Award Number: W81XWH-08-1-0305

TITLE: Specific PET Imaging Probes for Early Detection of Prostate Cancer Metastases

PRINCIPAL INVESTIGATOR: Xiankai Sun

CONTRACTING ORGANIZATION: University of Texas Southwestern Medical Center at Dallas Dallas, Texas 75390

REPORT DATE: May 2010

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one) Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Specific PET Imaging Probes for Early Detection of Prostate Cancer Metastases

ABSTRACT: Polyarginines are a group of small peptides that have been used as drug delivery vehicles due to their ability to penetrate cell membranes. In one of our studies using such a peptide to deliver a therapeutic moiety to various prostate cancer cell lines, we surprisingly discovered that the peptide had remarkably high preference to prostate tissues. This specificity, which has not been reported before, prompted us to exploit this group of peptides for the early detection of prostate tumor metastases. Promisingly, in our preliminary studies, the peptide labeled with 64Cu can clearly reveal metastases in a tumor-bearing animal model. By two-year work, we have successfully developed an approach to impart multivalency to a bifunctional chelator for targeted PET imaging probe design. This type of multivalent scaffold features a chelator that forms a stable and neutral complex with a radionuclide and multiple functional groups for multimeric presentation of targeting molecules. A biivalent scaffold was synthesized and coupled with the integrin $\alpha_v\beta_3$ targeting ligand, c(RGDyK), to afford a 64Cu-labeled divalent probe. The in vitro and in vivo evaluation clearly demonstrated the divalent probe with the anticipated multivalent effect as compared to its monomeric counterpart. In addition, we have further demonstrated the imaging specificity of 64Cu-DOTA-NHGR1I1 for prostate cancer detection.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>13</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>14</td>
</tr>
<tr>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>Appendices</td>
<td>15</td>
</tr>
</tbody>
</table>
Introduction

The ultimate goal of this project is to develop specific PET imaging probes for early detection of distal metastases of prostate cancer. Based on one of our studies using a polyarginine (NH$_2$GR11) to deliver a therapeutic moiety to various prostate cancer cell lines, we hypothesize a new group of prostate-specific peptides could be developed as novel PET imaging probes using NH$_2$GR11 as lead compound for the detection of multi-foci extraprostatic spread of prostate cancer. Three specific aims are arranged to achieve the goals of this proposal: (I) Determine the mechanism of the prostate-specific uptake exhibited by NH$_2$GR11; (II) Design and synthesize novel BFC-peptide conjugates in order to achieve desired in vivo stability, pharmacokinetics, and enhanced prostate-specific binding affinity; and (III) Establish radiochemical protocols to label peptide conjugates with 64Cu, and perform in vitro/in vivo evaluations of the potential prostate cancer-specific imaging agents.

Body

As shown in the first annual report, we completed the tasks 1 – 5 in the first year of this project. In the 2nd year, our work was focused on the following tasks:

Task 5 (Months 6 – 12): Establishing radiochemical protocols to label the peptide conjugates with 64Cu.

Radiolabeling of the peptide conjugates with 64Cu is straightforward, the separation and purification will be carried out by either C-18 cartridge or HPLC.

Task 6 (Months 12 – 24): In Vitro Evaluation of the Radiolabeled Peptides.

The in vitro stability of the radiolabeled peptides or peptide conjugates will be determined by incubation at 37°C in fresh mammalian serum out to 24 h. Degradation of the radiolabeled compounds will be assessed at given time points (30-min, 1-h, 4-h, and 24-h) by the removal of an aliquot of sample for radio-TLC (C$_{18}$ or silica gel solid phase) or radio-HPLC (C$_{18}$ and size-exclusion column) analysis.

Task 7 (Months 12 – 32): In Vivo Evaluation of Radiolabeled Peptides.

Biodistribution experiments are planned with radiolabeled peptide conjugates. Urine excretion experiments will be carried out with the animal groups of the last time point of the biodistribution studies. Metabolic fate of the six 64Cu-labeled compounds will be evaluated using 48 nude mice at two time points (1 h and 4 h; n = 4). The injection doses of biodistribution and metabolism studies are 5 – 10 μCi and 1 – 2 mCi, respectively, in a 100 – 150 μL volume diluted with saline. Pharmacokinetic parameters will be assessed by the procedures established in our preliminary studies with a two-compartment model using the same animals in the biodistribution experiments.

Research Progress in the 2nd year: We have successfully completed Tasks 5 – 7.

Task 5: Establishing radiochemical protocols to label the peptide conjugates with 64Cu

HPLC condition: High performance liquid chromatography (HPLC) was performed on a Waters 600 Multisolvent Delivery System equipped with a Waters 2996 Photodiode Array detector. The mobile phase was H$_2$O with 0.1% TFA (solvent A) and acetonitrile with 0.1% TFA (solvent B). The analytical analysis was performed on an XTerra RP18 Column with a gradient of 0% B to 100 % B in 50 min at a flow rate of 1.0 mL/min. The HPLC separation was performed on a semi-preparative XTerra RP18 Column with a gradient of 0% B to 100 % B in 50 min at a flow rate of 4.0 mL/min.
Scheme 1. Chemical structures of peptide conjugates H21 and H22.

Radiolabeling of H21 or H22 with 64Cu: To a 1.5 mL vial containing 5 μg of H21 or H22 in 200 μL of 0.4 M NH4OAc (pH = 6.5) solution, 2 – 3 mCi of 64CuCl2 in 0.1 M HCl was added. The reaction mixture was shaken and incubated at 75°C for 0.5 h. Then, 5 μL of 5 mM diethyleneetriaminepentaacetic acid (DTPA) was added to the reaction mixture, which was allowed to incubate for another 5 min (DTPA was used to remove non-specifically bound or free 64Cu from the 64Cu-labeled 1 or 2). The purification of 64Cu-1 or 64Cu-2 was carried out by passing the mixture through a Sep-Pak C-18 plus cartridge. After thorough rinsing the cartridge two times with water, the 64Cu-labeled product was eluted out by pure ethanol. The product was firstly analyzed by radio-TLC and then by radio-HPLC to determine the radiochemical purity of the product. Both H21 and H22 were efficiently labeled by 64Cu at 70°C in 0.4 M NH4OAc buffer within 30 min. The specific activity of 64Cu-1 and 64Cu-2 was in the range of 8.4 – 20.4 GBq/μmol.

Task 6: In Vitro Evaluation of the Radiolabeled Peptides

Serum Stability: An aliquot (ca. 40 μCi) of 64Cu-1 or 64Cu-2 was added into each of 12 vials containing 100 μL of rat serum. The vials were incubated at 37°C in a water bath. At each time point (1, 2, 4 and 24 h), 420 μL of ethanol was added to three of the vials to precipitate the serum proteins. After high speed (14,000 rpm) centrifugation for 5 min, the supernatant was removed and then the pellet was resuspended with 240 μL of 80% ethanol. The suspension was centrifuged again and the supernatant was collected. The supernatants were pooled and then analyzed by radio-HPLC. The dislodged 64Cu from 64Cu-1 or 64Cu-2 if any is assumed to be associated with the serum proteins. The in vitro stability of the 64Cu labeled peptide conjugates was evaluated in rat serum by radio-HPLC. Chromatographic results showed no release of 64Cu from the conjugates over a period of 48 h. This high stability is rendered by the CB-TE2A moiety in the conjugates.

Cell Integrin Receptor-Binding Assay: The αvβ3 integrin-binding affinities of 64Cu-1 and 64Cu-2 were determined by a competitive cell-binding assay using 125I-echistatin (PerkinElmer) as the αvβ3-specific radioligand. The experiments were performed on U87MG human glioblastoma cells by a previously reported method (1, 2). Briefly, U87MG cells were grown in Dulbecco’s modified Eagle medium (DMEM, low glucose) supplemented with 10% (v/v) fetal bovine serum (FBS) at 37°C with 5% CO2. Suspended U87MG cells in binding buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, 1 mM MnCl2, 0.1% bovine serum albumin) were seeded on multi-screen DV plates (Millipore) with 2 × 10⁵ cells per well and then incubated with 125I-echistatin (10,000 cpm/well) in the presence of increasing concentrations (0 – 5,000 nM) of c(RGDyK) peptide conjugates for 2 h. The final volume in each well was maintained at 200 μL. At the end of incubation, the unbound 125I-echistatin was removed by filtration and then three times of rinsing with cold binding buffer. The filters were collected and the radioactivity was measured using a γ-counter. The best-fit IC₅₀ values (inhibitory concentration where 50% of the 125I-
echistatin bound on U87MG cells are displaced) of c(RGDyK), H\textsubscript{2}1, and H\textsubscript{2}2 were calculated by fitting the data with nonlinear regression using GraphPad Prism (GraphPad Software, Inc.). Experiments were duplicated with quintuplicate samples. The results are shown in Figure 1.

The \(\alpha\beta_3\) binding affinities of H\textsubscript{2}1 and H\textsubscript{2}2 were measured by a competitive cell-binding assay using U87MG cells where \(^{125}\text{I}-\text{echistatin}\) was employed as \(\alpha\beta_3\)-specific radioligand. The IC\textsubscript{50} values of c(RGDyK), H\textsubscript{2}1, and H\textsubscript{2}2, were determined to be 110, 139 and 35 nM, respectively (n = 5). The slightly decreased \(\alpha\beta_3\) binding of H\textsubscript{2}1 as compared to c(RGDyK) indicates a minute impact of CB-TE2A on the binding of c(RGDyK) to the \(\alpha\beta_3\) integrin. As anticipated, H\textsubscript{2}2 exhibited a strong divalent effect measured by the multivalent enhancement ratio (MVE) calculated by dividing the IC\textsubscript{50} value of H\textsubscript{2}1 by that of H\textsubscript{2}2 (MVE = 4). The distance between the two RGD motifs in H\textsubscript{2}2 is maintained greater than 25 bonds (including the lysine spacers), the minimum spacing length required to realize multivalent binding of RGD motifs to the \(\alpha\beta_3\) integrin.

Figure 1. The \(\alpha\beta_3\) binding affinities of H\textsubscript{2}1 and H\textsubscript{2}2 measured by a competitive cell-binding assay using U87MG cells where \(^{125}\text{I}-\text{echistatin}\) was employed as \(\alpha\beta_3\)-specific radioligand. The IC\textsubscript{50} values of c(RGDyK), H\textsubscript{2}1, and H\textsubscript{2}2, were determined to be 110, 139 and 35 nM, respectively (n = 5).

Task 7 (Months 12 – 32): In Vivo Evaluation of Radiolabeled Peptides

I. **Using c(RGDyK) as a model peptide to validate the multimeric imaging probe design**

Tissue Culture and Animal Model: All animal studies were performed in compliance with guidelines set by the UT Southwestern Institutional Animal Care and Use Committee. The PC-3 cell line was obtained from the American Type Culture Collection (ATCC, Manassas, VA). PC-3 cells were cultured in T-media (Invitrogen, Carlsbad, CA) at 37 °C in an atmosphere of 5% CO\textsubscript{2} and were passaged at 75 % confluence in P150 plates. T-media was supplemented with 5% Fetal Bovine Serum (FBS) and 1 \(\times\) Penicillin/Streptomycin. PC-3 cells were harvested from monolayer using PBS and trypsin/EDTA, and suspended in T-media with 5% FBS. The cell suspension was then mixed 1:1 with MatrigelTM and injected
subcutaneously \((2.5 \times 10^6\) cells per injection, injection volume 100 µL) into both front flanks of SCID mice. After injection, animals were monitored three times a week by general observations. The tumor was noticed to grow in the first week and allowed to grow three weeks to reach a palpable size for microPET-CT imaging and post-PET biodistribution studies. Tumor volume \((\text{mm}^3)\) was calculated using the ellipsoid formula \(\left(\frac{\pi}{6} \times \text{length} \times \text{width} \times \text{depth}\right)\).

MicroPET-CT Imaging: Small animal PET-CT imaging studies were performed on a Siemens Inveon PET-CT Multimodality System (Siemens Medical Solutions Inc., Knoxville, TN, USA). When the prostate cancer xenografts reached the similar size of approximate 100 mm³, the tumor-bearing mice were randomized into four groups \((n = 3)\) for the in vivo evaluation of \(^{64}\text{Cu-1}\), \(^{64}\text{Cu-2}\), \(^{64}\text{Cu-1}\) with co-injection of c(RGDyK), and \(^{64}\text{Cu-2}\) with co-injection of c(RGDyK). The dose of c(RGDyK) used for blocking was 10 mg/kg. The injected dose was kept at 100 µCi of \(^{64}\text{Cu}\)-activity in 100 µL PBS; and the injected molar amounts of \(^{64}\text{Cu-1}\) and \(^{64}\text{Cu-2}\) were maintained at the same level by decay correction.

Ten minutes prior to imaging, the animal was anesthetized using 3% Isoflurane at room temperature until stable vitals were established. Once the animal was sedated, the animal was placed onto the imaging bed under 2% Isoflurane anesthesia for the duration of the imaging. The microCT imaging was acquired at 80 kV and 500 µA with a focal spot of 58 µm. The total rotation of the gantry was \(360^\circ\) with 360 rotation steps obtained at an exposure time of approximately 235 ms/frame. The images were attained using a CCD readout of \(4096 \times 3098\) with a bin factor of 4 and an average frame of 1. Under low magnification the effective pixel size was 103.03 µm. Total microCT scan time was approximately 6 minutes. CT images were reconstructed with a down sample factor of 2 using Cobra Reconstruction Software. The PET imaging was acquired directly following the acquisition of CT data. The PET tracers were injected intravenously via the tail vein. Static PET scans were performed at 1 h, 4 h, and 24 h post injection (p.i.) for 15 min. PET images were reconstructed using Fourier Rebinning and Ordered Subsets Expectation Maximization 3D (OSEM3D) algorithm. Reconstructed CT and PET images were fused and analyzed using the Siemens Inveon Research Workplace (IRW) software. For quantification, regions of interest were placed in the areas expressing the highest radiotracer activity as determined by visual inspection. The tissues examined include the left and right tumors, the heart, liver, lung, kidney, and muscle. The resulting quantitative data was expressed as percent injected dose per gram of tissue (%ID/g).

Six SCID mice \((6 – 7\text{ weeks old})\) bearing PC-3 human

![Figure 2](image_url). Representative microPET-CT images of PC-3 tumor bearing mice \((n = 3)\) at 1, 4, 24 h after intravenous injection of \([^{64}\text{Cu}]1\) (upper panel) and \([^{64}\text{Cu}]2\) (lower panel). Images obtained with co-injection of 10 mg/kg of c(RGDyK) are only shown for 1 h blockade (right). Arrows indicate tumors.
prostate cancer xenografts in both front flanks (tumor size: ~ 230 mg) were randomized into two groups (n = 3) for the evaluation of $^{64}\text{Cu-1}$ or $^{64}\text{Cu-2}$, which was injected via the tail-vein. As shown in Figure 2, both tumors were visualized by $^{64}\text{Cu-1}$ and $^{64}\text{Cu-2}$ at 1 h and 4 h p.i., while $^{64}\text{Cu-2}$ showed significantly higher PET signal intensity than $^{64}\text{Cu-1}$. At 24 h p.i., the tumors were still clearly visible with $^{64}\text{Cu-2}$, but rather faint with $^{64}\text{Cu-1}$. Due to the fact that the $\alpha_\text{v}\beta_3$ integrin is also expressed in other tissues (e.g. liver, kidneys, stomach, intestines) in young mice but to a lesser extent (personal communications (5)), an elevated uptake was observed in those organs with $^{64}\text{Cu-2}$ as compared to $^{64}\text{Cu-1}$. The enhanced tumor uptake and retention of $^{64}\text{Cu-2}$ may be partially attributed to the difference of in vivo kinetics of $^{64}\text{Cu-1}$ and $^{64}\text{Cu-2}$, given the higher molecular weight of $^{64}\text{Cu-2}$. Indeed, $^{64}\text{Cu-2}$ was not cleared as efficiently as $^{64}\text{Cu-1}$ from kidneys ($^{64}\text{Cu-1}$: 94.7 ± 3.6 %ID excreted at 24 h p.i.; $^{64}\text{Cu-2}$: 88.2 ± 4.9 %ID excreted at 24 h p.i.; p < 0.05). The $\alpha_\text{v}\beta_3$ binding specificity of $^{64}\text{Cu-1}$ and $^{64}\text{Cu-2}$ was demonstrated by the PET signal loss (Figure 2: 1 h blockade) in tumors via the co-injection of c(RGDyK) at a dose of 10 mg/kg. The PET images were quantitatively analyzed. The results along with post-PET biodistribution data are presented in Tables 1–3

Post-PET Biodistribution: Immediately after the 24 h imaging, the mice were sacrificed and organs of interest were removed, weighed, and counted by a γ-counter. Standards were prepared and counted along with the samples to calculate the percent injected dose per gram (%ID/g) and percent injected dose per organ (%ID/organ).

Table 1. Uptake of $^{64}\text{Cu-1}$ in major organs and tumor determined by PET quantification. Data are presented as %ID/g ± s.d. (n = 3)

<table>
<thead>
<tr>
<th>Cu-1</th>
<th>1 h</th>
<th>1 h (blockade)</th>
<th>4 h</th>
<th>4 h (blockade)</th>
<th>24 h</th>
<th>24 h (blockade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>0.44 ± 0.04</td>
<td>0.20 ± 0.08</td>
<td>0.17 ± 0.04</td>
<td>0.07 ± 0.03</td>
<td>0.17 ± 0.04</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>Liver</td>
<td>1.37 ± 0.12</td>
<td>0.52 ± 0.17</td>
<td>1.17 ± 0.21</td>
<td>0.46 ± 0.19</td>
<td>0.50 ± 0.05</td>
<td>0.20 ± 0.00</td>
</tr>
<tr>
<td>Kidney</td>
<td>2.33 ± 0.15</td>
<td>1.77 ± 0.57</td>
<td>1.80 ± 0.00</td>
<td>1.09 ± 0.27</td>
<td>0.96 ± 0.14</td>
<td>0.47 ± 0.13</td>
</tr>
<tr>
<td>Spleen</td>
<td>Not Visible</td>
<td>Not Visible</td>
<td>Not Visible</td>
<td>Not Visible</td>
<td>Not Visible</td>
<td>Not Visible</td>
</tr>
<tr>
<td>Heart</td>
<td>0.48 ± 0.05</td>
<td>0.21 ± 0.03</td>
<td>0.12 ± 0.01</td>
<td>0.03 ± 0.00</td>
<td>0.15 ± 0.01</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.79 ± 0.24</td>
<td>0.25 ± 0.01</td>
<td>0.42 ± 0.08</td>
<td>0.11 ± 0.01</td>
<td>0.31 ± 0.12</td>
<td>0.07 ± 0.00</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.00 ± 0.00</td>
<td>0.04 ± 0.04</td>
<td>0.00 ± 0.00</td>
<td>0.01 ± 0.02</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Tumor (left)</td>
<td>1.93 ± 0.15</td>
<td>0.29 ± 0.02</td>
<td>1.87 ± 0.35</td>
<td>0.18 ± 0.07</td>
<td>1.17 ± 0.21</td>
<td>0.12 ± 0.02</td>
</tr>
<tr>
<td>Tumor (right)</td>
<td>1.97 ± 0.06</td>
<td>0.33 ± 0.08</td>
<td>1.83 ± 0.21</td>
<td>0.18 ± 0.06</td>
<td>1.03 ± 0.06</td>
<td>0.12 ± 0.01</td>
</tr>
</tbody>
</table>

Table 2. Uptake of $^{64}\text{Cu-2}$ in major organs and tumor determined by PET quantification. Data are presented as %ID/g ± s.d. (n = 3)

<table>
<thead>
<tr>
<th>Cu-2</th>
<th>1 h</th>
<th>1 h (blockade)</th>
<th>4 h</th>
<th>4 h (blockade)</th>
<th>24 h</th>
<th>24 h (blockade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>0.67 ± 0.01</td>
<td>0.39 ± 0.03</td>
<td>0.48 ± 0.06</td>
<td>0.23 ± 0.01</td>
<td>0.33 ± 0.04</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>Liver</td>
<td>3.10 ± 0.17</td>
<td>1.50 ± 0.14</td>
<td>2.65 ± 0.07</td>
<td>1.45 ± 0.21</td>
<td>2.40 ± 0.10</td>
<td>1.20 ± 0.28</td>
</tr>
<tr>
<td>Kidney</td>
<td>4.13 ± 0.29</td>
<td>3.10 ± 0.28</td>
<td>3.10 ± 0.00</td>
<td>1.80 ± 0.28</td>
<td>2.33 ± 0.21</td>
<td>1.40 ± 0.14</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.20 ± 0.43</td>
<td>Not Visible</td>
<td>2.2 ± 0.10</td>
<td>Not Visible</td>
<td>2.6 ± 0.10</td>
<td>Not Visible</td>
</tr>
<tr>
<td>Heart</td>
<td>0.66 ± 0.02</td>
<td>0.39 ± 0.03</td>
<td>0.44 ± 0.08</td>
<td>0.23 ± 0.01</td>
<td>0.24 ± 0.03</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>Stomach</td>
<td>1.50 ± 0.44</td>
<td>0.57 ± 0.05</td>
<td>1.20 ± 0.14</td>
<td>0.58 ± 0.01</td>
<td>1.20 ± 0.10</td>
<td>0.37 ± 0.05</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.47 ± 0.19</td>
<td>0.10 ± 0.11</td>
<td>0.17 ± 0.01</td>
<td>0.03 ± 0.03</td>
<td>0.12 ± 0.07</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Tumor (left)</td>
<td>2.90 ± 0.35</td>
<td>0.70 ± 0.05</td>
<td>2.35 ± 0.35</td>
<td>0.44 ± 0.02</td>
<td>1.70 ± 0.20</td>
<td>0.31 ± 0.14</td>
</tr>
<tr>
<td>Tumor (right)</td>
<td>2.93 ± 0.21</td>
<td>0.72 ± 0.04</td>
<td>2.45 ± 0.07</td>
<td>0.46 ± 0.06</td>
<td>1.73 ± 0.21</td>
<td>0.29 ± 0.13</td>
</tr>
</tbody>
</table>
Table 3. Uptake of Cu-1 and Cu-2 in major organs and tumor determined by post-PET biodistribution. Data are presented as %ID/g ± s.d. (n = 3).

<table>
<thead>
<tr>
<th></th>
<th>Cu-1</th>
<th>Cu-1 (blockade)</th>
<th>Cu-2</th>
<th>Cu-2 (blockade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>0.29 ± 0.04</td>
<td>0.08 ± 0.01</td>
<td>1.07 ± 0.07</td>
<td>0.62 ± 0.06</td>
</tr>
<tr>
<td>Liver</td>
<td>0.31 ± 0.06</td>
<td>0.16 ± 0.02</td>
<td>2.40 ± 0.06</td>
<td>1.70 ± 0.07</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.12 ± 0.19</td>
<td>0.65 ± 0.18</td>
<td>2.73 ± 0.03</td>
<td>1.62 ± 0.20</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.91 ± 0.15</td>
<td>0.27 ± 0.06</td>
<td>3.20 ± 0.12</td>
<td>0.98 ± 0.08</td>
</tr>
<tr>
<td>Heart</td>
<td>0.12 ± 0.02</td>
<td>0.03 ± 0.01</td>
<td>0.49 ± 0.05</td>
<td>0.29 ± 0.01</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.50 ± 0.08</td>
<td>0.05 ± 0.01</td>
<td>1.21 ± 0.16</td>
<td>0.34 ± 0.01</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.38 ± 0.04</td>
<td>0.06 ± 0.01</td>
<td>1.39 ± 0.16</td>
<td>0.43 ± 0.06</td>
</tr>
<tr>
<td>Large intestine</td>
<td>0.53 ± 0.27</td>
<td>0.07 ± 0.00</td>
<td>1.17 ± 0.37</td>
<td>0.43 ± 0.09</td>
</tr>
<tr>
<td>Bone</td>
<td>0.08 ± 0.06</td>
<td>0.05 ± 0.04</td>
<td>0.28 ± 0.03</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td>Brain</td>
<td>0.06 ± 0.08</td>
<td>0.00 ± 0.00</td>
<td>0.05 ± 0.00</td>
<td>0.03 ± 0.00</td>
</tr>
<tr>
<td>Tumor (left)</td>
<td>1.51 ± 0.09</td>
<td>0.18 ± 0.01</td>
<td>1.72 ± 0.11</td>
<td>0.51 ± 0.05</td>
</tr>
<tr>
<td>Tumor (right)</td>
<td>1.26 ± 0.14</td>
<td>0.19 ± 0.03</td>
<td>1.87 ± 0.11</td>
<td>0.47 ± 0.02</td>
</tr>
</tbody>
</table>

These data suggest that the significantly greater uptake and prolonged signal intensity of 64Cu-2 in tumor reflects the advantages of the scaffolding design of H$_2$, which affords optimal in vivo kinetics in addition to the anticipated multivalent effects. It must be pointed out that there are two chiral centers in the pendant arms of Cu-2, which can statistically give rise to three diastereomers (R/R, S/S, and a meso R/S), although they, if existing, are spectrally indistinguishable in this work. While the purpose of this work is to demonstrate the feasibility of our concept that multivalent imaging probes can be constructed on a bifunctional chelator, an enantiopure isomer should be considered for future clinical applications of this type of multivalent scaffolds. Used as a sample targeting molecule in this work, c(RGDyK) can be obviously replaced by other targeting peptides or small organic molecules for imaging of various diseases or non-invasive cell surface receptor mapping. In summary, we have demonstrated a divalent scaffolding design for targeted imaging probe development. Obviously this concept can be applied to the design of other multivalent scaffolds based on NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).

II. Using an arginine-rich cell-permeable peptide (NH$_2$GR$_{11}$) to target prostate cancer

Chemical reagents and instrument

All chemicals were of reagent grade and used as received unless otherwise noted. FITC-NHGR$_9$, FITC-NHGR$_{11}$, FITC-NHGR$_{13}$, and DOTA-NHGR$_{11}$ (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) were synthesized by the Peptide Synthesis Laboratory of the University of Texas Southwestern Medical Center (Dallas, TX). Copper-64 chloride in 0.1N HCl was purchased from the University of Wisconsin-Madison. Milli-Q water (18 MΩ-cm) was obtained from a Millipore Gradient Milli-Q water system (Billerica, MA). All aqueous solutions were prepared with Milli-Q water. Light C-18 Sep-Pak cartridges were purchased from Waters (Milford, MA). Instant thin-layer chromatography (ITLC-SG) plates were purchased from Pall Life Sciences (East Hills, NY).

MALDI-TOF mass spectra were collected on a Voyager-DE™ PRO Biospectrometry Workstation (Applied Biosystems, Foster City, CA). Small animal PET-CT imaging studies were performed on a Siemens Inveon PET-CT Multimodality System (Siemens Medical Solutions Inc., Knoxville, TN).
Cell culture and animal models

All the cell lines used in this work (LNCaP, PZ-HPV-7, DU145, PC3, and H2009) were obtained from the American Type Culture Collection (ATCC, Manassas, VA). Both LNCaP and PC3 cell lines were cultured in T-media (Invitrogen Corporation, Carlsbad, CA) supplemented with 5% FBS and 1× Penicillin/Streptomycin. PZ-HPV-7 (an immortalized normal prostate epithelial cell line) and DU145 cell lines were maintained in PrEGM medium (Lonza, Walkersville, MD) and RPMI1640 medium (ThermoFisher Scientific, US) supplemented with 10% FBS and 1× Penicillin/Streptomycin, respectively. The H2009, a non-small lung cancer cell line, was cultured in RPMI1640 medium supplemented with 5% FBS. All the cell lines were cultured at 37°C in an atmosphere of 5% CO₂ and passaged at 75% confluence.

All animal studies were performed in compliance with guidelines set by the UT Southwestern Institutional Animal Care and Use Committee. Male nu/nu nude mice (5 – 7 weeks of age) were purchased from Harlan (Indianapolis, IN), and male SCID mice (6 – 8 weeks of age) were purchased from the UT Southwestern mouse-breeding core (Wakeland Colony). To establish the PC3 tumor xenograft mouse model, PC3 cell suspension was mixed 1:1 with Matrigel (BD Biosciences, Bedford, MA) and then injected subcutaneously (2 × 10⁶ cells per site, injection volume 100 µL) into both flanks of animals. For the H2009 tumor model, the cell suspension was injected subcutaneously (1 × 10⁶ cells per site, injection volume 100 µL) into the back of both shoulders of SCID mice. After injection, the animals were monitored three times a week by general observations. Small PET-CT imaging was performed when the tumors became palpable.

In vitro cell uptake and subcellular localization

To determine the uptake efficiency of CPPs, 1 × 10⁴ cells per well were seeded in 12-well plates and allowed to grow for 24 h. Then a FITC-tagged CCP (5 M) was added and incubated with cells for 30 min. After removal of the medium, the cells were treated with Tryphan Blue (0.4% w/v, Mediatech, Inc., Herndon, VA) to quench the extracellular fluorescence and washed three times with cold PBS. The cells were then lysed with Tris Buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X100). The fluorescence intensity was measured by SpectraMax M5 (Molecular Devices, Sunnyvale, CA) with an excitation wavelength of 490 nm, an emission wavelength of 530 nm, and a cutoff wavelength of 515 nm. The protein concentration in each well was determined using a BCA protein assay kit (Pierce, Rockford, IL). The uptake efficiency of each CPP was determined by normalizing the fluorescence intensity with the protein concentration and the relative uptake was calculated as compared to that of FITC-NHGR₁₁. To determine the subcellular localization of a CPP, after 30 min incubation, the cells were fixed with 4% paraformaldehyde in PBS buffer and then counterstained with 1 µg/mL DAPI (Sigma, St. Louis, MO). Each sample was examined under a fluorescence microscope.

The oligoarginine length effect on the cell uptake efficiency was evaluated using FITC-NHGR₉, FITC-NHGR₁₁ and FITC-NHGR₁₃ in four different human prostate cell lines: PZ-HPV-7, LNCaP, PC3, and DU145. For comparison, the uptake of FITC-NHGR₁₁ is set at 1.0. As shown in Figure 3a, after 30 min incubation, FITC-NHGR₁₁ displayed much higher uptake efficiency than FITC-NHGR₉ and FITC-NHGR₁₃ (p < 0.005) in all the four cell lines indicating that the intracellular uptake of oligoarginines is greatly affected by the number of the repeating guanidino moiety. Of the three FITC-tagged oligoarginines, FITC-NHGR₁₃ showed the lowest uptake in three of the tested cell lines (PZ-HPV-7, PC3, and DU145). In PC3 and DU145, FITC-NHGR₉ displayed appreciable uptake values, which are 63% and 65% of that of FITC-NHGR₁₁, respectively. Overall, the PZ-HPV-7 and LNCaP cell lines exhibited highly selective internalization of oligoarginines varying with the peptide length.

The subcellular localization of FITC-NHGR₉, FITC-NHGR₁₁ and FITC-NHGR₁₃ in the prostate cancer cell lines was shown in Figure 3b. Apparently, FITC-NHGR₁₁ exhibited a higher fluorescent intensity in all the cell lines. The majority of FITC-NHGR₁₁ was localized in the cytosol, while in PZ-HPV-7 and PC3 cell lines, nuclear staining with FITC-NHGR₁₁ was also seen. Both FITC-NHGR₉ and
FITC-NHGR\textsubscript{13} showed significantly lower fluorescent intensity than FITC-NHGR\textsubscript{11} in all four tested cell lines, which is consistent with the cell uptake results. Taken together, these data demonstrate the high efficiency and amino acid length-dependent uptake of FITC-NHGR\textsubscript{11} in various prostate cell lines, which has made FITC-NHGR\textsubscript{11} as a unique probe for detecting prostate cancer.

Figure 3. Uptake of FITC-NHGR\textsubscript{9}, FITC-NHGR\textsubscript{11}, and FITC-NHGR\textsubscript{13} by prostate cells (PZ-HPV-7, LNCaP, PC3 and DU145). (a): FITC-NHGR\textsubscript{9}, FITC-NHGR\textsubscript{11} and FITC-NHGR\textsubscript{13} were incubated with cells for 30 minutes before cell harvesting. Relative FITC intensity was determined by normalizing fluorescence intensity with its protein content and presented as relative level compared to uptake level of FITC-NHGR\textsubscript{11}. Columns, mean in triplicate; bars, SD. All the experiments were repeated at least twice. (b): cells were incubated with 5 µmol/L of the indicated peptide for 30 minutes. After fixation, cells were
counterstained with DAPI. The cellular distribution of each peptide was visualized with a fluorescence microscope.

Preparation of 64Cu-DOTA-NHGR$_{11}$

To a 1.5 mL vial containing 10 µg DOTA-NHGR$_{11}$ in 200 µL of 0.4 M NH$_4$OAc solution (pH = 6.5), 2 – 3 mCi of 64Cu in 0.1 M HCl was added. The reaction mixture was vortexed and then incubated at 37 ºC. After 30-min incubation, 5 µL of 5 mM diethylenetriaminepentaacetic acid (DTPA) was added and the reaction mixture was incubated at room temperature for 5 min. The separation of 64Cu-DOTA-NHGR$_{11}$ from 64Cu-DTPA was carried out by passing the reaction mixture through a light C-18 Sep-Pak cartridge. After three times of washings with PBS, the product was eluted with 80% ethanol solution. Radio-TLC analysis was performed on a Rita Star Radioisotope TLC Analyzer (Straubenhardt, Germany) to monitor the radiolabeling reaction using ITLC paper as the plate and 10 mM PBS as the mobile phase. High performance liquid chromatography (HPLC) analysis was conducted to determine the radiochemical purity of the products using a Waters 600 Multisolvent Delivery System equipped with a Waters 2996 Photodiode Array (PDA) detector and an in-line Shell Jr. 2000 radio-detector (Frederickburg, VA) on a Waters Xterra column (150 x 4.6 mm, 5 µm). The mobile phase was H$_2$O with 0.1% TFA (solvent A) and acetonitrile with 0.1% TFA (solvent B). The gradient was 5% to 20% B in 0 – 5 min and 20% to 40% B in 5 – 25 min at 1.0 mL/min flow rate. The cold reference of natCu-DOTA-NHGR$_{11}$ was prepared by reacting 1 mg (0.46 µmol) of DOTA-NHGR$_{11}$ with 62 µg (0.46 µmol) of CuCl$_2$ in 1 mL of 0.4 M NH$_4$OAc solution at 37 ºC for 1 h. The product was purified by HPLC using the same condition described above and characterized by MALDI-Mass (MALDI-TOF/MS: 2242.1 [M + H$^+$]). The fraction corresponding to natCu-DOTA-NHGR$_{11}$ was lyophilized and stored for use as cold standard.

The conjugate, DOTA-NHGR$_{11}$, was labeled with 64Cu by incubating with 64Cu$^{2+}$ in 0.4 M NH$_4$OAc buffer (pH = 6.5) at 37 ºC for 30 min. Nonspecifically bound 64Cu was removed in the form of 64Cu-DTPA at the end of the radiolabeling procedure. The radiolabeling reaction was monitored by radio-TLC analysis, in which the reaction mixture was sampled on an instant TLC plate that was then developed in PBS buffer. Under the TLC conditions, 64Cu-DOTA-NHGR$_{11}$ stayed at the origin, while 64Cu-DTPA moved to the solvent front. The radiochemical yield was > 90% when 10 µg of the DOTA conjugate was used to label 2 – 3 mCi of 64Cu. The 64Cu-DTPA was removed by passing the reaction mixture through a light C18 Sep-Pak cartridge and three times of washing with PBS. The product, 64Cu-DOTA-NHGR$_{11}$, could then be efficiently eluted with 80% of ethanol. The radiochemical purity of 64Cu-DOTA-NHGR$_{11}$ was nearly 100% after the Sep-Pak purification as determined by radio-ITLC and radio-HPLC. To confirm the identity of the labeled product, natCu-DOTA-NHGR$_{11}$ was prepared and used as a reference standard. Both 64Cu-DOTA-NHGR$_{11}$ and natCu-DOTA-NHGR$_{11}$ showed a single peak on HPLC (64Cu-DOTA-NHGR$_{11}$: radioactivity detector; natCu-DOTA-NHGR$_{11}$: PDA UV detector) with the same retention time within 14 – 15 min.

Small Animal PET/CT Imaging

When the tumor size reached the range of 50 – 300 mm3, the tumor-bearing mice were randomized for the PET-CT imaging with 64Cu-DOTA-NHGR$_{11}$. The injected dose was 3.7 MBq of 64Cu-activity in 100 µL of PBS, while the injected molar amount of NH$_2$GR$_{11}$ was maintained at the same level by decay correction. Ten minutes prior to imaging, the animal was anesthetized using 3% isofluorane at room temperature until stable vitals were established. Once the animal was sedated, it was placed onto the imaging bed under 2% isofluorane anesthesia for the duration of the imaging. The CT imaging was acquired at 80 kV and 500 µA with a focal spot of 58 µm. The total rotation of the gantry was 360º with 360 rotation steps obtained at an exposure time of approximately 235 ms/frame. The images were attained using a CCD readout of 4096 x 3098 with a bin factor of 4 and an average frame of 1. Under low magnification the effective pixel size was 103.03 µm. Total CT scan time was approximately 6 minutes. CT images were reconstructed with a down sample factor of 2 using Cobra Reconstruction Software. The PET imaging was performed directly after the acquisition of CT data. The PET tracer was injected intravenously via the tail vein. Static PET scans
were performed at 1 h, 4 h, and 24 h p.i. for 15 min. PET images at 1 h and 4 h p.i. were reconstructed using Fourier Rebinning and Ordered Subsets Expectation Maximization 3D (OSEM3D) algorithm, while the PET images at 24 h p.i. were reconstructed using OSEM2D. Reconstructed CT and PET images were fused and analyzed using the Siemens Inveon Research Workplace (IRW) software. For quantification, regions of interest were placed in the areas expressing the highest radiotracer activity as determined by visual inspection. The tissues examined include the left and right tumors, heart, liver, lung, kidneys, and muscle. The resulting quantitative data was expressed as percent injected dose per gram of tissue (%ID/g).

Statistical Analysis: Quantitative data were expressed as Mean ± SD and then compared using one-way analysis of variance and Student’s t test. P values < 0.05 were considered statistically significant.

The comparative small animal imaging evaluation of 64Cu-DOTA-NHGR$_{11}$ was performed using PC3 and H2009 tumor-bearing SCID mice, which were injected with a similar amount of peptide with respect to the volume of tumor as calculated based on the specificity radioactivity of 64Cu-DOTA-NHGR$_{11}$. The PET-CT imaging acquisition was conducted at 1, 4, and 24 h p.i. (n = 3 at each time point). The representative PET-CT images (transaxial) are presented in Fig 4. Due to the low counts at 24 h p.i. resulted from the clearance and decay of the radiotracer, the PET images at 24 h p.i. were reconstructed by the OSEM2D algorithm instead of OSEM3D that was applied to process the 1 h and 4 h images. As shown in Fig 4, the PC3 tumors on both flanks were clearly visualized by 64Cu-DOTA-NHGR$_{11}$ on PET images at 1 h and 4 h p.i. At 24 h p.i., the PC3 tumors became faint on PET but still with a significant level of signals. In contrast, the H2009 tumors were only visible at 1 h with much lower signal intensity on PET as compared to the PC3 tumors; at 4 h and 24 h p.i., they became not detectable.

The PET images were quantitatively analyzed by the Siemens Inveon Research Workplace (IRW) software. Summarized in Table 4 are the uptake values of 64Cu-DOTA-NHGR$_{11}$ in the regions of interest (tumors [left and right], heart, liver, lung, kidney [left], and muscle) obtained from the imaging quantification. Not surprisingly, 64Cu-DOTA-NHGR$_{11}$ showed nearly identical uptake values in the right and left tumors. The accumulation level of 64Cu-DOTA-NHGR$_{11}$ in the PC3 tumors remained steady out to 24 h p.i. (right tumor: 1.15 ± 0.23 %ID/g at 1 h p.i.; 0.92 ± 0.53 %ID/g at 4 h; 24 h 0.86 ± 0.21 %ID/g at 24 h), whereas its uptake in the H2009 tumors showed an appreciable trend of decreases over time (right tumor: 0.83 ± 0.06 %ID/g at 1 h p.i.; 0.49 ± 0.16 %ID/g at 4 h; 24 h 0.32 ± 0.07 %ID/g at 24 h). Impressively, the uptake ratios of 64Cu-DOTA-NHGR$_{11}$ in PC3 tumor versus muscle at 1 h, 4 h, and 24 h p.i. were 5.06 ± 0.96, 4.87 ± 1.29, and 10.41 ± 6.07, respectively. In other organs, 64Cu-DOTA-NHGR$_{11}$ exhibited a very similar distribution pattern in both tumor-bearing mouse models.

Table 4. PET Quantification data of 64Cu-DOTA-NHGR$_{11}$ in PC3 and H2009 tumor bearing mice at 1 h, 4 h and 24 h p.i. Data is presented as %ID/g ± s.d. (n = 3).

<table>
<thead>
<tr>
<th>%ID/g</th>
<th>PC3 tumor model</th>
<th>H2009 tumor model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1h</td>
<td>4h</td>
</tr>
<tr>
<td>Tumor (left)</td>
<td>1.20 ± 0.17</td>
<td>0.89 ± 0.16</td>
</tr>
<tr>
<td>Tumor (right)</td>
<td>1.15 ± 0.23</td>
<td>0.92 ± 0.53</td>
</tr>
<tr>
<td>Heart</td>
<td>0.58 ± 0.06</td>
<td>0.52 ± 0.03</td>
</tr>
<tr>
<td>Liver</td>
<td>9.13 ± 1.75</td>
<td>7.95 ± 1.91</td>
</tr>
<tr>
<td>Lung</td>
<td>0.59 ± 0.07</td>
<td>0.62 ± 0.10</td>
</tr>
<tr>
<td>Kidneys</td>
<td>3.93 ± 0.21</td>
<td>3.40 ± 0.00</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.24 ± 0.06</td>
<td>0.18 ± 0.03</td>
</tr>
</tbody>
</table>

With the goal to develop NH$_2$GR$_{11}$ for specific PET imaging of prostate cancer metastases, we designed and performed a comparative PET-CT imaging experiment by using PC3 and H2009 (a lung cancer model) tumor-bearing mouse models. However due to the availability of 64Cu and the tumor-growth rate...
difference between PC3 and H2009, the tumor sizes of PC3 and H2009 could not be ideally matched for this preliminary evaluation. The PC3 tumors were around 100 mm3 at the time of PET-CT imaging, while the H2009 tumor size was in the range of 100 – 300 mm3. As shown in Figure 4, the PC3 tumors were clearly visualized with 64Cu-DOTA-NHGR$_{11}$ at 1 h and 4 h p.i., while the H2009 tumors became invisible on PET images after 4 h p.i. The PET imaging quantification further confirmed that the absolute uptake of 64Cu-DOTA-NHGR$_{11}$ in the PC3 tumors was significantly higher than in the H2009 tumors throughout the imaging study, indicating the desired imaging specificity of 64Cu-DOTA-NHGR$_{11}$. The slow clearance of 64Cu-DOTA-NHGR$_{11}$ from the PC3 tumors likely reflects the fact that the radiotracer had been internalized into the tumor cells within 1 h p.i., while the significant clearance of 64Cu-DOTA-NHGR$_{11}$ from the H2009 tumors probably indicates that the radiotracer could not be efficiently internalized into the lung cancer cells. Intriguingly, there are reports that the syndecan-1 expression is lost in lung cancer (6, 7).

![Figure 4](image-url). Representative transaxial PET-CT images of 64Cu-DOTA-NHGR$_{11}$ in PC3 and H2009 tumor-bearing mice at 1 h, 4 h, and 24 h p.i. (n = 3). The white arrows indicate tumors.

Part of the research progress has been published on two journal articles:

Key Research Accomplishments

1. In *Angew. Chem. Int. Ed.* paper, we reported the design and synthesis of the proposed multifunctional chelators and demonstrated the feasibility of building multivalent imaging probes from a bifunctional chelator. Using c(RGDyK) as a model targeting molecule, we showed that a targeted divalent PET imaging probe could be constructed for prostate cancer detection. Obviously this concept can be applied to the design of other multivalent scaffolds based on NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).
2. In the *Amino Acids* paper, we demonstrated the potential of using NHGR\textsubscript{11} to develop specific PET imaging probes for distant prostate cancer metastases by both in vitro and in vivo evaluations performed with FITC-NHGR\textsubscript{11} and 64Cu-DOTA-NHGR\textsubscript{11}.

Reportable Outcomes

Conclusions

By two-year work, we have successfully developed an approach to impart multivalency to a bifunctional chelator for targeted PET imaging probe design. This type of multivalent scaffolds features a chelator that forms a stable and neutral complex with a radiometal and multiple functional groups for multimeric presentation of targeting molecules. A bivalent scaffold was synthesized and coupled with an integrin α\textsubscript{v}β\textsubscript{3} targeting ligand, c(RGDyK), to afford a 64Cu-labeled divalent probe. The in vitro and in vivo evaluation clearly demonstrated the divalent probe with the anticipated multivalent effect as compared to its monomeric counterpart. In addition, we have further verified the imaging specificity of 64Cu-DOTA-NHGR\textsubscript{11} for prostate cancer detection.

References

5. *Unpublished data in Dr. Shuang Liu's Laboratory at Purdue University, Indiana, USA.*
Imparting Multivalency to a Bifunctional Chelator: A Scaffold Design for Targeted PET Imaging Probes**

Wei Liu, Guiyang Hao, Michael A. Long, Tiffani Anthony, Jer-Tsong Hsieh, and Xiankai Sun*

Positron emission tomography (PET) has become a standard clinical practice in the diagnostic or prognostic imaging of cancer, mainly owing to the great success of [18F]FDG (2-deoxy-2-[18F]-fluoro-D-glucose) for non-invasive detection of glucose uptake in tumors. Currently, [11C] and [18F] are the most commonly used PET nuclides for the development of PET imaging probes. However, the short half-lives of these two radioisotopes (\(^{11}C, t_{1/2} = 20.3\) m, \(^{18}F, t_{1/2} = 109\) m) limit their applications to biomolecules with relatively fast in vivo biodistribution kinetics, and the chemical procedures to incorporate these isotopes must be carried out in the proximity of a biomedical cyclotron. Among nonstandard PET nuclides, \(^{64}Cu\) (\(t_{1/2} = 12.7\) h; \(\beta^+ 0.653\) MeV, 17.4 \%) has drawn considerable interest in PET research owing to its low positron range, commercial availability, and reasonably long decay half-life. Such characteristics could enable a variety of imaging applications involving peptides, antibodies or their fragments, and nanoparticles.[2, 3]

It has been demonstrated that creation of multimers of a targeting molecule on one scaffold can efficiently improve cell-specific binding affinity by several orders of magnitude.[3] As such, various approaches have been reported to exploit multivalent scaffolds for the construction of molecular imaging probes.[4–10] However, their chemistries are often complicated and become even more so when a bifunctional chelator (BFC) must be attached to a separately multimerized construct in order to introduce a metal radionuclide for nuclear imaging.

Herein we present an approach to take advantage of the pendant arms of the commonly used BFCs to build simplified but potentially versatile multivalent scaffolds for multimeric presentation of targeting molecules. This type of multivalent scaffold features a chelator that forms a stable and neutral complex with a radiometal and multiple functional groups for the anchoring of targeting molecules. If required by in vivo pharmacokinetics, poly(ethylene glycol) (PEG) chains can be introduced between the chelate and targeting moieties.

To test the rationale of our design, we use a cyclic RGD peptide (c(RGDyK),[5, 11] a well-validated \(\alpha_v\beta_3\) integrin ligand, for the construction of a divalent PET imaging probe from a chelate known to have a high affinity for \(^{64}Cu\) (CB-TE2A, Scheme 1). The divalent probe is anticipated to have a prolonged biological half-life and enhanced specific binding and retention in tissues expressing the \(\alpha_v\beta_3\) integrin.

** This work was partially supported by a USAMRMC grant (W81XWH-08-1-0305) and two NIH grants (P01 DK058398; U24 CA126608). The authors acknowledge the generous support of a private donor that allowed the purchase of the Inveon PET-CT system. The c(RGDyK) peptide was provided by Dr. Xiaoyuan Chen at Stanford University.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200903556.

[*] W. Liu, G. Hao, M. A. Long, T. Anthony, X. Sun
Department of Radiology and Advanced Imaging Research Center
University of Texas Southwestern Medical Center
Dallas, TX 75390-8542 (USA)
Fax: (+1) 214-645-2885
E-mail: xiankai.sun@utsouthwestern.edu

J.-T. Hsieh
Department of Urology
University of Texas Southwestern Medical Center
Dallas, TX 75390-9110 (USA)

[**] This work was partially supported by a USAMRMC grant (W81XWH-08-1-0305) and two NIH grants (P01 DK058398; U24 CA126608). The authors acknowledge the generous support of a private donor that allowed the purchase of the Inveon PET-CT system. The c(RGDyK) peptide was provided by Dr. Xiaoyuan Chen at Stanford University.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200903556.
The stability of the metal complex is of critical importance in the design of a metal radiopharmaceutical. CB-TE2A forms one of the most stable complexes with 64Cu,[12] and the CuII-CB-TE2A complex is more resistant to reductive metal loss than are other tetramacrocyclic complexes.[13] However, its stability with 64Cu may be reduced when used as a BFC in which one of the carboxylate groups is converted to an amide for conjugation to a targeting molecule,[14] leading to a positive charge on the 64Cu moiety. To avoid this potential problem, we choose $\text{-bromoglutaric acid-1-}$tert-$\text{-butyl ester-5-}$benzyl ester (3) for the alkylation of CB-cyclam, which allows selective deprotection of the carboxylate groups by two separate procedures to conjugate with c(RGDyK) through the peripheral carboxylates to afford H$_2$1 and H$_2$2, respectively. As such, the unique feature of CB-TE2A is preserved in the conjugates, in which the two inner carboxylates can form a neutral octahedral complex with CuII along with the four nitrogen atoms of the macrocycle.

To evaluate the anticipated multivalent effect, a recently reported CB-TE2A analogue[15] was also synthesized and coupled with c(RGDyK) to form a monovalent CB-TE2A-RGD conjugate (H$_2$1) as a control for comparison. Scheme 2 shows the synthetic routes to H$_2$1 and H$_2$2. The multiple-step synthetic route involves three parts: 1) synthesis of orthogonally protected compounds 5 and 7; 2) formation of NHS-activated ester intermediates 6 and 9 after selective deprotection of the peripheral carboxylate groups (NHS = N-hydroxysuccinimide); and 3) conjugation of c(RGDyK) to the NHS esters followed by acid deprotection of the inner carboxylate groups to form the products H$_2$1 and H$_2$2. Alkylation of CB-cyclam by 3 was asynchronous at the two nonbridged nitrogen atoms, with the monoalkylation product 4 predominating at room temperature (35–55% yield even in the presence of excess of 3).[15] In comparison, the dialkylated product 7 was only formed at elevated temperatures. At 50°C using two equivalents of 3 to CB-cyclam, only 20–45% of 7 was found, and it was always accompanied by the monoaiklation product. Although 7 was difficult to elute from silica gel using common organic solvents, a good separation was obtained by adding 5–10% isopropyl amine in ethyl acetate. It is noteworthy that the debenzylation of the peripheral carboxylate groups catalyzed by 10% Pd/C in a hydrogen atmosphere always resulted in formation of the corresponding esters if the reaction was carried out in an alcohol solvent. This finding is likely due to the “proton sponge” nature of the CB-cyclam core that induces transesterification during debenzylation. No clean debenzylation could be accomplished in either methanol or ethanol, even in the presence of formic acid as described in literature.[15] However, THF/H$_2$O (1:1) successful circumvented this problem and afforded debenzylation products in quantitative yield. These were then activated by NHS and conjugated to c(RGDyK) in the presence of ten equivalents N,N-diisopropylethylamine (DIPEA). After HPLC purification, H$_2$1 and H$_2$2 were obtained by removal of the tert-butyl groups using 95% trifluoroacetic acid (TFA; see the Supporting Information for details).

Both H$_2$1 and H$_2$2 were efficiently labeled by 64Cu at 70°C in 0.4 M NH$_4$OAc buffer within 30 min. The specific activity of $[^{64}$Cu]1 and $[^{64}$Cu]2 was in the range of 8.4–20.4 GBq/µmol$^{-1}$. The in vitro stability of the 64Cu-labeled peptide conjugates was evaluated in rat serum by radio-HPLC. Chromatographic results showed no release of 64Cu from the conjugates over a period of 48 h. This high stability is attributed to the CB-TE2A moiety in the conjugates. The α,β-binding affinities of H$_2$1 and H$_2$2 were measured by a competitive cell-binding assay using U87MG cells in which 125I-echistatin was employed as α,β-specific radioligand for

Scheme 2. Synthesis of H$_2$1 and H$_2$2. Reagents: a-1, a-2) CH$_3$CN, K$_2$CO$_3$; b) BrCH$_2$COOtBu, CH$_3$CN, K$_2$CO$_3$; c, g) 10% Pd/C, THF/H$_2$O; d) MeCN, NHS, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC); e, f) c(RGDyK), DIPEA, DMF; e, j) 95% TFA.
The U87MG cell line was chosen because the αβ3 integrin density on the cell surface was the highest among the solid tumor cell lines that have been assessed.[16] The IC50 values of c(RGDyK), H1, and H2, which represent their concentrations required to displace 50% of the 125I-echistat bound on the U87MG cells, were determined to be 110, 139, and 35 nM, respectively (n = 5). The slightly decreased αβ3 binding of H1 as compared to c(RGDyK) indicates a minute impact of CB-TE2A on the binding of c(RGDyK) to the αβ3 integrin. As anticipated, H2 exhibited a strong divergent effect measured by the multivalent enhancement ratio (MVE) calculated by dividing the IC50 value of H1 by that of H2 (MVE = 4).[6] The distance between the two RGD motifs in H2 is greater than 25 bonds (including the lysine spacers), the minimum spacing length required to realize multivalent binding of RGD motifs to the αβ3 integrin.[3] It is noteworthy that as a downstream effect of multivalent binding, oligomerization of cell-surface receptors could initiate cellular internalization events, which might further enhance the specific accumulation in the target tissues.[17]

In vivo small-animal imaging studies were performed on a Siemens Inveon PET-CT multimodality system. Six SCID mice (6–7 weeks old) bearing PC-3 human prostate cancer xenografts in both front flanks (tumor size ca. 230 mg) were randomized into two groups (n = 3) for the evaluation of [64Cu]1 or [64Cu]2, which was injected into the tail vein. As shown in Figure 1, both tumors were visualized by [64Cu]1 and [64Cu]2 at 1 and 4 h post injection (p.i.), while [64Cu]2 showed a significantly stronger PET signal than [64Cu]1 at all time points. At 24 h p.i., the tumors were still clearly visible with [64Cu]2 but were rather faint with [64Cu]1. Owing to the fact that the αβ3 integrin is also expressed in other tissues (e.g. liver, kidneys, stomach, intestines) in young mice, but to a lesser extent (personal communications[16]), an elevated uptake was observed in those organs with [64Cu]2 as compared to [64Cu]1. The enhanced tumor uptake and retention of [64Cu]2 may be partially attributed to the difference of in vivo kinetics of [64Cu]1 and [64Cu]2, given the higher molecular weight of [64Cu]2. Indeed, [64Cu]2 was not cleared as efficiently as [64Cu]1 from kidneys ([64Cu]1 94.7 ± 3.6%ID excreted at 24 h p.i.; [64Cu]2 88.2 ± 4.9%ID excreted at 24 h p.i.; p < 0.05). The αβ3 binding specificity of [64Cu]1 and [64Cu]2 was demonstrated by signal loss (Figure 1: 1 h blockade) in tumors after co-injection of c(RGDyK) at a dose of 10 mg kg⁻¹. The quantitative PET image data and post-PET biodistribution data are presented in Table 1 and Tables S1–S3 (see the Supporting Information for details).

![Figure 1](image-url)

Figure 1. Representative microPET-CT images of PC-3 tumor bearing mice (n = 3) at 1, 4, 24 h after intravenous injection of [64Cu]1 (upper panel) and [64Cu]2 (lower panel). Images obtained with co-injection of 10 mg kg⁻¹ of c(RGDyK) are only shown for 1 h blockade (right). Arrows indicate tumors.

The significantly greater uptake and prolonged signal intensity of [64Cu]2 in tumors reflects the advantages of the scaffolding design of H2, which affords optimal in vivo kinetics in addition to the anticipated multivalent effects. It should be pointed out that there are two chiral centers in the pendant arms of Cu2, which should statistically give rise to three diastereomers (R/R, S/S, and a meso R/S), even though they could not be distinguished by the techniques used herein. While the purpose of this work is to demonstrate the feasibility of building multivalent imaging probes from a bifunctional chelator, an enantiopure isomer of 3 should be considered for future clinical applications of this type of multivalent scaffold. Used as a sample targeting molecule herein, c(RGDyK) can obviously be replaced with other targeting peptides or small organic molecules for imaging of various diseases or non-invasive cell-surface receptor mapping. In summary, we have demonstrated a divalent scaffolding design for targeted imaging probe development. Obviously this concept can be applied to the design of other multivalent scaffolds based on NOTA (1,4,7-triazacyclonane-1,4,7-triacetic acid) or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).

| Table 1: Tumor uptake of [64Cu]1 and [64Cu]2 as determined from PET imaging quantitation and post-PET biodistribution. Data are presented as %ID g⁻¹ ± standard deviation (n = 3).[4] |
|---|---|---|---|---|
| | 1 h PET | 4 h PET | PET | Post-PET | 1 h PET (blockade) |
| [64Cu]1 | 1.95 ± 0.10 | 1.85 ± 0.26 | 1.10 ± 0.15 | 1.39 ± 0.17 | 0.31 ± 0.05 |
| [64Cu]2 | 2.92 ± 0.26 | 2.40 ± 0.22 | 1.72 ± 0.18 | 1.79 ± 0.13 | 0.71 ± 0.04 |

[4] For [64Cu]2, p < 0.05 for all times.

Keywords: chelates · imaging agents · multivalent effect · radiochemistry

Received: June 30, 2009
Revised: July 18, 2009
Published online: September 1, 2009

A cell permeable peptide analog as a potential-specific PET imaging probe for prostate cancer detection

Guiyang Hao · Jian Zhou · Yi Guo · Michael A. Long · Tiffani Anthony · Jennifer Stanfield · Jer-Tsong Hsieh · Xiankai Sun

Received: 25 November 2009 / Accepted: 4 February 2010 © Springer-Verlag 2010

Abstract Non-invasive detection of prostate cancer or metastases still remains a challenge in the field of molecular imaging. In our recent work of screening arginine- or lysine-rich peptides for intracellular delivery of a therapeutic agent into prostate cancer cells, an arginine-rich cell permeable peptide (NH$_2$GR$_{11}$) was found with an unexpectedly preferential uptake in prostate cancer cell lines. The goal of this work was to develop this peptide as a positron emission tomography (PET) imaging probe for specific detection of distant prostate cancer metastases. The optimal length of arginine-rich peptides was evaluated by the cell uptake efficiency of three fluorescein isothiocyanate (FITC)-tagged oligoarginines (NH$_2$GR$_9$, NH$_2$GR$_{11}$, and NHGR$_{13}$) in four human prostate cell lines (LNCaP, PZ-HPV-7, DU145, and PC3). Of the three oligoarginines, NH$_2$GR$_{11}$ showed the highest cell uptake and internalization efficiency with its subcellular localization in cytosol. The biodistribution of FITC-NH$_2$GR$_9$, FITC-NHGR$_{11}$, and FITC-NHGR$_{13}$ performed in control nude mice displayed the unique preferential accumulation of FITC-NHGR$_{11}$ in the prostate tissue. Further in vivo evaluation of FITC-NHGR$_{11}$ in PC3 tumor-bearing nude mice revealed elevated uptake of this peptide in tumors as compared to other organs. In vivo pharmacokinetics evaluated with 64Cu-labeled NH$_2$GR$_{11}$ showed that the peptide was rapidly cleared from the blood ($t_{1/2} = 10.7$ min) and its elimination half-life was 17.2 h. The PET imaging specificity of 64Cu-labeled NH$_2$GR$_{11}$ was demonstrated for the detection of prostate cancer in a comparative imaging experiment using two different human cancer xenograft models.

Keywords PET · Prostate cancer · Cell permeable peptide · 64Cu

Introduction

Currently the most commonly used positron emission tomography (PET) probe, 2-18F-fluoro-2-deoxy-D-glucose (18F-FDG), is not so successful at identifying localized prostate cancer or distal metastases because the prostate is in the close proximity of the bladder, where the FDG is cleared, and the prostate cancer cells are inherently not glucose avid (Shreve et al. 1996; Etchebehere et al. 2002; Gambhir 2002). To date, various PET tracers have been introduced for prostate cancer imaging based on different molecular mechanisms (Emonds et al. 2009). To name a few, 11C- or 18F-labeled choline showed promising results of detecting primary and metastatic prostate cancer but with inconsistent findings in densely sclerotic bone lesions (Hara et al. 1998; Maeda et al. 2006; Vees et al. 2007; Giovacchini et al. 2008); 11C- or 18F-labeled acetate was reported with potential to detect local recurrences and regional lymph node metastases (Oyama et al. 2002; Albrecht et al. 2007; Ponde et al. 2007); 3',18F-fluorothyridine was used for monitoring the therapeutic effect of...
androgen ablation therapy in prostate cancer (Oyama et al. 2004); 16β-18F-fluoro-5z-dihydrotestosterone was employed to detect prostate cancer metastases and access androgen receptor expression in vivo (Larson et al. 2004); and radiolabeled peptides have been exploited for specific prostate cancer imaging by targeting specific surface markers or receptors (Rogers et al. 2003; Chen et al. 2004a, b; Schuhmacher et al. 2005; Yang et al. 2006; Zhang et al. 2006). However, the role of PET in the diagnosis of prostate cancer, either localized diseases or distal metastases, has not been established (Beheshti et al. 2009; Bouchelouche et al. 2009). Prostate cancer metastases, especially in their early stage, display the dormant characteristics of prostate cancer with relatively small size as compared to metastases of other carcinomas, such as breast and lung cancer (Fogelman et al. 2005; Langsteger et al. 2006). This represents a great challenge in the non-invasive detection of prostate cancer and its metastases. As such, it is highly desirable to develop specific PET imaging probes based on different molecular mechanisms.

Cell permeable peptides (CPPs) known as delivery vehicles that can cross cell membranes have been extensively used for intracellular delivery of varieties of bioactive cargos (Bucci et al. 2000; Gratton et al. 2003). Of the commonly used CPPs, arginine-rich CPPs including HIV-Tat peptides and oligoarginines have been reported with high internalization efficacy likely because their guanidine moiety can form divalent hydrogen-bonds with phosphates, sulfates, and carboxylates on cellular components (Rothbard et al. 2004; Sakai et al. 2005). In an effort to deliver a therapeutic peptide sequence derived from the proline-rich domain of DOC-2/DAB2 for prostate cancer treatment, we found out a pol- yarginine peptide (NH2GR11) with an unexpectedly preferential uptake in several prostate cancer cell lines (Zhou et al. 2006), which initiated the work presented in this paper. Two experiments were designed to verify whether the uptake preference is a unique feature of NH2GR11 and whether it displays similar uptake specificity to prostate cancer in vivo. One was performed with three oligoarginines differing in the number of the repeating arginine units (n = 9, 11, and 13), which were labeled with a fluorescent dye (FITC: fluorescein isothiocyanate). NH2GR11 was found with significantly higher uptake than NH2GR9 and NH2GR13 in four human prostate cancer cell lines and in both normal and prostate cancer-bearing mouse models. Subsequently, a comparative PET-CT imaging study using prostate and lung cancer xenograft mouse models was carried out to test the specificity of using NH2GR11 to image prostate cancer in vivo when labeled with 64Cu (t1/2 = 12.7 h; β+: 0.653 meV, 17.4%), a positron emitter. Our preliminary results demonstrate the potential of NH2GR11 to be developed as a specific imaging probe for the detection of prostate cancer metastases.

Materials and methods

Chemical reagents and instrument

All chemicals were of reagent grade and used as received unless otherwise noted. FITC-NHGR9, FITC-NHGR11, FITC-NHGR13, and DOTA-NHGR11 (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) were synthesized by the Peptide Synthesis Laboratory of the University of Texas Southwestern Medical Center (Dallas, TX). Copper-64 chloride in 0.1 N HCl was purchased from the University of Wisconsin-Madison. Milli-Q water (18 MΩ cm) was obtained from a Millipore Gradient Milli-Q water system (Billerica, MA). All aqueous solutions were prepared with Milli-Q water. Light C-18 Sep-Pak cartridges were purchased from Waters (Milford, MA). Instant thin-layer chromatography (ITLC-SG) plates were purchased from Pall Life Sciences (East Hills, NY).

MALDI-TOF mass spectra were collected on a Voyager-DE™ PRO Biospectrometry Workstation (Applied Biosystems, Foster City, CA). Small animal PET-CT imaging studies were performed on a Siemens Inveon PET-CT Multimodality System (Siemens Medical Solutions Inc., Knoxville, TN).

Cell culture and animal models

All the cell lines used in this work (LNCaP, PZ-HPV-7, DU145, PC3, and H2009) were obtained from the American Type Culture Collection (ATCC, Manassas, VA). Both LNCaP and PC3 cell lines were cultured in T-media (Invitrogen Corporation, Carlsbad, CA) supplemented with 5% FBS and 1× penicillin/streptomycin. PZ-HPV-7 (an immortalized normal prostate epithelial cell line) and DU145 cell lines were maintained in PrEGM medium (Lonza, Walkersville, MD) and RPMI1640 medium (ThermoFisher Scientific, US) supplemented with 10% FBS and 1× penicillin/streptomycin, respectively. The H2009, a non-small lung cancer, cell line was cultured in RPMI1640 medium supplemented with 5% FBS. All the cell lines were cultured at 37°C in an atmosphere of 5% CO2 and passaged at 75% confluence.

All animal studies were performed in compliance with guidelines set by the UT Southwestern Institutional Animal Care and Use Committee. Male nu/nu nude mice (5–7 weeks of age) were purchased from Harlan (Indianapolis, IN), and male SCID mice (6–8 weeks of age) were purchased from the UT Southwestern mouse-breeding core (Wakeland Colony). To establish the PC3 tumor xenograft mouse model, PC3 cell suspension was mixed 1:1 with Matrigel (BD Biosciences, Bedford, MA) and then injected subcutaneously (2 × 106 cells per site, injection volume 100 μL) into both flanks of animals. For the H2009 tumor
model, the cell suspension was injected subcutaneously (1 × 10^6 cells per site, injection volume 100 µL) into the back of both shoulders of SCID mice. After injection, the animals were monitored three times a week by general observations. Small PET-CT imaging was performed when the tumors become palpable.

In vitro cell uptake and subcellular localization

To determine the uptake efficiency of CPPs, 1 × 10^4 cells per well were seeded in 12-well plates and allowed to grow for 24 h. Then a FITC-tagged CPP (5 µM) was added and incubated with cells for 30 min. After removal of the medium, the cells were treated with Tryphan Blue (0.4% w/v, Mediatech, Inc., Herndon, VA) to quench the extracellular fluorescence and washed three times with cold PBS. The cells were then lysed with Tris Buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100). The fluorescence intensity was measured by SpectraMax M5 (Molecular Devices, Sunnyvale, CA) with an excitation wavelength of 490 nm, an emission wavelength of 515 nm. The protein concentration in each well was determined using a BCA protein assay kit (Pierce, Rockford, IL). The uptake of a CPP, after 30 min incubation, the cells were fixed with 4% paraformaldehyde in PBS buffer and then counterstained with 1 µg/mL DAPI (Sigma, St. Louis, MO). Each sample was examined under a fluorescence microscope.

Preparation of 64Cu-DOTA-NHGR11

To a 1.5 mL vial containing 10 µg DOTA-NHGR11 in 200 µL of 0.4 M NH4OAc solution (pH 6.5), 2–3 mCi of 64Cu in 0.1 M HCl was added. The reaction mixture was vortexed and then incubated at 37°C. After 30-min incubation, 5 µL of 5 mM diethylenetriaminepentaacetic acid (DTPA) was added and the reaction mixture was incubated at room temperature for 5 min. The separation of 64Cu-DOTA-NHGR11 from 64Cu-DTPA was carried out by passing the reaction mixture through a light C-18 Sep-Pak cartridge. After three times of washings with PBS, the product was eluted with 80% ethanol solution. Radio-TLC analysis was performed on a Rita Star Radiosotope TLC Analyzer (Straubenhardt, Germany) to monitor the radiolabeling reaction using ITLC paper as the plate and 10 mM PBS as the mobile phase. High performance liquid chromatography (HPLC) analysis was conducted to determine the radiochemical purity of the products using a Waters 2996 Photodiode Array (PDA) detector and an in-line Shell Jr. 2000 radio-detector (Fredericksburg, VA) on a Waters Xterra column (150 × 4.6 mm, 5 µm). The mobile phase was H2O with 0.1% TFA (solvent A) and acetonitrile with 0.1% TFA (solvent B). The gradient was 5–20% B in 0–5 min and 20–40% B in 5–25 min at 1.0 mL/min flow rate.

The cold reference of natCu-DOTA-NHGR11 was prepared by reacting 1 mg (0.46 µmol) of DOTA-NHGR11 with 62 µg (0.46 µmol) of CuCl2 in 1 mL of 0.4 M NH4OAc solution at 37°C for 1 h. The product was purified by HPLC using the same condition described above and characterized by MALDI-Mass (MALDI-TOF/MS: 2242.1 [M + H+]). The fraction corresponding to natCu-DOTA-NHGR11 was lyophilized and stored for use as cold standard.

Biodistribution and pharmacokinetic studies

The biodistribution studies were performed in control and PC3 tumor-bearing male nu/nu nude mice. Each mouse was injected intraperitoneally with a FITC-tagged CPP at a dose of 5 mmol/g of body weight. The animals were killed at 24 h post-injection (p.i.) and the organs of interest [prostate, seminal vesicle (SV), coagulation gland (CG), testis, liver, spleen, kidneys, muscle, lung, brain, and tumor] were excised, weighed, and measured by the fluorescence reader. The relative FITC intensity of each CPP was calculated as fluorescence intensity per gram of tissue weight.

Pharmacokinetic parameters were estimated by a two-compartment model using normal male nu/nu nude mice. Blood (~5 µL) was drawn from the retro-orbital sinus of the mice at 5, 10, 20, and 40 min after the tail vein injection of 64Cu-DOTA-NHGR11, and then counted on a γ-counter.

Small animal PET/CT imaging

When the tumor size reached the range of 50–300 mm³, the tumor-bearing mice were randomized for the PET-CT imaging with 64Cu-DOTA-NHGR11. The injected dose was 3.7 MBq of 64Cu-activity in 100 µL of PBS, while the injected molar amount of NH2GR11 was maintained at the same level by decay correction.

Ten minutes prior to imaging, the animal was anesthetized using 3% isoflurane at room temperature until stable vitals were established. Once the animal was sedated, it was placed onto the imaging bed under 2% isoflurane anesthesia for the duration of the imaging. The CT imaging was acquired at 80 kV and 500 µA with a focal spot of 58 µm. The total rotation of the gantry was 360° with 360 rotation steps obtained at an exposure time of approximately 235 ms/frame. The images were attained using a CCD readout of 4,096 × 3,098 with a bin factor of 4 and
an average frame of 1. Under low magnification, the effective pixel size was 103.03 μm. Total CT scan time was approximately 6 min. CT images were reconstructed with a down sample factor of 2 using Cobra Reconstruction Software. The PET imaging was performed directly after the acquisition of CT data. The PET tracer was injected intravenously via the tail vein. Static PET scans were performed at 1, 4, and 24 h p.i. for 15 min. PET images at 1, 4, and 24 h p.i. were reconstructed using Fourier Rebinning and Ordered Subsets Expectation Maximization 3D (OSEM3D) algorithm. Reconstructed CT and PET images were fused and analyzed using the Siemens Inveon Research Workplace (IRW) software. For quantification, regions of interest were placed in the areas expressing the highest radiotracer activity as determined by visual inspection. The tissues examined include the left and right tumors, heart, liver, lung, kidneys, and muscle. The resulting quantitative data were expressed as percent injected dose per gram of tissue (%ID/g).

Statistical analysis

Quantitative data were expressed as mean ± SD and then compared using one-way analysis of variance and Student’s *t* test. *P* values <0.05 were considered statistically significant.

Results

In vitro cell uptake and subcellular localization

The oligoarginine length effect on the cell uptake efficiency was evaluated using FITC-NHGR9, FITC-NHGR11, and FITC-NHGR13 in four different human prostate cell lines: PZ-HPV-7, LNCaP, PC3, and DU145. For comparison, the uptake of FITC-NHGR11 in LNCaP is set at 1.0. As shown in Fig. 1a, after 30 min incubation, FITC-NHGR11 displayed much higher uptake efficiency
than FITC-NHGR\textsubscript{9} and FITC-NHGR\textsubscript{13} ($P < 0.005$) in all the four cell lines indicating that the intracellular uptake of oligoarginines is greatly affected by the number of the repeating guanidino moiety. Of the three FITC-tagged oligoarginines, FITC-NHGR\textsubscript{13} showed the lowest uptake in three of the tested cell lines (PZ-HPV-7, PC3, and DU145). In PC3 and DU145, FITC-NHGR\textsubscript{9} displayed appreciable uptake values, which are 63 and 65\% of that of FITC-NHGR\textsubscript{11}, respectively. Overall, the PZ-HPV-7 and LNCaP cell lines exhibited highly selective internalization of oligoarginines varying with the peptide length.

The subcellular localization of FITC-NHGR\textsubscript{9}, FITC-NHGR\textsubscript{11}, and FITC-NHGR\textsubscript{13} in the prostate cancer cell lines was shown in Fig. 1b. Apparently, FITC-NHGR\textsubscript{11} exhibited a higher fluorescent intensity in all the cell lines. The majority of FITC-NHGR\textsubscript{11} was localized in the cytosol, while in PZ-HPV-7 and PC3 cell lines, nuclear staining with FITC-NHGR\textsubscript{11} was also seen. Both FITC-NHGR\textsubscript{9} and FITC-NHGR\textsubscript{13} showed significantly lower fluorescent intensity than FITC-NHGR\textsubscript{11} in all four tested cell lines, which is consistent with the cell uptake results. Taken together, these data demonstrate the high efficiency and amino acid length-dependent uptake of FITC-NHGR\textsubscript{11} in various prostate cell lines, which has made FITC-NHGR\textsubscript{11} as a unique probe for detecting prostate cancer.

Preparation of 64Cu-DOTA-NHGR\textsubscript{11}

To label NH$_2$GR\textsubscript{11} with 64Cu, a commonly used bifunctional chelator, DOTA was conjugated to the N terminus of the peptide. The conjugate, DOTA-NHGR\textsubscript{11}, was labeled with 64Cu by incubating with 64Cu$^{2+}$ in 0.4 M NH$_4$OAc buffer (pH 6.5) at 37°C for 30 min. Non-specifically bound 64Cu was removed in the form of 64Cu-DTPA at the end of the radiolabeling procedure. The radiolabeling reaction was monitored by radio-TLC analysis, in which the reaction mixture was sampled on an instant TLC plate that was then developed in PBS buffer. Under the TLC conditions, 64Cu-DOTA-NHGR\textsubscript{11} stayed at the origin, while 64Cu-DTPA moved to the solvent front. The radiochemical yield was $>$90\% when 10μg of the DOTA conjugate was used to label 2–3 mCi of 64Cu. The 64Cu-DTPA was removed by passing the reaction mixture through a light C18 Sep-Pak cartridge and three times of washing with PBS. The product, 64Cu-DOTA-NHGR\textsubscript{11}, could then be efficiently eluted with 80\% of ethanol. The radiochemical purity of 64Cu-DOTA-NHGR\textsubscript{11} was nearly 100\% after the Sep-Pak purification as determined by radio-ITLC and radio-HPLC.

To confirm the identity of the labeled product, 64Cu-DOTA-NHGR\textsubscript{11} was prepared and used as a reference standard. Both 64Cu-DOTA-NHGR\textsubscript{11} and 64Cu-DOTA-NHGR\textsubscript{11} showed a single peak on HPLC (64Cu-DOTA-NHGR\textsubscript{11}: radioactivity detector; 64Cu-DOTA-NHGR\textsubscript{11}: PDA UV detector) with the same retention time within 14–15 min.

Biodistribution and in vivo pharmacokinetics

The tissue distribution of FITC-NHGR\textsubscript{9}, FITC-NHGR\textsubscript{11}, and FITC-NHGR\textsubscript{13} was conducted in control and PC-3 tumor-bearing nude mice. The biodistribution data are presented in Figs. 2 and 3, respectively. For comparison, the uptake value of FITC-NHGR\textsubscript{9} in the prostate is set at 1.0 in Fig. 2. Compared to FITC-NHGR\textsubscript{9} and FITC-NHGR\textsubscript{13}, FITC-NHGR\textsubscript{11} clearly showed preferential accumulation in the prostate tissue as measured by the uptake ratios of the prostate to other organs. As shown in Fig. 3, FITC-NHGR\textsubscript{11} showed high relative uptake values in both prostate tissue and prostate tumor. Impressively, the uptake ratios of tumor to muscle and prostate to muscle were 3.8 and 8.7, respectively. In addition, FITC-NHGR\textsubscript{11} showed low uptake in the major clearance organs (e.g. liver, spleen, and kidneys).

Given the limited capability of fluorescence imaging quantification for in vivo evaluations, the in vivo pharmacokinetics of NH$_2$GR\textsubscript{11} was evaluated using 64Cu-DOTA-NHGR\textsubscript{11} in normal mice based on a two-compartment model. Its half-life in the blood (the primary compartment) was 10.7 min; and the elimination half-life from other organs (the secondary compartment) was 17.2 h.

Small animal PET-CT imaging

The comparative small animal imaging evaluation of 64Cu-DOTA-NHGR\textsubscript{11} was performed using PC3 and H2009 tumor-bearing SCID mice, which were injected with a
similar amount of peptide with respect to the volume of tumor as calculated based on the specificity radioactivity of $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$. The PET-CT imaging acquisition was conducted at 1, 4, and 24 h p.i. ($n = 3$ at each time point). The representative PET-CT images (transaxial) are presented in Fig. 4. Clearly the PC3 tumors on both flanks were visualized by $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ on PET images at 1, 4 and 24 h p.i. In contrast, the H2009 tumors were only visible at 1 and 4 h with much lower signal intensity on PET as compared to the PC3 tumors; at 24 h p.i., they became not detectable.

The PET images were quantitatively analyzed by the Siemens Inveon Research Workplace (IRW) software. Summarized in Table 1 are the uptake values of $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ in the regions of interest [tumors (left and right), heart, liver, lung, kidney (left), and muscle] obtained from the imaging quantification. Not surprisingly, $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ showed nearly identical uptake values in the right and left tumors. The accumulation level of $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ in the PC3 tumors remained steady out to 24 h p.i. (1.17 ± 0.19%ID/g at 1 h p.i.; 0.91 ± 0.32%ID/g at 4 h; 24 h 0.82 ± 0.24%ID/g at 24 h), whereas its uptake in the H2009 tumors was significantly lower ($P < 0.02$) and showed an appreciable trend of decreases over time (0.81 ± 0.07%ID/g at 1 h p.i.; 0.47 ± 0.12%ID/g at 4 h; 24 h 0.33 ± 0.05%ID/g at 24 h). Impressively, the uptake ratios of $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ in PC3 tumor versus muscle at 1, 4, and 24 h p.i. were 5.06 ± 0.96, 4.87 ± 1.29, and 10.41 ± 6.07, respectively. In other organs, $^{64}\text{Cu}\text{-DOTA-NHGR}_{11}$ exhibited a very similar distribution pattern in both tumor-bearing mouse models.

Discussion

In spite of the extensive utilization of arginine-rich CPPs for intracellular delivery of a broad range of bioactive materials, the internalization mechanisms of CPPs are still under investigation. It has been reported that a slight structural alteration might lead to significant changes of the CPP internalization mechanisms or subcellular localization, which can thereby considerably affect its internalization efficiency and the bioavailability of its cargos (Nakase et al. 2008). Internalization selectivity of CPPs into specific cells or organs is highly desirable for efficient target delivery of therapeutics in order to minimize the side effects on non-target organs. This selectivity can be obviously imparted by attaching a targeting molecule to the CPP-cargo conjugate, although it adds complexity to the overall construct. From screening of various CPPs for the potential candidate of delivery vehicle in prostate cancer, we have reported that an arginine-rich CPP exhibits a high efficiency of intracellular uptake in vitro (Zhou et al. 2006). In 2007, Elson-Schwab et al. (2007) reported that the delivery of arginine-rich CPPs at nanomolar transporter concentrations was completely mediated by the membrane-associated heparan sulfate proteoglycans (HSPG). Given the fact that the expression level of HSPG varies with cell type (Sasisekharan et al. 2002; Sanderson et al. 2004), it is not surprising that CPPs with certain structure or sequence may display cell or organ specificity to some extent. Indeed, the fact that the negatively charged heparan
Data are presented as %ID/g ± SD (n = 3; *P < 0.02; **P < 0.002; ***P < 0.001)

Table 1 PET quantification data of 64Cu-DOTA-NHGR11 in PC3 and H2009 tumor-bearing mice at 1, 4, and 24 h p.i.

<table>
<thead>
<tr>
<th>%ID/g</th>
<th>PC3 tumor model</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>H2009 tumor model</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 h</td>
<td>4 h</td>
<td>24 h</td>
<td></td>
<td></td>
<td>1 h</td>
<td>4 h</td>
<td>24 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td>1.17 ± 0.19**</td>
<td>0.91 ± 0.32*</td>
<td>0.82 ± 0.24***</td>
<td></td>
<td></td>
<td>0.81 ± 0.07**</td>
<td>0.47 ± 0.12*</td>
<td>0.33 ± 0.05***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>0.58 ± 0.06</td>
<td>0.52 ± 0.03</td>
<td>0.40 ± 0.06</td>
<td></td>
<td></td>
<td>0.72 ± 0.05</td>
<td>0.43 ± 0.13</td>
<td>0.39 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>9.13 ± 1.75</td>
<td>7.95 ± 1.91</td>
<td>5.03 ± 1.17</td>
<td></td>
<td></td>
<td>8.13 ± 0.12</td>
<td>7.63 ± 0.31</td>
<td>7.20 ± 0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>0.59 ± 0.07</td>
<td>0.62 ± 0.10</td>
<td>0.43 ± 0.08</td>
<td></td>
<td></td>
<td>0.55 ± 0.04</td>
<td>0.27 ± 0.05</td>
<td>0.31 ± 0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>3.93 ± 0.21</td>
<td>3.40 ± 0.00</td>
<td>1.73 ± 0.06</td>
<td></td>
<td></td>
<td>4.27 ± 0.15</td>
<td>4.33 ± 0.35</td>
<td>2.10 ± 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>0.24 ± 0.06</td>
<td>0.18 ± 0.03</td>
<td>0.09 ± 0.05</td>
<td></td>
<td></td>
<td>0.24 ± 0.03</td>
<td>0.15 ± 0.09</td>
<td>0.09 ± 0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the present work, we first evaluated the length effect on the internalization efficiency using three FITC-tagged oligoarginines differing in the number of repeating arginine units in hope for an optimal length for the following evaluations. The in vitro cell uptake and subcellular localization experiments were performed in four different prostate cell lines. The result was what we anticipated to some extent. The CPP with 11 arginine-repeating units, NH2GR11, unequivocally demonstrated its superiority over other two CPPs with either shorter or longer length in term of absolute cell uptake and internalization efficiency (Fig. 1). As shown in Fig. 1b, NH2GR11 was primarily presented in the cytosol after being internalized.

Given the in vitro result, we proceeded to evaluate whether NH2GR11 could maintain the superior properties in normal nude mice as compared to NH2GR9 and NH2GR13. As measured by the uptake ratios of the prostate to other organs, a clear preferential accumulation in the prostate tissue was observed for FITC-NH2GR11 but not for either FITC-NH2GR9 or FITC-NH2GR13. This overall in vivo uptake result of the three FITC-tagged peptides is similar to the in vitro result, indicating that the biologic activity of these CPPs remains quite consistent under the environment of different tissue types. Nevertheless, this high uptake in normal prostate tissue exhibited by FITC-NH2GR11 precludes NH2GR11 from being considered as imaging probes for primary prostate cancer detection. However, it can be well suited for the detection of distant prostate cancer metastases. As such we further evaluated the biodistribution profile of FITC-NH2GR11 in PC3 tumor-bearing animal with the tumor distant from the normal prostate (Fig. 3). In addition to the expected high uptake in the prostate, FITC-NH2GR11 showed elevated accumulation in the PC3 tumor, which serves as an analog of distant prostate cancer metastasis.

The in vivo pharmacokinetics of NH2GR11 evaluated with 64Cu-DOTA-NHGR11 in normal mice showed that the CPP was cleared from the blood rapidly with a half-life of 10.7 min, but its elimination half-life from other organs

Heparan sulfate proteoglycans consist of a diverse family of glycosaminoglycan-bearing protein cores including the syndecans and perlecan (Kirn-Safran et al. 2009). Recently, Datta et al. (2006) reported that perlecan, also called HSPG-2, is highly expressed in various prostate cancer cell lines including LNCaP, PC3, and DU145, and the cell growth is inhibited by silencing the expression of perlecan. In addition, the level of perlecan in prostate cancer tissues was found in good correlation with the Gleason score and rapid cell proliferation. Similarly, syndecan-1, a cell membrane-bound HSPG, was reported with a great overexpression during the androgen-independent progression of prostate cancer in a mouse model (Alexander et al. 2000) and the androgen-independent prostate cancer cell lines, such as PC3 and DU145 (Chen et al. 2004a, b).

The preferential uptake of NH2GR11, that we observed in various prostate cancer cell lines could be reasonably explained by the upregulated expression of HSPG in prostate tissues or cancer cells. This prompted us to speculate the potential application of NH2GR11 as PET imaging probe for the diagnosis of prostate cancer, while the detailed mechanism of this specific uptake may take years of research to reveal. It is noteworthy that other CPPs with different sequences or lengths may exhibit similar or even better prostate tissue uptake specificity. Given the high uptake of NH2GR11 was also observed in the normal prostate tissue (Figs. 2, 3), we believe that the NH2GR11-based PET imaging probes will be more suitable for the detection of distant prostate cancer metastases such as lymph node and bone metastases rather than primary prostate tumor. Indeed, there has been a postulation that the bone extracellular matrix is a perlecan-rich site, which explains why prostate cancer preferentially metastasizes to the bone (Datta et al. 2006).

CPPs with different sequences or lengths may exhibit similar or even better prostate tissue uptake specificity. In the present work, we first evaluated the length effect on the internalization efficiency using three FITC-tagged oligoarginines differing in the number of repeating arginine units in hope for an optimal length for the following evaluations. The in vitro cell uptake and subcellular localization experiments were performed in four different prostate cell lines. The result was what we anticipated to some extent. The CPP with 11 arginine-repeating units, NH2GR11, unequivocally demonstrated its superiority over other two CPPs with either shorter or longer length in term of absolute cell uptake and internalization efficiency (Fig. 1). As shown in Fig. 1b, NH2GR11 was primarily presented in the cytosol after being internalized.

Given the in vitro result, we proceeded to evaluate whether NH2GR11 could maintain the superior properties in normal nude mice as compared to NH2GR9 and NH2GR13. As measured by the uptake ratios of the prostate to other organs, a clear preferential accumulation in the prostate tissue was observed for FITC-NH2GR11 but not for either FITC-NH2GR9 or FITC-NH2GR13. This overall in vivo uptake result of the three FITC-tagged peptides is similar to the in vitro result, indicating that the biologic activity of these CPPs remains quite consistent under the environment of different tissue types. Nevertheless, this high uptake in normal prostate tissue exhibited by FITC-NH2GR11 precludes NH2GR11 from being considered as imaging probes for primary prostate cancer detection. However, it can be well suited for the detection of distant prostate cancer metastases. As such we further evaluated the biodistribution profile of FITC-NH2GR11 in PC3 tumor-bearing animal with the tumor distant from the normal prostate (Fig. 3). In addition to the expected high uptake in the prostate, FITC-NH2GR11 showed elevated accumulation in the PC3 tumor, which serves as an analog of distant prostate cancer metastasis.

The in vivo pharmacokinetics of NH2GR11 evaluated with 64Cu-DOTA-NHGR11 in normal mice showed that the CPP was cleared from the blood rapidly with a half-life of 10.7 min, but its elimination half-life from other organs.
(the secondary compartment) was rather long (17.2 h). This was why we chose 64Cu ($t_{1/2: 12.7}$ h) instead of 18F ($t_{1/2: 110}$ min) for the PET application of NH$_2$GR$_{11}$.

The labeling of DOTA-NHGR$_{11}$ with 64Cu was straightforward. The radiochemical yields were reasonably high. After the purification by a light C18 Sep-Pak cartridge, the radiochemical purity of 64Cu-DOTA-NHGR$_{11}$ was nearly 100% as determined by a reverse phase HPLC method. The specific radioactivity of 64Cu-DOTA-NHGR$_{11}$ was 11 GBq/μmol.

With the goal to develop NH$_2$GR$_{11}$ for specific PET imaging of prostate cancer metastases, we and performed a comparative PET-CT imaging experiment using PC3 and H2009 tumor-bearing mouse models. However, due to the availability of 64Cu and the tumor-growth rate difference between PC3 and H2009, the tumor sizes of PC3 and H2009 could not be ideally matched for this preliminary evaluation. The PC3 tumors were around 100 mm3 at the time of PET-CT imaging, while the H2009 tumor size was in the range of 100–300 mm3. However, the PC3 tumors were clearly visualized with 64Cu-DOTA-NHGR$_{11}$ at 1, 4, and 24 h p.i., while the H2009 tumors became invisible on PET images after 4 h p.i. The PET imaging quantification further confirmed that the absolute uptake of 64Cu-DOTA-NHGR$_{11}$ in the PC3 tumors was significantly higher than in the H2009 tumors throughout the imaging study, indicating the desired imaging specificity of 64Cu-DOTA-NHGR$_{11}$. The slow clearance of 64Cu-DOTA-NHGR$_{11}$ from the PC3 tumors likely reflects the fact that the radiotracer had been internalized into the tumor cells within 1 h p.i., while the significant clearance of 64Cu-DOTA-NHGR$_{11}$ from the H2009 tumors probably indicates that the radiotracer could not be efficiently internalized into the lung cancer cells. Intriguingly, there are reports that the syndecan-1 expression is lost in lung cancer (Nackaerts et al. 1997; Chen et al. 2004a, b).

It is noteworthy that the biodistribution profiles of NH$_2$GR$_{11}$ obtained from FITC-NHGR$_{11}$ and 64Cu-DOTA-NHGR$_{11}$ (Fig. 2; Table 1) are not in good agreement with regard to the uptake values in the liver and kidneys. While the discrepancies might be caused by the different administration routes of FITC-NHGR$_{11}$ and 64Cu-DOTA-NHGR$_{11}$, the high accumulation of 64Cu-DOTA-NHGR$_{11}$ in the liver could be partially resulted from the dislocation of 64Cu from the DOTA moiety (Boswell et al. 2004). To circumvent this in vivo stability problem, in our future evaluations of NH$_2$GR$_{11}$, we will replace the DOTA moiety with a cross-bridged tetraazamacrocyclic bifunctional chelator (CB-TE2A: 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) whose 64Cu-complex has been shown with strong resistance to the in vivo transchelation of 64Cu (Sun et al. 2002).

Conclusions

We have demonstrated the potential of using NHGR$_{11}$ to develop specific PET imaging probes for distant prostate cancer metastases by both in vitro and in vivo evaluations performed with FITC-NHGR$_{11}$ and 64Cu-DOTA-NHGR$_{11}$. Further mechanistic elucidation of the cell uptake and internalization of arginine-rich CPPs would facilitate the development of this unique group of molecules for targeted molecular imaging and drug delivery.

Acknowledgments This work was partially supported by the Prostate Cancer Research Program of the United States Army Medical Research and Materiel Command (W81XWH-08-1-0305 and W81XWH-04-1-0222), a Clinical Innovator Award from the Flight Attendant Medical Research Institute, and a small animal imaging research program grant (SAIRP) from the National Institute of Cancer (U24 CA126608). The authors acknowledge the generous support of a private donor that allowed the purchase of the Siemens Inveon PET-CT Multi-modality System.

References

Elson-Schwab L, Garner OB, Schuksz M, Crawford BE, Esko JD, Tor Y (2007) Guanidinylated neomycin delivers large, bioactive...
A cell permeable peptide analog