing.
The integration of trajectory planning and execution across the spectrum of time horizons, from strategic planning to tactical decision making, is one of the key concepts associated with TBO. Strategic aspects of TBO include the planning and scheduling of flight operations and the corresponding planning and allocation of resources to meet demand. Tactical components of TBO include the evaluation and adjustment of individual trajectories to synchronize access to airspace system assets (or to restrict access, as required) and ensure separation.

New ANSP personnel roles and supporting operations build on the use of TBO to provide ATM services. Air traffic services are provided through the generation, negotiation, communication, and management of both individual 4DTs and aggregate flows representing the trajectories of many aircraft. Flexible route definitions allow traffic flows to be shifted, as necessary, to enable more effective weather avoidance; meet environmental, defense, and security requirements; and manage demand into and out of the arrival/departure environment.

Capabilities for managing airspace structure include a common mechanism for implementing and disseminating information on the current airspace configuration to ensure that all aircraft meet the performance requirements for any airspace they enter. Distributing information on the status of SAA will maximize airspace access and minimize disruptions to commerce. Using automation to manage uncertainties associated with weather better minimizes airspace capacity limitations and reduces the likelihood of overly conservative actions. Different aircraft and flight crews also have varying levels of ability and preferences to operate in specific weather conditions.
conditions. Individual flight limitations and preferences are key inputs to flight planning and execution, and flight operators may dynamically update these features. With this knowledge, the ANSP can support 4DTs tailored to individual flight preferences.

Within TBOs, some aircraft support additional operations via onboard capabilities and associated crew training, including the ability to perform delegated separation, airborne self-separation, and low-visibility approach procedures. Overall, these new kinds of flight operations dramatically improve en route productivity and capacity and are essential to achieving NextGen. Delegation of ATM functions to capable aircraft means these services are provided only when and where the aircraft need them, promoting scalability of the overall ATM system.

In the highest density arrival/departure areas, high-density arrival/departure operations are implemented to maximize airport throughput at times of peak demand while facilitating efficient arrival/departure profiles for equipped aircraft. High-density arrival procedures usually require airborne separation ability, and may be continued on the airport surface where required for throughput. Other arrival/departure areas with less demand, as well as high demand arrival/departure areas during off-peak hours, provide access to a wider range of aircraft. Aircraft routinely conduct low–noise approaches, mitigating noise impacts.

2.3.3.2 En Route and Cruise TBO

Operational distinctions between oceanic and en route airspace fade as performance-based operations and advanced CNS technologies become the norm. Some operational considerations remain for oceanic and remote airspace (e.g., when there are long distances between suitable landing locations). These operations accommodate aircraft equipped only for basic 4DT procedures, possibly along structured routes, when aircraft that are more capable are occupying the efficient routes and altitudes.

4DT procedures allow the ANSP to precisely schedule traffic through congested airspace, especially as aircraft start to converge approaching a major airport. When demand is very high, the ANSP may implement “flow corridors” for large numbers of separation-capable aircraft traveling in the same direction on very similar routes. (See Figure 2-5) Flow corridors consist of long tubes or “bundles” of near-parallel 4DT assignments, which consequently achieve a very high traffic throughput, while allowing traffic to shift as necessary to enable more effective weather avoidance, reduce congestion, and meet defense and security requirements. Flow corridors are designated for participating aircraft only.
The 4DT assignments in a flow corridor do not ensure that conflicts never occur, but do ensure that any conflicts are easily resolved with small speed or trajectory adjustments even with the high traffic density. The corridor is large enough for aircraft to use their separation capabilities for entering and leaving the corridors, as well as for overtaking, all of which are accomplished with well-defined procedures to ensure safety. Flow corridors are procedurally separated from other traffic not in the corridor. The high traffic density achieved increases the airspace available to other traffic and often eliminates the need for a TMI; thus, the flow corridor is implemented along the optimum routes and altitudes. The corridor may be dynamically shifted to avoid severe weather or take advantage of favorable winds. Procedures exist to allow aircraft to exit the corridor safely in the event of a declared emergency.

For scalability and affordability, the ANSP delegates separation tasks to capable aircraft whenever this benefits the aircraft involved, overall operations, or ANSP productivity. Some airspace is designated as self-separation airspace where self-separation operations are required. En route trajectory-based procedures are summarized in Table 2-1.

Table 2-1 Summary of En Route and Oceanic Trajectory-Based Operations (TBO)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Benefit</th>
<th>ANSP Ability</th>
<th>Aircraft Ability</th>
<th>Provision of Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSP-Managed Operations</td>
<td>High traffic density; accommodate wide range of aircraft capabilities</td>
<td>4DT exchange, including updates for SM, TM</td>
<td>Exchange and execute 4DT, CTA, RNP; some aircraft have delegated separation ability</td>
<td>ANSP via automation; or ANSP delegates to aircraft</td>
</tr>
</tbody>
</table>
2.3.3.3 Arrival/Departure TBO

The ANSP manages airspace where there is high-density traffic, including aircraft arrivals and departures from complex and dense en route airspace, with the TM and SM functions supported by advanced automation. Integrated arrival/departure area and airport surface management ensures that arrival flows match projected airport capacity for improved overall throughput and efficient flight trajectories that eliminate today’s low–altitude path stretching and holding. Aircraft are typically assigned final 4DT arrival profiles at the top of descent. The development of quieter aircraft, coupled with widespread implementation of low-noise approaches, eases restrictions currently imposed for noise abatement at many airports. Rotorcraft and other “runway-independent” aircraft needing access to trajectory-based arrival/departure areas are coordinated with the major fixed-wing flows to avoid congestion and improve the overall flow of both types of aircraft. Table 2-2 presents arrival and departure procedures.

Table 2-2 Arrival and Departure Procedures

<table>
<thead>
<tr>
<th>Operation</th>
<th>Benefit</th>
<th>ANSP Ability</th>
<th>Aircraft Ability</th>
<th>Provision of Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Corridors</td>
<td>Very high traffic density; preferred routing; ANSP productivity</td>
<td>4DT exchange with reduced requirement for updates, TM</td>
<td>Exchange and execute 4DT, CTA, RNP; delegated separation ability</td>
<td>Procedural separation of corridor from other airspace; aircraft within corridor separate themselves</td>
</tr>
<tr>
<td>Self-Separation Operations</td>
<td>Preferred routing; ANSP productivity</td>
<td>FCM, manage entry to/exit from self-separation airspace</td>
<td>Exchange and execute 4DT, CTA, RNP; full self-separation</td>
<td>Aircraft</td>
</tr>
</tbody>
</table>

Optimized Profile Descent (OPD), other RNP trajectories

- Reduced environmental effects; high throughput

Exchange and execute 4DT, CTA, RNP; OPD; airborne spacing

ANSP automation

Merging and spacing

- Arrivals matched to runway capacity, ANSP productivity

TM, 4DT exchange, SM

Exchange and execute 4DT, RNP; airborne spacing

ANSP automation

CSPA, paired approaches

- Closely spaced runways maintain Visual Meteorological Conditions (VMC) capacity in all visibility conditions

TM, 4DT exchange to establish aircraft on approach; SM wake vortex monitoring and automation

Exchange and execute 4DT, RNP; delegated separation

ANSP automation, except between aircraft conducting approach
At times of peak demand, major airports conduct high-density arrival/departure operations, implementing capacity-enhancing arrival and surface procedures to maximize runway throughput. Other airports with lower demand have fewer restrictive aircraft capability requirements, while some airports may serve aircraft of mixed equipage and capabilities depending on the airport configuration and level of demand.

High-density operations may be required at more airports than today’s Class B (39 busiest US airports) airports to handle the projected traffic increase. At times, high-density operations may restrict access to high-capability aircraft; however, airports only designate high-density operations when warranted by demand, and revert to accepting all trajectory-based traffic at other times of the day. As illustrated in Figure 2-6, high-density arrival/departure corridors handle arriving and departing traffic, while much of nearby airspace remains available to other traffic.

Figure 2-6 High-Density Operations
Abilities used to achieve high-density arrival/departure operations are likely to include the procedures listed in Table 2-2 above and the following:

- Use of RNP operations.
- Use of procedures that eliminate requirements for visual operations.
- Mitigation of wake vortex constraints through detection and real-time adaptation of applied separations.
- Improved runway incursion prevention procedures and technologies.
- Automatic distribution of runway braking action reports.
- Distribution of taxi instructions before landing that can be automatically executed without waiting for a separate clearance.

2.3.3.4 **Surface and Tower Operations**

Surface operations at high-demand airports are integrated with other ATM functions, including departures, arrivals, and collaborative traffic management. Improved surveillance, automation, and information sharing enhance surface and tower operations for all traffic. The busiest airports at peak times (most likely those implementing high-density arrival/departure operations), conduct high-density surface operations for adequately equipped traffic to maximize runway throughput and minimize taxi times while moving aircraft safely and with robust runway incursion prevention. ATC towers provide enhanced services compared to those available today. Particularly in low-visibility conditions, the ANSP can safely make more efficient use of runways through real-time depiction in the tower of the location and intent of arriving and departing aircraft, as well as any aircraft intending to cross an active runway. Lower-demand airports may implement staffed or automated NextGen towers to provide tower services equivalent to those of traditional towers. This allows tower services to be provided at more airports than is affordable today and/or for extended hours of service. Table 2-3 provides a summary of surface transformations.

<table>
<thead>
<tr>
<th>Current Roles</th>
<th>Corresponding NextGen Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground surveillance available to ANSP limited. Primary and some secondary surveillance abilities are installed, providing conflict resolution and information, but limited to Operational Evolution Partnership airports. Runway incursion prevention automation is also limited</td>
<td>Cooperative ground surveillance at most airports, including state vector information (e.g., aircraft speed/direction), with more effective runway incursion prevention automation</td>
</tr>
<tr>
<td>Essentially no cockpit surveillance of other ground traffic/vehicles, other than visual (out the window)</td>
<td>Integrated surveillance of ground traffic, along with airport layout and taxi routes, with cockpit warning of runway incursions</td>
</tr>
</tbody>
</table>
Current Roles | Corresponding NextGen Roles
--- | ---
Surface movement information (e.g., pushback, departures, and taxi delays) mostly not integrated with Traffic Flow Management (TFM). Difficult to implement flight-specific TMI | Updated pushback information provides improved surface and departure management. Surveillance of surface movement provides basis for more accurate departure time and taxi delay estimates. Availability of improved departure time estimates significantly improves ability of FCM and TM. Flight-specific TMI are handled via automation and data communications.

Many non-towered airports | Automated NextGen Towers (ANT) or better where economically feasible

Inefficient one-in-one-out operations at smaller airports without approach controls or towers | Elimination of one-in-one-out restrictions at most airports for equipped aircraft

2.4 TRANSFORMED ROLES AND RESPONSIBILITIES

With increased demand anticipated in the next 10 to 15 years and the subsequent increase in complexity of operations, the NextGen environment requires changes in roles for ANSP personnel and flight operators. Automation performs new tasks, supporting the decision making process, and shifting the focus from tactical separation between individual aircraft to the strategic management of traffic flows in high-density airspace. Flight operator roles change accordingly. As illustrated in Figure 2-7, ANSP personnel, flight crews, and flight planners have more distributed decision making, with a significant increase of information exchange. Flight planners have an increased role in collaborating with the ANSP on capacity and flow management strategies, and the flight crew has a greater role in many of the tactical flight management tasks. For some aircraft, the flight crew also begins to take on a more strategic flight management role, building on aircraft automation.

Today’s NAS, in which controllers provide safe aircraft separation by issuing tactical clearances for individual aircraft, is reaching its capacity as splitting sectors further produces diminishing benefits. A new paradigm is required to manage human workload better, increase productivity, and leverage advanced automation capabilities. This, in turn, requires transformation to achieve scalability and affordability goals, including the following:

- Restructuring the roles of humans and automation and how they perform their respective functions to synergize human and automation performance.
- Better distribution of tasks and decision making between service providers, flight crews, and flight planners to achieve operational efficiencies and scalability.
- Broadening the resource pool of service providers by eliminating the “hard-wired” connection between service providers and geographic regions (Chapter 4).

The following subsections discuss these transformations in further detail.
2.4.1 Functional Task Allocation

The ATM system capitalizes on human and automation capabilities. It employs complementary air and ground technologies in a distributed manner. Both humans and automation play important and well-defined roles, which take advantage of the types of functions each can best perform. Service providers and flight operators are given appropriate roles.

Automation supports the migration from tactical to strategic decision making by assimilating data and supplying information as well as by performing many routine tasks. Ultimately, the determination of when to fully automate and when to provide decision support is made to optimize overall system performance and ensure that service providers and flight operators perform well and can respond to off-nominal and emergency events when required.

Increased reliance on automation is coupled with “fail-safe” modes that do not require full reliance on humans as a backup for automation failures. In addition, the system distributes backup functions throughout, and there are layers of protection to allow for graceful degradation of services in the event of automation failures.

2.4.2 Human-to-System Interactions

Human-to-system interactions are designed to gain safety, productivity, efficiency, and scalability benefits. Human factors considerations are paramount to maximizing ANSP
productivity and performance and are integrated into system acquisition management and planning. Human factors considerations that drive human-to-system design and impact human-to-system performance include human cognitive capabilities and limitations, human error, situational awareness, workload, function allocation, hardware and software design, procedural design, decision aids, visual aids, training, user manuals, warnings and alarms, environmental constraints, workspace design, and team versus individual performance.

Human interactions with automation are more intuitive and user-friendly, allowing increased utility of tools while mitigating human error. New tools, measures, and mechanisms are in place to preclude and mitigate the effects of human error, with error tolerance and error resistance achieved through human-centered design processes. Service providers and flight operators are presented with well-integrated user interfaces. Flight deck systems are easier to use and better integrate information for situational awareness and decision making. Likewise, ground automation systems seamlessly integrate decision aids such as automated conflict detection and resolution.

2.4.3 Flight Operator Roles and Vehicle Types

NextGen includes a wide diversity of flight operators and flight operations. Flight operators, the primary users of ATM services, have a range of objectives for operating flights, depending on their business models. Examples of flight operators and their objectives include the following:

- **Scheduled Operators** - primary objective to maintain schedule integrity and operating efficiency. For many operators, the ability to accommodate growth in schedules is also important.

- **On-Demand Operators** - objectives include continual and equitable access to resources and operating efficiency.

- **Corporate Operators** – objective to maintain access to support business needs (not necessarily aviation) for the conduct of commerce.

- **State and Military Operators** - require access to all areas and may, at certain times, require special accommodation for aircraft that do not meet all expected capability and performance requirements. These operators may also require priority access to complete a specific mission or objective. Military operators require the ability to operate in areas designated for their special use to conduct training and proficiency operations.

- **Space Vehicle Operators** - require routine access to operate on the way to and from space, according to schedules that are known well in advance.

This ConOps uses the term “flight operator” to encompass all people or organizations that operate aircraft, including scheduled, on-demand, personal aircraft, and state and military aircraft operators, and emerging flight operations such as unmanned aircraft and space vehicles. The common theme for this diversity of ATM customers is their transformed ability to achieve their business and operational objectives through access to reliable real-time information relevant to their proposed operation, to understand the impact of their decisions related to their operations, and to negotiate with the ANSP to achieve their objectives. Many operators have advanced
capabilities that are complementary to the ANSP and can take advantage of the significant opportunities for access, efficiency, and predictability. These transformed operations provide benefits for any operator that invests in the needed ability, whether GA, commercial, civil, or military. The adoption of performance standards rather than equipment standards encourages innovation by avionics suppliers to produce affordable capabilities supporting trajectory-based procedures and real-time flight information (e.g., weather, airspace configuration, and traffic) in the cockpit.

Benefits desired by flight operators include maintaining schedule integrity, operating efficiently, having access to airspace and airports in the presence of congestion, operating with minimal disruption from weather or visibility, having increased safety and utility, suffering minimal disruptions from security and defense operations, and having reduced operating costs. State and defense providers also have unique needs for access to airspace, including transiting through airspace to complete missions or for training. In addition, a broad community of operators, who fly under VFR, continues to want access to airspace.

Flight operators have a wide range of capabilities and options to meet their mission needs. The minimum ability for operating in any managed airspace is cooperative surveillance, the ability to perform RNAV operations (if operating under IFR), and communication with the ANSP via voice radio. In airspace where TBO is used (Section 2.3), the minimum ability includes the ability to conduct RNP operations combined with the exchange (via a digital data link) and execution of precision 4DTs. Digital data communications between flight operators and the ANSP are the norm performed in TBO airspace; voice is used as a backup and on exception. Some airspace requires the ability to perform delegated or self-separation operations in addition to the above. Many aircraft are capable of digital data communications to communicate with the ANSP (for clearances, requests, and aeronautical information) to send and receive weather information and to receive surface movement instructions. Many operators also are able to communicate between aircraft and their FOC for exchanging flight planning and trajectory information, aircraft performance and maintenance data, flight following information, and passenger-related information. Flight planning systems also have a range of capabilities, including the ability to exchange and negotiate information supporting the C-ATM process.

Each operator makes choices, based on their own business model, about the desired operations and the tradeoffs between increased levels of service from the ANSP versus the needed investment in flight planning and aircraft capabilities and performance. As operations grow in level and complexity, operators continue to make choices on whether to invest in needed capabilities and training, if additional procedures are required to operate.

2.4.3.1 Flight Operator Roles

Flight operator roles during flight planning and flight execution vary based on flight operator capabilities. Table 2-4 highlights projected changes in flight operator roles. Other flight operator roles such as marketing and strategy development are outside the scope of this document.
Table 2-4 Flight Operator Roles

<table>
<thead>
<tr>
<th>Current Roles</th>
<th>Corresponding NextGen Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatcher/FOC Personnel</td>
<td>Flight Planner</td>
</tr>
<tr>
<td>Responsible for originating and disseminating flight information, including flight plans.</td>
<td>Responsible for making tactical decisions about what flights to operate and when and where they operate. May be the same as flight crew. Is the interface with the ANSP C-ATM function to develop collaborative capacity and TFM decisions and in trajectory negotiation.</td>
</tr>
<tr>
<td>Responsible for operational control of day-to-day flight operations. Also responsible for understanding weather and other constraints, incorporating these into flight plans, and in some organizations, coordinating with ANSP personnel regarding overall flow issues.</td>
<td>Operators with multiple aircraft involved in the initiative have the flexibility to adjust individual aircraft schedules and trajectories within those allocations to accommodate their own internal business concerns, both preflight and in flight.</td>
</tr>
<tr>
<td>GA operators also may interact with third-party (fee-for-service) vendors who provide weather and other services (e.g., flight planning) through dedicated computer terminals, direct phone contact, or the Web.</td>
<td>Dispatcher/FOC</td>
</tr>
<tr>
<td>Flight Planner</td>
<td>Flight Crew</td>
</tr>
<tr>
<td>Responsible for making tactical decisions about what flights to operate and when and where they operate. May be the same as flight crew. Is the interface with the ANSP C-ATM function to develop collaborative capacity and TFM decisions and in trajectory negotiation. Operators with multiple aircraft involved in the initiative have the flexibility to adjust individual aircraft schedules and trajectories within those allocations to accommodate their own internal business concerns, both preflight and in flight.</td>
<td>Responsible for the control of an individual aircraft while it is moving on the surface or airborne. Under delegated operations, responsible for separation. May comprise a single pilot or multiple individuals (e.g., two pilots). UAS / RPA may be pilot controlled from a ground control station or automata controlled for autonomous operations using pre-programmed mission information, and aircraft status monitored by the pilot.</td>
</tr>
</tbody>
</table>

1658
1659 The roles of the flight crew for advanced aircraft include managing aircraft systems to include supervisory override, and participating in the C-ATM function. When separation is delegated, the flight crew assumes the role of separation manager as well. For aircraft not equipped with TBO-enabling technology, the flight crew operates much as today, including those operating under VFR. In the supervisory override role, the flight crew is responsible for operating the aircraft and taking any actions deemed necessary to correct system malfunctions that occur during flight. During surface operations, the flight crew has full control of the aircraft and is responsible for maneuvering it and determining if it is fully functional before takeoff. For some aircraft, flight management automation may be used for surface operations as well.
Pilot-in-Command (PIC) authority is always present, and has the prerogative to take any action necessary to ensure the safe operation of the aircraft. When exercising their authority, the PIC is directly responsible for taking actions necessary to correct system malfunctions or safety of flight issues that occur during flight operations.

2.4.3.2 State and Military Operations

Many state aircraft—primarily those operated by the military—require transition between seamless operations among civil aircraft and exceptional flight requirements (e.g., needing special services from the ANSP or departing airspace managed by the ANSP) during a single flight. The initial phases of the mission operate in similar fashion to those of civil users until the unique operation is conducted (i.e. aerial refueling). At that point, the operation becomes unique and remains so until the special operation is completed. Once complete, the ANSP re-integrates the aircraft into normal NAS operations.

2.4.3.3 Unmanned Aircraft Systems (UAS)

UAS operations have the potential to be some of the most demanding. They include scheduled and on-demand flights for a variety of civil, military, and state missions. There has been a significant increase in demand for UAS operations particularly by military and public agencies in order to provide an expansion of current manned aircraft capabilities. In many cases unmanned aircraft have assumed missions traditionally flown by manned aircraft due to their unique capabilities, greater mission effectiveness, reduced risk, lower operating costs, and increased on station times.

Non-Military Public Agency UAS operations include atmospheric research, border and maritime security operations, weather measurement and tracking, natural disaster and humanitarian response, search and rescue, law enforcement, drug surveillance and interdiction, communications relay and more.

Additionally, the growth opportunities for civil UAS applications are exponential and may include news media support, communications relay, agricultural applications, aerial photography and video, remote imagery and mapping, mining exploration, site security and surveillance, natural disaster assessment and monitoring, and cargo operations. UAS capabilities vary widely depending on size, performance, and function. The individual groups of UAS are categorized by attributes of airspeed, weight, and operating altitude.

UAS operators are expected to fly 4DT procedures; however, because of the broad range of operational uses, UAS operators may require access to all airspace. The UAS operators are capable of conducting the procedures required for the airspace and must achieve the same target level of safety as manned aircraft in preventing collisions. The method(s) for ensuring sense and avoid is dependent on the designator of airspace in which the UAS is operating.

2.4.3.4 Vertical Flight

Rotorcraft, tiltrotor, Vertical/Short Takeoff and Landing (V/STOL), and similar aircraft have multi-axis and dynamic flight capabilities that differ from fixed-wing aircraft, which allow them added flexibility for use in unique and demanding missions.
Users are acquiring transport category IFR-capable rotorcraft in larger numbers. With growing ground congestion, these aircraft have increased utilization. In addition to civil uses, rotorcraft continue to have an increasing role in homeland security and other missions. They provide public safety, disaster response, search and rescue, and emergency medical services in all areas of the United States and increasingly perform Instrument Meteorological Conditions (IMC) operations. These operations add to the density and complexity of operations, particularly in and around urban areas.

2.4.3.5 Trans-Atmospheric and Space Operations

Some aircraft are destined for specific mission operations at Flight Level (FL) 600 and above. These “near-space” and space operations continue and expand in diversity. Near-space and space aircraft exhibit a wide variance in capability and vehicle performance (e.g., aerostats, medium- and high-speed research/reconnaissance aircraft, suborbital spacecraft, launching and reentering orbital spacecraft). Some users of this airspace are expected to have unique needs that can be accommodated only with security-restricted airspace-equivalent to today’s Temporary Flight Restrictions (TFR).

In the future operational environment, ANSP facilities will be responsible for maintaining the safe and efficient flow of both air traffic and space traffic within the NAS. ANSP facilities work with spaceports and space traffic management, as illustrated in Figure 2-8, to ensure safe and efficient operations within the NAS, as spaceflight vehicles depart and return on their way to or from space. ANSP facilities have the authority to impose airspace restrictions, reroute air traffic, instruct spaceports to hold spaceflight vehicles on the ground, or (in emergency situations) divert flight vehicles to alternate destinations, as means of accommodating spaceflight vehicle departure and return operations through the NAS.

2.4.4 Transformations in ANSP Processes

ANSP service delivery mechanisms are transformed to provide ATM services in a safer, more secure, scalable, and affordable manner. Processes are revolutionized, from the way ANSP personnel are trained and allocated to airspace to the way long-term capacity changes are managed. The changes in ANSP processes and personnel management are geared toward the following goals:

- Managing resources dynamically to enable the ATM system to apply people where their services are most needed.
- Managing and configuring facilities (including airports) appropriately.
- Designing airspace and designating its use to complement operations.
- Ensuring that the ATM system is globally harmonized through collaborative development and implementation of identified best practices in both standards and procedures.
- Ensuring that safety, security, and environmental considerations are fully integrated into ATM.

Within the ANSP workforce, the emphasis is on strategic flow management and collaboration with airspace users. Flow contingency managers monitor and assess capacity requirements for traffic flows. With DSTs, they determine optimum flow and airspace configurations in collaboration with capacity managers and through collaboration with flight operators and other stakeholders. Separation managers and trajectory managers interact to determine optimum system solutions and implement decisions strategically. A broad set of strategic ANSP functions include the following:

- Forecasting demand to support effective and timely capacity planning.
- Managing capacity, including dynamic management of NAS resources.
- Collaborating with airspace users on flow management strategies.
- Managing trajectory and negotiating with flight operators, if needed.
- Maintaining the flight object and providing flight planning support.
- Providing flow strategy and trajectory impact analysis services.
- Maintaining the net-centric infrastructure and providing other NAS infrastructure services (e.g., navigation and surveillance).
- Coordinating changes to U.S. and international procedures.

Some of these functions are new; many are enhanced. Existing functions (e.g., forecasting demand, providing navigation and surveillance services) are also transformed. The transformations are discussed in subsequent chapters. In addition, although flight planning and weather services are automatically disseminated or provided by third-party service providers, ANSP personnel still provide safety-critical, in-flight services.
Table 2-5 Air Navigation Service Provider Personnel Roles

<table>
<thead>
<tr>
<th>Current Roles</th>
<th>Corresponding NextGen Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Supervisors, Airspace Designers
Design and strategically allocate airspace. Adjust the assignment of airspace to tactical separation providers (primarily by combining and de-combining sectors). Structure routings (air and ground) where required.</td>
<td>Capacity Managers in Collaboration with Airspace Users and Flight Operators
Design and strategically allocate airspace. Dynamically adjust the assignment of airspace to tactical separation providers. Structure routings (air and ground) where required, and flexibly allocate airspace for other purposes, including the operation of state (government) aircraft.</td>
</tr>
<tr>
<td>Traffic Management Specialists/Coordinators
Identify potential flow problems, such as large-demand capacity imbalances, congestion, high degrees of complexity, and blocked or constrained airspace (e.g., for special use, weather), and collaborate on TMLs.</td>
<td>Flow Contingency Providers in Collaboration with Flight Operators
Identify potential flow problems, such as large-demand capacity imbalances, congestion, high degrees of complexity, and blocked or constrained airspace (e.g., for special use, weather), and collaborate to develop flow strategies (i.e., aggregate trajectory solutions).</td>
</tr>
<tr>
<td>Air Traffic Controllers
Provide tactical separation to separate aircraft from other aircraft and SAA, and organize and expedite the flow of traffic.</td>
<td>Trajectory Managers in Collaboration with Flight Operators
Predict individual flight contention within a flow for resources, identify complex future conflicts (i.e., strategic SM), and coordinate individual trajectory resolutions. This is focused on near-tactical management of individual trajectories within a flow.</td>
</tr>
<tr>
<td>Flight Service, Third-Party Service Providers
Provide flight planning and weather services (e.g., Direct User Access Terminal [DUAT]).</td>
<td>Separation Managers (May Be Flight Crew Depending on the Airspace and the Operation)
Eliminate residual conflicts left by the three strategic functions of TBO. Automation detects the conflicts and provides the resolution.</td>
</tr>
</tbody>
</table>

Because NextGen transformations significantly change the roles and responsibilities of ANSP personnel, substantive and organic changes in ANSP personnel management are necessary. Transformations with the largest impact include:

- TBO and airspace.
- Performance-based separation standards.
Greater levels of coordination between aircraft and flight crew in operations.

Reliance on intelligent automation, including for tactical SM.

Emphasis on strategic flow management to minimize the need for tactical separation maneuvers.

Dynamic assignment of airspace boundaries and associated operations.

These operational transformations require corresponding transformations in ANSP personnel selection, staffing, training policies, and practices to meet performance objectives (Table 2-6). Considerations include:

- Personnel selection (e.g., minimum skill levels, special skills, experience levels, cultural issues).
- Staffing (e.g., staffing levels, team composition, job design, team communication, organizational structure).
- Training (e.g., training regimen, training effectiveness, skill retention and decay, retraining, emergency operations training, training devices and facilities, embedded training).

Table 2-6 Personnel Management Transformations

<table>
<thead>
<tr>
<th>Significant Transformation</th>
<th>2006 Current</th>
<th>2025 NextGen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Skills and Selection</td>
<td>Tactical (sector) controllers dominate ATC workforce. Controllers must learn local characteristics of airspace. Skill sets are matched to traffic characteristics within airspace (e.g., high-altitude cruise, transition, terminal).</td>
<td>Separation managers are assigned only to aircraft not equipped to a sufficient level of TBO-enabling technology for a given operation. Common airspace/flow configurations, DSSs, and a net-centric information management system minimize the need for local airspace knowledge. Skill sets are matched to traffic characteristics in airspace.</td>
</tr>
<tr>
<td>Flexible Staffing</td>
<td>Controllers are assigned to one area of specialty within a facility. Sectors are combined/de-combined to manage workload. Constant adjustments are made to facility staffing levels to match traffic levels; facility grade is assigned by traffic levels.</td>
<td>ANSP personnel are assigned in and across facility boundaries to match staffing to traffic demand. Airspace assignments change dynamically. Different operational grade levels exist within a general service delivery point to support career progression.</td>
</tr>
</tbody>
</table>
Significant Transformation

<table>
<thead>
<tr>
<th>Training</th>
<th>2006 Current</th>
<th>2025 NextGen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility training is the longest part of training to learn local characteristics of airspace.</td>
<td>Commonly configured airspace reduces facility training time from months to weeks or days.</td>
<td></td>
</tr>
<tr>
<td>Training emphasizes tactical separation in a variety of conditions and traffic loads.</td>
<td>Training emphasizes management of off-nominal operations.</td>
<td></td>
</tr>
</tbody>
</table>

New procedures, technologies, and infrastructure combine to perform ANSP service delivery, significantly increasing safety, security, and capacity of air traffic operations in the NAS. The ANSP will require different automation, procedures, and skill sets than those utilized in today’s ATC environment. NextGen minimizes the requirement for the service provider to retain local knowledge of the airspace (e.g., frequencies, airspace fixes, and handoff procedures); therefore, the airspace can be treated like commonly-configured airspace. This is particularly true at high altitudes. Commonly-configured airspace affords great flexibility in the airspace and corresponding traffic to which ANSP personnel can be assigned and in the frequency with which the assignments can dynamically change. It also enables the reclassification of ANSP personnel commensurate with the new types of operations. Direct-addressable communication reduces the requirement for frequency management and knowledge. Currently, ANSP personnel provide tactical separation and must accommodate multiple aircraft capabilities. The skill set of the ANSP personnel is similar to that of a radar controller.

New approaches to staff air traffic facilities take advantage of available resources and provide additional opportunities for career growth. Automated staffing tools help facility managers match staffing to traffic demand, so that management of NAS resources is dynamic and flexible enough to adjust to changes in the market as well as changes to daily and seasonal traffic flow. New communication, data, and surveillance capabilities help manage ebbs and flows in traffic levels efficiently, unconstrained by facility boundaries. By decoupling geographic airspace and infrastructure constraints from aircraft operations, capacity managers have the flexibility to leverage resources across facilities to match staffing to traffic demand.

Co-locating operational domains (e.g., tower control and terminal airspace, approach control and en route airspace) of differing complexity levels into general service delivery points allows service providers to advance to higher grade levels without having to relocate. This has the dual benefit of providing employees better opportunities for career progression while dramatically decreasing operating, maintenance, infrastructure, and permanent-change-of-station costs.

All air traffic facilities benefit from scheduling and workforce management improvements. SNTs allow ANSP personnel to service multiple airfields from a single physical location. The ability to use SNTs enables airports to receive tower services that they normally do not receive, given the criteria of today and the costs of building a tower. In addition, ANT s are an innovative, affordable way to provide new services where service delivery was not practical before. ANT s are beneficial for smaller, towered airports or SNT airports, as they continue providing existing services during off-hours at reduced staffing costs. A voice interface ensures that aircraft without data communication equipage can receive service.
Commonly configured airspace significantly reduces the time required to achieve various levels of ANSP personnel certification from months to weeks or days. The elimination of inter-facility letters of agreement and the corresponding need to learn all local characteristics of the airspace, in part, enables reduced training time. This in turn reduces training costs and fosters other benefits such as increased flexibility in scheduling, more rapid response to staffing needs, and reduced stress on training resources (e.g., on-the-job training instructors).

Various levels of fidelity in training simulators reduce training cost and time. The enhanced process and inherent simulation capabilities provide for more standardized instruction, unbiased assessment of performance, mitigation of weaknesses, and useful remedial and proficiency training. Performance measurement tools evaluate the efficiency and efficacy of training programs, processes, and paradigms on the development and enhancement of skills performance. They also measure job performance competencies and related knowledge, skills, and abilities that determine individual and team safety, efficiency, and effectiveness.

Some members of the NextGen workforce are hired into the new roles of ANSP personnel (e.g., CM, FCM, TM), while others are retrained from the classic roles of air traffic controller and traffic flow manager. With a reliance on automation, the ANSP selects and trains personnel to ensure they can deliver the essential services when off-nominal or emergency conditions exist. This requires that a significant portion of the training focuses on dealing with emergencies and exceptional situations in addition to all other necessary skills. This in turn necessitates that systems not only have a very high level of reliability but also that system failures are controlled in a gradual degradation, providing ample time to reduce traffic to the reduced capacity levels.

Selection criteria tailored to the type of ATM services provided (e.g., tower controller, traffic flow manager), innovative and flexible staffing techniques, and a revamped training program ensure that the ANSP workforce is best prepared to meet the demands and challenges.
3.1 **INTRODUCTION**

Airports are a determining factor in the total capacity of the air transportation system; accordingly, airports are critical to the overall transformation. Airports serve as the integrative space between the ground and air. Moreover, they enable aircraft to arrive and depart in a safe, efficient, and secure manner, while also facilitating the movement of people and cargo, on and off aircraft.

Achieving the capacity growth needed to meet future demand for aircraft operations and passenger/cargo movements at airports is a significant challenge. NextGen seeks substantial improvements in the utilization of existing infrastructure as well as the development of new infrastructure and technological advancements at both scheduled air transport service and GA airports to benefit passengers, cargo, and GA aircraft operators that use the NAS.

Unlike other components of the air transportation system that are directly managed by the federal government, airport decisions are primarily made at the local level. The development or transformation of an airport hinges on the efforts and decisions of the communities and users it serves. The factors that drive many airport investment decisions are primarily market- and user-driven, rather than falling under the jurisdiction of the federal government. Even as airports seek to be responsive to the needs of the aircraft operators and traveling public, these particular users are responding to market factors. Factors that are expected to drive airport development and operations through 2025 and beyond include the following:

- Maximizing the use of existing infrastructure, increasing the utilization of GA and reliever airports, and implementing new ATM procedures that increase airport efficiency resulting in significant capacity gains. New infrastructure at scheduled air transport service and GA airports may achieve additional capacity gains.

- Some scheduled air transport service hub airports that are approaching capacity today may not be able to expand reasonably to support unconstrained demand in aircraft operations or passenger movements. In these cases, the development of existing airports in the congested area to improve throughput may be necessary to augment regional capacity.

- People and cargo will need to get to and from the airport in a predictable and efficient manner. Therefore, efficient intermodal transportation networks and information systems need to link airports with population and business centers.

- Collaboration among federal, state, and local agencies will support the effective governance of airport operations and regional considerations, given the many stakeholders who have vital interests in a successful airport system.
In recognition of these drivers, the following sections provide available services that airports can adopt, as dictated by their needs and missions. For example, the busiest scheduled air transport service hub airports may need systems to manage ramp operations actively to reduce congestion, while a small hub airport may not warrant this investment. Some scheduled air transport service hub airports that cannot easily expand their terminal buildings may need off-airport passenger processing capabilities, while other airports may need to build expansive, flexible terminals. GA and reliever airports may seek facility improvements and instrument approach access to serve the needs of their operators. Actual implementation of these concepts will be done through traditional local decision making in cooperation with the airport operator, users, and neighboring communities, along with support from local, state, and federal governments.

The “Flexible Airport Facility and Ramp Operations” capability will enable a balance between airside, landside, and terminal airport infrastructure in order to achieve optimal airport capacity. Future growth in aircraft operations cannot be accommodated without application of innovative ATM technologies and procedures, construction of additional infrastructure at major airports, and/or better utilization of existing infrastructure at supporting airports.6 NextGen seeks to increase the overall capacity of the existing airport system through the implementation of transformational concepts that enable the optimum and balanced utilization of airside and landside (i.e., terminal and intermodal transportation) components at national, regional, and local levels. The growth of the airport system will incorporate factors of environmental, financial, and regional sustainability.

Flexible Airport Facility and Ramp Operations - provide the ability to reallocate or reconfigure the airport facility and ramp assets to maintain acceptable levels of service that will accommodate increasing passenger and cargo demands. This includes changes in operational requirements, through infrastructure development, predictive analyses, and improvements to technology (e.g., automation and DSS) and procedures.

Airport concepts and capabilities needed to improve airport operations are distinct from surface ATM concepts and capabilities. With PNT capabilities, advanced ATM procedures and technologies will improve the operational capacity and efficiency of existing airport runways and surface operations. For example Performance-Based Navigation (PBN) provides VFR-equivalent operations during IMC on closely spaced parallel runways. On the airport surface, synthetic vision, moving maps, and automated alert and de-confliction systems will provide safe navigation of aircraft and Ground Support Equipment (GSE) during low-visibility conditions. Chapter 2 provides additional information on ATM capabilities.

3.2 AIRSIDE OPERATIONS

Airside operations encompass activities that take place on an airport’s runways, taxiways, aircraft parking aprons (whether adjacent to passenger terminals, cargo buildings, aircraft maintenance facilities, or GA facilities), and airside service roads. These activities include

6 Supporting airports include small hub, non-hub, and non-primary commercial service and general aviation airports in congested metropolitan areas.
Key elements of NextGen include enhancement of safety and efficiency of aircraft and ground vehicle movements on the airport surface. Key stakeholders accomplish these objectives through the utilization of net-centric infrastructure resulting in significantly improved SSA. The results will improve emergency response, enhance airfield maintenance activities, expedite snow clearance, accelerate aircraft and pavement deicing, reduce the impact of other weather phenomena such as lightning and fog on airport operations, and improve asset and resource management.\(^7\)

These enhancements will affect a broad spectrum of stakeholders, many of which will need to invest in enabling technologies and capabilities to realize benefits. Stakeholders include airport operators, passenger and cargo airlines, pilots, dispatchers, other aircraft operators (military, business, and GA), fixed-base and corporate facility operators, and third-party GSE operators. The FAA, which has ground traffic control responsibilities within airport movement areas, third-party ramp control providers and terminal operators, and airport contractors are also important stakeholders.

The sections below describe how planned improvements are expected to enhance airside operations.\(^8\)

KEY NEXTGEN TECHNOLOGIES—AIRPORT & AIRSIDE

<table>
<thead>
<tr>
<th>Enhanced airside surveillance enabled by either ADS-B or local-area multilateration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated, collaborative surface traffic management/gate management tools</td>
</tr>
<tr>
<td>Moving map displays for aircraft cockpits and airside ground vehicles</td>
</tr>
<tr>
<td>Single, authoritative sources of airport geospatial, weather, air traffic, and surface traffic data coupled with integrated data sharing capabilities that enable immediate sharing of these authoritative data with all key stakeholders operating on the airside</td>
</tr>
<tr>
<td>Improved weather prediction capabilities, particularly with respect to icing, precipitation, low-visibility, and lightning</td>
</tr>
</tbody>
</table>

3.2.1 Enhanced Airside Safety & Security

NextGen will provide the information needed to enable improved situational awareness. This information will be processed by cockpit and in-vehicle displays of traffic information, moving maps, and other DST to provide pilots and ground vehicle operators with improved surface movement surveillance capabilities. Airport Operations Centers (AOC), and FOC will also have access to this information fed by surface surveillance systems (multilateration, ADS-B, and/or surface radar) these displays will provide stakeholders (controllers, dispatchers and operators)

\(^7\) For additional discussion of NextGen’s net-centric concept of operations, please refer to Chapter 4. Similarly, additional discussion of the shared situational awareness services, including several that would provide airside operational benefits, can be found in Chapter 5.

\(^8\) Challenges associated with realizing these and other airport-related NextGen operational improvements are described in Section 4.5.
with a real-time picture of the locations of other vehicles and aircraft on the ground, even in poor-visibility conditions. Enhanced surveillance and communications provide proactive alerts to pilots and ground vehicle operators, enabling them to take action to avoid runway incursions and surface collisions.

Enabled in part by net-centric system architecture, both FAA Air Traffic and airport operations staff will be provided with real-time information about runway, taxiway, navigational aid, and lighting system status. Data sharing capabilities will enable the status of these facilities to be automatically communicated to pilots and aircraft dispatchers via electronic Notices to Airmen (e-NOTAMs), reducing the need for voice communications and the associated potential for transcription errors and lags between observations and reporting of airfield conditions.

When reporting weather phenomena, particularly snow or ice, net-centric architecture facilitates the sharing of data to include runway friction, aircraft braking action, and precipitation accumulation collected by a variety of systems and/or stakeholders. This data may come from aircraft, ground-based systems, in-pavement sensors, weather systems, or field observations.

In the event of an accident or incident occurring within the airside environment, communications and surveillance capabilities provide first responders with accurate real-time information regarding incident location, and aircraft details (e.g., aircraft type, interior configuration, passenger manifest, hazardous materials carried). In addition, recommended response strategies, facilitated by net-centric architecture and data sharing capabilities, will be provided directly to first responders and distributed among other parties involved in incident response such as support, emergency management center(s), and investigative authorities.

The data collected by surface surveillance and other systems can be archived and analyzed to identify potential safety risks before they result in incidents or accidents. The mining and analysis of such data will help improve the effectiveness of airport SMS. Airports will use various credential verification, access control, random measures and surveillance systems to safeguard aircraft parking areas, fuel farms, and other sensitive terminal airside areas, based on assessed risk. These measures include surface movement tracking, employee and vehicle access control, perimeter intrusion detection, Closed Circuit Television (CCTV), behavioral pattern analysis and InfraRed surveillance systems. Security sensor data will be shared with and used by a security operations center as part of airport NCO. Support software applications ensure data is proactively evaluated in real time to identify security risks and when able, address them before incidents occur.9

3.2.2 Improved Airside Operational Efficiency Especially in Non-Movement Areas

Another key objective of airside enhancements is improved efficiency of aircraft and ground vehicle mobility in the airport movement areas (runways and taxiways) and within non-movement areas (aircraft parking areas and apron). GSE surface movements are monitored in real time via cooperative and non-cooperative surveillance. This enables proactive management, using net-centric infrastructure, to ensure smooth, efficient, and safe flow of vehicular traffic

9 Please refer to Chapter 6 for a more detailed discussion of the NextGen ConOps for airport security.
such as baggage carts, fuel trucks, catering vehicles, and other airport vehicles. GSE will be equipped to provide accurate navigation and alerts during low visibility conditions in order to remain clear of active runways and taxiways, and to maintain safe separation from aircraft.

4DT operations provide airlines, airport operators, and third-party terminal operators with information that can be used to make better dynamic gate assignments, reducing apron-area congestion and increasing gate utilization at common-use terminal facilities. Airline dispatchers, terminal ramp controllers, and FAA ground controllers will be able to manage departures in congested apron areas collaboratively, thereby minimizing delays associated with simultaneous or near-simultaneous pushbacks.

Furthermore, air traffic controllers will be able to build virtual departure queues while aircraft wait at their gates or parking positions with engines off, rather than building real departure queues on active taxiways. These virtual queues (commercial, corporate, GA, and military operations, coupled with the approved flight plan contract) will enable flexible/dynamic re-sequencing of departures in response to changing weather and air traffic conditions, thus reducing airfield congestion, associated aircraft emissions, and fuel burn. Shared surface situational awareness coupled with 4DT operations facilitates the rapid and accurate dispatch of GSE and ramp staff to service incoming aircraft and turn them more efficiently. While these capabilities will benefit airport and aircraft operators in all weather conditions, they will be especially useful when adverse weather or other factors disrupt regular operations.

3.2.3 Enhanced Airside Facility Management

NextGen promises to enhance airport operators’ ability to manage their airside facilities, in both the day to day and far term operations. Sensors on the airfield will collect data such as weather and pavement conditions, and integrated systems will detect anomalies and hazards like wildlife and Foreign Object Debris (FOD). With integrated 4D weather information, resources will be better aligned with operational demand in order to reduce delays. Resource management assists airports with active monitoring of environmental conditions (noise, air quality, water quality, and wildlife hazards) which directly feed into the airport operations center and reduces the need for time-consuming and labor-intensive inspection activities.

Net-centric geospatial information systems provide airport operators and other stakeholders with a common picture of airport facilities. Acting as a single authoritative source for information regarding facility physical, maintenance, and operational characteristics, these geospatial information systems will benefit a variety of users including airport planners, engineers, and maintenance and operations professionals. These systems will also provide essential information to airspace procedure designers, pilots, vehicle operators (via moving map displays), wildlife managers, and others. This same rich graphical data can also be used by emergency responders through enhanced moving maps.

Surface surveillance systems and the secondary surveillance information they provide (e.g., aircraft operator, aircraft type, time of operation) are leveraged by airport operators to facilitate

10 Please refer to Sections 4.3 and 5.4 of this document for more detailed discussions of the NextGen ConOps for airport-related weather tools.
aeronautical revenue collection, to better manage aircraft gates and parking positions
(particularly common-use facilities). Aircraft operators and the third-party terminal and facilities
operators use this information to better manage their operations and facility utilization, especially
at common-use terminal facilities.

3.2.4 Enhanced Airside Maintenance

The aforementioned geospatial information systems, married with infrastructure monitoring
systems, assist airport operators in understanding their infrastructure management needs and
permit targeted and timely maintenance and operations activities. Remote pavement, lighting,
and marking system sensors will help apprise airport maintenance staff of issues before they
result in the loss of mission-critical facilities (e.g., runways, approach lighting systems) and will
help airport operators prioritize maintenance activities. The ability to track and analyze
maintenance performance, combined with other support management systems, allows airport
operators to cost effectively implement maintenance and service delivery.

3.2.5 Enhanced Winter Operations

During significant winter operations, airside resource management systems provide guidance for
scheduling, prioritizing, and actively managing de-icing/anti-icing operations for both aircraft
and airport surfaces. Winter weather forecasts and their impacts on surface conditions will be
provided to resource management systems to inform decisions regarding deployment of
treatment crews with optimal strategies to keep runways and taxiways clear and serviceable.
Using advanced technologies, ground equipment and landing aircraft will more accurately
measure runway friction. These friction measurements are automatically disseminated using
NCO to aid landing aircraft in calculating landing distance.

Predictive weather capabilities, icing sensors, and continuously monitored deicing/anti-icing
holdover times will be used to modify 4D-trajectories and maintain smooth flows of traffic on
the ground and in the air despite deicing procedures. Improved deicing/anti-icing technologies
will be used to expedite deicing processes and reduce delay. Surface management systems,
enabled by improved surface surveillance, are used to manage airport, airline, and fixed-base
operator deicing facilities, equipment, and materials more effectively, matching aircraft that need
to be deiced with available resources. Improved predictive weather capabilities and holdover
time estimates, coupled with effective 4DT management, reduce the use of deicing and anti-icing
chemicals by “right-sizing” the quantity of chemicals used during primary deicing, and reducing
or eliminating the need for secondary deicing. This minimizes the harmful impacts of these
fluids upon water quality. Sensors automatically detect pollution thresholds in local waterways
allowing the airport operations center to take necessary actions, including diversion of used
deicing/anti-icing fluids to storage for later treatment. Aircraft and surface deicing product usage
are automatically monitored for reporting, mitigation, and compliance with environmental
goals.11

11 Please refer to Chapter 7 for a broader discussion about how NextGen systems will address airport
environmental goals and objectives.
3.2.6 Surface Data Availability and Management

The capabilities discussed above will require common, shared access to critical operational, geospatial, maintenance, and weather data. Without open access to this data across stakeholders, many of the benefits that will come from stakeholders’ SSA of airside conditions will not be realized. For this reason, it will be essential for the FAA, airport operators, airlines, and other stakeholders to enact policies and procedures that facilitate the open exchange of this data, and standardize industry practices for collecting, sharing, and managing this data. These policies, practices and procedures will need to take into consideration data ownership, facilitation and sharing of data, and how stakeholders pay for the processing, analysis, and distribution of this data.

3.3 TRANSFORMED LANDSIDE AND PASSENGER TERMINAL OPERATIONS

More people and cargo will be moving through landside areas at airports, including passenger terminal buildings and ground access to get to and from an airport. Accordingly, effective airport resource management systems can enhance passenger flow management and connections to intermodal ground transportation.

3.3.1 Landside Resource and Passenger Flow Management

With the aid of net-centric infrastructure and services, airport resource management systems assist airport operators in the synthesis of real-time information and proactive management of resources in anticipation of near-term events, typically in an hourly or daily time frame. Landside functions also benefit, including terminal passenger flows, security screening status, parking, and airport curb status.

Efficient passenger flows in airport terminals are important so that congestion, queues, and baggage do not impede passenger movements. Passenger (and other airport customer) flows are impacted by signage (e.g., Flight Informational Display Systems [FIDS]/Common Use Terminal Equipment [CUTE]), public transportation, regional transportation, parking, conveyance systems, terminal space layouts (including gates, concessions, and restrooms), airline business models, and marketing. In addition, changes to security protocols may create bottlenecks, thus impacting the ability of a passenger terminal to meet their needs and goals.

To ensure smooth passenger flow management, coordinated information is broadcast to users, including current status and forecast for security wait, Customs and Border Protection (CBP) processing, and flight status. Although these systems exist today, they are not sufficiently synchronized to facilitate passenger flows. NextGen provides open information standards for a centralized, wireless-enabled system to disseminate passenger flow information at key airports to include ground transportation connectivity, weather, delays, parking availability, and check-in times within a single network.
3.3.2 Passenger Processing and Security

Advances in common-use systems continue existing trends toward automated issuance of boarding passes (whether paper or paperless) and faster processing of passengers. As discussed in Chapter 6, the Security Service Provider (SSP) is responsible for regulating, managing, and/or implementing new and transformational technologies and procedures to ensure system security using IRM. Typically, a departing passenger is able to arrive at the airport curb, get a boarding pass and check baggage (as needed), clear security screening, and be at the gate within 30 minutes.

3.3.3 Off-Airport Passenger and Baggage Processing Enabled through Integrated Trip Tracking

An enterprise service provides for integrated trip tracking of baggage and passengers that adheres to industry-defined standards of service, reliability, maintainability, and universal access. The system supports tracking of passenger and baggage information (e.g., Radio Frequency Identification [RFID]), synchronization, itinerary/handling information, remote check-in, and security assurance. The system does not transfer passengers and baggage between venues, but supports the continuous tracking and availability of the plan, intent, and current locations of passengers and their baggage. An open information standard enables the transfer of passenger baggage (e.g., a passenger renting a car from a rental car company picks up the luggage at the rental car rather than at baggage claim).

The Remote Terminal Security Screening (RTSS) facility provides added value to conducting full-spectrum screening of both passengers and bags, as described in Chapter 6. Then, a secure ground transport system transfers cleared passengers and bags to the sterile portions of the airport terminal. Alternatively, passengers transport self-tagged bags with RFID from off-airport terminals (that do not conduct security screening) to the airport and then air carriers accept the bags for transport prior to the passenger security screening. Depending on their specific needs, airports are able to adapt off-airport terminals of varying capabilities into their operations.

The passenger and bag tracking system decentralizes passenger processing and allows bag processing to be conducted in an out-of-the-way area of the airport, if appropriate. This increases capacity, reduces check-in time, reduces personnel requirements, and enables tracking. Both bags and passengers are known entities, allowing 4DT aircraft departures in a more reliable manner. Passengers and bags are treated as information monitored by the passenger remotely (e.g., via mobile phone or handheld device). Demands on aircraft operator check-in personnel are reduced, as is space in the terminal for check-in. Passenger baggage is routed through an industrial sorting center to deliver either to the terminal or to the passenger’s final destination (bus, train, hotel, etc.).

3.3.4 Intermodal Ground Access

Intermodal ground access is needed for air services to connect with ground transportation within each regional system to provide more efficient flow. Passengers have a variety of options, including public rail and bus transit, taxicabs, shuttle services, and private automobiles. The
integration, of reliable information on intermodal ground access into a passenger’s itinerary, aids in determining the best method of travel to and from the airport. The developments of intermodal transportation systems linked to airport ground access are an important component for making regional airport systems viable.

Inclusion of intermodal links in this ConOps is not meant for funding or program implementation, but rather to highlight the need for airports to work with their communities to integrate airport and landside access/transportation planning. Because most passengers and cargo access the airport via the roadway system, increasing activity at an airport puts additional pressure on the regional road network. Moreover, intermodal transportation improvements are needed to support off-airport passenger and baggage processing.

3.4 TRANSFORMED AIRPORT DEVELOPMENT

Long-term planning and infrastructure development will enable the U.S. airport system to accommodate increased operational demand while maintaining a high level of service.

3.4.1 Airport Preservation

The United States must preserve a diverse network of airports throughout the nation in the best interest of an efficient national air transportation system. This includes all types of airports, inclusive of major air carrier airports and smaller, supporting airfields that act as relievers and regional airfields. All are vital for the future; however, many airports are at risk from encroachment or closure, and preservation of these resources is needed.

Today, airports provide communities with a fast and efficient gateway to the domestic and international air transportation system. Many companies consider proximity to an airport a key reason for locating their facilities, including proximity to smaller airports that have sufficient infrastructure to support business jet operations. This will become even more apparent as air taxi operators using VLJ business models come into operation during the next decade.

Supporting airports are also a vital resource during emergencies. Emergency response activities are often staged out of smaller airports, including responses to natural disasters such as hurricanes and wildfires. Without efficient airport access, emergency response services would be more constrained.

The sustainability of existing airports is critical to the future growth of communities and to the nation’s air transportation system. Planners envision increased use of supporting airports as a critical component to increasing total system capacity and thereby accommodating increasing demand. With the deployment of new precision approaches to most airfields, enabled by satellite navigation technologies and Required Navigational Performance (RNP), access to supporting airports becomes safer and more reliable. Increasingly, aircraft operators make maximum use of the existing infrastructure at supporting airports to avoid congestion and higher costs at major airports. New and emerging aircraft, including UAS, V/STOL, supersonic aircraft, and commercial space vehicles, as well as the ever-changing needs of the military require the support of a diverse network of airports. Where appropriate, increasing the utilization of existing and new joint-use facilities provides for improved civil access to the NAS.
The primary threats to airport preservation are incompatible land use encroachment, conversion to non-airport uses, lack of sustainable capital and operating finance mechanisms, and lack of community support. Land use encroachment and development has long been a concern to airport operators and users. Accordingly, advocacy and sponsorship of the airport by local businesses, users, and the community is important for long-term preservation.

With respect to land use, a new airport preservation program will enhance the sustainability of at-risk airports. In coordination with the National Plan of Integrated Airport Systems (NPIAS), at-risk airports would be identified via input from users, airports, and others with interests in airport preservation. States, airports, and Metropolitan Planning Organizations (MPO) would be partners in the implementation and success of the program. The FAA would participate in identifying and protecting critical airport infrastructure without changing airport operator responsibilities and state and local determination of land use. In addition to airport advocacy and fostering community support for airports, the program would seek to align federal airport programs toward the goal of long-term airport preservation.

In addition to Airport Layout Plans (ALP), which are a required component of airport master planning, long-term maps (i.e., 20-year maps that coincide with comprehensive planning standards) of the surrounding environs, including airport protection surfaces, existing and future noise levels, and safety zones would be prepared for airports that participate in the program. Airport programs under 14 Code of Federal Regulations (CFR) Part 150 and Environmental Management Systems (EMS) would be aligned with the Airport Preservation Program in the interests of protecting land use compatibility, preventing encroachment, and enhancing environmental sustainability. A robust obstruction evaluation process and comprehensive maps of airport protection surfaces (i.e., 14 CFR Part 77 and Terminal Instrument Procedures [TERPs], as applicable) would help prevent new structures from exceeding height restrictions, and thus constrain instrument approach access to airports during inclement weather. Depending on the state enabling legislation for land use decisions, the long-term mapping could be integrated into airport overlay zoning in order to curtail new development with the potential to affect airport preservation or future expansion plans.

Through intergovernmental agreements, information on proposed land use development actions within the long-term mapping (e.g., issuance of building permits, zoning amendments, and comprehensive plan updates) would be shared with airports, local governments, MPOs, state aviation agencies, and the FAA. This information sharing could assist with problem identification and aid in building consensus on development actions. For example, participating organizations could have the opportunity to review and comment on the development actions for suitability with airport plans, federal grant assurances, community interests, and the long-term sustainability of the NAS. Potential recommendations on the proposed development actions could include consent/approval, disapproval, or a recommendation to amend the plan to include easements, noise mitigation, and disclosure requirements. The jurisdiction seeking to approve the development plans would respond to the comments and provide their reasons for acceptance, rejection, or amendment. Depending on the governing laws of the state and local jurisdictions, varying legal remedies could then be available.
At a regional level, the identification of former military bases (e.g., as part of the Base Realignment and Closure process) that have potential civilian aviation uses could continue to be an important component in enabling aviation growth. In heavily developed regions, these former military bases may be the only realistic option for expanding regional airport access and capacity. The conversion of suitable former military bases to civil aviation use is facilitated through integrated, long-term regional planning that identifies future applicable aviation uses for the facilities. As previously mentioned, a new Geographic Information System (GIS)-based enterprise service will permit integrated obstruction analyses inclusive of the current 14 CFR Part 77 and TERPS obstruction criteria as well as the protections needed for air carrier one engine inoperative takeoff performance criteria, dynamic RNP, and other advanced flight procedures. By making the obstruction analysis process more robust, builders and the FAA are able to evaluate proposals and alternatives thoroughly and efficiently. As a result, airports and aircraft operators are protected from obstructions that impact approaches and capacity, thus aiding in the preservation of airports.

3.4.2 Catalysts for Airport Development Actions

While long-term development planning is an important tool for identifying potential infrastructure development projects, specific catalysts are needed to move projects from the planning stage to implementation. Historically, new gates and terminal layouts were built to accommodate widebody aircraft, regional jets, and hubbing operations. Airfield construction, including terminals, new runways, and runway extensions has been done in response to specific localized needs.

More recently, new security procedures such as the need for in-line baggage screening have driven further changes. In an era when airport security has become a national priority, airports have been able to accommodate new and evolving infrastructure needs in order to guarantee aviation security. Metrics relating to aircraft quantity, size, performance, capacity, landside access, and level of service must be used to evaluate potential solutions to improve airport infrastructure. Interpreting the various metrics with an understanding of how changes might affect the entire network of airports is paramount. For example, solutions implemented at a number of major airports may cause significant and negative impacts at supporting airports, or vice versa. To achieve balance, NextGen will recognize the diversity of airports and work to integrate the national planning process with site-specific facility planning, financial planning, environmental sustainability, and regional system planning. This approach, combined with benchmarking, market analysis, effective policy, operational procedures, and technology will help identify the appropriate airport infrastructure necessary to develop an integrated airport system and thus meet their goals and objectives.

3.4.3 Efficient, Flexible, and Responsive Airport Planning Processes

Solutions to critical airport issues need to be balanced against other aviation metrics such as aircraft operations, passengers, capacity, safety, level-of-service standards, landside access, and environmental goals. For each of these, the NAS will require a clear image of different airport types and the domino effect that could ensue as a result in major aviation policy changes. For example, solutions that are implemented at a number of large airports may cause significant and negative impact on smaller airports, or vice versa. To achieve the proper balance, the future
The airport system will require the ability to integrate multiple planning processes and analyses to determine the appropriate airport infrastructure necessary to develop the future integrated airport system plan.

Processes that encompass traditional master, financial, and environmental planning activities are integrated into a single, comprehensive architecture that enables more efficient, flexible, and responsive planning. NextGen goals are integrated into the planning process, as are ANSP coordination activities that are needed to ensure the successful implementation of airport improvements (e.g., so that airport planning actions take into account airspace constraints). Regional considerations such as the specific roles of airports within a system, availability and need for intermodal transportation links, and the comprehensive plans (including land use) of local jurisdictions are key factors in successful airport planning efforts. By integrating these diverse activities into a complete process that is efficient, predictable, and transparent, oversights are reduced and capabilities are enhanced. Effective public involvement is also critical to ensuring that the community is aware of and can support airport infrastructure development.

FAA-supported finance mechanisms are available to support integrated planning processes as well as coordination actions for the ANSP. For major airports, planning will occur on an ongoing, annual basis in connection with Capital Improvement Programs (CIP) and performance management activities in order to identify long-term gaps and emerging trends and respond appropriately. A continuous, integrated planning process supports environmental streamlining activities by speeding the identification and dissemination of airport data as well as improving data comprehensiveness and quality. The continuous planning process also supports the EMS process discussed in Chapter 7.

The impact of aviation on the surrounding environment is a critical study element in the development of airport infrastructure. As air traffic grows, airports will operate in a more environmentally sustainable and energy-efficient manner to prevent environmental degradation. Sustainability and environmental management measures will be incorporated into proposed facilities, programs, and procedures. Post-implementation evaluation of actions will be an essential component of the planning process, so the actual benefits of new infrastructure can be quantified and compared to the planned estimates. This supports a lesson-learned function in planning activities in order to identify successful project strategies and valuable lessons learned. EMS will be used to monitor and review and to provide information to adapt and improve. The end result is an efficient planning process that integrates airport, financial, environmental, and regional planning activities as the process evolves to satisfy the emerging infrastructure needs and constraints of the NAS.

3.4.4 Regional System Planning

Increased support at a national planning level will (1) promote intermodal and ground transportation initiatives directly related to using alternate airports, (2) manage demand among a system of airports, and (3) protect airports from non-compatible development while also recognizing the land use needs of communities in the vicinity of airports. In the interest of long-term sustainability, airports and local governments shall work together to improve compatibility and to protect airport and community resources, including off-airport environmental and
community planning issues. Comprehensive, integrated regional system plans are critical to achieving these objectives.

Planning for airport systems, intermodal transportation, and land use are integral components of comprehensive regional system plans:

- Airport system planning includes activities to determine the role of each airport within a system, estimate aviation demand, determine infrastructure needs, and provide for environmental management.

- Intermodal transportation planning includes activities for highway, high-speed bus, and rail (including light, heavy, high-speed, and freight) connections between airports, RTSS facilities, central business districts, regional transportation arteries, and residential areas.

- Land use planning includes activities to integrate airport compatibility standards for aircraft noise and obstructions into the comprehensive plans implemented by local jurisdictions, while also considering the development, revenue, and demographic needs of the communities.

Through regional system plans, airport operators can take a more active role in local land use planning by being involved in the development, review, and implementation of comprehensive plans used to manage local land use. Proactive use of multiple land use management tools, including disclosure requirements, conventional and overlay zoning, land banking, and development rights will also be important. Efforts to prevent new obstructions to air navigation (e.g., radio towers) from constraining aircraft performance and instrument arrival/departure procedures at an airport will also be part of the regional system plan.

In order to manage interdependencies, multiple components will be integrated into the regional system planning process. Through consideration of the needs, constraints, and goals of aircraft operators, communities, and other stakeholders, the regional system plan will serve to integrate decision making for airports, intermodal transportation, and land use. The regional system plan would provide guidance on the specific activities undertaken by local jurisdictions and airport operators for ground transportation and land use development. Potential environmental impacts and benefits will also be assessed, using appropriate metrics and impact criteria for noise, air quality, water quality, and other effects. Primarily, regional system planning would be most critical for major metropolitan regions with multiple airports and a diverse transportation network.

While regional system planning is not a new concept, it will become vital for success when addressing the challenge of increased aircraft operations, passenger, and cargo demand. Specifically, airport planning processes will need to incorporate regional components, including regional policy decisions. Airports will provide local and regional transportation planning agencies (e.g., MPOs) with proposed development plans (including master plans) for review and comment. In addition, airports and airport operators will collaborate with surface transportation agencies in their planning efforts so that airport ground access needs can be considered in the context of the overall regional transportation planning and programming process.
Federal, state, and local roles in regional coordination and decision making will be defined. Appropriate policy guidance and finance mechanisms will be identified and made available to support regional system planning and intermodal infrastructure development. A better understanding of how market and non-market mechanisms affect the choices made by aircraft operators to serve specific airports is necessary so that regional needs can be better forecasted and incorporated into decision making.

3.4.5 Flexible Terminal Design

Design guidelines for Airport Passenger Terminal Buildings will be implemented to facilitate the flexible integration of new technology and procedures (e.g., advanced passenger and baggage processing, remote check-in, and security), and assist in the development of new terminal layouts and signage that promote smooth passenger flows during busy periods. With flexible terminal designs, changes in processing technologies and security screening requirements can be accommodated in a terminal envelope that enables rapid reconfiguration of the building to meet ongoing needs. Available infrastructure would support common-use facilities such as gates, ticket counters, kiosks, and information systems. Note that the common-use infrastructure is not intended as a federal mandate; each airport and its users will determine gate allocation based upon its specific needs and factors related to efficiency, cost, and availability.

New terminal designs will increasingly incorporate provisions to support energy and resource conservation, including green design and technologies.

3.4.6 Optimized Airfield Design

Airfield design planning and engineering standards will be optimized to take full advantage of ATM improvements. Standards are needed to guide the design of new infrastructure, deployment of sensors and NAVAID equipment, and support operations at airports by new types of aircraft.

3.4.6.1 Closely Spaced Parallel Runway Operations

Procedures and equipage that permit independent aircraft operations to/from closely spaced parallel runways (i.e., with smaller separation standards than those in use today) maximize the capacity of existing infrastructure. In terms of airfield design, reducing separation between parallel runways needed for independent aircraft operations reduces the land needed for runway development. One of the major limitations to new runway development is the lack of available land to develop new runways at high-traffic airports, especially in dense metropolitan areas. Specific parallel runway separation standards are a function of ANSP procedures; the development and implementation of new standards will have a substantial effect on airfield design and capacity.

3.4.6.2 Airport Geographic Information Services

The airport operator has an important role in providing accurate and up-to-date GIS data. Today, the lack of ready access to accurate and up-to-date airport surface GIS data is a significant issue with existing automation systems.
High-quality airport data and information will be available in a centrally managed, comprehensive repository. For example, the flight hazard/obstacle review process can be automated through distributed GIS with information on Part 77/TERPS surfaces and obstacles. This data can be used to support safety assessments and hazard mitigation tracking. Airport layout plan documents would be available in a central repository accessible through a managed process (e.g., an airport map database). Other components, such as noise and emissions data, land use, historic aircraft trajectory data, and completed studies would also be available in the central repository. As appropriate, these systems would be developed in GIS-based formats.

3.4.6.3 Obstacle Measurement and Data Distribution
Mature airborne and satellite-based obstacle identification and measurement techniques supplement present-day ground survey practices. Accuracy tolerances and required clearance criteria currently added to obstacle locations and heights are reduced or eliminated, thereby allowing airspace designers to develop Instrument Approach Procedures (IAP) with the lower minimums. Obstacle data are readily available through a Web-enabled distribution system using GIS technologies. This achieves substantial increases in capacity because it increases access to the airport during low ceiling and visibility conditions.

3.4.6.4 Airport Protection Surfaces
Aircraft performance characteristics that increase levels of safety, combined with advanced instrument procedure design criteria, allow for reductions in obstruction clearances and associated protection areas currently required for both ground and satellite-based aircraft flight procedures. This allows arriving aircraft to use lower ceiling and visibility minimums when using IAPs during inclement weather, thereby increasing access to the runway and increasing overall capacity because operations are not constrained due to inclement weather. Lower ceiling and visibility minimums also permit more aircraft to depart airports during adverse weather.

Consideration needs to be given to alleviating recent changes to precision obstacle-free zones and final approach surfaces that have had dramatic impacts to airports with displaced landing thresholds.

3.4.6.5 Sensors
New sensors and sensor arrays will be deployed at airports. Sensors may be needed in the runway environment for the active detection and dissipation measurement of wake vortices, which will enable reduced aircraft separation during conditions when wake turbulence is not a hazard. Advanced weather sensors are also deployed to airports, including sensors that provide a detailed picture of the atmosphere along the airport approach and departure paths in order to detect the varying conditions that may affect flight operations and wake vortices. Airport design standards incorporate placement criteria, non-interference zones, maintenance requirements, and other necessary considerations for the sensors.

3.4.6.6 NAVAIDs
The transition to satellite-based IAPs frees up airport surface movement areas previously constrained because of ground-based navigation systems (e.g., instrument landing system [ILS]-critical areas). Less ground-based radio navigation infrastructure is required to support IAPs than
is used today with ILS and other systems. Therefore, ILS-critical areas and other zones designed
to protect instrumentation from interference are less of a constraint. This facilitates the efficient
movement of aircraft on the airfield.

3.4.6.7 Other Design Factors

Airports have improved runway safety areas that meet applicable FAA airport design standards
in order to support potential aircraft overruns. Where sufficient land is not available or improved
runway safety areas are not practical, alternative mechanisms to prevent overruns will be
implemented (e.g., Engineered Material Arresting System [EMAS]).

Unique infrastructure needs for UAS, V/STOL, space planes, and other new flight vehicles are
incorporated into airport design standards. A new collision risk model may permit use of larger
aircraft in existing object-free zones.

While efforts to increase runway capacity are vital, the ground and gate capacity of the airfield is
also critical. The ground interactions between GSE, people conveyance systems, and aircraft on
the apron and taxiways, as well as aircraft crossing runways, are a significant constraint to
capacity. For example, high-density operations may require end-around taxiway systems and
other changes to airfield layout in order to minimize the need for runway crossings by taxiing
aircraft. At night, the apron space required for overnight parking of aircraft also increases
substantially. The reduction of ground movement delays and congestion due to constrained
airport infrastructure is an important component, as is providing sufficient gate capacity.

Ultimately, no single strategy will increase the capacity of the NAS and airports. Rather, a
thorough analysis of the multiple components in the system and their interactions will provide
the optimum combination.

3.4.7 Airport Congestion Management

Congestion management programs at major airports may be used to manage short-term situations
where demand exceeds the available capacity of the airport infrastructure. A combination of
regulatory and market-based mechanisms could be used to balance the competing needs of
airport users/stakeholders seeking access, for airports to provide a reasonable level of service,
and for the ANSP to mitigate the ripple effects of localized congestion throughout the NAS.

Congestion management is discussed in this ConOps in an effort to track the ongoing policy
discussion regarding airports where infrastructure development and ATM capacity
improvements are not likely to be sufficient to meet future demand (e.g., New York LaGuardia).
Accordingly, congestion management is a policy issue rather than a specific concept; however,
the policy choice made regarding congestion management will likely affect some airports.
Congestion management also differs from cooperative ATM concepts that seek to meter traffic
in and out of congested airports rather than manage airport access.

Congestion management programs rely on market-based mechanisms to allocate aircraft operator
access to high-demand facilities. Congestion management without any regulatory mechanisms
could affect the viability of service from small communities to airports in major economic
centers and thus convenient access to larger markets and the connecting destinations those hub airports can provide. If congestion management increases the cost of airport access, flights from certain smaller communities to major economic centers may not be economically sustainable. Alternatively, the market-based incentives could shift flights to/from smaller cities to off-peak times, which may not be conducive to convenient travel schedules. Such adverse effects could be mitigated through specific measures within a congestion management program specifically designed to protect small markets that economically rely on this access.

In addition to short-term situations, consideration may be given to allowing airports to impose peak-period user fees that will both help manage congestion and bring increased revenue to the airport for use in modernization investments and other improvements that will assist in meeting growing activity levels. Existing federal statutes require revenue neutrality, preventing the airport from transferring increasing user fee surpluses beyond the airport or regional airport system if they generate revenues that significantly exceed airport costs. Changes to federal law in this manner could encourage greater infrastructure investment that would benefit the NAS.

Within a congestion management program, the roles and responsibilities of federal, state, and local government decision makers as well as the airport operator will need to be clearly delineated. As discussed previously, the disposition of revenue over and above airport needs will need to be determined, including the potential use of this revenue to support the economic sustainability of airport infrastructure.

3.5 Challenges to NextGen Airports

The diversity of airports is an important consideration under Next Gen. Each airport is a unique operating environment, reflecting the diversity of the local communities that sponsor them, to a far greater extent than the analogous airspace structures. Different airport layouts, constraints, and procedures pose unique challenges to achieving and maintaining efficient operations at peak capacity without sacrificing safety.

Key factors that will drive airport development and operations through 2025 include the following:

- Major airports that are at or near capacity today may not be able to reasonably expand to support future demand. This could drive development of other airports in congested metropolitan regions.

- Supporting airports will expand by promoting higher levels of service to both aircraft operators and their customers, potentially pushing integration into the hub-and-spoke system and stimulating changes in the airline hub business models.

- Congestion and delay may drive some airport users’ decisions to opt for greater certainty and predictability for air transport services via regional airports with (scheduled/nonscheduled) nonstop service or other modes of transportation.

- Sufficient intermodal transportation networks must be developed to link airports with population and business centers. People and cargo must be able to get to and from the airport in a predictable and efficient manner.
Federal, state, and local agencies must evolve to support the effective governance of airport operations and regional considerations, given the many stakeholders who have vital interests in a successful airport system.

New aircraft technology will allow long-range flights with medium seating capacity, thus promoting point-to-point service to smaller airports.

Beyond traditional airline operations, new service offerings are expected from operators of V/STOL aircraft, VLJs, and space vehicles of various kinds (e.g., orbital and suborbital space vehicles and point-to-point suborbital space planes). These new services are expected to continue to drive growth in GA and nonscheduled air transport operations as an alternative to scheduled air carrier travel.

Newly developed V/STOL aircraft (e.g., tiltrotors) could increase service within large metropolitan areas and thereby promote the development of small-footprint airports designed specifically to serve these operations. Insertion of increased V/STOL operations into major hub airports requires careful design to ensure that conventional aircraft operations are not negatively affected.

VLJs offer the potential to make business jet travel more efficient and cost effective. While the viability and sustainability of the VLJ air taxi business models have yet to be proven, VLJs could substantially increase air service options, especially in communities that currently have limited service. Ultimately, the airport infrastructure needed to accommodate VLJs already exists at most airports, because the aircraft have the capability to operate from shorter runways (i.e., 3,000 to 4,000 feet). With the expansion of satellite-based IAPs to additional runways, the related infrastructure requirements such as approach/runway light systems, SNT, and ANT, increases. Conversely, VLJ use at major airports and in congested airspace could exacerbate delay levels as a result of increased aircraft operations and the complexities of managing air traffic with dissimilar airspeeds and wake turbulence separation requirements.

Commercial space flight (suborbital, point-to-point, and orbital) offers considerable potential for the next 20 years. Some types of space vehicles could be interoperable with conventional fixed-wing aircraft in order to make the best use of existing infrastructure. This could help the integration of Commercial Space Transportation (CST) operations into congested airspace and airports. Alternatively, CST operations could be conducted at dedicated or dual-use spaceports remote from the busy facilities in metropolitan areas and utilize various kinds of airspace reservations for their transition through the NAS. Although suborbital flights may ultimately bring about a radical change in how people travel between continents and the time required to do so, the impact on airport infrastructure is unknown.

At airports with significant scheduled air carrier service, the physical and functional layout of passenger terminals is likely to evolve in response to changes in passenger processing, aircraft size and geometry, remote data access and sensing, information sharing, and high-occupancy intermodal transportation connections. The trend for passenger check-in at locations outside the airport, such as at home, via mobile phone, and at hotels will continue and expand as remote terminals support off-airport passenger and baggage processing. The infrastructure needed to support security screening should decrease as these processes are integrated and refined.
4 Net-Centric Operations

4.1 INTRODUCTION

Net-Centric Operations (NCO) is the application of network methods and technologies to improve, transform, expedite or provide for the exchange of information throughout the NAS. NCO encompasses the ability to store, transport, and retrieve air transportation-related information and data between providers and consumers on a reliable, scalable, flexible, and secure enterprise network. This is accomplished through the provision and management of infrastructure resources to sustain normal operations and service level agreements. As illustrated in Figure 4-1, NCO is the realization of a real-time, globally interconnected network environment, which incorporates infrastructure, systems, processes, and individuals to enable an enhanced information sharing approach to aviation transportation.

A foundational and transformational component is the employment of a net-centric environment for exchanging air transportation-related information. There are two key components of the net-centric environment: Infrastructure Services and Information Services. Infrastructure is the framework for sharing information, while services direct the information to the authorized users.
who need it. Examples of information provided by NCO include flow/trajectory information, advisories/alerts, surveillance, real-time NAS configuration, aviation security reports, and weather reports/forecasts. Figure 4-2 depicts Information Services and Infrastructure Services relationships and displays the underlying physical network infrastructure on which both operate.

The network infrastructure provides an integrated, global network that will incorporate three segments: (1) a ground segment, (2) an air-ground segment, and (3) an air-to-air segment. The ground network is the backbone of the net-centric environment, carrying inter-facility data throughout the network. The ground network will also act as an essential support for the air-ground segment, by transporting data to and from the appropriate ground radio equipment. The air-ground network will carry data from ground systems to the cockpit and vice versa. This critical segment of the network enables the delivery of real-time surveillance, weather data, and relevant security information to the cockpit and enables the negotiation of trajectories and separation responsibility contracts between pilots and controllers. The air-to-air segment will build on existing technologies (such as ADS-B), allowing aircraft to share critical real-time positional information along with, surveillance and weather data.

Infrastructure Services are focused on providing and managing connectivity linkages and channels. These services handle such tasks as access control, transport of basic data, bandwidth provisioning, as well as network monitoring and diagnostics. Information Services on the other hand are built on top of the Infrastructure Services and are focused on providing relevant content to appropriate users. Information Services are tailored to implement the various specific needs within the aviation transportation system. Many types of services are expected to include: delivery of weather data from a ground database to the cockpit, sharing security data between agencies, carrying voice data between facilities, and sharing trajectories between aircraft.

The key to a successful net-centric environment is the establishment of secure, interoperable enterprise networks for the FAA, Department of Defense (DOD), Department of Homeland Security (DHS), and Department of Commerce (DOC). These enterprise networks comprise a combination of physical infrastructure and Infrastructure Services. Along with information services.
sharing standards, they facilitate the exchange of information necessary to achieve many of the needed operational improvements. Once these enterprise networks are established and capable of interoperating, they must be interconnected in order to achieve NextGen capabilities.

Despite having the enterprise-level connections and infrastructure in place, without defined processes for those using the capabilities, the net-centric environment is not likely to be fully realized. Therefore, formalization of an institutionalized sharing process is necessary to provide the policies, processes, and accountability required to ensure that stakeholders integrate information distribution into their planning and daily operations.

Integrated NextGen Information is expected to focus in the areas of network-enabled information sharing, aircraft data communications links, infrastructure management services, and improved surveillance and air domain awareness. These capabilities require widespread access to secure, accurate, and timely information as well as the means to share this information securely among the operational entities.

Integrated NextGen Information - provides authorized aviation stakeholders timely, accurate, and actionable information (e.g., weather, surveillance, aeronautical information, operational and planning information, and position, navigation and timing information), shortening and improving decision cycles situational awareness using a net-centric environment managed through enterprise services that meets the information exchange requirements of the NextGen stakeholder community.

4.2 TRANSFORMED NET-CENTRIC OPERATIONS

NCO provides a robust, globally interconnected network environment in which information is shared in a timely and consistent way among users. This includes associated applications and platforms during all phases of aviation transportation efforts. By securely interconnecting distributed users and systems, net-centricity provides a robust, resilient, efficient, and effective information-sharing environment, enabling substantially improved situational awareness and shortened decision cycles. Information and data are contained in an integrated, interoperable system with the necessary Quality of Service (QoS) that enables stakeholders to meet their objectives and achieve operational efficiency. Over time, the net-centric environment responds iteratively to provide infrastructure capabilities of increased capacity to meet our needs.

The net-centric environment works together with automation to implement “intelligent” system capabilities. For example, wherever possible, these capabilities include the ability to automatically capture all relevant data about components of the air traffic operations environment, including aircraft, baggage, expendable supplies, aircrew, controllers, ground-handling equipment, gates, and passengers. The system then provides this information to authorized recipients to help them make timely decisions.

In the net-centric environment, information flows freely from ground to aircraft, ground to ground, and aircraft to aircraft, as needed. Commercial network protocols and topologies are employed with seamless integration between the aircraft, the ground, and the rest of the information network, making information available to users at an unprecedented rate. Network
connectivity is applied throughout the air domain and provided from the ground up to all flight altitudes, and includes oceanic and polar regions.

Moreover, a robust network among the stakeholders’ infrastructure permits information sharing. This allows organizations, operational groups, and systems throughout the NAS to collaborate in a seamless information infrastructure, providing insight for the following areas:

- Air navigation service, airport, and flight operations
- SSA
- Compliance and regulation oversight
- Security, safety, environmental, and performance management services

Integration of these operations and services requires an adherence to open standards that maximizes their interoperability across domains. Additionally, this integration requires the net-centric environment to provide services that enable secure discovery of and collaborative use of this information for the purpose of effective and efficient operation of the air transportation system.

4.2.1 NextGen Enterprise Network

As illustrated in Figure 4-3, the NextGen Enterprise Network is composed of the stakeholders’ enterprise networks, joined together and interoperating by protocol conformance and connective infrastructure. This is a “logical” view of the system. Each stakeholder enterprise can encompass components of all various types in the aviation community: ground-based computers and workstations, airborne cockpit systems, and so on. The NextGen Enterprise Network provides the following features:

- **Uniform Connectivity Protocols.** Communications transport provides sufficient and dynamic addressing of all network nodes with secure and assured end-to-end connectivity throughout the air transportation enterprise.
• **Data Availability.** Data registries and discovery mechanisms between entities (government, commercial, private, and international organizations) allow for data sharing in a push/pull and publish/subscribe environment between authorized COI.

• **Content Understanding.** Metadata tagging and federated search allow the contents of data to be understood.

• **No Single Point of Failure.** A distributed information environment ensures information reliability, quality, and no single point of failure.

• **Information Assurance.** Secure exchange of information includes access controls, trust relationships, and associated policies and mechanisms to provide appropriate access to information by authorized users. Maintenance of information assurance across security levels and domains is a critical feature of the NextGen Enterprise Network.

• **Quality of Service (QoS).** Data and information are provided at well-known, monitored levels of quality (e.g., data rates, bandwidth, and latency). The performance characteristics of these services are digitally captured and maintained in service descriptions and Service Level Agreements (SLA).

4.2.2 Network Management & Security

Infrastructure Services include the network management functional areas of fault, configuration, accounting, performance (including QoS), and security as well as higher-level functions such as
services management. The emphasis is on an integrated and holistic approach to enterprise
network management.

To facilitate information sharing, NextGen must include a cyber security approach that
safeguards the information within acceptable trusting relationships between the information
suppliers and consumers. Agreement on a trust relationship is critical to making the information
available to authorized members within the large stakeholder community. Information sharing is
flexible and adaptable to circumstances and stress experienced by the system over time.
Information access rules are continuously updated depending on the circumstances or events at
the time.

The success of information sharing depends on constituent trust that information is properly
protected, that it is not misused or mishandled, and that recipients have a valid need for the data.
In turn, this trust depends on applying information assurance policies, designs, rules, and
information systems hardware and software that can be tested and certified and on the ability and
willingness of the participants to effectively implement and manage their security
responsibilities.

4.2.3 Air-Ground Networking

Key to enabling an agile, scalable airspace environment and its management is the deployment
of a fully capable aircraft data communications link. This data communications transformation
enables aircraft to collaborate with Enterprise Services. This collaboration includes sharing real-
time spatial information, identification, weather, security, and operational status for all aircraft.
The operational information sharing also includes PNT and airport status. Furthermore, the data
communications link enables the real-time negotiation of 4DT collaboration between ANSP and
pilots. This robust aircraft data communications link also enables a digital voice link to the
aircraft. This link enables the flight deck to communicate with all necessary collaborative
decision makers and operational entities. Utilizing advanced communications technologies and
spectrum allocations—which supersede current limited-capacity data links—there is sufficient
bandwidth to support all data types necessary (including audio, graphics, and video) with
appropriate QoS (including flight-critical data service).

With the transformed role of flight management improved data communications are critical for
safe and efficient flight operations. Flight deck automation and avionics supports flight crew
decision making by providing real-time operational information to the ANSP. Data
communications, rather than voice communications, are the primary means of communication
between the flight deck and the ANSP for airspace that requires such capability for clearances
and 4DT amendments. Voice communications, however, will continue to be used to
communicate with less-equipped aircraft. Additionally, voice communications will provide a
means to handle exceptions, such as emergencies and conflict resolutions.

Aircraft communicate via airborne networking capability based on the level of required
performance in the airspace they are transiting (equipage policy). The goal is to utilize the
optimal combination of assets for communication. It may be aggregated data channels from
airborne nodes, space, or ground stations. Every aircraft is a node on the network, providing
information connectivity and relaying information when needed. This network is based on
commercial network technologies and provides connectivity for all types of aircraft, from large
commercial jetliners to business jets, helicopters, and GA.

As indicated above, there is increased sharing of improved common data between the flight deck,
operator, and ANSP. In airspace where data communications will be available but not required,
information exchange can take place with data communications for participating aircraft to
provide an operational advantage. Common data includes ATC clearances, current and forecast
weather, hazardous weather warnings, notices to airmen (NOTAM), updated charts, current
charting, special aircraft data, and other required information. Data communications also include
weather observations made by the aircraft that are automatically provided to the ANSP, weather
service providers, and flight operators for inclusion in weather analysis and forecasts. Each of
these data communications is managed by Required Communications Performance (RCP)
standards through an open and integrated network architecture. This network shares information
in standard formats, using harmonized services that connect information systems to users.

Typical users include the ANSP, agencies, carriers, aircraft, airport operators, service providers,
and general users. By securely interconnecting distributed users and systems, net-centricity
provides an information-sharing environment that enables substantially improved situational
awareness and shortened decision cycles. This ultimately results in significantly more efficient
and valuable new operational capabilities.

4.3 INTEGRATED NEXTGEN INFORMATION

Integral to the NextGen vision is the creation of an environment that facilitates quick and reliable
communication and sharing of information, thus improving situational awareness and shortening
decision cycles within the air transportation system. This capability ensures a robust, scalable,
resilient, secure, and globally interconnected net-enabled environment in which information is
timely and consistently shared among authorized aviation users, systems, and platforms. This
capability reduces the number and type of interfaces and systems required to maximize
interoperability and increase collaboration across missions. The seamless flow and integration of
information between air and ground components reduces unnecessary redundancy of data and
facilitates information sharing targeted to the appropriate decision makers. The improved
predictability and access to accurate and timely information allows users to optimize system
resources and communicate status changes or other essential information to all those who need to
know.

4.3.1 Transformed Network-Enabled Trajectory Management (TM)

NCO is vital to the envisioned improvements in TM. Where many TM processes are manual
today, NCO facilitates the transition to efficient, automation-assisted digital processes.
The transition from voice-based communications to data communications is a key element. For
trajectory information (and all other routine exchanges), data is the preferred method of
communication between the flight deck and controllers. Voice will still be used in cases of
emergency such as safety of flight (e.g., a situation where a conflict or midair collision is
imminent and voice will preclude an incident), or as part of a backup procedure should data
communications experience unforeseen interruptions.
Data communications are central to TBO. This includes, the use of 4DTs (pushback and taxi inclusive) for planning and execution on the surface, automated trajectory analysis and separation assurance, and aircraft separation assurance applications that require flight crew situational awareness of the 4DTs and short term intent of surrounding aircraft.

4.3.2 Transformed Network-Enabled Collaborative Capacity Management

The transformations in the delivery of ground, air-ground, and ANSP facility services are fundamental enablers of the flexibility necessary to respond to demand in an affordable and timely manner. Flexible infrastructure supports changing user needs and provides cost-effective services that are scaled up and down as needs change. This ensures that the service providers and the information (e.g., flight data, surveillance, weather) are readily available when and where needed.

4.3.2.1 Dynamic ANSP Resource Utilization

A key transformation enabled by the communications network and associated net-centric applications is the ability to provide surveillance, communications, and flight data management, including automation-assisted coordination, to any service provider regardless of its physical location. When coupled with a more flexible air-ground communications network, this transformation supports the optimal daily deployment of resources and assets. Airspace and air traffic can be assigned without regard to a fixed infrastructure constraint, allowing traffic load sharing across the ANSP workforce on a seasonal, daily, or hourly basis.

The networking capability also provides a robust contingency/business continuity capability. Information systems facilitate monitoring infrastructure health and remote maintenance to maintain service availability and automatically alert the community about the status of assets. Losses of ANSP personnel workstations due to equipment outages or catastrophic events can be mitigated by reassigning ATM and the supporting infrastructure to remaining workstations across the NAS.

Because the flexible ground and air-ground communications networks negate the requirement for proximity of ANSP facilities to the air traffic being managed, facilities are sited and occupied to provide for infrastructure security, service continuity, and best deployment and management of the workforce. This includes co-locating several operational domains (e.g., en route transition, terminal) within a facility as well as staffing NextGen towers. The SNT and any needed ANSP personnel need not be geographically located at the airport. Productivity gains may be achieved by allowing ANSP personnel to service multiple airports according to traffic density.

Drivers for dynamic reconfiguration include the need for efficient traffic flows, the effects of weather, personnel (staffing), SNTs, and facility or equipment outages, to mention a few. Regardless of the catalyst, the CNS systems each respond when dynamic reconfiguration procedures are executed.

4.3.2.2 Flexible ATC Communications Boundaries

Another key transformation is that air-ground voice communications are no longer limited by the assigned frequency-to-airspace sector mapping. This allows greater flexibility for developing and
using airspace/traffic assignments in all airspace. Communications paths, including both voice and data, are controlled by an intelligent network. Communications between the ANSP and the flight deck are established when the flight is activated and are maintained continuously and seamlessly. This capability is linked to the flight data management function so that the system automatically manages who has authority to interact with the flight deck based on the type of agreement being negotiated or information being exchanged. Labor-intensive transfers of control and communication are automated. Data and voice communications are automatically transferred in the flight deck as the aircraft moves between Air Route Traffic Control Centers (ARTCC).

4.3.3 Transformed Network-Enabled Collaborative Flow Contingency Management

NCO brings specific benefits to FCM. The NextGen Enterprise Network provides the stakeholders (FAA, Air Carriers, DOD, etc.) with a highly available, flexible medium for collaboration. FAA and DOD can negotiate in near real-time the allocation of SAA and such regions, based on current and projected demand. Air carriers and the FAA can collaboratively tackle issues such as daily weather impacts, route availability, and operational preferences. The capabilities are even more transformative when not only individuals representing these stakeholders can collaborate, but their automation systems can increasingly carry out the work of collaboration for them in even more timely and efficient ways.

4.3.4 Transformed Network-Enabled Weather

The NextGen Enterprise Network provides the essential “plumbing” (infrastructure) for consistent, timely weather information to pervade the aviation community. As participants in weather are particularly diverse and distributed, NCO is particularly important in this domain. NextGen Net-Centric Infrastructure provides the connecting tissue that holds together the “4D Weather Cube,” including weather sensors, databases, forecasting systems, and human participants. It also delivers the Cube’s products to automation systems and stakeholders throughout NextGen.

4.4 Air Domain Awareness

In order to achieve the ideals of improved decision making and efficient operations, stakeholders must have the right information at the right time. This is especially true in the domain of aviation surveillance. Not only does SSA play a key role in security but also improves operations across the NAS. The Net-Centric Infrastructure is vital to conveying and delivering real-time air domain information in various forms and ways to the users that need it.

PNT services prevent the constraint of routes and flight paths to fixed positions. Using complementary aircraft systems that provide RNP and RNAV, PNT services allow aircraft to navigate precisely along the most efficient route that meets the needs of the user, the ANSP, and the overall NAS. NextGen will be more flexible, responsive, and unconstrained using satellite-based and ground-based systems that provide universal PNT services that accurately and precisely determine current location, orientation, and desired path; apply corrections to course, orientation, and velocity in order to attain the desired position; and obtain accurate and precise
time anywhere on the globe within user-defined parameters. With this information, aircraft can apply the necessary corrections to maintain a desired position and path.

Accurate and precise PNT services also enable improved surveillance capabilities, reduced separation standards, and the synchronized operations. The decommissioning of current ground-based navigation systems, along with the improved operations from enhanced PNT services, will result in significant cost savings. The NextGen vision requires surveillance services that improve the accuracy, latency, integrity, and availability of surveillance information. Surveillance information is envisioned to be provided through a net-centric infrastructure, allowing all certified users, including the ANSP, security providers, and flight operators the appropriate level of access to data in a secure manner. This improved precision, access, and timeliness of information will allow distributed decision making on a real-time basis during normal operations, abnormal events, or system-wide crises. Integrated surveillance services will also provide many new functions, including full air situational awareness, en route de-confliction, and support for self-separation capabilities. Integrated surveillance services will also reduce separation standards and provide precise 4DT information, including aircraft intent and conformance monitoring. Additionally, to minimize the risk of collisions and maximize the use of airspace, comprehensive tracking of aircraft and vehicles operating on the airport surface, within the ANSP responsible airspace, and in sovereign airspace will be provided. This comprehensive tracking would enable flexible assignment of multiple surveillance sources to any operational position at any time, and further allow more flexibility in assigning airspace to each position as needed to support distributed decision making. Surveillance services also will help provide adaptive, flexible spacing and sequencing of aircraft on the ground and in the air.
5 Shared Situational Awareness Services

5.1 INTRODUCTION

Situational awareness (SA) involves being aware of one’s surroundings to understand how information, events, and actions impact goals and objectives. Sharing timely, accurate, relevant and actionable information among users is known as SSA. SSA is fundamental to the vision for providing Integrated NextGen Information, Air Domain Awareness, and Weather Information for safe and efficient NAS operations. Integrated information sharing depends on the availability of SSA information services. Information services are dependent upon established infrastructure services, accomplished by the processes and applications that constitute the function. Information services allow authorized user-subscribers to access necessary information through a standing request in an automated and virtual fashion using established protocols and standards. This access concept is what facilitates the vision of the future—distributed data for decision making. Moreover, the transformation of the air transportation system is fully dependent upon accessible and shared information.

The Integrated NextGen Information capability will provide SSA and enable authorized stakeholders to exchange, discover, and consume timely and accurate information (e.g., weather; surveillance; PNT; aeronautical; and geospatial) in a decentralized, distributed, and coordinated environment. Through available enterprise services provided by NCO, an environment is provided where trusted stakeholder partnerships, policies, and standards (to include data conflict resolution) enhance decision making by improving SSA and dramatically shortening decision cycles.

Integrated NextGen Information: Integrated NextGen information provides authorized aviation stakeholders with timely, accurate, and actionable information. This includes weather, surveillance and aeronautical information. It also includes operational and planning data, as well as position, navigation and timing information. This information shortens decision cycles and improves situational awareness using a net-centric environment, managed through enterprise services that meet the information exchange needs of the NextGen stakeholder community.

5.2 INTEGRATED NEXTGEN INFORMATION

5.2.1 Integrated Surveillance Information

The federal government conducts surveillance operations to detect, validate, and characterize cooperative and non-cooperative air vehicles either before, or after they enter the NAS. Interagency partners, working as a team, need to improve how they ensure safe, secure, and efficient passenger and cargo operations in the NAS, while deterring, preventing, and defeating
unauthorized or hostile air activities. This is only possible through better integration of all
surveillance activities.

Key attributes as well as an underlying strategy to improve surveillance capabilities include:

- Maximize coverage of airspace from surveillance assets.
- Maximize sharing of surveillance data and other relevant information through machine-
to-machine interface and other techniques to reduce redundancy of action, minimize
surveillance gaps, and ensure data accuracy between interagency partners.
- Correlate and fuse disparate data to ensure interagency mission partners are able to
display, discuss, and act on the same track regardless of specific system interface and
display properties.

Additionally, through advanced processing and utilization of net-centric information
management services, mission partners:

- Automatically confirm when they are looking at the same track
- Access pre-flight information in a timely manner
- Receive automated, in-flight updates on changes to key flight characteristics
- Operate with increased confidence as a result of enhanced and shared track monitoring.

5.2.1.1 Shared Information

Shared surveillance information provides varied levels of integrity depending on the desired use.
Situational awareness and wide area surveillance requirements differ from safety of life and
weapons targeting information. Some of the following characteristics of shared information
include:

- **Provenance** – ensures the validity of the original data source and the chain of custody of
 subsequent processing of the data are known.
- **Confidence** – ensures the accuracy of original and transformed data to meet established
 thresholds.
- **Accessibility** - ensures dissemination of the data and information to be appropriately
 secure and compliant with policies, laws, directives or other regulations. Access to
 information must be based on appropriate processes, such as roles based access controls,
 and with the need to know.
- **Consistency** - ensures algorithms for processing and analyzing data must meet standards
 for consistency among mission partners (e.g., tracker, coordinate system, and adaptation)
 to allow for SSA and CDM.
• **Availability** - ensures a measure of the data present or ready for immediate use over time.

• **Accuracy** - ensures data represents the actual value of the quantity being measured.

• **Continuity** - ensures the time between data points are within required thresholds.

In addition to surveillance sensor data and existing information sources, shared information includes flight intent and intelligence information. Information from maritime domain awareness and space domain awareness, and potentially UAS, could also be available for sharing.

5.2.1.2 Enabling Technologies

Refined, integrated aviation surveillance and geographic data are used by the public and by government Command and Control (C2) facilities to provide ATM security, defense, and other shared services. SSA among government partners is enabled by both access to shared air vehicle track data and data management services. It is also provided by the ability of C2 systems to publish and subscribe specific track and geographic air domain information. Additionally, enabling technologies include net-centric data distribution capability and service-oriented, aviation surveillance data exchange protocols which are developed by the aviation surveillance and intelligence COI.

5.2.1.3 Sensor Network

Net-Centric Infrastructure will deliver sensor data to facilities for subsequent automated processing. This network will have the appropriate class of service attributes, QoS, and communications protocols for delivery of the near-real-time sensor data. The network will protect information in a secure manner using appropriate means. Additionally, the outputs of existing federal surveillance sensors, not currently integrated, will be connected to the network as appropriate to ensure maximum advantage of their collective capabilities.

5.2.1.4 Shared Services

Automated processing of sensors and other surveillance relevant information will occur through shared services that provide for correlation, tracking, fusion, data reduction and other surveillance-specific transformations. Services will also be provided that are of a more general nature, such as information discovery and translation, and will be accessible through an enterprise network infrastructure. The specific identification of the shared services will be developed through a follow-on architectural effort.

5.2.2 Positioning, Navigation, and Timing Services

PNT Services are a key component of the SSA NextGen vision. PNT services will provide the ability for an air vehicle to accurately and precisely determine its current location and orientation as well as its desired path and position. It provides aircraft with course corrections, orientation, and speed to attain desired position and time anywhere on the globe, within user-defined parameters. As illustrated in Figure 5-1, NextGen will rely heavily on PNT Services to implement and conduct many standard operations, as well as TBO and time synchronization.

Aircraft navigation has long been constrained by the capabilities of ground-based NAVAIDs and routes that are tied to the physical location of these NAVAIDs. Historical reliance on ground-
based NAVAID locations has also constrained airspace design. PNT Services enable RNAV as the standard method of navigation in the NAS. Further, PNT Services provide the foundation for PBN operations, including those operations that have a specified RNP requirement.

Additionally, PNT Services enable enhanced aircraft surface operations, allowing aircraft to maintain separation from other aircraft, fixed infrastructure, and the various mobile elements of GSE found in the airport environment.

Figure 5-1 Positioning, Navigation, and Timing Overview

PNT Services are ubiquitous. They enable operations at remote and sparsely equipped facilities that in today’s NAS are currently incapable of being performed without the purchase and continuous maintenance of additional costly ground-based NAVAIDs.

Finally, airspace design, including dynamic boundary and SAA, can readily be developed based on operational needs and geographic and environmental limitations, rather than the placement of ground based NAVAIDs.
5.2.2.1 Timing Services

Timing services provide a common, accurate, and precise data point for all users from a standard universal coordinated time. These timing services enable the precise synchronization of operations and the reduction of uncertainties associated with disparate timing sources.

As NextGen moves toward a more net-centric approach to information dissemination, the need for precise timing services becomes inescapable. Air-to-air, air-to-ground, and ground-to-ground systems all require precise timing in order to communicate, coordinate and exchange information.

5.2.2.2 PNT Components

The primary system providing PNT Services is expected to be a GNSS. Users may also have operational needs that require a satellite-based augmentation system, such as the Wide Area Augmentation System (WAAS), or a ground-based augmentation system, such as the Local Area Augmentation System (LAAS). These systems provide increased accuracy, availability, and integrity to users of the service.

Legacy navigation systems such as Distance Measuring Equipment (DME), Very High Frequency Omni-Directional Radio Range (VOR), and Non-Directional Beacon are incapable of meeting most of the positioning and navigational requirements, and none of the timing requirements. It is likely that these systems will have been divested, either through decommissioning or through release to state/local authorities, or private entities, who desire to maintain such a capability for local use.

5.2.2.3 PNT Backup

In the absence of any other means of navigation, a loss of PNT services, due to either intentional or unintentional interference, would have varying negative effects on air traffic operations. These effects could range from nuisance events requiring a systematic restoration of capabilities, to an inability to provide normal ATC service within one or more sectors of airspace for a significant period of time. Although procedural separation methods would be used to maintain safety of flight, several solutions have been identified that could help mitigate the effects of a PNT service disruption:

- Equip user avionics to utilize the Global Positioning System (GPS) L5 civil frequency, as well as the legacy L1C/A frequency, in order to mitigate the impacts of the ionosphere and unintentional interference
- Modernize user avionics to integrate multiple PNT phenomenology, including inertial navigation systems (INS)
- Integrate GPS/inertial avionics anti-jam capabilities
- Maintain a minimal network of VOR, DME, and ILS facilities

5.2.2.4 PNT Summary

Nearly every aspect of NextGen requires PNT services. Flight planning, aeronautical information services, air navigation services, flight information services, GIS, weather information services,
and surveillance all require high levels of precision and integrity from the provisioned PNT service. With PNT Services, a user (or COI)-determined integrated air picture provides valuable SSA to all users.

5.2.3 Aeronautical Information Services

Aeronautical information is uploaded, received, aggregated, and exchanged in a timely manner. Subscribers to the system include flight operators, airport operators, ANSPs, and other stakeholders. Aeronautical Information Services (AIS) include updates and aggregated information on:

- Current performance requirements for airspace access and operation
- SAA status and activity
- Route information and performance metrics
- System outages affecting GPS, WAAS, LAAS, and other NAVAIDs
- Weather status, such as convective activity, winds aloft, and icing
- Airport status information, including runway availability and planned long- and short-term activities affecting the airport, such as construction and snow removal
- Definitional data for airspace boundaries, fixes, terminal procedures, runways, and other supporting information

The system accepts information from both ground and airborne users, aggregates the information, and makes it available to subscribers. Aeronautical information is updated in real time and provided in a manner that allows users to understand the changes more readily. Additionally, the information is user-friendly and available in digital form (graphically or via digital text). The data is also machine-readable and supports automated processing of information for TBO.

Aeronautical information services utilize GIS to provide users with the ability to access and update information about the physical locations of both fixed and mobile assets. This service provides information on assets such as physical facilities, airspace boundaries, airport survey information, and the locations of CNS infrastructure elements. To achieve this level of information exchange, all assets in the NAS are described in a common reference set (i.e., an earth-based coordinate system) to ensure comparability and interoperability across all applications. Further, to increase the efficiency of these comparisons, GIS users may employ a common indexing structure to support the development and exchange of asset information as well as query about overall asset inventories. The GIS manages current information, maintains historical information, and allows access to planned/desirable future capabilities. Under this structure, static elements (e.g., sectors, fixes, NAVAIDS, and radars) and dynamic elements (e.g., aircraft, weather, and TFRs) are referenced to latitude and longitude, and then indexed to a single hierarchical grid to speed comparisons. The design of the index supports high-resolution data and includes the time component necessary for projections and strategic planning. This
capability supports the reconfiguration of airspace and airport assets to provide maximum use of
the available capacity to meet traffic volume, while adjusting for weather or other constraints as
they arise.

GIS supports dynamic airspace boundary adjustments, TBO, interactive flight planning, and
future DST operating in a collaborative environment of shared data. This service depends on the
ability to describe, communicate, and manage the characteristics of airspace and other asset
information (and their constituent elements) at increasingly finer levels of resolution. This
increased precision and resolution supports decision making by the ANSP and also provides a
basis for SSA for collaboration (such as cooperative ATM) among the ANSP, flight operators,
and other stakeholders.

5.3 INTEGRATED AIR DOMAIN AWARENESS

Effective operation of the NAS, for civil aviation, national defense, and homeland security
purposes, relies on accurate and timely airspace situational awareness. To meet national
objectives, the federal government conducts surveillance operations to detect, validate, and
categorize cooperative and non-cooperative air vehicles approaching or in the NAS. As
previously mentioned, interagency partners work as a team to ensure safe, secure, and efficient
passenger and cargo operations in the NAS while deterring, preventing, warning, and, if
required, defeating unauthorized and unwanted air activities.

As illustrated in Figure 5-2, multiple departments and agencies have a need for aviation
surveillance information to satisfy their often overlapping aviation-related roles and
responsibilities. These agencies and their associated needs include:

- Department of Transportation (DOT)/FAA for providing separation services in the NAS
 and supporting aviation security
- DHS for providing airborne and airport aviation security
- DOD for defending airspace, executing air sovereignty and air defense missions, and for
civil support and catastrophic event mitigation, as well as separation services in select
 areas
- ODNI, on behalf of the intelligence community, for integrating all-source intelligence
 and supporting integration of intelligence and surveillance data to enable shared domain
 awareness among interagency partners
- DOC for NAS surveillance and atmospheric information to generate weather forecasts
 and information on routine and hazardous weather

The overlapping roles of these agencies create cross-dependencies for surveillance information
produced by their own systems or data produced by other agencies. All agency partners can
benefit from technologies that increase availability and management of high-quality surveillance
data, including common data fusion, computer-assisted anomaly detection tools, common data
standards, data exposure and sharing, and a tailorable user-defined operational picture.
5.3.1 Coordinated Security

Changes to the way federal, state, local, and tribal government agencies will use and share information are aligned with the guiding principles of the National Strategy for Aviation Security (NSPD 47/HSPD-16), which recognizes data integration and information sharing capabilities as central pillars of air domain security.

The Air Domain Surveillance and Intelligence Integration Plan specifically names detection, information sharing, and integration as guiding principles. These guiding principles inform the operational concepts for integrated air surveillance, which:

- **Inform** through the aggregation of all available flight-related information
- **Monitor** the NAS in service of both air traffic safety and preserve its security

"The Nation must refine ongoing efforts to develop shared situational awareness that integrates intelligence, surveillance, reconnaissance, flight, navigation systems, and other aeronautical data and operational information. To ensure effective and coordinated action, access to air domain awareness information must be made available at the appropriate classification level to agencies across the U.S. Government, other local government actors, industry partners, and the international community."
• **Detect** planned or actual anomalous and/or suspicious behavior within and approaching the NAS

• **Identify and Locate** safety and security threats to the air domain

• **Assess and Respond** to identified safety, security and defense-related threats

5.3.1.1 Detection

The FAA is envisioned to continue to maintain DOD/DHS-funded primary radar devices and tracking systems as well as its own Primary Surveillance Radars in terminal airspaces for some time to come. DOD, DHS, and FAA will continue to rely on these assets as a primary, but not sole, source for detecting anomalous and suspicious behavior, especially for non-participating or non-cooperative aircraft. The FAA would increasingly rely upon ADS-B out for ATM of commercial aircraft operating within the NAS. The increased accuracy of these ADS-B tracks provides significant benefits to equipped users through improved efficiency and priority handling. It also will eventually help support reduced separation standards for equipped aircraft and implementation of an automated system for detecting anomalous activity and alerting ATC operators and security partners of such activity. ADS-B tracking capabilities and long- and short-range surveillance radars, when combined with continuous, automated updating of ATM flight information and DHS risk assessments, will assist DHS, DOD, and law enforcement agencies to identify friendly participating commercial aircraft, thereby providing dedicated response actions to unauthorized or suspicious aircraft operating or attempting to operate within the NAS.

5.3.1.2 Information Sharing

Automation of information exchanges will accelerate ATM and air domain security decision making processes and also increase the confidence in which decisions are made. Today, this process must be handled through labor-intensive verbal or written communications. The ANSP, for instance, will have immediate access to any change made by DHS to a flight’s risk profile, enabling its operators to assess the status and intent of most flights within controlled airspace quickly and confidently. Shared, automated, and immediate access to all pertinent pre-flight information and real-time aggregation and correlation of data feeds from surveillance systems will likewise provide DHS with the information it needs to make an accurate assessment of the security risk of any given flight.

5.3.1.3 Integration

For civil aviation, security, and defense operations, the integrated aviation surveillance services have to be anchored on three fundamental principles:

• Maximize operational benefits for all mission partners

• Ensure safe, secure, and efficient operations in the NAS

• Harmonize global aviation to move passengers and cargo freely

For civil, security, and defense operations, the target’s size, speed, radar signature, and manned/unmanned status must be taken into consideration. Weather affects airborne operations and response; therefore, weather information must be incorporated accordingly. Accurate and timely aviation surveillance information, both cooperative and non-cooperative, is also crucial.
for efficient air traffic operations as well as for threat detection and assessment. Aviation surveillance is at the intersection of several key capabilities to include PNT, CNS, and TBO aircraft operations. The integrated aviation surveillance service will improve the ability and allowable time to support effective operational decisions for all mission partners for all surveillance-related operations, including ATM and security and defense operations.

5.3.2 Domain Awareness

The National Strategy for Aviation Security and the supporting Air Domain Surveillance and Intelligence Integration Plan offer similar guidance, noting that “to maximize domain awareness, the Nation must have the ability to integrate surveillance data, all-source intelligence, law enforcement information, and relevant open-source data from public and private sectors, including international partners.” These documents direct partner agencies to synchronize surveillance efforts and integrate capabilities to persistently monitor, detect, identify, and track aerial objects within and outside the United States.

Within the integrated surveillance environment, data from all surveillance sources, including cooperative and non-cooperative systems data, will be accessible and made available for operational display and data processing. Moreover, the integration of surveillance information from multiple sources, including classified systems, will provide real-time access to the information needed to deter and prevent threats before they enter U.S. airspace. Additionally it will identify, locate, assess and respond to threats that originate within U.S. airspace and allow the ANSP to conduct routine air traffic operations in a manner that supports both increased air traffic and flight safety.

The net-centric environment will enable a user-defined operational picture so that each mission partner will be able to access, share, and display the required data needed to execute their mission, regardless of its origin. Air domain SA is achieved through access and exposure to multiple data sources and composite information fusion enabled by machine-to-machine interfaces and rapid data exchange.

Aviation surveillance source data will be integrated, shared, and monitored by collaborative, mission-specific systems that will automatically detect and alert air domain security partners to the occurrence of anomalous activity in the NAS. Surveillance data will be augmented with other mission-related data such as air vehicle flight plans, clearances, risk levels, weather forecasts, and intelligence, which will be readily accessible through net-centric, information sharing services. Fusion of surveillance data and machine-to-machine interfaces will facilitate efficient and accurate coordination between operators, and reduce cost by optimizing communications paths.

Totality of air domain awareness is dependent on the quality and completeness of surveillance coverage and information integration. The ability of aviation partners to share and access near-real-time information relevant to threat identification, monitoring, prevention, and response, based on net-centric SSA, enables and informs risk-based decision making.
5.4 INTEGRATED WEATHER INFORMATION

The primary role of providing weather information is to enable the identification of optimal trajectories that meet the safety, comfort, schedule, efficiency, and environmental impact requirements of all NAS users. Weather information is designed to integrate with and support decision-oriented products with automation capabilities that enhance user-safety with the NAS.

Weather information in the form of meteorological variables that are observed or forecasted (e.g., storm intensity, echo tops) must be translated into information that is directly relevant to NAS users and service providers. Therefore, this information is supported by a set of consistent, reliable, probabilistic forecasts, covering location (three-dimensional space), timing, intensity, and the probability of all possible outcomes, each with an associated likelihood of occurrence.

Network enabled weather will serve as the integrated infrastructure core of weather support services and provide a single access approach to a common weather picture across the NAS. Additionally, network enabled weather will identify, adapt and utilize standards for system wide weather data formatting and access. Using network enabled capabilities, aviation weather information will be developed which can be directly and commonly accessed and integrated into DST. The virtual database will consolidate a vast array of ground-, airborne-, and space-based weather observations and forecasts, updated as needed in real-time, into a single, national—eventually global—picture of the atmosphere.

Weather information is collected by automated processes through merging observations, models, climatology, and human forecaster input. A network-enabled, four-dimensional weather data cube (4-D Wx Data Cube) ensures that accurate weather information is integrated into operational decision making. A subset of this 4-D Wx Data Cube, known as the 4-D Wx Single Authoritative Source (4-D Wx SAS), provides seamless, consistent, de-conflicted weather information for ATM decisions. The 4-D Wx SAS facilitates the integration of weather information directly into operational DST. The information is available to generate displays and for direct integration into automated DSS. The 4D weather capability provides the basis of the common picture and consists of weather attributes organized by latitude, longitude, altitude, time, and probability components (x, y, z, t, plus probability). Observations from surface sources, aircraft, and satellites are incorporated into the common weather picture.

The update frequency of weather information is commensurate with the need to respond to rapidly changing circumstances. For instance, airspace structural changes are better customized in response to changing weather conditions (e.g., realigning sectors to conform to a line of thunderstorms). Also, these weather capabilities allow rapid notification (automation-to-automation) of changing weather situations to strategic and tactical decision makers.

As with enhanced communication of weather information to ground-based automation systems and human users, weather data communications to the flight deck involve both “subscribe” and “publish” dissemination of critical information. Aircraft may request specific weather

12 For a more detailed examination of the role of weather information in NextGen, see the NextGen Weather Concept of Operations (http://www.jpdo.gov/library/Weather_ConOps.pdf).
information impacting their flight route, while broad area weather advisories and warnings are
issued to all affected aircraft when safety-critical changes occur.

Network-enabled aircraft also become active participants in collection and transmission of
weather information. Observations are transmitted to ground-based systems for integration with
other weather sources and to other aircraft. Aircraft operating in performance airspace act as
fully enabled operational nodes on the net-centric information grid. Aircraft contribute
observations for localized now-casts and receive them via data link as well as provide critical
site-specific observations for use by nearby aircraft. UAS are used for making observations,
performing weather reconnaissance missions such as scouting for favorable routes and collecting
critical observations where and when needed, and collecting ionospheric data and radiation
activity originating from space weather.

5.4.1 Weather Information Operations

Procedural ANSP processes, user-automated processes, and DSS use the common weather
picture, including probabilities, to facilitate CDM. DSS use a risk management approach in
planning CM and FCM options. The use of the common weather picture is a primary basis for
CDM purposes (e.g., flow planning), but other commercially available, value-added weather
sources may be used by stakeholders in making their own flight-planning decisions (e.g.,
determining what preferred flight paths they will request). In developing the common weather
picture, the government may choose to acquire commercially developed weather products and
capabilities for inclusion in that common picture.

Weather information is tailored to the operational needs of users. For example, if multiple
stakeholders are looking at levels of convection for a geographic area, the locations and intensity
of the convection are the same. This tailoring of weather information is enabled by maintenance
of a common weather picture at different resolutions, time scales, and geographic areas (e.g., the
information for an airport is presented at a higher resolution and updated more rapidly than
information for adjacent oceanic locations). Pre-flight and in-flight decisions are aided by
weather services that assist the user in making tailored inquiries into the common weather
picture. Other weather information such as alerts, advisories, and warnings regarding significant
weather changes are proactively published to stakeholders via digital communications. For
example, the flight deck receives key weather updates along the route of flight, thereby
enhancing dynamic decision making and flight safety.

Weather Information Services include:

- **Aircraft Are Capable of Receiving, Collecting, and Transmitting Weather Information as a Digital Data Stream.** Fully capable aircraft have the appropriate automation (communication and computing) systems to receive weather data (including hazard information) and to transmit sensor data, which will be provided to the network enabled weather. Fully capable aircraft are able to collect and integrate weather information into onboard displays and weather-mitigating operational flight programs.

- **Hazardous Weather Is Identified in Real Time.** Network enabled weather uses ground-based, space-based, and airborne sensors and systems to provide timely, relevant,
accurate, and consistent hazardous weather information to aircraft and users in near real
time. Automation of traditional observations (e.g., pilot reports) facilitates improved
hazardous weather identification.

- **Observation and Forecast Are Provided for Non-Towered and Automated NextGen**
 Towered Airports. Network enabled weather provides current and forecast weather
 information from the common weather picture to non-towered and Automated NextGen
 Towered airports at the required spatial and temporal resolution. Hazardous weather in
 the terminal area that impacts departures and arrivals is forecasted and also detected in
 real time.

- **Network enabled weather Provides the NextGen Decision-Oriented Tools (NDOT)**
 with Trajectory-Based Weather. Network enabled weather provides the NDOTs with
 trajectory-based weather information that is aligned with flight planning and ATM.
 Trajectory-based weather information (observations, forecasts, model/algorithm data, and
 climatology, including surface observations and weather aloft) allows full integration of
 weather into traffic flow decision making. Network enabled weather allows the NDOTs
 to identify weather-impacted airspace (both real-time or observed and forecasted) as
 reduced-capacity and as no-fly airspace. Network enabled weather provides the NDOTs
 with climatology (to permit up to at least a three-month pre-flight planning window) and
 provides probabilistic forecasts to allow for multiple preplanned trajectories and airspace
 configuration scenarios. An example of weather information operations is shown in
 Figure 5-3.
For Net-Enabled Weather Operations

5.4.2 Weather Information Enterprise Services

An integrated, common picture of the weather facilitates dynamic decision making. Net-centric weather services, tailored to the user’s needs, reduces or eliminates the requirement for stakeholders to manually gather, interpret, and integrate diverse weather data to realize a comprehensive, coherent weather picture. Weather collection and interpretation is achieved with automation assistance (with meteorological quality control) prior to dissemination. Decisions are more predictable when stakeholders use an understandable common weather picture as an informational data source.

This common picture for current and forecast weather information includes attributes organized by longitude, latitude, altitude, time, and probability components (i.e., 4D plus probability). Optimal air transportation decision making mitigates the risk of conflicting courses of action by requiring a single reliable common weather picture. Weather data is collected, processed, and
distributed through a service-oriented architecture. The underlying premise is that the various
weather data are consistent. Therefore, everyone looking into the weather information portal
from the same aspect sees a common weather picture. However, the picture may vary on how the
information is portrayed (e.g., text, audio, graphics, imagery, polygons); thus, a reliable, virtual
common weather picture is provided. Furthermore, the weather source is not a single database
but rather a network of information sources accessed via net-centric weather services, reinforcing
the “virtual” concept. Moreover, net-centric enterprise weather services reduce stakeholder
operational costs by eliminating expensive, customized, point-to-point interfaces from multiple
sensors and sources. The services comprise:

- **Multiple Weather Observations and Forecasts are fused into a 4D Common
 Weather Picture that is distributed through Network Enabled Weather.** Weather
data (observations, forecasts, model/algorithm data, and climatology) are integrated into a
common weather picture (Earth’s surface to low Earth orbit is used in all weather-
oriented decision processes). Weather observations are contained in network enabled
weather and used by forecasting tool sets to produce forecasts (both routine and aviation
impacting) for all users. Users retrieve weather information needed for decision making
in real time from network enabled weather. Vendors may use information from network
enabled weather to produce tailored, value-added products for use in and out of the
cockpit. Some weather information, such as turbulence and icing, is also tailored to the
airframe as well as the route. This capability depends on network enabled weather to
disseminate a common weather picture. Weather information is also used to help evaluate
environmental impacts from increased aircraft operations, such as increased noise and
exhaust emissions at and near airports and in volumes of airspace that may be particularly
sensitive to aircraft exhausts.

- **Weather Sensors are Included in Performance-Based Services.** Fully capable aircraft
 have a standardized set of weather sensors/algorithms to provide in situ wind,
temperature, water vapor, turbulence, and icing data to other users directly and via
network enabled weather. Aircraft may also measure non-weather parameters (e.g.,
volcanic ash), use forward- or downward-looking remote weather sensors, and carry
dosimeters to measure the radiation environment that is affected by space weather
activity.

- **UAS are used for Weather Reconnaissance.** En route weather reconnaissance UAS are
 equipped to collect and report in-flight weather data. Specialized weather reconnaissance
UAS are used to scout potential flight routes and trajectories to identify available
“weather-favorable” airspace. UAS may also carry instrumentation to measure the
radiation environment that is affected by space weather activity.
6 Layered, Adaptive Security Services

6.1 INTRODUCTION

This chapter provides an overview of the Layered, Adaptive Security Services; for a detailed look at specific aspects of this system, see the Layered, Adaptive Security Services Annex (http://www.jpdo.gov/library/NextGen_Security_Annex_v2.0.pdf). The security system does not unduly limit mobility or make unwarranted intrusions on the civil liberties of users and employees by embedding layered, adaptive security measures throughout the air transportation system, from reservation to destination. The security services framework consists of an overarching IRM system, providing informed decision making and adaptive risk mitigation strategy for securing people, airports, checked baggage, cargo and mail, airspace, and aircraft. Strong interrelationships exist with SSA, airports, ATM, safety, aircraft, and global harmonization capabilities. The Security Services concept addresses:

- IRM
- Secure people
- Secure airports
- Secure checked baggage
- Secure cargo/mail
- Secure airspace
- Secure aircraft

Layered, adaptive security is a risk-managed security system that depends on multiple technologies, policies, or procedures that are adaptively scaled to defeat a given threat or threat category. This adaptability further permits the use of increased variability in security system operations that creates more uncertainty for an adversary. Adversaries cannot defeat one particular security measure and thereby achieve a “break-through” to operate freely with no further barriers to their activities. Furthermore, the security system has the adaptability to scale its resources, systems, and procedures to the risk level of a threat in a given situation, rather than being bound to an inflexible, “one size fits all” approach.
Given the limited resources of both the government and private industry, it is critical that mitigation measures are developed based on threat and vulnerability as well as the potential consequences to individuals, critical national assets, significant events/activities, and the economy.

To achieve the requisite adaptability while maintaining effective security standards, the security system must have a sound method of prioritizing risks and assessing the proportional effectiveness of different ways of countering them. The Secure IRM process performs this essential function, directing the deployment of equipment, personnel, and procedures/policies to defeat the evolving threat. The remaining capabilities described at a high level in this chapter are the result of IRM assessments.

6.1.1 NextGen Security Management and Collaborative Framework

Security management is a shared mission among many stakeholders. The security system is optimally integrated with other NAS functions, and, through advanced networking functionality, linked to external aviation industry stakeholders and non-federal government entities. To maintain effective security management across major stakeholders, a collaborative framework is composed of the following key functions and processes:

- **National Aviation Security Policy** - embraces a broad view of threats, including direct attack, exploitation, and transfer; recognizes interdependencies and uncertainty; nurtures
virtual or extended enterprises supported by connectivity of diverse, informed stakeholder partnerships. This policy also employs layered security through physical, process, and institutional layers; accounts for systemic vulnerabilities that are created by the networked nature of the aviation system; and creates an environment that facilitates a rapid, seamless return to normal business operations subsequent to an incident. This policy achieves integration with the overarching Homeland Security Presidential Directives and their subsidiary documents.

- **Aviation Security Stakeholder Involvement** - fosters industry, federal, and local partnerships with clearly defined roles and responsibilities for prevention, protection, response and mitigation, and recovery operations at strategic, operational, and tactical levels. CDM contributes to a positive security culture. Timely, effective, and informed decision making is achieved through advanced communications and information sharing systems.

- **Aviation Security IRM** - includes prognostic tools, models, and simulations at the strategic, operational, and tactical levels to support all stakeholder decision-makers and managers. This incorporates cost-effective best practices into the design, acquisition, deployment, and operation of aviation security system assets and infrastructures. Knowledge bases concerning threats, vulnerabilities, and practices are tailored to user profiles that proactively determine need/authorization to know.

- **Aviation Security Implementation** - encompass a robust set of strategic, tactical, and operational capabilities and services focused on prevention, protection, response and mitigation, and recovery initiatives that are undertaken by a variety of stakeholder organizations.

- **Aviation Security Assurance** - includes a variety of certification programs, surveillance and evaluation activities, enforcement inspections, and incident investigations performed and administered by a variety of federal, industry, and local stakeholders.

The security capability describes the transformations expected to occur in the areas of checkpoint operations responsibilities, credentialing/authentication, baggage screening technology, passenger screening, Chemical, Biological, Radiological, Nuclear, and high yield Explosive (CBRNE) detection, and security system deploy-ability.

Security is supported by an IRM system, monitoring, assessing, and coordinating a variety of data and communications associated with flight objects and the users. IRM describes the security methodologies and practices designed to protect and secure people, airports, checked baggage, cargo and mail, airspace, and aircraft in the NAS. The transformed system will focus on the users (passengers, workers, and crew) by incorporating deployable systems to provide RTSS; passenger and aviation worker pre-screening and state-of-the-art checkpoint systems to detect the threat; as well as cargo, baggage, and mail screening. In addition, the security system will focus on reducing threats from terrestrial weapons (lasers, man-portable air defense shoulder-fired missiles or projectile weapons) and Electromagnetic Pulse (EMP) weapons to the airframe through hardening and threat detection technology. Security management will address threats to airports, commercial spaceports, manned and unmanned aircraft systems, capturing risk to facilities and aircraft as a potential target or a weapon. With the aid of IRM, the system will
allow for dynamic monitoring and management of Security Restricted Airspace (SRA) and SAA to allow for efficient and safe transit of vetted aircraft and to prevent the use of aircraft as a weapon against persons, critical national infrastructure, and significant events.

Air Transportation Security - provides layered, adaptive security, based on IRM that yields the ability to identify, prioritize, and assess risks and effectively allocates resources in support of national defense and homeland security to facilitate the defeat of an evolving threat critical to the NAS infrastructure or key resources.

6.2 INTEGRATED RISK MANAGEMENT (IRM)

Risk management is the ongoing process of understanding the threats, consequences, and vulnerabilities that can be exploited by an adversary to determine which actions can provide the greatest total risk reduction for the least impact on limited resources. It is inherent to every element of Layered, Adaptive Security Services, and it is conducted from the strategic to the tactical levels. IRM is an overall federated risk assessment and risk mitigation framework that guides multiple security service enterprises to assist in making decisions, allocating resources, and taking actions under conditions of uncertainty. This framework is a planning methodology that outlines the process for satisfying or exceeding security goals through prevention, protection, response and mitigation, and recovery. It satisfies the following needs:

- To understand the spectrum of threats that could be mounted against the NAS
- To identify the vulnerabilities that can be exploited by an adversary
- To evaluate and prioritize assets/activities to be protected from attack
- To determine which protective actions can provide the greatest total risk reduction for the least impact on limited resources
- To provide the most focused and adaptive security measures to reduce the impact of security systems and procedures on air transportation

IRM is characterized by a specific and consistent terminology to describe its various aspects. Threats are the likelihood of an attack on a particular asset. Vulnerabilities are weaknesses in the design, implementation, or operation of an asset or system that can be exploited by an adversary or disrupted by a natural disaster. Consequences are the result of an attack on infrastructure assets reflecting level, duration, and nature. Risks are measures of potential harm that encompass threat, vulnerability, and consequence.

The assessment of risks provides a prioritized list of vulnerabilities and potential mitigation strategies. Because the adversary has the freedom to choose targets and modes of attack, the security system must develop (but not necessarily universally deploy) operationally feasible mitigations to as many potential threats as possible. Due to limited resources, mitigation
requiring substantial investment (e.g., system cost or infrastructure intensive) is applied (deployed) in the order of risk level. For example, external attacks on aircraft may be an issue at some airports requiring mitigation. This does not mean that all GA airports will have or need such systems.

It is also possible to apply resources effectively through technical advances in sensor design and fusion as well as cost efficiencies typical of information processing system upgrades. With the development of low-cost CBRNE sensors for low-volume operations, it will be possible to conduct screening at many more airports for commercial service. This does not mean that all non-commercial operations need to screen passengers or cargo for flights posing below-threshold risk levels. Many flights occur far from major metropolitan areas or national security restricted areas; however, flights to sensitive areas must make adjustments to mitigate their risk profile.

Security system responses and procedures are applied based on the risk profile of each flight and airport facility. Facilities or flight objects that do not adopt particular security processes may still operate in the NAS, but may have to observe some restrictions depending on the given risk profile created. Yet their overall future access and performance, even with some (self-imposed) security restrictions, is considerably greater than their current access.

6.3 Security Services

6.3.1 Secure People

The perception of a secure aviation system environment via publicly visible or implicit checkpoint and carry-on baggage screening operations is an extremely important tenet of the security architecture. Other less-visible security procedures may work toward similar ends and achieve them as effectively; however, the visible aspect of checkpoints and baggage screening is still the most tangible element to the general public and hence the most relied upon procedure in establishing the public’s level of confidence and thereby their use of the system. The checkpoint displays an operating profile of consistency and routine, while behind the scenes it has several new screening techniques and tools that are being utilized based upon the assessed risk and, in some cases, performed randomly.

Secure People puts greater reliance on an integrated screening approach to correlate credentialing and identification processes. Aviation security risks are mitigated by identifying individuals who, whether travelers or aviation personnel, are a potential threat and preventing them from gaining access to the air transportation system through pre-screening/credentialing, screening, and intervention. For travelers, aviation security is provided continuously from the time the reservation is made until the safe arrival of the flight at the destination airport and the uneventful retrieval of baggage by the passenger. For Persons With Disabilities (PWD), the Secure People capability ensures accommodation and privacy by including special training and procedures for screeners, separate screening areas, and appropriate equipment to address PWD needs. For aviation workers, a standardized credentialing process is used which includes standardized, periodic updating and re-credentialing of secure access personnel, and identification technologies to deny unauthorized individuals access to restricted areas of airports. NCO permits more valid and faster credential verification. A balance between security and
customer service is maintained, permitting the consistent, efficient, and seamless movement of passengers at the airport.

6.3.2 Secure Airports

Secure Airports have an integrated facility security system scalable to differing capacity, access, and risk environments. Additionally, it includes both technological and procedural measures to protect against the dynamically evolving threat. This flexible security system leverages advanced net-centric capabilities to minimize redundant credentialing and access controls while providing SSA when security incidents occur or credentialing concerns surface.

Airport net-centricity seamlessly links sensors and data sources from access and screening checkpoints for passengers, visitors, employees and vehicles, perimeters, and critical facility infrastructure. The airport security technologies and adjustable procedures are nominally transparent to passengers and cargo, and hard to predict by those who intend harm. Additionally, airports have resident response and recovery programs enabled through local and regional memoranda of agreement and supported by the federal government. In this connection, NCO maintains real-time connectivity to other regional airport operators, law enforcement, and government intelligence and SSP operational entities. These Secure Airports Services, used with IRM tools, enable quick ramp-up response operations to incidents of national significance, including CBRNE attacks on the airport or within the region. The emergency response has been appropriately rehearsed to ensure that the responders are fully prepared and informed for any contingency.

The layered and overlapping security systems are in place at the following types of airport facilities:

- Commercial (passenger/cargo) airports
- RTSS facilities
- Public GA airports
- Commercial spaceports

The systems also are located at the following areas within the above listed facilities, as appropriate:

- **Airside.** Security Identification Display Area/Airport (SIDA) operations area, terminal perimeter, terminal airspace (security)
- **Landside.** Terminal public and commercial roadways and parking lots, terminal entry and departure, airline ticketing kiosk/counter, sterile area, international arrivals/customs, security control center, response and recovery operations
6.3.3 Secure Checked Baggage

Secure Checked Baggage includes printing bag tags at remote locations for airport check-in. Additionally, it includes provisions for RTSS to allow passengers to undergo full screenings at off-airport locations and then be transported directly to the sterile area of the airport terminal while their screened, checked bags are taken directly to the aircraft. The screened baggage is available for direct transfer to other modes of transportation (e.g., rail, ship or bus) without further screening. Additionally, integrated trip tracking, with access by authorized third-party organizations, provides custom services such as remote check-in and baggage transport and processing capabilities.

6.3.4 Secure Cargo/Mail

Secure Cargo/Mail represents a critical vulnerability that was historically addressed with background investigations, inspections, and paper trails required of shippers, both known and unknown. The vision for cargo security includes freight vulnerability assessments (through the IRM process), identifying the risk level of cargo, use of sterile cargo packing areas, cargo transit safety and integrity, and CBRNE screening for air cargo.

Secure Cargo/Mail prevents checked cargo/mail from endangering aircraft, aviation facilities, or people and to prevent the air cargo system from being used as a threat vector. These objectives are met through a combination of policy, procedures, information, and technology to differentiate normal commerce from threats accurately. Cargo/mail screening equipment and container sensors, with multi-sensor capabilities, are linked through secured net-centric systems to the SSP airport security operations center and other analysis centers.

The security of cargo and mail begins at the point of initial packing with the manufacturer, freight consolidator, air carrier, or licensed U.S. Customs broker, (or when initial screening occurs prior to entry into the security system). The SSP integrates all information related to the flight, cargo, and aircrew to provide additional information and ensure security during transit, enabled through NCO. The SSP includes the following concepts:

- Vetting for Secure Supply Chain Entity (SSCE)
- Vetting for Certified Supply Chain Entity (CSCE)
- Security screening
- Loading and storage security
- Surface transportation security/tracking
- Cradle-to-grave tracking/integrity

Many organizations and personnel are involved in the transport of any given piece of cargo/mail: a source or shipper, freight forwarders, indirect air carriers, and other commercial and government personnel. Because of the many prospective transfer points, cargo/mail security has to take into account the entire custody chain. Continuous risk and threat assessments must be conducted to identify risks to the supply chain, and apply measures, procedures, and policies to
reduce those risks to an acceptable level. Cargo must be initially packed in a sterile area and conveyed through a secure chain of custody to the aircraft. If any deviance from this process occurs, all cargo intended for air transport, whether on passenger flights or all-cargo operations, must undergo CBRNE screening from either the SSP or a CSCE. After CBRNE screening, the integrity of the goods shipped must be maintained until the cargo exits the air transportation system. SSCE and CSCE are regularly inspected for compliance. All personnel with access to shipped goods must be properly credentialed, authenticated, and trained to ensure a secure shipping environment. In addition, all cargo items are subject to random inspection and CBRNE screening to maintain necessary variability and verification of the supply chain.

6.3.5 Secure Airspace

Secure Airspace prevents or counters external attacks on or the use of an aircraft as a weapon against assets and people on the ground. To reduce the security risk within the air domain, Secure Airspace systems and procedures detect and prevent or mitigate:

- Anomalies in aircraft operation that indicate unauthorized use or attempted unauthorized use
- Aircraft not providing the appropriate cooperative data concerning identity and intentions
- External attacks on aircraft
- Aircraft that can pose any other threat.

The risk management requirements include the following: (1) defining (almost always dynamically) the boundaries and access criteria of SRAs to protect people/assets, critical infrastructure and significant events, (2) clarifying the cooperative respective roles and responsibilities between the defense security provider, SSP, and ANSP in the event of security incidents in flight or by airborne threat aircraft, and (3) determining the risk profiles of flights. Based on a flight object’s risk profile, SRAs may initiate TFRs to isolate a potential threat. Secure Airspace modifies flight access and implements procedures based on a verification that dynamically adjusts for aircraft performance and security considerations. For instance, low-performing aircraft may have greater NAS access than high-performance, due to interception times being greater. Additionally, Secure Airspace also has Airspace Violation Detection, Alerting, and Monitoring capabilities.
6.3.6 Secure Aircraft

The Secure Aircraft Service increases the safety and security of aircraft through a variety of hardware, software, personnel, and procedural methods. Threats that require mitigation include, but may not be limited to, hijacking/unauthorized diversion; internal explosive destruction; external attack; onboard CBRNE or other attack of crew, passengers, or aircraft systems; aircraft use as a transport for CBRNE; or aircraft use as a Weapon of Mass Destruction (WMD). The Secure Aircraft Service applies to both civilian passenger aircraft and civilian cargo aircraft. Certain types of UAS (surveillance or cargo) are included as well for threats related to unauthorized diversion, internal explosive destruction, and use as a transport for CBRNE.
7 Environmental Management Framework

7.1 Introduction

Understanding and effectively addressing environmental challenges is critical to NextGen success. Anticipated increased capacity will result in greater environmental impact and new challenges to address. There will be significant constraints to increasing NAS capacity unless the environmental impacts in the areas of noise, emissions, water quality, and greenhouse gas emissions are managed and mitigated.

To be successful, airports will need to increase their efforts to address the environmental concerns of neighboring communities. Noise will continue to be a primary area of concern; however, air quality, water quality, and other environmental demands are a growing challenge to significant capacity expansion without a detrimental impact to the environment. An additional environmental challenge is to manage aviation’s environmental impacts in a manner that limits or reduces their impact and enables the U.S. air transportation system to meet the nation’s future transportation needs.

NextGen’s solution to managing mission-critical environmental resources/impacts is through the development of an Environmental Management Framework (EMF) that is fully integrated into all operations. This framework ensures environmental protection that allows sustained aviation growth. The EMF is structured to address the management of environmental resources using five functional groups focused on policy, operations, technology, tools and science, and metrics. The EMF must account for interdependencies among many environmental issues so that in addressing some, others are not exacerbated. While at the same time, the EMF must maintain a balance between environmental goals and the need to advance aviation safety, national security, and economic well-being. The goals of EMF include:

- Reduce significant community noise and air quality emissions impacts in absolute terms
- Limit or reduce the impact of aviation greenhouse gas emission on global climate, including the rate of fuel burn
- Improve energy efficiency of air traffic operations
- Support alternative fuels development
- Proactively address other environmental concerns

EMF promotes the development of a national EMS approach. EMS includes a management process to help users systematically identify, manage, monitor, and adapt to the environmental demands associated with the high volume and dynamic nature of the air transportation system. The national EMS approach is intended to facilitate an effective and common process that is adopted by all applicable U.S. aviation organizations. EMS provides a mechanism for...
integrating environmental protection objectives into the core business and operational decision making. While EMF provides the overarching strategy needed to achieve environmentally sustainable aviation growth, EMS delivers a management process for achieving environmental protection in user actions.

The “Improved Environmental Performance” capability will use the EMS to provide enhanced environmental responsiveness in the areas of aviation airspace operations, airport planning and operations, and transformed aircraft design and technologies. These capabilities enable the fundamental operations and transform the national airspace operation.

Improved Environmental Performance - provides the ability to proactively identify, prevent, and address environmental impacts in, the air transportation system. This is accomplished, through a CDM process, improved tools, technologies, operational policies, procedures, and practices that are consistent and compatible with national and international environmental regulations.

7.2 IMPROVED ENVIRONMENTAL PERFORMANCE OF SYSTEM COMPONENTS

7.2.1 Environmental Operations

EMF is the overarching environmental architecture (including systems, business processes, and infrastructure). Changes in the air transportation system can result from increased traffic volume. These changes are compounded by greater stakeholder and community awareness of environmental issues and increasing community expectations for environmental impact reductions.

7.2.1.1 Aviation System EMSs

EMF does not treat the aviation system as a single unit, but as a community of organizations with a diverse range of requirements and drivers. The framework establishes systematic but flexible approaches that enable individual EMS programs to respond to the aviation system’s dynamic capacity demands. These approaches are supported by enhanced information flow and better connections between individual component organizations.

The EMF aims to provide individual air transportation component organizations (e.g., airports, agencies, ANSP, FAA, air carriers, and manufacturers) with a flexible system to identify and manage the environmental resources that are necessary to meet their individual long-term capacity demands. This includes integrating sound EMS principles into all aviation system components and ensuring that these EMS approaches, or models, include all environmental issues but focus specifically on capacity-related environmental issues. EMS models establish standardized, systematic approaches for managing the environmental aspects of operations in support of the organization’s overarching mission. The use of focused EMS models ensures that all aviation system component organizations contain processes that help them align with critical NextGen goals.
Implementing EMS models will provide mechanisms for identifying and managing issues critical to sustainable growth, transferring information, standardizing operations based on best practices, and encouraging environmental stewardship. The implementation also provides a vehicle for NextGen-level objectives to be incorporated by individual organizations as part of their EMSs, thereby aligning them with NextGen goals. Individual organizations connect through an information management system, which enables environmental information management, including tracking environmental metrics, storing best practices (e.g., on construction, maintenance, and operational procedures), and communicating environmental objectives, policies, incentives, and regulations.

7.2.1.2 Airspace Operations

The airspace operations plan seeks to create a dynamic and flexible airspace capable of supporting 2025 demand in an environmentally sustainable manner. An agile air traffic system based on advanced cockpit avionics, satellite navigation, advanced weather forecasting, and dynamic airspace has enhanced ability and flexibility to reduce emissions by maximizing routings for fuel efficiency. Environmental performance of the system is embedded in the overall performance of the air traffic system and supported by EMS goals, including the availability of up-to-date critical system information.

Consistent with EMS principles, a holistic but flexible approach is used to manage key environmental issues as they pertain to specific geographic regions and to the system as a whole. This approach accounts for variations at an individual component level (e.g., airports or air carriers); EMS models implemented by individual components account for specific needs while also contributing to system-level requirements.

Environmental impacts and potential constraints of terminal airspace currently are better understood than those associated with en route airspace, but there is significant uncertainty associated with 2025 projections. Therefore, the primary capability of the EMF is its ability to adapt to the complex nature of the air traffic system. For example, new technology, in concert with airspace redesign, enables optimized route selection during landing and takeoff procedures that are based on minimizing the impact of noise and emissions, minimizing costs and fuel burn, and maximizing route efficiency and safety. The establishment of environmentally friendly operational procedures (e.g., operations program directives) for all traffic conditions is one example.

In terminal airspace, single-purpose procedures are replaced by more sophisticated procedures that maximize benefits based on integrated assessment and management of multiple factors, including noise, emissions, fuel burn, land use, operational efficiency, and cost. Procedures are dynamic and adapt to changing needs rather than remaining static. There are additional

What are Environmental Management Systems?

EMS is an organizational business process that consists of four phases. In the “planning” phase of an EMS, the organization identifies environmental issues with the potential to constrain future capacity. These are the focus of tactical, measurable objectives for which improvement initiatives can be undertaken during the “implementation” phase. During the “assessment” phase, the effectiveness of these initiatives is monitored and key performance metrics are tracked. Monitoring data is then used to support planning at the organization itself in the “review and adaptation” phase. In the NextGen EMS, monitoring data is also reported at an enterprise level to support NextGen-wide planning.
procedures available using advanced technologies from which to select the best operational and environmental benefits.

In the case of the en route environmental impacts, ongoing discussions and analyses have resolved major questions, and outcomes are integrated into the EMF. Focus is placed on understanding and identifying the direct attributable role of aircraft emissions in climate change through targeted research with national and international partners.

7.2.1.3 Transformed Airport Planning and Operations

The greatest interaction between the NAS, communities, and environmental resources occurs at airports. By 2025, significant aircraft noise is expected to be confined within the airport boundary and over small areas of adjacent compatible land. During this time frame, airports will become emissions-friendly with ongoing transition to low- or no-emissions stationary facilities and GSE. Airport and community planning complement and support each other, and airports are valued community assets as air transportation gateways and economic engines. Through the integration of EMSs, environmental planning and mitigation is continuous and includes activities to meet long-term goals for sustainable growth in airport capacity. These activities are supported by improved information management that, for example, transfers and stores information on environmentally preferable airport practices. In addition, an advanced capability to integrate and balance noise, emissions, fuel burn, land use, energy efficiency, and the costs and effects of alternative measures will allow the selection of optimum operational modes, mitigation strategies, and surface planning procedures.

The implementation of EMS will provide a flexible systematic approach to identify and manage environmental aspects of operations to meet capacity needs and environmental goals. The EMS approach is adaptable to the airport’s characteristics, such as its size (large or small), its ownership (public or private), and its geography. Such a model allows airports to assess and improve environmental performance on an ongoing basis that is linked to airport development, and it facilitates both capacity growth and environmental protection. The noise, air quality, and water quality concerns identified by airports and communities as critical to sustainable growth are fully integrated into management plans that have the ability for mid-course adjustment based on continuous feedback. Therefore, airports are able to assess their specific environmental requirements for sustainable growth and develop or select approaches (based on industry best practices) to address specific operational, geographic, and local community impacts that fit within that national framework.

Local environmental monitoring allows the effects of management strategies to be assessed and best practices or lessons learned to be available in real time. Monitoring enables regional and national trend analysis and supports decision making and planning. Improved environmental information availability and subsequent information sharing ensures that proven practices are widely used and successes quickly proliferated.

7.2.1.4 Aircraft Design and Technology

Environmental considerations are a critical component of aircraft design and operations. These improvements aim to reduce costs to aircraft operators, airports, and the ANSP. Environmental
regulations increasingly constrain capacity; public/private sector partnerships deliver more robust R&D that enables technological breakthroughs to reduce significant impacts. Scalable models and analytical capabilities that integrate noise, emissions, fuel burn, costs, and other factors enable development of optimized aircraft performance characteristics, based on informed decisions of any necessary tradeoffs (e.g., between noise and emissions).

Alternative fuels will be available as costs, energy supply, security concerns, and environmental factors drive their development for aircraft. Additionally, the use of environmentally sensitive technology will facilitate a prompt and efficient development process where innovation, such as environmentally friendly airframe and engine design, is encouraged. Design, product development, testing, and certification steps are well established, with changes in policy enabling a more direct flow from their conception to implementation. This, combined with increased demand from aircraft operators, provides for a strong market for environmentally sensitive aviation technology.

7.2.2 Environmental Management Framework Policies and Capabilities

EMF is a single, fully integrated, interconnected system. This framework is used to manage and mitigate environmental impacts that constrain capacity in the NAS. An integrated EMF, consistent with this ConOps, is based on researching, designing, and implementing a broad set of enabling services and capabilities (i.e., systems and infrastructure).

7.2.2.1 Policy

NextGen Environmental Policy. Development of a unified environmental policy supported by a wide array of air transportation system stakeholders (e.g., airports, aircraft operators, agencies, and communities) assist component organizations with aligning their environmental systems with long-term goals and objectives. The establishment of long-term, measurable targets that address environmental issues (e.g., noise, emissions, fuel, climate effects, and water quality) is central to this policy. While this policy provides an overarching framework, it also allows sufficient flexibility to ensure that organizations can design their programs to meet their unique challenges. Performance metrics provide a yardstick for monitoring and assessing progress toward meeting environmental targets. Metrics will be appropriate for use by the various air transportation system component organizations. These are reported via a net-centric environmental information management system for the purposes of analysis, continuous improvement, and public dissemination.
Standardized EMS Model. Flexibility is critical for EMS to be applied to a diverse range of organization types; however, to meet future capacity challenges, EMS will need to include mechanisms for incorporating overarching environmental objectives (e.g., reduction of community noise), reporting with standardized metrics, and linking to an environmental information management system. The EMS model will be developed using existing best practices based on the globally recognized International Standards Organization (ISO) 14001 standards and will be sufficiently flexible to support the diverse needs of aviation system component organizations.

Incentives System. Although the EMF is expected to bring about cost savings to the system as a whole by increasing efficiency, incentives will likely be necessary to increase implementation and encourage environmental improvements at a more rapid pace than the market would normally provide. The consideration of incentives is tied to specific environmental program initiatives or goals.

Information Management System. A robust information management system is critical for transferring environmental information throughout the system. This system, for example, provides real-time information to aircraft operators and the ANSP on dynamically forecasted areas of noise sensitivity, areas susceptible to dispersion of pollution, and volumes of airspace.
that are sensitive to emissions, so that these factors can be included in planning routes, approaches, and departures. Organizations are also able to input environmental metrics data, such as emissions and noise monitoring data, from monitoring equipment directly into the system. Subsequent data analyses enable better decision making and policy development, allowing for the adjustment of environmental objectives. They also facilitate the development of effective incentives and communication of all of these actions. Therefore, this single enterprise-wide system supports all the environmental information management needs.

7.2.2.2 Operations Initiative

Integrated Environmental Planning. Flexible planning enables airports to make midcourse corrections to planned initiatives, thus shortening the planning horizon. Planning includes greater involvement of stakeholder groups and local communities. As part of the EMS, airports conduct standardized environmental evaluations to identify environmental resources that are adversely impacted and/or have the potential to constrain future airport capacity. This information supports long-term planning efforts and helps direct airport improvement initiatives to mitigate potential future resource constraints. Standardized environmental evaluations are reported via the information management system so that it is possible to identify the specific, local environmental issues that must be addressed to be enabled. This allows organizations to review regional and national trends and support planning and decision making.

Airport Approaches. A range of environmentally sensitive operational procedures is developed to assist airports and aircraft operators with minimizing environmental impacts. Currently, most aircraft use the standard approach route at an airport, though large numbers of noise abatement procedures are used; however, aircraft that use quiet technology will no longer produce significant noise impacts and therefore will be able to use a wider range of approaches. These procedures, developed based on improved tools and information (e.g., enhanced real-time weather information), increase airport efficiency and ensure the maximum number of aircraft operations can be accommodated within environmental limits (e.g., state implementation plan air quality requirements, land use compatibility guidance with aircraft noise exposure, or water quality regulations), without impacting capacity.

Environmental Routes Consideration. This initiative introduces environmental considerations into the route planning decision making process, including identifying and considering cumulative effects in routing decisions and providing preference to quieter and less-polluting aircraft. In addition, advanced navigation systems enable greater routing flexibility without impacting capacity, while also enabling en route adjustments according to on-the-ground conditions (e.g., designated quiet times or air quality emergency days). For example, aircraft that have low noise and emissions have access to a wider selection of routes than those that do not have comparable technology. Enhanced observation and forecast of weather information allows better prediction of noise and emissions impacts.

Ground Procedures. The implementation of EMS encourages the use of a range of environmentally sensitive and cost-effective standardized procedures for ground activities. These include converting GSE to alternative and low-emission fuels (e.g., use of fixed underground services), reducing the time spent on the ground by aircraft, reducing the use of auxiliary power units, using environmentally sensitive deicing chemicals, and employing a wide range of other procedures. These standardized airport ground procedures are focused on enhancing surface
operations, reducing delays, and minimizing environmental impacts. In particular, through the implementation of EMS, organizations use these activities in a focused manner, specifically targeting identified environmental impacts.

Analytical Tools. Understanding the relationship and interdependencies between various environmental impact categories is critical. For example, if an action is taken to reduce emissions, will this affect another impact category, such as noise? A suite of transparent, integrated aviation noise and emissions models is developed to help planners understand the environmental impacts of their actions holistically. The suite of models includes:

- The Environmental Design Space (EDS), a capability to provide integrated analysis of noise and emissions at the aircraft level
- The Aviation Environmental Design Tool (AEDT), which provides integrated capability to generate interrelationships between noise and emissions and among emissions at the local and global levels
- The Aviation Environmental Portfolio Management Tool, which provides the common, transparent cost/benefit methodology needed to optimize choice among standards, market-based options, policies, and operational procedures to gain the largest environmental benefit while understanding cost

This suite of models allows government agencies and airport operators to understand how proposed actions and policy decisions affect noise and emissions. The models help industry understand how operational decisions influence proposed projects related to aviation noise and emissions.

The tools allow optimized environmental benefits of proposed actions and investments, improved data and analyses on airport/airspace capacity projects, and increased capability to address noise and emissions interdependencies in the resolution of community concerns, health and welfare impacts, and better targeting of solutions to problems. Ultimately, they will facilitate more effective portfolio management and support the EMS process.

7.2.2.3 Technology

Clean and Quiet Technologies. In the near term, new technologies to improve ATM enable new, quieter, and cleaner operations. In the mid-term, technologies from NASA’s Quiet Aircraft Technology (QAT) and Ultra-Efficient Engine Technology (UEET) programs will be matured for private-sector implementation. In addition, the Research Consortium for Lower Energy, Emissions, and Noise Technology (CLEEN) is a partnership developed to make the aviation technology advances needed for quieter, cleaner, and more energy efficient systems. In the long term, new engines and aircraft will feature enhanced engine cycles, components to enable quieter operations, more efficient aircraft aerodynamics, and reduced weight. These technology advancements enable significant reductions in noise and emissions.

Technology Development Processes. Aircraft design, navigational capabilities, and technology play a central role in increasing capacity. The development of environmentally sensitive technology is encouraged by an efficient, expeditious R&D program. A critical aspect will be the
development of an innovative and sustainable source of funding and the formation of
public/private partnerships to facilitate the movement of technology from the conceptual phase
through to its operational use. CLEEN is an example of the type of partnership needed to
advance technology.

7.2.2.4 Science/Metrics

Environmental Metrics. Environmental performance indicators (e.g., noise and emissions),
combined with other system information (e.g., forecasted traffic flows, market data, fleet size,
technology implementation, and operational procedures), provide the needed information to
quantify the individual environmental impacts (noise impacts, local air quality, and global
climate change). Based on information from the results of such scientific assessments,
environmental metrics are defined to put environmental impacts on a common scale and assign
relative priority to reach a quantified goal. The metrics are used to derive analytical tools to
study interdependencies and perform cost/benefit analyses. These tools in turn drive policy,
regulations, incentive programs, national objectives, operational procedures, and technology
design goals. The development of new metrics to assess the impact of aviation activities on
environmental and health and welfare enables a robust EMS framework. Next-generation
metrics, based on improved scientific knowledge and computations of interdependent
relationships and related benefit/costs, provide an enhanced platform for environmental decisions
and mitigation. Metrics include new operating paradigms, such as VLJs and supersonic aircraft.

7.2.3 Environmental Management Framework Support

The EMF focuses on improving linkages between various components of the air transportation
system (e.g., airports, aircraft operators, federal agencies, and manufacturers) and establishing a
systematic but flexible framework to meet environmental protection needs for sustainable
growth. Where possible, this aims to enable decision making and planning at the implementation
level with support from several mission support functions. These functions (e.g., environmental,
market, social trends, best practices, lessons learned, feedback, incentives, monitoring) can
provide more robust information to all components through an information management and
communication system. In addition, cross-functional groups that include representatives from
stakeholders review trends, policy, monitoring, and goals at a national level. These groups
provide a forum for discussing research, funding, policy, regulation, tools, and other issues
linking the aviation system as a whole.
8 Safety of Air Transportation Services

8.1 INTRODUCTION

The U.S. air transportation system is the safest in the world and has been for a long time. Increasing the safety of worldwide air transportation requires the future air transportation system to control known risks, identify emerging risks, and integrate safety into system evolution.

Creating the potential for significant growth in system capacity demanded by NextGen will introduce increased complexity in the air transportation system, and commensurate improvements in safety performance will be necessary. To achieve these improvements, there must be a fundamental change in the way safety is approached. Today, safety improvements are largely focused on addressing prior accidents. Safety management services will evolve from today’s post-accident interventionism to predictive evaluation and management of hazards and their potential safety risks. The JPDO has created a safety management framework that is based on a National Aviation Safety Strategic Plan, which has been coordinated across industry and the NextGen government partners. The plan established the following three safety goals:

- **Safer Practices.** Assures safety by applying consistent safety management approaches; comprehensive safety information sharing, monitoring, and analysis; and developing inherently safe practices.

- **Safer Systems.** Aims aviation system technologies at managing hazards, eliminating recurring accidents, and mitigating accident and incident consequences.

- **Safer Worldwide.** Harmonizes system technologies, standards, regulations, and procedures domestically and internationally to create an equivalent and improved level of safety across air transportation system boundaries.

Safety goals are intended to permit increases in capacity and efficiency by ensuring that the system’s safety is maintained. As concepts are designed and developed with safety embedded, they will be expected to contribute to Safer Practices, Safer Systems, and Safer Worldwide. NextGen concept implementation must mitigate known risks. It also must not introduce significant sources of new risk. Transforming the air transportation system will include technological changes and human and institutional adjustments. Safety risks associated with changing roles and responsibilities for individuals and organizations may prove quite challenging to implement safely. The “Improved Safety Operations” capability describes a safer, more efficient, higher capacity air transportation system.

Improved Safety Operations - provides integrated safety management throughout the air transportation system by increased collaboration and information sharing tools, equipment, and products for stakeholders. This capability employs improved automation (e.g. DSS), technology innovations, prognostic safety risk analysis, and enhanced safety promotion and assurance techniques that are consistent and compatible with national and international regulations, standards, and procedures.
The JPDO, along with its member agencies and industry partners, will ensure safety by establishing and maintaining a National Aviation Safety Strategic Plan for the air transportation system. Key aspects of this plan include facilitating and stimulating the continuous improvement of the safety culture among stakeholders; consistently, systematically, and proactively applying and improving SRM practices, including increasing the sharing of safety-critical data; and enhancing safety assurance. The JPDO and its stakeholders will jointly define an effective SMS that leverages government and industry experience to quickly identify and address non-normal, tactical, and strategic increased risk operations.

8.1.1 National Aviation Safety Strategic Plan

A clear and cohesive National Aviation Safety Strategic Plan promotes continuous improvement in safety practices and systems safety, domestically and internationally, across air transportation system boundaries. This plan serves as the guiding principle for all government and industry participants. It sets objectives and identifies strategies within each goal area. Safer Practices seek to provide consistent safety management approaches that are implemented throughout government and industry, to provide enhanced monitoring and safety analysis of the air transportation system, and to provide enhanced methods to ensure that safety is inherent. Safer Systems seek to provide risk-reducing systems interfaces, and to provide safety enhancements for airborne and ground-based systems. Safer Worldwide encourages development and implementation of safer practices and safer systems, and seeks to establish equivalent levels of safety across air transportation system boundaries.

8.1.2 Safety Improvement Culture

A positive safety culture will focus government and industry on empowering individuals across functional lines to act upon reliable data according to clear expectations of measurement and behavior. An organization’s safety culture is the product of individual and group values, attitudes, competencies, and patterns of behavior that determine the commitment, style and proficiency of an organization’s health and safety programs. This positive pervasive culture is throughout all government and aviation industry stakeholders, which facilitates a more proactive use of SRM principles and practices. These characteristics include, but are not limited to, management accountability, non-reprisal reporting, consistent use of SRM best practices, and sharing safety data and lessons learned.

8.1.3 Safety Risk Management

SRM is a construct that takes into account the frequency of an undesired outcome along with its possible consequences, permitting a rationale for appropriate prioritization of remedial action. It is a structured approach for identifying potential breakdowns in the system’s operation, understanding their impacts on safety, identifying mitigation strategies, and evaluating and monitoring the strategies’ effectiveness. NextGen uses advanced data analysis, risk modeling, and simulations techniques, where applicable, for a systematic and comprehensive understanding of system and operational risk. Additionally, these techniques identify and understand the roles of precursors in past and potential accidents, and to evaluate the effectiveness of risk mitigation strategies, thus allowing accident precursors to be identified and proactively managed. Critically
understanding the accident precursors and the effectiveness of risk mitigation strategies helps prevent accidents before they happen.13 Prognostic risk assessments based on data analysis and risk modeling techniques are used where feasible to quantify safety risk levels of system changes prior to implementation. Properly appreciating the interdependent and hierarchical risks of various operational improvements ensures optimal resource allocation for safety research and implementation.

8.1.4 Safety Information Integration

The integration and sharing of high-quality, relevant, and timely aviation safety information is critical to the operational success of the Safety Management Enterprise. The Aviation Safety Information Analysis and Sharing (ASIAS) environment is a combination of processes, governance, technologies, information protection policies and standards, and architectures used to connect Safety Management Enterprise resources, including information, organizations, services, and personnel.

In 2025, the ASIAS environment will support multiple levels of stakeholders within the Safety Management Enterprise, including government and private-sector decision makers with the responsibility of maintaining the aviation record as the safest mode of transportation. To do this, ASIAS provides easy access to a suite of tools used to extract relevant knowledge from large amounts of disparate safety information.

To facilitate the trusted exchange of aviation safety information, ASIAS leverages net-centric features by implementing need-to-know, role-based access capabilities. ASIAS plays a critical role in establishing and maintaining information protections. Further, ASIAS implements and continuously improves an Electronic Directory Service, a one-stop resource for stakeholders to discover relevant aviation safety information assets across multiple domains. Lastly, ASIAS establishes and continuously refines interoperability techniques by joining disparate data sources to uncover system-level hazards that were once undiscoverable.

8.1.5 Enhanced Safety Assurance

Safety Assurance is the independent oversight function that tests, evaluates, and certifies, as necessary, products and processes to ensure safety for the public and the stakeholders. The regulatory authority continuously measures and assesses the effectiveness of stakeholder SMSs through joint audits and trend analysis. As experience dictates, performance-based standards are continuously reviewed and revised. The responsibility for safety assurance is distributed among and between the regulators and the providers. As a result of this delegation, the regulatory authority is better equipped to focus resources on the most safety-critical systems and operations.

To support national-level proactive hazard identification, risk assessments, and the Safety Assurance function, the “incompatible databases scattered throughout government and industry”14 are transformed into a coordinated and interlinked data source using the network-enabled infrastructure. The safety-critical events and data are reported and shared without fear of disciplinary or legal action. Mechanisms are in place for protecting competitive information.

13 NGATS Integrated Plan, 2004.
14 NGATS Integrated Plan, 2004.
8.2 SAFETY MANAGEMENT ENTERPRISE SERVICES AND CAPABILITIES

National-level SMS enable facilitation of safety management and cooperation across aviation stakeholder organizations. These services provide coordination of safety activities such as research and risk mitigation strategies, injection of critical and timely safety information and lessons learned (where appropriate), and regulatory oversight to assure the public of the safety of air transportation. The safety services may be provided to varying degrees by local or federal government agencies, or by industry associations, technical societies, or other nongovernmental organizations. They may be either permanent or temporary bodies. This does not diminish the responsibility for improving and managing safety that is the foundation for each stakeholder organization’s safety culture.

8.2.1 Aviation Safety Strategic Plan Service

The Safety Strategic Plan Service provides a coordinated and maintained National Aviation Safety Strategic Plan that establishes safety goals, and identifies objectives and strategies for implementation by government and industry in support of those goals.

8.2.2 Safety Promotion Service

The Safety Promotion Service provides:

- A Safety Culture Improvement Plan, which includes examples of strategies and tools that can be used by the stakeholders
- Implementation guidelines for safety culture improvement
- Capabilities for additional research into the relationship between safety climate scores and mishap rates
- Development and distribution of material that facilitates awareness of the importance of organizational culture in fostering safety

8.2.3 Safety Risk Management Service

The SRM Service provides:

- Safety data management capability, including data sharing and protection, and formatting requirements to facilitate data analysis and reporting
- Integrated risk assessment via data analysis, models, and simulations development, maintenance, and applications designed as an aid to understanding the relative risks and also the effectiveness of mitigation strategies
- Continued understanding of safety culture impacts
8.2.4 Safety Information Integration Service

The Safety Information Integration Service provides:

- A centralized location for aviation safety information required to support the Safety Management Service
- Large amounts of safety information from multiple domains under one virtual roof
- Processes for acquiring access to data from multiple, disparate information sources
- Authorized end users with easy and timely access to relevant aviation safety information
- Role-based, need-to-know authorization features
- Coordination and maintenance of aviation safety information protection policies and procedures
- Adaptation to meet the ever-changing safety information requirements of the Safety Management Enterprise operations

8.2.5 Safety Assurance Service

The Safety Assurance Service provides:

- Certification
 - SMS certification
 - System and operation certification
- Training
- Independent evaluations (using SRM services) of systems, operations, and safety culture
- Accident investigation services
- Other regulatory and oversight services
- Integration of safety management into infrastructure planning and management, and into intermodal operations
- Regulatory and policy enforcement service

8.3 INTEGRATION OF SMS INTO NEXTGEN SERVICES

All modifications to existing systems, procedures, equipment, and policies, and all transformations, undergo the safety risk analysis and management process. Each of the services identifies the requirements to meet safety performance requirements through integrated safety assessments and implements SMS to accomplish the goals. The NextGen-integrated SMS
specifies a collaborative and integrated safety hazard/mitigation strategy. Results from safety assessments are factored into the operational data requirements for each of the services. SMS data required for identification and tracking of hazards and trend analysis is centrally managed and accessible to users. SMS best practices and lessons learned are coordinated across the services.
Appendix A: Acronyms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DT</td>
<td>Four-Dimensional Trajectory</td>
</tr>
<tr>
<td>ACAS</td>
<td>Airborne Collision Avoidance System</td>
</tr>
<tr>
<td>AEDT</td>
<td>Aviation Environmental Design Tool</td>
</tr>
<tr>
<td>AIS</td>
<td>Aeronautical Information Services</td>
</tr>
<tr>
<td>ANSP</td>
<td>Air Navigation Service Provider</td>
</tr>
<tr>
<td>ANT</td>
<td>Automated NextGen Tower</td>
</tr>
<tr>
<td>AOC</td>
<td>Airport Operations Center</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Centers</td>
</tr>
<tr>
<td>ASIAS</td>
<td>Aviation Safety Information Analysis and Sharing</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>BLOS</td>
<td>Beyond Line-of-Sight</td>
</tr>
<tr>
<td>BRAC</td>
<td>Base Realignment and Closure</td>
</tr>
<tr>
<td>C-ATM</td>
<td>Collaborative Air Traffic Management</td>
</tr>
<tr>
<td>CBP</td>
<td>Customs and Border Protection</td>
</tr>
<tr>
<td>CBRNE</td>
<td>Chemical, Biological, Radiological, Nuclear, and High-Yield Explosive</td>
</tr>
<tr>
<td>CDM</td>
<td>Collaborative Decision-Making</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CIP</td>
<td>Capital Improvement Program</td>
</tr>
<tr>
<td>CLEEN</td>
<td>Consortium for Lower Energy, Emissions, and Noise Technology</td>
</tr>
<tr>
<td>CM</td>
<td>Capacity Management</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>CNS</td>
<td>Communications, Navigation, and Surveillance</td>
</tr>
<tr>
<td>COI</td>
<td>Communities of Interest</td>
</tr>
<tr>
<td>ConOps</td>
<td>Concept of Operations</td>
</tr>
<tr>
<td>CSCE</td>
<td>Certified Supply Chain Entity</td>
</tr>
<tr>
<td>CSPA</td>
<td>Closely Spaced Parallel Approach</td>
</tr>
<tr>
<td>CST</td>
<td>Commercial Space Transportation</td>
</tr>
<tr>
<td>CTA</td>
<td>Controlled Time of Arrival</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>DST</td>
<td>Decision Support Tool</td>
</tr>
<tr>
<td>DUAT</td>
<td>Direct User Access Terminal</td>
</tr>
<tr>
<td>EDS</td>
<td>Environmental Design Space</td>
</tr>
<tr>
<td>EMAS</td>
<td>Engineered Material Arresting System</td>
</tr>
<tr>
<td>EMP</td>
<td>Electromagnetic Pulse</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EVO</td>
<td>Equivalent Visual Operations</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FCM</td>
<td>Flow Contingency Management</td>
</tr>
<tr>
<td>FIDS</td>
<td>Flight Informational Display Systems</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region</td>
</tr>
<tr>
<td>FL</td>
<td>Flight Level</td>
</tr>
<tr>
<td>FOC</td>
<td>Flight Operations Center</td>
</tr>
<tr>
<td>FOD</td>
<td>Foreign Object Debris</td>
</tr>
<tr>
<td>GA</td>
<td>General Aviation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geospatial Information Services</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>IAP</td>
<td>Instrument Approach Procedure</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IMC</td>
<td>Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>IRM</td>
<td>Integrated Risk Management</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>JPDO</td>
<td>Joint Planning and Development Office</td>
</tr>
<tr>
<td>LAAS</td>
<td>Local Area Augmentation System</td>
</tr>
<tr>
<td>MPO</td>
<td>Metropolitan Planning Organization</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational Aid</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>NDOT</td>
<td>NextGen Decision Oriented Tool</td>
</tr>
<tr>
<td>NEI</td>
<td>Network Enabled Infrastructure</td>
</tr>
<tr>
<td>NextGen</td>
<td>Next Generation Air Transportation System</td>
</tr>
<tr>
<td>NGATS</td>
<td>Next Generation Air Transportation System (old)</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Airmen</td>
</tr>
<tr>
<td>NPIAS</td>
<td>National Plan of Integrated Airport Systems</td>
</tr>
<tr>
<td>ODNI</td>
<td>Office of the Director of National Intelligence</td>
</tr>
<tr>
<td>OPD</td>
<td>Optimized Profile Decent</td>
</tr>
<tr>
<td>OSTP</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>PBN</td>
<td>Performance-Based Navigation</td>
</tr>
<tr>
<td>PIC</td>
<td>Pilot-in-Command</td>
</tr>
<tr>
<td>PIRG</td>
<td>Planning and Implementation Regional Group</td>
</tr>
<tr>
<td>PNT</td>
<td>Positioning, Navigation, and Timing</td>
</tr>
<tr>
<td>PWD</td>
<td>Person with Disability</td>
</tr>
<tr>
<td>QAT</td>
<td>Quiet Aircraft Technology</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RCP</td>
<td>Required Communications Performance</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area Navigation</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
<tr>
<td>RPA</td>
<td>Remotely Piloted Aircraft</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>RTSS</td>
<td>Remote Terminal Security Screening</td>
</tr>
<tr>
<td>SAA</td>
<td>Special Activity Airspace</td>
</tr>
<tr>
<td>SIDA</td>
<td>Security Identification Display Area</td>
</tr>
<tr>
<td>SM</td>
<td>Separation Management</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SNT</td>
<td>Staffed NextGen Tower</td>
</tr>
<tr>
<td>SRA</td>
<td>Security Restricted Airspace</td>
</tr>
<tr>
<td>SRM</td>
<td>Safety Risk Management</td>
</tr>
<tr>
<td>SSA</td>
<td>Shared Situational Awareness</td>
</tr>
<tr>
<td>SSCE</td>
<td>Secure Supply Chain Entity</td>
</tr>
<tr>
<td>SSP</td>
<td>Security Service Provider</td>
</tr>
<tr>
<td>SWIM</td>
<td>System-wide Information Management</td>
</tr>
<tr>
<td>TBO</td>
<td>Trajectory-Based Operations</td>
</tr>
<tr>
<td>TCAS</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TERP</td>
<td>Terminal Instrument Procedure</td>
</tr>
<tr>
<td>TFM</td>
<td>Traffic Flow Management</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restriction</td>
</tr>
<tr>
<td>TM</td>
<td>Trajectory Management</td>
</tr>
<tr>
<td>TMI</td>
<td>Traffic Management Initiative</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aircraft System</td>
</tr>
<tr>
<td>UEET</td>
<td>Ultra-Efficient Engine Technology</td>
</tr>
<tr>
<td>V/STOL</td>
<td>Vertical/Short Takeoff and Landing</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rule</td>
</tr>
<tr>
<td>VLJ</td>
<td>Very Light Jet</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual Meteorological Condition</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WMD</td>
<td>Weapon of Mass Destruction</td>
</tr>
<tr>
<td>Wx</td>
<td>Weather</td>
</tr>
</tbody>
</table>
Appendix B: Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Information Service (AIS)</td>
<td>The near-real-time transmission of accurate aeronautical information, including updates on airspace restrictions; performance requirements for airspace access and operations; system outages; airport status information; static information, such as approach plates; and certain fixed airspace definitional data, such as fixed SAA and airport information.</td>
</tr>
<tr>
<td>Air Carrier</td>
<td>Operational users of NextGen that includes commercial passenger or cargo airlines, military air commands, business aviation, and private air vehicle operators.</td>
</tr>
<tr>
<td>Air Domain</td>
<td>The global airspace, including domestic, international, and foreign airspace, as well as all manned and unmanned aircraft operating in and people and cargo present in that airspace, and all aviation-related infrastructures.</td>
</tr>
<tr>
<td>Air Navigation Service Provider (ANSP)</td>
<td>The organization, personnel, and automation that provide separation assurance, traffic management, infrastructure management, meteorological & aeronautical information, navigation, surveillance services, clearances, airspace management, and aviation assistance services for airspace users.</td>
</tr>
<tr>
<td>Air Navigation Service Provider (ANSP) Flow Airspace</td>
<td>High-density, moderate complexity airspace where the flight operator executes a 4DT agreement. TM ensures the overall flows are well behaved so that potential conflicts are kept to a minimum. SM is performed automatically by ground automation. If conflicts are detected, the ground automation issues revised 4DTs to the flight operator.</td>
</tr>
<tr>
<td>Air Traffic Management (ATM)</td>
<td>The dynamic, integrated management of air traffic and airspace—safely, economically, and efficiently—through the provision of facilities and seamless services in collaboration with all parties.</td>
</tr>
<tr>
<td>Airborne Self-Separation</td>
<td>All aircraft within the airspace or airport movement area maintaining separation from all other aircraft within the airspace or airport movement area according to defined rules and separation criteria. The ANSP is not responsible for separation between aircraft. When authorized by the ANSP, equipped aircraft in this airspace maintain separation from all other aircraft, including those managed by the ANSP.</td>
</tr>
<tr>
<td>Airborne Separation</td>
<td>Refers to separation delegated to an individual aircraft to maintain separation from a designated aircraft, either in flight or on the airport movement area, such as for a crossing or passing maneuver. Separation of this aircraft from all other aircraft, including all aircraft to which separation has not been delegated, remains the responsibility of the ANSP. Pairwise separation and CSPA are also in this category. The process of spacing delegated aircraft from other aircraft (i.e., in-flight, on approach, or departure) visually, vertically, longitudinally, and/or laterally.</td>
</tr>
<tr>
<td>Airborne Separation Assurance</td>
<td>A capability of the aircraft to maintain awareness of and separation from other aircraft, airspace, terrain, or obstacles. There are four different levels of airborne separation assurance (based on the RTCA definition)—airborne traffic situational awareness, airborne spacing, airborne separation, and airborne self-separation.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Airborne Spacing</td>
<td>The capability of one aircraft to achieve and maintain a defined distance in space or time from another aircraft. Separation responsibility remains with the ANSP, unless self-separation is designated.</td>
</tr>
<tr>
<td>Airborne Traffic Situational Awareness</td>
<td>Flight crew knowledge of nearby traffic depicted on a cockpit traffic display without any change of separation tasks or responsibility.</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface. An aircraft can include a fixed-wing structure, rotorcraft, lighter-than-air vehicle, or a vehicle capable of leaving the atmosphere for space flight.</td>
</tr>
<tr>
<td>Airport</td>
<td>A defined area on land or water (including any buildings, installations, and equipment) intended to be used either wholly or in part for the arrival, departure, and surface movement of aircraft. An area on land or water that is used or intended to be used for the landing and takeoff of aircraft and includes its buildings and facilities, if any.</td>
</tr>
<tr>
<td>Airspace Classification</td>
<td>Airspace with a common air traffic management interest and use, based on similar characteristics of traffic density, complexity, air navigation system infrastructure requirements, aircraft capabilities, or other specified considerations wherein a common detailed plan will foster the implementation of interoperable CNS/ATM systems.</td>
</tr>
<tr>
<td>Airspace Design</td>
<td>The process of designing routes, fixes, sectors, and other structural/operational elements of the National Airspace System (NAS) while ensuring safety, security, and efficiency.</td>
</tr>
<tr>
<td>Area Navigation (RNAV)</td>
<td>A method of navigation that permits aircraft operation on any desired flight path within the coverage of ground-or space-based navigation aids or within the limits of the capability of self-contained aids, or a combination of these. Due to the different levels of performance, area navigational capabilities can satisfy different levels of required navigational performance (RNP).</td>
</tr>
<tr>
<td>Area Navigation (RNAV) Operations</td>
<td>Aircraft operations that provide more direct routing between the departure and arrival airports. RNAV Operations remove the requirement for a direct link between an aircraft and a navigational aid. Waypoints are developed for the aircraft to navigate by using bearing and distance information from nearby navigational aids.</td>
</tr>
<tr>
<td>Area Navigation (RNAV) Route</td>
<td>A specified route designed for channeling the flow of traffic as necessary for the provision of air traffic services. Note: The term “ATS route” is issued to mean variously, airway, advisory route, controlled or uncontrolled route, arrival or departure, etc.</td>
</tr>
<tr>
<td>Arrival/Departure Airspace</td>
<td>Airspace from the top of climb or descent to the airport surface. It includes only the arrival and departure corridors in current use, but extends to en-route altitudes.</td>
</tr>
<tr>
<td>Automated NextGen Tower (ANT)</td>
<td>A facility where sequencing services and basic airport information are provided without the use of ANSP personnel, at a service level that is enhanced compared with typical non-towered airports.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Auto-Negotiation</td>
<td>The interaction among two or more systems to identify a specific operational response acceptable to the parties (e.g., flight operator and ANSP) served by the automated system. The automated systems would use the known operating constraints or user preferences to identify the preferred response.</td>
</tr>
<tr>
<td>Capacity</td>
<td>The maximum number of aircraft that can be accommodated in a given time period by the system or one of its components (throughput).</td>
</tr>
<tr>
<td>Capacity Management</td>
<td>The long-term and short-term management and assignment of NAS airspace and routes to meet expected demand. This includes assigning related NAS assets as well as coordinating longer term staffing plans for airspace assignments. It includes the allocation of airspace-to-airspace classifications based on demand, as well as the allocation of airspace and routes to ANSP personnel to manage workload.</td>
</tr>
<tr>
<td>Collaborative Air Traffic Management</td>
<td>The collaborative process among the ANSP, flight operators, airport operators, and other stakeholders, to manage objectives for capacity management, flow contingency management, and TM. Collaborative air traffic management (C-ATM) is the means by which flight operator objectives and constraints are balanced with overall NAS performance objectives.</td>
</tr>
<tr>
<td>Complexity</td>
<td>A description of traffic demand levels that factors large numbers of vertically transitioning aircraft, aircraft crossing paths, and aircraft speed variations.</td>
</tr>
<tr>
<td>Conflict</td>
<td>Any situation involving an aircraft and a hazard in which the applicable separation minima may be compromised.</td>
</tr>
<tr>
<td>Constraint</td>
<td>Any limitation on the implementation of an operational improvement, or a limitation on reaching the desired level of service.</td>
</tr>
<tr>
<td>Controlled Time of Arrival (CTA)</td>
<td>The assignment and acceptance of an entry/use time for a specific NAS resource. Examples include point-in-space metering, time to be at a runway, or taxi waypoints.</td>
</tr>
<tr>
<td>Cooperative Surveillance</td>
<td>The determination of an aircraft’s position utilizing equipment on the airframe. In comparison, non-cooperative surveillance would be the determination of an aircraft’s position without the aircraft participating.</td>
</tr>
<tr>
<td>Demand</td>
<td>The number of aircraft requesting to use the ATM system in a given time period.</td>
</tr>
<tr>
<td>Enablers</td>
<td>An enabler describes the initial realization of a specific NextGen functional component needed to support one or more OIs or other Enablers. Enablers describe material components, such as communication, navigation, and surveillance systems, as well as non-material components, such as procedures, algorithms, and standards.</td>
</tr>
<tr>
<td>Enterprise Services</td>
<td>Any or all of the key services that are provided to all COIs throughout NextGen, and can be characterized by the net-centric infrastructure services that provide connectivity and universal access to information; and by services that provide the collection, processing, and distribution of information. This includes SSA, Security Management, Safety Management, Environmental Management, and Performance Management Services.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Environmental Management System</td>
<td>An organizational business process that consists of four phases. In the first “planning” phase of the NextGen EMS, the organization will identify environmental issues with the potential to constrain future capacity. These will be the focus of tactical, measurable objectives for which improvement initiatives can be undertaken during the second “implementation” phase. During the third “assessment” phase, the effectiveness of these initiatives is monitored and key performance metrics tracked. Monitoring data are then used to support planning at the organization itself in the fourth “review and adaptation” phase. In the NextGen EMS, monitoring data will also be reported at an enterprise level to support NextGen-wide planning.</td>
</tr>
<tr>
<td>Equivalent Visual Operations</td>
<td>The concept to provide aircraft with the critical information needed to maintain safe distances from other aircraft during non-visual conditions, including a capability to operate at levels associated with VFR operations on the airport surface during low-visibility conditions. The ANSP personnel delegate separation responsibility to the flight operators. This capability builds on net-enabled information access, certain aspects of performance-based services, and some elements of PNT services and layered adaptive security.</td>
</tr>
<tr>
<td>Flight Crew</td>
<td>The individual or group of individuals responsible for the control of an individual aircraft while it is moving on the surface or while airborne.</td>
</tr>
<tr>
<td>Flight Object</td>
<td>The representation of the relevant information about a particular instance of a flight. The information in a flight object includes (1) aircraft capabilities, including the level of navigation, communications, and surveillance performance (e.g., FMS capabilities); (2) aircraft flight performance parameters; (3) flight crew capabilities, including level of training received to enable special procedures; (4) 4DT profile and intent, containing the “cleared” 4DT profile plus any desired or proposed 4DTs; and (5) aircraft position information and near-term intent. Standards for the definition of a flight object are in development.</td>
</tr>
<tr>
<td>Flight Operator</td>
<td>The organization or person responsible for scheduling, planning, and directly operating the aircraft. Roles within the flight operator include the flight scheduler, flight planner, and flight crew and may reside with one individual or be delegated to separate individuals.</td>
</tr>
<tr>
<td>Flight Plan</td>
<td>A collection of data relating to a specific aircraft or formation of aircraft containing all the information necessary for tracking and producing flight progress strips used to control the flight.</td>
</tr>
<tr>
<td>Flight Plan Filing and Flight Data</td>
<td>The management of data related to a flight, from the initial filing of a proposed flight to the closing of the flight plan and the archiving of the data to support performance management analyses.</td>
</tr>
<tr>
<td>Management Services</td>
<td></td>
</tr>
<tr>
<td>Flight Planning</td>
<td>A series of activities performed before a flight that includes, but is not limited to, reviewing airspace and navigation restrictions, developing the route, obtaining a weather briefing, completing a navigation log, filing a flight plan, and inspecting the aircraft.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Flow Contingency Management</td>
<td>The process that identifies potential flow problems, such as large demand capacity imbalances, congestion, a high degrees of complexity, blocked or constrained airspace, or other off-nominal conditions. It is a collaborative process between ANSP personnel and airspace users to develop flow strategies to resolve the flow problems. Examples of flow strategies include establishing routing to reduce complexity, restructuring airspace, and allocating access to airspace or runways.</td>
</tr>
<tr>
<td>Flow Corridor</td>
<td>A corridor is a long “tube” of airspace that encloses groups of flights flying along the same path in one direction. It is airspace procedurally separated from surrounding traffic and special use airspace, and it is reserved for aircraft in that group. Traffic within the corridor must maintain a minimum distance from the edge of the corridor (i.e., the corridor walls have some thickness”).</td>
</tr>
<tr>
<td>Flow Strategy and Trajectory Impact Analysis Services</td>
<td>This capability in NextGen provides a common “what if” function to assess potential changes in planned flights, the allocation and configuration of assets, as well as other conditions (e.g., weather, security initiatives, etc.) that may affect flight operations.</td>
</tr>
<tr>
<td>Four-Dimensional Trajectory (4DT)</td>
<td>A 4DT represents the “centerline” of a path plus the positioning uncertainty, including waypoint. Positioning uncertainty includes lateral, longitudinal, and vertical positioning uncertainty. Some waypoints within a 4DT may be defined with controlled times of arrival (CTAs), which constrains the uncertainty for planning purposes. The required level of specificity of the 4DT will depend on the operating environment in which the flight will be flown. Associated with a 4DT is the separation zone around an aircraft and the aircraft intent information, which provides near-term information on the expected flight path.</td>
</tr>
<tr>
<td>General Aviation</td>
<td>All civil aviation operations other than scheduled air services and nonscheduled air transport operations for remuneration or hire.</td>
</tr>
<tr>
<td>Hazards</td>
<td>The objects or elements from which an aircraft can be separated. These include other aircraft, terrain, weather, wake turbulence, incompatible airspace activity, and, when the aircraft is on the ground, surface vehicles and other obstructions on the apron and maneuvering area.</td>
</tr>
<tr>
<td>High-density Flexible Airspace</td>
<td>The specific airspace configurations or routes chosen in near-real-time to provide flexibility and maximize arrival and departure throughput. It is smaller than or lies within high-density protected airspace.</td>
</tr>
<tr>
<td>High-Density Protected Airspace</td>
<td>The charted airspace protecting high-density terminals that is somewhat larger than the actual airspace used operationally. Statically defined for low-capability aircraft that do not have access to real-time updates of airspace definition.</td>
</tr>
<tr>
<td>Human Factors</td>
<td>The discipline concerned with the understanding of interactions among humans and other elements of a system. It applies theory, principles, data, and other scientific methods to system design to optimize human well-being and overall system performance.</td>
</tr>
<tr>
<td>Human-Centric</td>
<td>The ATM system is designed around the capabilities and limitations of humans. It assigns functions to humans that are best performed by them, and it provides automation assistance when it can improve decision making or make the humans’ tasks easier. It does not imply that humans are always in direct control.</td>
</tr>
</tbody>
</table>

APPENDIX B: GLOSSARY
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Services</td>
<td>A service that provides data and information to subscribers when and where needed in a common format. Ensures questions raised by data consumers are answered correctly and consistently.</td>
</tr>
<tr>
<td>Infrastructure Services</td>
<td>A service that provides communications connectivity to ensure information flows work reliably to support information communications and sharing functions.</td>
</tr>
<tr>
<td>Integrated Risk Management (IRM)</td>
<td>A process that includes prognostic tools, models, and simulations at the strategic, operational, and tactical level to support all stakeholder decision makers and managers in the grafting of cost-effective “best practices” into the design, acquisition, deployment, and operation of aviation security system assets and infrastructures. Knowledge bases concerning threats, vulnerabilities, and practices are tailored to user profiles that proactively determine need/authorization to know.</td>
</tr>
<tr>
<td>Intelligent Agents</td>
<td>Within the context of this operational concept, refers to a computational system that includes the following characteristics: is aware of constraints, has goals, and operates autonomously within its construct to identify information or opportunities for human action. It is customized for an area or task, is adaptive, knows the user’s preferences/interests, and can operate on their behalf (e.g., by narrowing the choices available through auto-negotiation). As such, this concept’s definition is consistent with commonly accepted industry standards.</td>
</tr>
<tr>
<td>Intent</td>
<td>Information on planned future aircraft behavior, which can be obtained from the aircraft systems (avionics). It is associated with the commanded trajectory and takes into account aircraft performance, weather, terrain, and ATM service constraints. The aircraft intent data correspond either to aircraft trajectory data that directly relate to the future aircraft trajectory as programmed inside the avionics or the aircraft control parameters as managed by the automatic flight control system. These aircraft control parameters could either be entered by the flight operator or automatically derived by the flight management system.</td>
</tr>
<tr>
<td>Layered Adaptive Security</td>
<td>The security system will be constructed in “layers of defense” to detect threats early and prevent them from meeting their objective while minimally affecting efficient operations. Airports and aircraft will be designed to be more resilient to attacks or incidents. Building on the “net-enabled information access” and “performance-based services” capabilities, risk assessments will begin well before each flight so that people and goods will be appropriately screened as they move from the “airport” curb to the aircraft, or as they support aerodrome/aircraft operations. As technology matures, screening will be unobtrusive and more transparent to the individual. All people and cargo that “touch” or are carried by an aircraft will be positively identified. Responses to anomalies and incidents will be proportional to the assessed risk of the involved individuals or cargo.</td>
</tr>
<tr>
<td>Managed Airspace</td>
<td>An Air Navigation Service Provider provides Air Traffic Management Services; separation is delegated as appropriate to equipped aircraft.</td>
</tr>
<tr>
<td>Metroplex</td>
<td>A group of two or more adjacent airports whose arrival and departure operations are highly interdependent.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Near-Space Airspace</td>
<td>Low-density, low-complexity airspace at very high altitudes that accommodates a wide range of special operations (e.g., high-speed reconnaissance aircraft, aerostats, long-endurance orbiting UAS).</td>
</tr>
<tr>
<td>Net-Centricity</td>
<td>The realization of a globally interconnected network environment, including infrastructure, systems, processes, and people that enables an enhanced information sharing approach to aviation transportation.</td>
</tr>
<tr>
<td>Net-Enabled Information (NEI)</td>
<td>An information network that makes information available, securable, and usable in real-time to distribute decision making. Information may be pushed to known users and is available to be pulled by other users, including users perhaps not previously identified as having a need for the information.</td>
</tr>
<tr>
<td>Net-Centric Operations</td>
<td>The decision support and other applications using NEI for information transfer and retrieval.</td>
</tr>
<tr>
<td>NextGen Decision Oriented Tool (NDOT)</td>
<td>A tool that incorporates observations, forecasts, model/algorithmd data, and climatology, including surface observations and weather aloft to allow full integration of weather into traffic flow decision making.</td>
</tr>
<tr>
<td>Network Enabled Weather</td>
<td>The 4D net-centric weather information network that publishes discoverable past, current, and future weather data and information for decision makers; enabling weather situational awareness when planning and executing operations across the full spectrum of the Air Transportation System.</td>
</tr>
<tr>
<td>Non-Managed Airspace</td>
<td>Uncontrolled, low-altitude airspace where no ANSP services are provided, except as required to coordinate entry to a different class of airspace.</td>
</tr>
<tr>
<td>Oceanic Airspace</td>
<td>That airspace over the oceans of the world, considered international airspace, where oceanic separation and procedures per ICAO are applied. Responsibility for the provisions of ATC service in this airspace is delegated to various countries, based generally upon geographic proximity and the availability of the required resources.</td>
</tr>
<tr>
<td>Performance-Based Navigation (PBN)</td>
<td>RNAV based on performance requirements for aircraft operating along an ATS route, on an IAP or in a designated airspace. Note: Performance requirements are expressed in navigation specifications (RNAV specification, RNP specification) in terms of accuracy, integrity, continuity, availability, and functionality needed for the proposed operation in the context of a particular airspace concept.</td>
</tr>
<tr>
<td>Performance-Based Operations</td>
<td>Use of performance capability definition versus an “equipment” basis to define the regulatory/procedural requirements to perform a given operation in a given airspace.</td>
</tr>
<tr>
<td>Performance-Based Services</td>
<td>There are multiple service levels aligned with specified user performance thresholds to provide choices to users depending on needs, required communication, navigation and surveillance performance, environmental performance criteria, security parameters, and so forth. Services will be flexible according to the situation and consolidated needs of the users. Services vary from area to area in terms of airspace and “airport” surfaces, and they vary with time as needs dictate. Preferences are established based on user capability, equipage, training, security, and other considerations. The performance-based approach is used to analyze risks (e.g., safety, security, and environment) instead of “equipment-based” approaches. The performance-based services capability will enable a definition of service tiers and allow the government to move from equipment-based regulations to performance-based regulations.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Position, Navigation, Timing (PNT) Services</td>
<td>A service that enables the ability to accurately and precisely determine one’s current location and orientation in relation to one’s desired path and position; apply corrections to course, orientation, and speed to attain the desired position; and to obtain accurate and precise time anywhere on the globe, within user-defined timeliness parameters.</td>
</tr>
<tr>
<td>Required Navigation Performance (RNP)</td>
<td>A statement of the navigational performance necessary for operation within a defined airspace. The following terms are commonly associated with RNP: (a.) - RNP Level or Type (RNP-X). A value, in nautical miles (NM), from the intended horizontal position within which an aircraft would be at least 95-percent of the total flying time. (b.) - RNP Airspace. A generic term designating airspace, route(s), leg(s), operation(s), or procedure(s) where minimum required navigational performance (RNP) has been established. (c.) - Actual Navigation Performance (ANP). A measure of the current estimated navigational performance. Also referred to as Estimated Position Error (EPE). (d.) Estimated Position Error (EPE) - A measure of the current estimated navigational performance. Also referred to as Actual Navigation Performance (ANP). (e.) - Lateral Navigation (LNAV). A function of RNAV equipment which calculates, displays, and provides lateral guidance to a profile or path. (f.) - Vertical Navigation (VNAV) - A function of RNAV equipment which calculates, displays, and provides vertical guidance to a profile or path.</td>
</tr>
<tr>
<td>Required Navigation Performance Level or Type (RNP-X)</td>
<td>A value, in nautical miles (NM), from the intended horizontal position within which an aircraft would be at least 95 percent of the total flying time.</td>
</tr>
<tr>
<td>Route</td>
<td>A path through space with no time component. Unlike corridors, aircraft can cross routes as operational need requires, with proper separation provided to all aircraft.</td>
</tr>
<tr>
<td>Safety Assurance</td>
<td>The independent oversight function that tests, evaluates, and certifies, as necessary, products and processes to ensure that they are safe for the public and stakeholders.</td>
</tr>
<tr>
<td>Safety Culture</td>
<td>The product of individual and group values, attitudes, competencies, and patterns of behaviors that determine the commitment to, and the style and proficiency of, an organization's health and safety programs.</td>
</tr>
<tr>
<td>Safety Management System (SMS)</td>
<td>The process that provides a systematic method for managing safety. The four components of an SMS are policy, architecture, assurance, and safety promotion.</td>
</tr>
<tr>
<td>Safety Risk Management (SRM)</td>
<td>The set of processes and practices by which a concept and its operation are designed and made to be safe.</td>
</tr>
<tr>
<td>Self Separation Airspace</td>
<td>That airspace where aircraft self-separation enables maximum user flexibility in exchange for high-capability equipage of the aircraft.</td>
</tr>
<tr>
<td>Separation Management (SM)</td>
<td>The function of ensuring aircraft or vehicles maintains safe separation minima from other aircraft or vehicles, protected airspace, terrain, weather, or other hazards. The function may be performed by ANSP personnel, the flight operator, and/or automation.</td>
</tr>
<tr>
<td>Separation Minima</td>
<td>The minimum longitudinal, lateral, or vertical distances by which aircraft are spaced through the application of ATC procedures.</td>
</tr>
</tbody>
</table>
Appendix B: Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Oriented Architecture (SOA)</td>
<td>A design for linking computational resources (principally, applications and data) on demand to achieve the desired results for service consumers (which can be end users or other services). The Organization for the Advancement of Structured Information Standards (OASIS) defines SOA as the following: A paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains. It provides a uniform means to offer, discover, interact with, and use capabilities to produce desired effects consistent with measurable preconditions and expectations.</td>
</tr>
<tr>
<td>Shared Situational Awareness (SSA)</td>
<td>The sharing of information among the processes and applications that constitute the information services function to the stakeholders in the system.</td>
</tr>
<tr>
<td>Situational Awareness</td>
<td>A service provider or operator's ability to identify, process, and comprehend important information about what is happening with regard to the operation. Airborne traffic situational awareness is an aspect of overall situational awareness for the flight crew of an aircraft operating in proximity to other aircraft.</td>
</tr>
<tr>
<td>Special Activity Airspace (SAA)</td>
<td>Any airspace with defined dimensions within the National Airspace System wherein limitations may be imposed upon aircraft operations. This airspace may be restricted areas, prohibited areas, military operations areas, air ATC assigned airspace, and any other designated airspace areas. The dimensions of this airspace are programmed into URET and can be designated as either active or inactive by screen entry. Aircraft trajectories are constantly tested against the dimensions of active areas and alerts issued to the applicable sectors when violations are predicted.</td>
</tr>
<tr>
<td>Staffed NextGen Tower (SNT)</td>
<td>A facility where surface and tower services are provided by ANSP personnel, providing other-than-direct visual observation, which may or may not be located at the facility.</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>All entities that have a vested interest in ensuring the safest and most efficient operation of the NextGen. Through performance metrics analysis and research, these entities see that the proper training is coordinated and provided to the appropriate COIs, and that other enterprise needs are met.</td>
</tr>
<tr>
<td>Surveillance Services</td>
<td>This service integrates cooperative and non-cooperative airport surface and airspace surveillance systems, fostering real-time air and airport situational awareness and enhancing safety and security.</td>
</tr>
<tr>
<td>Trajectory Management (TM)</td>
<td>The function of fine-tuning trajectories as required by the airspace plan or an active flow contingency management initiative to minimize pairwise contention and ensure efficient individual trajectories within a flow.</td>
</tr>
<tr>
<td>Trajectory-Based Operations (TBO)</td>
<td>The use of 4D-trajectories as the basis for planning and executing all flight operations supported by the air navigation service provider.</td>
</tr>
<tr>
<td>Transition Airspace</td>
<td>Airspace that allows aircraft to transition from one classification of airspace to another while maintaining separation from other airspace and aircraft entering and exiting adjacent airspace.</td>
</tr>
<tr>
<td>Unmanned Aircraft System (UAS)</td>
<td>In its most basic sense, a UAS is any aircraft that can be flown without a human on board. UAS is a preferred term by RTCA, FAA, and DOD. UAS includes: All classes of aircraft (airplanes, helicopters, airships, and translational lift aircraft), Aircraft Control Station, Command & Control Links, and autonomous, semi-autonomous, or remotely operated vehicles. Other commonly used terms include Unmanned Aerial Vehicle (UAV), RPA, Remotely Piloted Vehicles (RPV), and Drone/Model/RC Aircraft.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Weather Information Services</td>
<td>A common service providing the following generic capabilities: sensor configuration, observation, forecast, and history.</td>
</tr>
</tbody>
</table>