MCAP

Nick Caruso, National Automotive Center
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE 16 DEC 2010
2. REPORT TYPE N/A
3. DATES COVERED -

4. TITLE AND SUBTITLE MCAP

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S) Nick Caruso

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
21425RC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

10. SPONSOR/MONITOR’S ACRONYM(S) TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S) 21425RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT SAR

18. NUMBER OF PAGES 12

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
• Vehicle to Vehicle (V2V) Collision Avoidance
 – Fault detection of failed transponder (device)
 – Communication failure (network)
 – “Hacker”
• Examples:
 – Two or more vehicle entering a common intersection from different directions
 – Leader-follower convoy
 – Traffic signal pre-emption
From the smart phone view, Tracker map links to SMS for messaging to one or multiple responders.

Uses Open Systems for Maps.
MCAP In-Vehicle

Vehicle Health Assessment
- Vehicle vital signs - talking on the CAN bus
- Assess ability of vehicle to execute response

Vehicle Asset Tracking and Control
- Assessment of additional capability to serve mission
- Adding functionality for remote control of vehicle assets

Vehicle to X
- V-2-V Collision detection and avoidance
- V-2-Traffic signals and control, navigation
- V-2-I for asset sharing

Vehicle as a Communications Cond
- More power / longer range to back-end
- More power / longer range from dismounted Soldiers / Responders
- Alternate schemes for comm denied to back end including satellite, hardwired, portable cell towers
System Architecture Example
Technology Development and Transition

- **Develop / Transition Advanced 360 SA Capabilities**
 - For Now, Develop and Integrate Initial 360 SA Capability w/ COTS Items
 - Transition Relevant Technologies Upon Input from Soldiers in the Field

- **Develop / Transition Autonomy to Sensor Inputs**
 - For Now, Simply Feed Sensory Data to Soldier for Direct Analysis
 - Transition Autonomous Technologies that Improve Soldier Cognition and Decision-Making
 - Slew-to-Cue, Target / Obstacle Detection, Road Edge Detection, etc.

- **Develop / Transition Advanced Sensors Upon Platform**
 - Current Focus is on Visual (Daytime, IR) Sensors
 - Transition New or Upgraded Sensors as Requirements Warrant
 - Laser Range Detectors, Millimeter Wave RADARs, etc.
 - Upgraded Cameras, Displays, Digital Backbone Architecture, etc.
Vehicle Technology Development Areas

UGV Technology Development and Integration

Demonstrating UGV Control
Utilizing SOSCOE and Battle Command Software

- Autonomous Navigation System (ANS) and RSTA
- Hardware and Software Integration
- Integrated Computer System and Vehicle Management System

UGV Platform

FCS Like Comms Network

JTRS-GMR

MGV With Embedded UGV Control

Technology Driven. Warfighter Focused.
Portfolio

Combat Vehicles
- Heavy Brigade Combat Team
- Strykers
- MRAPs
- Ground Combat Vehicles (Future)

Tactical Vehicles
- HMMWVs
- Trailers
- Heavy, Medium and Light Tactical Vehicles

Force Projection
- Fuel & Water Distribution
- Force Sustainment
- Construction Equipment
- Bridging
- Assured Mobility Systems

Robotics
- Technology Components
- Demonstrators
- Military Relevant Test & Experimentation
- Transition & Requirements Development

TARDEC Engineers Provide Cradle-To-Grave Engineering Support
System & Simulation Integration Laboratories

- Concept Development
- Modeling & Simulation Environment
- System Evaluation
- MRAP Systems Integration Lab

Physical Simulation Laboratories

- Reconfigurable N-Post Simulator
- Multi-Axial Simulator
- Vehicle Inertial Properties Evaluation Rig

Fuels & Lubricants Laboratories

- Coolant Lab
- Grease & Hydraulic Fluid Lab
- Fuel & Lube Lab
- Analytical Lab

Survivability Laboratories

- Ballistic Testing

Prototype Integration

- Center for Ground Vehicle Development & Integration
- Large Robotics Integration Cell

Power & Energy Laboratories

- Ground Systems Power & Energy Lab
- Propulsion Laboratories

TARDEC’s Warren, MI operations has a resource value of over $950M and occupies 12 facilities on the Detroit Garrison totaling over 840,000 square feet of laboratory space.
Advanced Concepting

- JLTV
- MRAP
- Future Force

Analytics

- Thermal / CFD
- Crew Safety
- Structures/Durability
- Blast
- Dynamics

Hardware & Man-In-The-Loop Simulation

- Characterization
- Durability
- Turret Testing
- Human Dimension
- Virtual Environments

Prototype & Demonstrators

- FTTS
- FED
- TWVS
- APD

HPC & Data Management

- High Performance Computing (HPC)
- Computer Aided Virtual Environment (CAVE)
- Advanced Collaborative Environment (ACE)

Providing rapid assessment and integration services throughout the Life Cycle of both Technology and System/Platform Development Programs.