
Rethinking Mobile Telephony with the IMP

M. DeYoung, N. Henke, G.Wai and J. M. Smith
University of Pennsylvania

Abstract : The recent widespread deployment of

wireless LAN technology raises the question of how
a mobile telephony system might instead be
architected to use wireless LAN access points and
the Internet to achieve similar services. In this
paper, we examine an end-to-end architecture for
mobile telephony, with a strong focus on endpoint
issues.
We have designed, implemented, and have
experience using devices we call Internet Mobile
Phones or IMPs. The IMP system provides
encrypted wireless voice communication over
802.11B LANs. IMPs run Linux on a lightweight
single-board computer running customized voice
over IP software; data is encrypted with 128-bit
Blowfish.
The paper reports on our design decisions and the
resulting implementation of the IMPs, with
sufficient detail to reproduce the devices. We report
our experiences with using them for several months
in a laboratory environment, and close with
proposals for future experiments to investigate scale
and extensibility.

1. Introduction
The increasing ubiquity of Internet communication

and wireless access points has made universal Internet
access increasingly convenient. There are clearly
barriers to this vision of accessing a device by its
address such as NAT boxes, firewalls and for-pay
services, but social factors and technologies such as
IPv6 favor its long-term growth. A potentially
important consequence of this infrastructure is the
ability to utilize the Internet for new applications, some
of which are enabled simply by the availability of new
edge devices [6] and the addition of some software
“glue” to achieve interoperability with the existing
Internet infrastructure.

The cellular telephone system provides widespread
wireless voice service, and is integrated with the
traditional telephony system. This enjoys excellent
“network externalities”, as the first deployed cellular
telephone is part of a network with extensive
connectivity. Cellular telephones are now evolving
towards computers, but the basic bearer architecture
has remained one of telephony. Table I illustrates the
design choices for infrastructures for mobile telephony,
with access and bearer architectures on one axis and
some common devices on the other. The traditional
mobile phone system uses circuit-switched access and a
circuit-switched bearer architecture. While provision of
VOIP bearer services is underway in the telephony
industry, and portions of it such as SS7 or SCTP
signaling are packet-switched, deployed mobile
telephony access infrastructure is circuit-switched.

3GPP and 3GPP2 phones resemble Internet terminals,
but use a managed guaranteed bandwidth network.

Table I: Switching and Roles in Voice Services

One timely question is whether the growing Internet

infrastructure is well-suited to providing a mobile
telephony service, now that wireless access through
802.11b LANS is increasingly common, and often
publicly accessible.

 While a widespread IP telephony infrastructure
is now being developed and deployed with various
Voice Over IP (VOIP) protocols, reproducing various
features of handheld wireless voice devices intended to
behave as mobile telephones presented an interesting
design exercise. In addition, since features are added at
the endpoints in the IP architecture, design choices
existed for privacy protections unavailable to the
traditional cellular telephone user. These protections
are particularly attractive in the context of wireless
VOIP services.

1.1. Experimental Goals

Our hypothesis was that a handheld mobile 802.11

device using IP as a bearer service would provide
indications that an alternative architecture for mobile
telephony was possible if not today, then in the very
near future. Our experimental methodology was the
implementation of a system, largely centered around
the design of the endpoint (as the end-to-end argument
[21] would suggest is the appropriate design objective)
we call the Internet Mobile Phone, or IMP. An
operational IMP which emulates circuit-based
telephony over wireless access to IP presents an
objective demonstration of the strength of a purely-IP
based mobile telephony approach.

Our high level design goals for the IMP were as
follows:

1. Design and implement a user device which would
serve as a portable personal 802.11b client.

2. Implement a fully capable IP host on the device,
that given an IP address would be able to interact
with any other, including another such device

3. Provide a simple Voice Over IP (VOIP) service

Device
Type

Mobile Access
Infrastructure

Bearer
Service
Infrastructure

Cellular
Telephone

Wireless
Circuit-

Switched

Circuit-
Switched
(VOIP core?)

Internet
Mobile Phone
(IMP)

Wireless
Packet-Switched
IP

IP packet
switched

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Rethinking Mobile Telephony with the IMP

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pennsylvania,3451 Walnut Street,Philadelphia,PA,19104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Technical Report No. MS-CIS-11-01

14. ABSTRACT
The recent widespread deployment of wireless LAN technology raises the question of how a mobile
telephony system might instead be architected to use wireless LAN access points and the Internet to
achieve similar services. In this paper, we examine an end-to-end architecture for mobile telephony, with a
strong focus on endpoint issues. We have designed, implemented, and have experience using devices we call
Internet Mobile Phones or IMPs. The IMP system provides encrypted wireless voice communication over
802.11B LANs. IMPs run Linux on a lightweight single-board computer running customized voice over IP
software; data is encrypted with 128-bit Blowfish. The paper reports on our design decisions and the
resulting implementation of the IMPs, with sufficient detail to reproduce the devices. We report our
experiences with using them for several months in a laboratory environment, and close with proposals for
future experiments to investigate scale and extensibility.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

4. Provide as much of the ad-hoc, unregulated “feel”
of a walkie-talkie as possible, while providing a
reasonable mobile telephony service

5. Provide a secure channel establishment protocol
and encryption of the data on the VOIP channel
for privacy protection.

1.2. Outline of this paper

This paper is not about the number of such devices

that can be supported by an 802.11b access point, nor
is it about the quality of service required [1] or voice
quality achievable. It is not about audio for desktop use
on a LAN [23,24,25]. Instead, we sought to prototype
a working secure IP mobile telephony system that met
our high level goals, and was realizable at a reasonable
cost in both time and money. We believe we have
achieved that, as we used the devices to communicate
at what, by virtue of our many conversations we judge
to be reasonable voice quality, at least as good as the
commercial cellular telephones we use. As an aside,
since some of the conversations were about the system,
it might be argued that it helped bootstrap itself into
existence.

 The next section, Section 2, provides a more
detailed discussion of the design goals for an IMP.
Section 3 describes the hardware realization of our
handset, including a parts list for those interested in
reproducing our experiment (one of our long-term
research goals is to build a user community to test
scalability issues – see Section 8). Section 4 discusses
the software environment, which required substantial
engineering of device support software and integration
of encryption and VOIP. Section 5 describes the
implementation and evaluation of the security features
of our system. Section 6 describes our experience
using the system. Section 7 concludes the paper with
our assessments of the contributions of this work and
desirable directions for follow-on work.

2. Detailed Design Goals

An Internet Mobile Phone is a mobile voice

communication device that uses the increasingly
prevalent wireless LAN access to IP. An IMP
experimental prototype must address the following
design issues:

• IP based wireless networking
• Security Architecture and Authentication
• Voice Communication System
• Device Operating Environment
• Hardware and packaging

IP based networking is a central design goal as it

allows us to address the larger hypothesis of the paper,
that wireless LAN technology provides a natural
transition from circuit-centric to IP-centric mobile
telephony. The 802.11b wireless LAN is widely
deployed, and IP addresses are obtained at wireless
LAN access points that interface to the broader

Internet, typically via DHCP. IP transport can be used
for both the control and data planes of the system.

Security criteria can be modeled as CIA –
Confidentiality, Integrity and Availability. Any
broadcast network can be disrupted by transmission-
based attacks (such as jamming or flooding) which
would inhibit availability. Thus we did not make
availability a security goal, but did set confidentiality
and integrity as major goals. The use of cryptography
seemed obvious; the question is at where in the design
it would be employed. In brief, we chose an end-to-end
strategy and encrypted voice before transporting it via
conventional IP. Some privacy goals (such as
knowledge of who is talking to whom) are sacrificed in
the service of sensible layering, although use of an IP-
based service allows one to employ very sophisticated
schemes (such as those based on IPsec tunnels [28] or
onion routing) if so required.

The IMP establishes logically peer-to-peer
connections to transmit voice data. Since dynamic IP
addressing is used, and IP communication between
peers requires at a minimum reciprocal knowledge of
addresses, we maintain a list of the IP addresses of all
connected users. When a user logs on to the system the
authentication system will store the IP address assigned
to the user and allow the user to retrieve IP address of
other connected users. This has the flavor of a “buddy
list” or simply an on-line directory. A variety of other
schemes are possible under various assumptions about
how addresses are managed, such as per-device static
IP addresses; beaconing with ring search for IP address
discovery using fast broadcast [7]; or the “home
address” concepts used in Mobile IP [11]. These issues
are not central to the architectural question and while
technically fascinating are beyond the scope of this
paper.

There are a variety of Voice Over IP (VOIP)
platforms. One such platform, the Nautilus [4] open
source system includes encryption, provides a good
basis for securing a peer-to-peer voice channel, using
Diffie-Hellman [3] key exchange for each
conversational session. We note in passing that Diffie-
Hellman key exchange requires no external method of
key management.

Easy implementation of the prototype suggested a
general purpose computing platform with a familiar
programming environment, especially as much of the
work required in integrating the components of the
system would be done in software. The wide range of
devices supported by Linux, the availability of the
Nautilus system, and a variety of embedded versions
appropriate for single-board computer (SBC)
implementation motivated our choice. Among other
tasks to be detailed in Section 4, the software manages
the bootstrap, authentication/contact lists, user
interface, call setup and teardown, networking, the
voice codec and encryption.

Our hardware design goals were first to use as many
off-the-shelf components as possible, and to compose
them to both ease prototyping and to meet the
packaging constraints of a system intended for
handheld mobile use. While a secondary goal, we also

sought to be reasonably cost-effective in our choices.
This suggested, for example, that we choose a design
which could accommodate 802.11 hardware readily
found in our laboratory, such as PC-MCIA
implementations, and this influenced our choice of
SBC. As discussed in the next section, an IMP can be
realized for under $1000 by a capable hobbyist.

3. Hardware Design and Realization

Figure 1: Top View of the IMP

The hardware is small enough for handheld

operation. We used a small, battery-powered single
board computer (SBC) based on the StrongArm used in
many mobile telephones, the Elf [10]. We operated the
Elf at 133 Mhz, although the system’s data sheet
indicated operation up to 206 Mhz. The processor is

Table 2 : Components used and costs

capable of 150 Dhrystone MIPS at the 133 Mhz clock
rate. The Elf requires battery power in the range of 6.0
volts (drawing 1.5 Amps) to 12.0 V (drawing 1.0
Amp). A pack of eight AA Nickel-Metal Hydride
rechargeable batteries was used. These batteries
provide 1.2 V each, for a total of 9.6 V. Each battery

has 1700 milliamp hours (mAh) of power, and though
the draw varies with use, experience showed that this
eight-battery configuration normally lasts over two and
a half hours while the phone is being used
continuously, and a longer lifetime if the IMP is idle.
We have made no serious attempts in our prototype to
address power management, but as with packaging, the
problem can be addressed ; see e.g., [8]. An LCD
display [14] is used for output, a keypad for input. The
LCD display and keypad communicate with the Elf
through an RS-232 serial cable.

Figure 2 : Bottom View of the IMP

The SBC is coupled to commercial PC-MCIA

802.11b devices. The channel bandwidth must be great
enough to transmit voice data. The most compact
encoding scheme that may be se dis LPC-10, which
requires 14.4 kbps plus some overhead. The data rate
must be greater than approximately 15kbps. IEEE
802.11b supports much higher data rates (11 Mbps) so
this is not an issue. Throughput tests using ttcp
between the Elf and a more powerful computer indicate
that the IP/802.11 system can obtain more than
adequate throughputs of 500 kilobytes per second. The
use of commercial off-the-shelf devices means that any
commercial 802.11b access point can be used as
infrastructure for the device. Parts are detailed in Table
2.

Using these components, the total cost of
implementation is well under $1000, in reach of many
hobbyists (we purchased one of the Elfs as part of a
development kit costing about $3000, but the
additional $2400 for the development software we
consider a one-time cost, as others can use our GPLed

Item Manufacturer Cost
Elf SBC Inhand Electronics $640
Keypad Digikey $15
LCD display Matrix Orbital $85
802.11bPCMCIA Orinoco $90
Plexiglas Case Machine Shop $120
8 AA Ni-MH

Battery
Energizer $24

source). As the device was intended for mobile use, the
individual parts were packaged into a portable unit, as
photographed in Figures 1 and 2.

Two Plexiglas panels house the components. The
bottom panel (Figure 2) holds the SBC and the battery
pack (which can be seen at the bottom of the
photograph), while the top panel (as can be seen in
Figure 1) holds the LCD, keypad, and
microphone/speaker jacks. The overall size is 8.5”
long x 4” wide x 3.5” high – the size can be inferred
from the familiar AA batteries or 802.11 card. The
Plexiglas frame was milled by a local machine shop.

The SBC is located on the bottom Plexiglas panel,
as can be seen in Figure 2. A specialized
implementation of the Linux operating system runs on
the SBC, which manages the user interface and secure
voice over IP software. The software architecture is
described below in Section 4. To ease implementation
the database is run remotely on a server, as we describe
in Section 5.

The system has proven to be quite reliable, in spite
of stress-testing from laboratory clumsiness and
transport in backpacks and coat pockets.

4. Software Design and Realization

Software systems comprised the majority of the

effort in prototyping the Internet Mobile Phone. The
effort was split up into the encryption software, the
voice over IP software, the authentication software, and
the phone operating software. The encryption and
voice over IP software were based on the Nautilus open
source software. In addition, the software also
supports the following features:
• Full Duplex Audio (for good interactive use)
• User Modifiable Database
• Secure Voice over IP
• LCD and Keypad Interface
• Stateless Client Device
The basic flow of the device software is

straightforward. It initializes the device (essentially a
bootstrap) when the device is powered up, and then
waits for a user login. Data is sent to the server to
authenticate for local access. A contact list of IP
addresses is retrieved and the system is then ready to
send or receive voice calls. In either the caller or callee
mode, Diffie-Hellman key negotiation is used to
generate a session key used to encrypt the voice
conversation. Call termination results in the system
returning to the “prepared for call” state.

4.1. Operating System

Linux has been ported [13] to run on the Elf’s

StrongARM processor, and drivers have been written
for much of the common hardware that populates the
embedded boards that have these processors. As
mentioned before, the Elf SBC is constructed on the
Intel StrongArm processor platform. Our development
environment, however, operates on Intel x86 processor

platforms, so cross-compilation was required. We
incrementally built a language development
environment for the Elf and then moved other software
as required.

We use the Boot Loader OBject (BLOB) boot loader
to load and start the operating system. We had to
modify BLOB to run on the Elf, mainly modifying
addresses at which memory was located as well as sizes
for this memory. This included SDRAM chips to
initialize the Elf RAM, as well as onboard Flash in
which the kernel and embedded filesystem are stored.
To ease operation, we configured the serial hardware
on the Elf so that a remote terminal could connect to
BLOB, through which commands could be entered via
a text console. These changes allow BLOB to locate
and run the Linux operating system.

4.2. Device Support

The Elf has a Phillips UCB1200 audio codec [17] on

its board. To use this hardware to record and play audio
the Linux driver source code was modified, mainly to
choose appropriate initialization parameters such as
IRQ and I/O ports, but also to issue commands directly
to the codec hardware to correctly initialize the
hardware buffers.

The Elf also includes an embedded PCMCIA
controller chip on the board. The StrongArm SA1100
processor chipset provides a method to connect each of
the PCMCIA card sockets on the PCMCIA controller
directly to separate locations in DRAM, and grant
access to the controller chip directly by writing to
standard memory locations. Unfortunately, the Elf
does not use this method of interacting with its
PCMCIA chip. Rather, it is manufactured with both of
the PCMCIA card sockets mapped to the first DRAM
address, instead of separating the sockets to different
DRAM locations. In addition to this alteration, the
Cirrus chipset is only supported by the Linux kernel
when it resides on an ISA or PCI bus. Due to the
attachment of the controller chip directly to DRAM, it
was necessary to change the driver to directly access
the controller chip registers through memory. The
changes to facilitate this were provided for an earlier
version of Linux, and they were fixed to work on the
most current versions of the Linux kernel. We also had
to virtualize addresses for memory mapped I/O. Once
the PCMCIA cards themselves were accessible, the
Linux PCMCIA driver table was configured to access
the cards.

A modified Linux was needed to provide the
software platform on which the SVOIP program as
well as the user interface could run. The Elf has 16
MB of DRAM available, which after system startup
leaves between 5 and 8 MB for user programs. The
base of any version of Linux is the combination of
libraries that are provided. The programs that were run
on the Elf were queried for their library needs, and a
minimal list of libraries compiled. These libraries were
then stripped of all debugging support and extra data.

To run user commands and provide the basic system
commands, Busybox was used. Busybox is an

embedded program that provides all of the
functionality of the standard Linux system commands
in one monolithic program. Busybox is configurable to
include only minimal necessary functions and
programs. The final packages that were added to Linux
were the serial line file transfer package, lrzsz, and the
standard Linux PCMCIA packages that provide
programs to control the drivers and cards.

The base filesystem was populated with these
libraries and programs, and it occupied 6 MB.
Unfortunately, the maximum allowable size is 4 MB.
As there are two available PCMCIA slots, the second
slot was used for a 64MB flash card with an IDE hard
drive interface. To reduce the space used, the programs
that are needed to mount an IDE disk card were
queried for their libraries, and all but those few
libraries were moved to the IDE disk. Symbolic links
were used to point from the standard library locations
to the new locations on the IDE disk. These links are
“dangling” until the IDE disk is mounted, but none of
the programs that use those libraries are run until the
disk is mounted, ensuring reachability when needed.
This trick reduced the base filesystem size to 2.5 MB.

All code patches were submitted back to the
package authors for inclusion into the main code base.
In the case of the audio driver, it was accepted into the
main Linux kernel. This allows anyone with an Elf to
download the Linux kernel and use the audio hardware.
Patches have also been made available to the Elf Linux
support group. The drivers are in use by this group, and
are also being used to start the official Linux support
from the Elf’s manufacturer.

4.3. Voice over IP Architecture

The intentionally simplistic voice over IP software

subsystem is comprised of two parts:
1. Voice encoding/decoding
2. Transport layer protocol
As discussed in the previous subsection, the Elf

SBC includes the Phillips UCB 1200 single chip
integrated mixed signal audio and telecom codec. The
UCB 1200 allows for programmable sampling rates, so
the sampling is set by the voice encoding software. The
voice encoding software controls audio sampling and
encoding. The software records samples from the audio
hardware and encodes the voice using an existing voice
codec. The voice codec digitizes analog voice data
from the microphone into a readily transportable form.
The voice encoding software is also responsible for
reversing these steps at the receiving device.

Once the voice is encoded into binary form and
encrypted with the encryption software, the data must
be packaged and sent to the receiving party. The voice
over IP software uses two Internet data channels to
conduct the conversation. TCP is used for a reliable
control plane and UDP is used for voice packets under
the assumption that humans can interpolate data losses.

The voice samples were 16bits, and would ideally be
taken in 320 byte frames at 8Khz. As the codec limited
sample frames to powers of 2, we used 512 byte
frames.

While the base Nautilus system had many desirable
features, the audio hardware control and Internet data
transport mechanisms are not appropriate. The
software does not allow full duplex audio, essential for
voice conversation. The data transport protocol is
proprietary, and built on UDP/IP. This appeared
unnecessarily complex; we simplified it for engineering
and performance reasons.

The software is able to handle either an unencrypted
or fully encrypted, full duplex voice conversation.
When a call is received, the SVOIP software is
initialized. Parameters are exchanged to make sure
both parties want the same level of encryption, to
identify the port used, and to ensure compatibility of
other session parameters. If it is an encrypted call, the
Diffie-Hellman protocol is used to negotiate a secret
key for the duration of the call. The software is then
multithreaded using POSIX threads. This is called the
audio loop.

The audio loop encodes the voice data, sends the
data, receives data, and decodes it. This has been
added to provide full duplex audio. Full duplex audio
is achieved by spawning three threads. The first thread
reads data from the microphone, encodes it, encrypts it,
and sends it to the other device. The second thread
waits to receive data, decrypts it, decodes it, and plays
it through the speaker. The third thread is used for a
control signal; once the call is ended, the program is
exited and the user is returned to the user interface.

The voice data is encoded and decoded using the
G.711 µlaw codec. This codec does not compress, and
therefore provides the highest possible audio quality.
The bit rate transmitted is about 25 kbps. Wireless
802.11b allows for up to 11 Mbps, and one antenna has
a range of 150 to 200 feet. Many more users could
share an access point, even in this simplistic mode,
which has the desirable properties of good quality and
low delay. Some crude measurements indicate that the
512 byte frames are encoded and encrypted in about
40-45 ms. There is no noticeable difference in delay
with the encryption on or off, suggesting that the
delays in the system are from buffer copying from the
audio hardware into a user space buffer.

The main control signal sent besides initial
parameter exchange is that to end a call. The third
thread in the audio loop sits and waits for a “kill”
signal. When one party ends a call, it joins the threads,
sends a “kill” signal through the TCP channel, and then
closes all open file descriptors and sockets. Similarly,
once the other party receives this “kill” signal, the
threads are joined and all open file descriptors and
sockets are closed.

5. Security Architecture and Evaluation

As we discussed in Section 2, of the “CIA” criteria

our design goals for the security architecture included
confidentiality and integrity for voice conversations,
but did not include availability. Our reasoning was that
the spectrum management and multiplexing issues are
addressable elsewhere in an IP-independent fashion,

such as via spread-spectrum for the former concerns
and via overprovisioning or QoS for the latter.

5.1. Authentication

Most IEEE 802.11b infrastructures use dynamic IP

addresses obtained via DHCP. A directory service must
exist for users to determine each other’s addresses for
peer-to-peer connection. As mentioned in Section 2,
there are a variety of approaches to this problem,
ranging from fixed IP addresses to broadcast discovery
protocols such and an expanding ring search (this latter
approach does have the attractive property that it is
both “ad hoc” and “pure” peer-to-peer). The approach
we took, largely to ease implementation within the
context of our organization’s existing 802.11
infrastructure, is to maintain a central store for all IP
addresses, contact list information, and information
about online users. The database is kept on a server to
allow access either through the device, or through a
web interface. Such a database could also be
maintained in a peer-to-peer fashion if desired. A
Secure Socket Layer (SSL)-based web interface [5] is
used for account creation and contact list management.

After a user has logged onto the system, the program
executes a retrieve routine for the IP addresses. This
routine will then establish a session with the database
to read and write data. In order to limit accessibility
and address security concerns, the database will
maintain its own authentication with client privileges.
The device or user interface will then write the IP
address to a master table and retrieve the contact list
information from a table. Upon completion of these
two operations, the session to the database is closed.
The database will only be accessed on a need basis and
the device is required to establish a connection every
time it tries to get information. This stateless
transactional model reduces the both the amount of
trusted state and the window of vulnerability. With
transmission of password and data from the
authentication system, encryption is needed to provide
security and to maintain data integrity. We used
Apache with SSL for the server. SSL provides for
secure communication between client and server by
allowing mutual authentication, the use of digital
signatures for integrity, and encryption for privacy.

5.2. Peer-to-Peer Key Exchange

Diffie-Hellman key negotiation [3] is used for the

IMP. The resulting shared secret is used as a key for
the Blowfish encryption algorithm discussed in the
next section. Keys are dynamically created for each
conversation. There are no stored keys anywhere in the
system.

5.3. Voice Encryption

The encryption software operates in two phases: key

exchange and voice encryption. The Diffie-Hellman
key negotiation protocol is used for key exchange for a
voice session. Encryption of the voice data stream

takes place immediately before transport and consists
of enciphering the data with the negotiated key for the
conversation.

We used the Blowfish [23] cipher with a 128-bit key
to encipher the voice data stream. Blowfish has two
major advantage for an embedded device: (1) it is
compact, running in less than 5 K of memory used; and
(2) it uses only simple machine operations such as
exclusive OR’s, additions, and table lookups. These
advantages are significant for a RISC embedded device
such as the Elf with limited memory. An AES
implementation might also be interesting. As
conversation is interactive, performance gains pay off
in a reduction of delays from encryption operations
performed on the voice streams.

Blowfish is a 64-bit block cipher. The data to be
encrypted is split into 64-bit blocks and encrypted by
repeated passes through a simple function that is
repeated sixteen times. In this it resembles the
substitution and confusion schemes [24] used in DES
[16] but as we have noted above, Blowfish is very
sensitive to the concerns of embedded software
implementation.

5.4. Security Evaluation

The security goals of the system were voice privacy

and integrity. Voice scrambling has a long history
[12], some of this experience showing that voice
scrambling is harder than it looks. While we believe
that SSL and Blowfish are robust, we wished to
validate the system in several ways to test our design
and implementation, mainly looking for coding
mistakes, e.g., to check that we were not sending
cleartext packets or clear speech by accident..

We built a small 802.11b promiscuous listening
system with which we could emulate an opponent’s
presumed capabilities. This program runs on a
computer with an 802.11b card that can intercept IP
packets on the same LAN. We dumped traces into a log
while the system was operating. While MAC and IP
addresses and UDP port numbers are visible and might
aid traffic analysis, a variety of known techniques such
as Onion Routing could be used to create a robust
privacy overlay if one were required, so this did not
concern us. Other classic attacks on such a system
would include attacking the authentication phase of the
security protocol. Our use of an SSL interface insulates
against problems with the authentication service, and
barring bugs in SSL, will be secure. After a visual (but
not exhaustive) examination of the tcpdump-formatted
log data we could find no useful data.

To study the security of the system for voice
privacy, a packet sniffer (and thus a “promiscuous
listener” at several layers…) was implemented, and
selected packets (those between the two devices using
UDP, which we presumed were voice) were captured.
The packet format is conventional, UDP encapsulated
in IP and IP encapsulated in an Ethernet frame. The
three headers (Ethernet, IP, and UDP) are stripped and
then the UDP payload, where the voice data is found, is
sent through the same functions to decode and play it

as is done in the secure voice over IP software was
played out through the speaker.

In every experiment we performed the output of the
sniffer was (loud) noise, which based on listening we
believe reasonable to declare white noise. A complete
study would use an RF analyzer to detect signals and
emissions from the device outside of the bands used by
802.11b, and would apply various spectral tests to
ensure that the encoded voice was indeed indiscernible
from noise. While not trivial, the EM shielding
problem is understood, and the IMP’s architecture is
independent of the choice of cipher we rely on for
voice encryption. Relative to the overall architectural
goal of the system, it was remarkably easy to provide
encrypted voice; it should be more common.

6. Experiences

As noted in Sections 1 and 7 we have not attempted

to experiment with any scalability issues – that would
be challenging indeed with the two IMPs we have
actually constructed. However, that being said, we
have considerable operational experience with these
two systems, which have proven a great deal of fun to
use when roaming around our organization’s campus,
one well-equipped with 802.11b access points.

The device’s software user interface has proven
quite effective, if for no other reason than it resembles
conventional voice equipment such as our mobile
telephone design target (except, obviously as can be
seen in Figures 1 and 2, for packaging). The main user
interface program is a menu navigation system written
in Python. This allowed the user interface to use secure
HTTP connections, write to files, run system programs,
manipulate strings, and create complex data structures
with ease. The code from the LCD library was used as
an extension module to the Python library to give us
access to the LCD functions from Python. The user is
presented with the basic menus of the system; contact
list, call arbitrary IP address, and system menu.

The contact list is a scrolling list of names of people
that the user has specified that they are interested in
talking to. The contact list allows the user to select a
name and start either an encrypted or unencrypted to
that person. The user is also allowed to refresh the
contact list to retrieve the current data. The call
arbitrary IP address menu allows the user to type in the
IP address of someone they wish to call that is not
registered on the contact list. The system menu allows
the user to view their network information, signal
strength, and log out of the authentication system and
device.

The user presents a username and password to log
into the authentication system and device to receive
service. By having the authentication take place at the
central authentication system instead of on the actual
IMP device, any user on the system may log in from
any IMP. The keypad numbers are mapped to the
letters of the alphabet using the encoding used for
touch-tone phones. The authentication system submits
username and password via an SSL connection, and a

contact list for the user is returned if the password is
correct. If the user is denied access to the
authentication system, the interface is reinitialized to
allow additional login attempts.

The most important aspect of the user interface is
allowing the user to call another party and talk to them
using the SVOIP program. Once a user selects a name
to call, the user interface uses the data from the
authentication system to resolve the name to an IP
address. This address is used to contact the remote
party to negotiate a port to be used for the call, as well
as whether or not the call will be encrypted. This
connection is done using an SSL socket for security.
The SVOIP program is then started with the negotiated
parameters and the user is presented with the security
information on the LCD. The user is also able to cancel
the call via the keypad. On the receiving end, the user
interface listens to a port that is used to exchange the
negotiated parameters. When a connection is received,
the user interface is interrupted and information
indicating the type of incoming call is displayed. The
SVOIP program is started as well, and the receiving
user is also allowed to cancel the call via the keypad.
When the call is completed, both users are returned to
their original location in the navigation menu.

The use of Linux provided the advantage of a
familiar programming environment, which accelerated
our enhancements. It is hard to overestimate the value
of programmability in an end-to-end architecture!

The voice quality is quite good. We did some
comparisons among our mobile telephones (this turned
out to give us a reasonable selection of providers) with
wireless technologies including PCS, GSM and
CDMA, and the IMP conversations were comparable
and often better in voice quality. In similar
comparisons with desk phones using commercial VOIP
services, these services often sounded better than the
IMP, but often sounded worse. The IMP’s voice
quality was generally inferior to a POTS telephone.

The effects of signal quality (e.g., when distance
from the access point is too great) are to say the least,
dramatic. The particular Blowfish mode we have used
for the design does not require cryptographic
resynchronization, but if such resynchronization was
required (for example in the case where a feedback
mode of the Blowfish cipher was used) designs are
available for DES which we believe are easily reused
in the Blowfish context.

While as designers we are rather fond of the
prototype systems, it would benefit from the size,
weight and other interface improvements of
commercial systems, as well as improvements in
battery technology (although 2-3 hours of active use is
similar to the battery life we experience using
commercial cellular telephone systems). In spite of
these limitations (and perhaps this is inappropriate to
note in a technical paper, but is our experience
nonetheless) that our colleagues are initially curious
about the systems, and become somewhat envious of
the Internet Mobile Phones once their function is
understood.

7. Conclusions

7.1. Prior and Related Work

Architectural work by DeTreville and Sincoskie [2]

described a substantial experiment with voice over
Ethernet. In that experiment, custom handsets were
constructed and attached to a 3Mbps Ethernet to build a
packet-based PBX. One of the authors has experience
with these phones, which performed remarkably well.
This system demonstrated clearly that a packet-based
voice telephony system could be realized and might
have a variety of attractions. Using the access network
versus bearer service distinction of Section 1, this
system can be seen as unifying the access and bearer
service, as the IMP does in the wireless domain. The
agenda for this research is discussed in the recent
article by Sincoskie [26].

Similar LAN telephony systems were implemented
by a group at Xerox PARC [27,30], which attempted
greater integration with a desktop workstation
environment; other researchers used the same LAN for
voice and data packets and like the PARC team
attempted to merge desktop functionality with
telephony services [15,19,20,22]. The IMP’s only role
is to be a secure mobile phone with IP access and
bearer services.

 Commercial VOIP service is widely available
(e.g., from Vonage and Net2Phone), but the service is
largely between switches internal to the telephony
system rather than directly between end devices. Some
switch vendors are successfully selling VOIP phones to
commercial customers who wish to maintain a single
network infrastructure, letting the vendor’s switch
interface to the telephone company, acting as a PBX..
Nextel uses a packet overlay on telephony-style
channels to provide services such as a “Walkie-Talkie”
mode and group services, but does not leverage the
Internet in the way we have with the wireless LAN
technology used by the IMP.

 The ICEBERG [18,29] project at Berkeley
builds a signaling and service infrastructure using
advanced cluster computing technology and a novel
access point architecture. The IAP access points are
used to interconnect mobile devices (GSM telephones
and 802.11 laptops are described in the papers) to the
Internet, and provide signaling and call setup services
to the mobile user which seem superior to H.323 and
SIP[9] in the ICEBERG team’s analysis. Our view is
that the ICEBERG system is a powerful service overlay
for IP, and if one chose to use the IMP as a mobile
device for ICEBERG, it would simply replace some of
its present software with interface software for the IAP.

While consideration has been given to various forms
of Internet appliance (see, for example the useful
framework in [6]), as well as handheld computing (e.g.,
Itsy [8] which also addresses power and packaging
issues) we believe our secure wireless LAN-based
mobile phone system is unique.

The most similar mobile device functionality was
achieved by Shih, et al. [25] using a PDA-based system

based on the Compaq iPAQ platform, with 802.11b
communications. They studied a novel scheme for
power management, and added a “miniBrick” device
interface designed to augment the 802.11 LAN. In the
infrastructure mode of operation described in their
paper, the device does not operate with arbitrary
802.11 infrastructures (although it appears it could
operate peer-to-peer), and the focus was neither the
programming environment nor the security. Their goal
was improved power management for the mobile
device rather than a reexamination of network
architecture implied by an IP-based mobile telephony
infrastructure. The IMP is possibly the simplest
possible proof-of-concept experiment for an all-IP
mobile telephony infrastructure.

7.2. Contributions

The IMP can be built by a hobbyist, which we

believe has been aided by the technical detail in
selected portions of this paper. While the prototype
IMP realization is clumsy relative to devices such as
commercial mobile phones and pagers, it could be far
more portable if commercially packaged. A desirable
consequence of our work would be the development of
an ad-hoc user community of IMP users; we have
GPLed our software and contributed it back into the
Linux mainstream, so our software efforts need not be
duplicated.

We believe the important contributions of our work

are three:
1. We have shown (albeit at a very small scale) that an

Internet-based device can use a wireless LAN link
to emulate most of the desirable properties of
cellular telephony, while remaining IP-based. While
it was in no way designed to interface to the
conventional telephone system, the advent of
telephony/VOIP gateways might create interesting
opportunities for interoperability experiments.

2. We have shown that in spite of using wireless LAN
technology, strong encryption can be used over the
IP layer to secure the channel using modern
algorithms for cryptography and key negotiation.
The ease with which this was accomplished should
be embarrassing to cellular telephone vendors.

3. We have implemented the system in a “peer-to-
peer” fashion (with the exception of our directory
scheme), with the explicit goal of providing an
interface to wireless LANs which maximizes
Internet interoperability and minimizes the need for
centralized administration.

7.3. Future Work

The Internet Mobile Phone prototypes described in

the paper suggest that interesting ad-hoc voice
networks could be constructed with wireless access
points, for example those that are deployed throughout
our organization’s facilities – some individuals and
organizations are now permitting public access to these
access points, albeit with some of the limitations such

as NATS and firewalls mentioned in Section 1 While
802.11b contention might provide a limitation on
multiplexing, the fixed bandwidth required for voice
encoding suggests that capacity upgrades applied
locally, such as switching to 802.11a or 802.11g, could
upgrade service “hot-spots” as required. For the
devices to interface with commercial VOIP offerings,
they would simply have to use the same voice coding;
the security features could be selectively deployed as
they are with the IMPs.

Extensibility research would examine how easily
features are added to these P2P “phones” based on an
end-to-end architecture as compared to GPRS and
other approaches being attempted by the telephone
community. The straightforward addition of high-grade
security to our system suggests an architectural
advantage. Useful extensions to achieve greater
Internet interoperability would include
implementations of SIP[9] and IPSEC [15]..

Acknowledgements

Chuck Davin, Jon Moore, Ashutosh Dutta and John

Ioannidis provided useful commentary and constructive
criticism. Portions of the work were supported by
DARPA under Contract F39502-99-1-0512-
MODP001.

REFERENCES

[1] J. N. Daigle and J. D. Langford, “Models for
analysis of packet voice communications
systems”, IEEE JSAC, Sept. 1986, pp. 847-855.

[2] DeTreville, J. and W. D. Sincoskie, “A Distributed
Experimental Communications System”, IEEE
JSAC, Vol SAC-1, No. 6, Dec. 1983.

[3] Diffie, W. and Hellman, M. “New Directions in
Cryptography”, IEEE Trans. Info. Theory, Nov.,
1976.

[4] W. Dorsey et al. “Nautilus Secure Phone
Homepage”, http://www.lila.com/nautilus/

[5] R. S. Engleschall, “User Manual mod_ssl version
2.8.” Jan. 2001. http://www.modssl.org

[6] S. Gillett, W. Lehr, J. Wroclawski and D. Clark,
“Do Appliances Threaten Internet Innovation?”
IEEE Communications, October 2001.

[7] A. Gopal, I. Gopal and S. Kutten, “Hardware
Flooding”, Proc. SIGCOMM, September 1991

[8] W. R. Hamburgen, et al., “Itsy: Stretching the
Bounds of Mobile Computing”, IEEE Computer
34(4), 2001, pp. 28-37.

[9] M. Handley, et al, “SIP: Session Initiation
Protocol”, IETF RFC 2543, March 1999.

[10] Inhand Electronics, Inc. “Elf (Rev B)
Development Platform User Guide” 2001

[11] J. Ioannidis, D. Duchamp and G. Q. Maguire, Jr.,
“IP-based Protocols for Mobile Internetworking”,
Proc. SIGCOMM, Sept. 1991, pp. 235-245

[12] D. Kahn, “The Code Breakers”, Macmillan (New
York), 1967.

[13] R. King, “The Arm Linux Project.” March, 2002.
http://www.arm.linux.org.uk/

[14] Matrix Orbital Corporation, “LK204-25 User
Manual”. 2000.

[15] N. Maxemchuk, “An Experimental Speech
Storage and Editing Facility”, BSTJ, Oct. 1980,
pp. 1383-1395.

[16] Meyer, C. and Matyas, S. “Cryptography: A New
Dimension in Computer Data Security”, Wiley
(New York), 1982.

[17] Phillips Corporation. “UCB1200 Advanced
Modem/audio Analog Front end Product
Specification” Jul. 1998.

[18] B. Raman, H. J. Wang, J. Shih, A. D. Joseph and
R. H. Katz, “The Iceberg Project: Defining the IP
and Telecom Intersection”, in IEEE IT Pro,
November/December 1999, pp. 22-29

[19] P. V. Rangan, H. Vin and S. Ramanathan,
“Communication architectures and algorithms for
Media Mixing in Multimedia Conferences”, in
IEEE/ACM Trans. Net. 1(1), 1993, pp. 20-30.

[20] A. Ruiz, “Voice and Telephony Applications for
the Office Workstation”, in Proc. 1st Intl. Conf.
On Computer Workstations, November 1985, pp.
158-163.

[21] J. Saltzer, D. Reed and D. Clark, “End-to-End
Arguments in System Design”, in ACM TOCS
2(4), Nov. 1984, pp. 277-288.

[22] C. Schmandt and M. McKenna, “An Audio and
Telephone Server for Multi-Media Workstations”,
Proc. 2nd IEEE Conference on Computer
Workstations, March 1988, pp. 150-160.

[23] B. Schneier. Applied Cryptography. New York,
NY: John Wiley & Sons Inc; 1996.

[24] Shannon, C. “Communication Theory of Secrecy
Systems”, BSTJ, No.4, 1949.

[25] E. Shih, P. Bahl and M. J. Sinclair, “Wake on
Wireless: An Event Driven Energy Saving
Strategy for Battery Operated Devices”, Proc.
MOBICOM ’02, Atlanta, GA, September ’02.

[26] W. D. Sincoskie, “Broadband Packet Switching: A
Personal Perspective”, IEEE Communications
Magazine, July 2002, 40(7), pp. 54-66.

[27] D. Terry and D. Swinehart, “Managing Stored
Voice in the Etherphone System”, ACM TOCS,
6(1), February 1988, pp. 3-27.

[28] R. Thayer, N. Doraswamy and R. Glenn, “IP
Security Document Roadmap”, Internet RFC
2411, http://www.ietf.org/

[29] H. J. Wang, B. Raman, C. Chuah, R. Biswas, R.
Gummadi, B. Hohlt, X. Hong, E. Kiciman, Z.
Mao, J. S. Shih, L. Subramanian, B. Z. Zhao, A.
D. Joseph and R. H. Katz, “ICEBERG: An
Internet-core Network Architecture for Integrated
Communications”, IEEE Pers. Comms., 2000.

[30] P. T. Zellweger, D. B. Terry and D. C. Swinehart,
An Overview of the Etherphone Systems and its
Applications”, Proc. 2nd IEEE Conf. On Computer
Workstations, March 1988, pp. 160-168.

