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ABSTRACT 

 

This research paper addresses the ground vehicle 

reliability prediction process based on a new integrated 

reliability prediction framework. This paper is intended to 

provide a context for and summary of the 37 page paper 

published in the proceedings of at the 2010 U.S. Army 

GVSETS symposium, which discusses the technical 

details at greater length. The integrated stochastic 

framework combines the computational physics-based 

predictions with experimental testing information for 

assessing vehicle reliability. The integrated reliability 

prediction approach incorporates several computational 

steps to achieve reliability prediction at component and 

system level. The Army can use this framework to improve 

the reliability of the military ground vehicle fleet, 

including consideration of all kinds of uncertainty, 

especially including model uncertainty. The end result will 

be a tool to use in the design of a new ground vehicle for 

increased reliability.  The paper illustrates the application 

of the integrated approach to evaluate the reliability of the 

High-Mobility Multipurpose Wheeled Vehicle 

(HMMWV) front-left suspension system. 

 

1. INTRODUCTION 

 

The Army needs to improve the reliability of its ground 

vehicle fleet. It is difficult to achieve reliability growth 

after the fleet is fielded, so the greatest improvements will 

come from an approach that considers reliability during 

the design process. This requires that methods and tools to 

assess the reliability of a ground vehicle be available 

during the vehicle design process. Reliability is essentially 

a stochastic measure and considers many different sources 

of uncertainty and variability in the vehicle and its usage 

to assess the probability of achieving desired performance. 

 

A key challenge for building an adequate vehicle 

reliability prediction framework for military vehicles is the 

accurate modeling of the integration of various types of 

uncertainty propagation effects coming from a variety of 

sources in the presence of limited input and output 

simulation data. In addition to these uncertainty 

propagation effects, there are always modeling 

uncertainties, such as those produced by lack of data or 

limited number of computer simulations that should be 

included. The stochastic dimensionality of the vehicle 

reliability prediction problem increases drastically, since 

we start dealing with two nested spaces. In addition to the 

inner stochastic parameter space for the aleatory 

uncertainty, we will need to include an outer stochastic 

model space, to cover the epistemetric uncertainty.  

 

Moreover, for building an adequate reliability prediction 

framework, we need to further integrate all pertinent 

sources of information, integrating the computational 

prediction results with hard evidence coming form test and 

field data and soft evidence coming from expert opinions. 

Information can come from many places, and even “soft” 

sources like the experience of subject matter experts 

should be folded into the assessment. Of course, “hard” 

data sources like proving ground tests and field data carry 

more weight, but it would be wrong to completely ignore 

the wisdom of seasoned experts. 

 

We intend to produce a reliability assessment and 

prediction framework that will efficiently incorporate soft 

and hard data together (with appropriate weights) to best 

handle the stochastic and model uncertainties. We realize 

that it is unlikely that we will ever completely eliminate 

the model uncertainty, but we choose to handle it in a way 

that reduces its impact to the greatest degree possible at 

any time the framework is utilized, and can inform the 

analyst of the impact and sensitivity of the results to it. 
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We have added to this a consideration of maintenance 

operations, to allow for incorporation of uncertainty in the 

maintenance inspection interval. This is a radical 

approach, and we believe that we are the first to do such. 

However, the benefits will allow for improved reliability-

centered maintenance approaches to be developed using 

the same framework. Optimizations using this method can 

incorporate maintenance interval time as a design variable 

in the optimization process. 

 

As a final note, this framework also includes a 

considerable body of work being developed separately in 

the area of correlated uncertainties [2]. However, while 

other work focuses on the correlations in uncertainty for 

material parameters, this framework can go beyond that to 

handle correlations in other ways than just material 

properties. More details can be found in the paper we 

presented at the 2010 GVSETS symposium [1]. 

Correlated uncertainties are becoming increasingly 

important for this type of work, and will likely expand in 

the coming years. 

 

As an example of the framework in operation, we will 

consider a case study that was performed using the 

suspension on a High-Mobility Multipurpose Wheeled 

Vehicle (HMMWV). Because of publication restrictions, 

the model used was generic and represents an average 

behavior of HMMWVs without being identical to any 

specific variant currently in use. 

 

The HMMWV suspension system reliability analysis 

consisted in the following steps:  

1) Simulate stochastic road profile variations. 

The idealization of road profiles included the 

superposition of two stochastic variations: i) the road 

surface variation (micro-scale continuous, including 

smooth variations and random bumps or holes), and ii) the 

road topography variation (macro-scale continuous 

variations, including curves and slopes).  

2) Simulate the HMMWV suspension parameters 

using randomly distributed variables to modify the 

nominal values. Average vehicle speed was varied between 

17 MPH and 30 MPH.  

3) Perform multibody dynamics simulations of 

the HMMWV system using as stochastic inputs the road 

profiles and vehicle suspension dynamic parameters 

(stiffness, damping). For each simulated road profile, a 

vehicle multibody dynamics analysis was run to get 

simulated forces and displacements at each joint of the 

suspension system.  

4) Perform finite element (FE) stress analysis of 

the selected subsystem. From each HMMWV dynamics 

simulation a number of local response variables were 

considerd as random inputs for the stochastic FE stress 

analysis of the Front-Left Suspension System (FLSS). An 

efficient, specialized high-performance computing (HPC) 

stochastic finite-element analysis (SFEA) code was 

employed.  

5) Compute the local stresses refined using 

stochastic response surface approximation (SRSA) 

models. These SRSA models were based on high-order 

stochastic field models that are capable of handling non-

Gaussian variations, and non-linear correlations between 

component variables.  

6) Perform durability analysis under random 

corrosion-fatigue damage using stochastic progressive 

cracking models based on cumulative damage mechanics 

nucleation models and fracture mechanics crack 

propagation models. For reliability prediction at each 

FLSS critical location, probabilistic distribution models 

(based on the Lognormal and/or Weibull distributions) 

were applied.  

7) Incorporate uncertainty effects due to the 

limited-size of the FEA simulation dataset. 

8) Incorporate stochastic prediction model 

updating to integrate the computational predictions with 

the evidence from the test data (for stresses) and field data 

(field failures). 

 

The technical details are more complete provided in the 

paper from the 2010 U.S. Army GVSETS symposium, 

which is reference in the bibliography. We will only 

summarize important points here. 

 

2. OPERATIONAL ENVIRONMENT 

 

The idealization of road profiles includes the 

superposition of two stochastic variations: i) the road 

surface variation (micro-scale continuous, including 

smooth variations and random bumps or holes), and ii) the 

road topography variation (macro-scale continuous 

variations, including curves and slopes).  

 

Stochastic simulations of the operating environment were 

obtained by changing 1) road surface profiles 2) random 

topography and 3) vehicle average operating speed. Road 

profiles were either 5000 feet or 1500 feet in length, with 

both high and low correlation variations in the transverse 

direction. Topology on the road included rolling hills with 

short chicanes, long winding curves or no topology at all 

(straight road). The average vehicle speed was either 17 

MPH or 30 MPH.  

 

3. HMMWV BEHAVIOR SIMULATION 

 

In this project the values of the total vehicle inertia for the 

HMMWV were selected based on model number M966 

(TOW Missle Carrier, Basic Armor without weapons), 

since they were available. Tires used for all simulations 

were the bias-type 36x12.5. Front tire pressures of 20 
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pounds per square inch (psi) and rear tire pressures of 30 

psi were maintained on the HMMWV [1]. In light of the 

importance of the tire/road interaction due to the 

stochastic modeling of the road profiles, a co-simulation 

environment was used to accurately capture the vehicle 

dynamics. A specialized code was used to simulate the 

multi-body dynamics of the HMMWV vehicle, including 

the tire-road interaction. Tire-road interaction is the single 

greatest source of force loading on a ground vehicle, and 

special care must be taken with that modeling.  

 

The modeling methodology divides a vehicle in 

subsystems that are modeled independently. Parameters 

are applied to the topology of a subsystem and a set of 

subsystems are invoked and integrated together at 

simulation time to represent the vehicle model. The 

subsystems present in our model include: a chassis, front 

and rear suspension, anti-roll bar, steering, brakes, a 

powertrain and four wheels. All the major subsystems 

(front/rear suspension, steering, roll bar and powertrain) 

are connected to the chassis with bushing elements. Driver 

controls were created in the event builder as a sequence of 

maneuvers.  

 

4.  SUSPENSION SYSTEM STRESS ANALYSIS 

 

Figure 1 shows the FLSS model used for the HMMWV 

vehicle multi-body dynamics analysis and the stochastic 

FEA. The stochastic FEA code is a result of integrating a 

typical finite element code with advanced high-

performance computing (HPC) numerical libraries 

developed in national labs and top universities [1]. To be 

highly efficient for large-size FEA models, the stochastic 

FEA code incorporates both global and local, sequential 

preconditioners. The expected speed up coming from 

stochastic preconditioning is at least 4-5 times for linear 

FEA problems and about 10-15 times for highly nonlinear 

FEA problems. The comparative FEA parallel run time 

results shown in Table 1 show a near ideal speed-up when 

increasing the number of processors from 6 to 24, if the 

computational size of the problem is large enough to 

overcome the communication overhead of the parallel 

FEA.   

 

We also considered that the HMMWV model suspension 

parameter variations are stochastic. For each wheel 

suspension system there are 13 random variables [1].  A 

number of 36 vehicle dynamics joint variables were used 

as random inputs for stochastic FE stress analysis of 

FLSS.  Each joint force component was used to scale the 

local stress influence coefficients computed for unit forces 

in the joints. 

 

To compute local stresses in subsystem components, we 

used traditional refined stochastic response surface 

approximation (SRSA) models that are based on high-

order stochastic field models that are capable of handling 

highly nonlinear non-Gaussian variations. Two SRSA 

models were applied: i) 3-Level Hierarchical Model 

(3LHM) and ii) Meshless Fast Probability Integration 

Model (MPFI)[1] 

5. PROGRESSIVE DAMAGE MODELS 

For fatigue damage modeling, several models were used, 

including crack initiation models and crack propagation.   

 

Both the constitutive stress-strain equation and strain-life 

curve are considered to be uncertain curves. The four 

strain-life curve (SLC) parameters are modeled as random 

variables with selected probability distributions, means 

and covariance deviations. We also included correlations 

between different parameters of SLC. This correlation can 

significantly affect the predicted fatigue life estimates as 

shown in our GVSETS paper [1].  Both the stress intensity 

threshold and material toughness are considered as 

random variables. Anywhere we could incorporate 

uncertainty, we did so. 

 

To include the corrosion-fatigue effects, corrosion pit 

growth models were used. The total corrosion-fatigue 

damage in the crack nucleation stage is computed using a 

generalized interaction curve between corrosion and 

fatigue damages, while the in crack propagation stage is 

computed by linear fracture mechanic models (Forman 

model) for which the stress intensity factors are adjusted 

based on local crack size including both the fracture crack 

and the pit depth [1]. As before, uncertainty was 

incorporated. 

 

6. PROBABILISTIC LIFE AND RELIABILITY 

PREDICTION 

 

For probablistic life and reliability prediction we 

considered probabilistic life models based on Lognormal 

and Weibull probability distributions.  We also considered 

the effect of maintenance activities on predicted reliability 

including uncertainties related to the maintenance 

schedule, crack detection and sizing and the crack damage 

repair efficiency.  We considered the uncertainties in the 

maintenance activities that are related to the prediction 

accuracy of non-destructive inspection (NDI) techniques 

and component repairs.  

7. BAYESIAN AND BAYESIAN-

PROBABILITY TRANSFORMATION 

UPDATING 

In addition to the classical Bayesian updating, we also 

implemented a novel stochastic model updating that 
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couples the Bayesian updating (briefly BU) with a 

probability transformation (briefly PT) algorithm. The 

novel stochastic model updating procedure is called 

Bayesian-Probability Transformation updating, or briefly 

the BPT updating. The probablity transformation aspect 

incorporates the stochastic bias function between the 

statistical predicted data and the experimental data. The 

novel stochastic model updating combines the “soft” 

evidence via Bayesian updating with the “hard” evidence 

via probability transformation. The improvement is 

exceptional as it is shown in the case studies section.   

8. MODELING UNCERTAINTIES 

A two-level nested simulation loop was implemented for 

including the effects of a limited number of statistical FEA 

simulations on predicted risks. It should be noted that the 

two-nested simulation loop approach requires a number of 

computational FE analysis runs that is equal to the product 

of the simulation numbers of the inner loop (stochasticity 

effects) and outer loop (modeling uncertainty effects).  

9. SENSITIVITY STUDY RESULTS 

A signficant number of sensitivity studies were performed 

for the HMMWV FLSS reliability. These sensitivity 

studies are shown elsewhere [1]. Herein, due to the very 

limited size of this paper we include only few sensitivity 

studies that address some aspects of important novelty. 

 

9.1 Effect of Statistical Correlation of Strain-Life 

Parameters 

Predicted life is sensitive to slight changes in the nonlinear 

statistical correlation between the strain-life model random 

parameters. Please note that the marginal probability 

distributions of the strain-life model parameters are 

maintained the same. Changes are only in the correlation 

structure between these random parameters. There are four 

stochastic parameters, 
f

σ ,
f

ε , b and c that are included 

in the probabilistic strain-life equation [1]. To include the 

nonlinear correlation between different stochastic input 

parameters, we used a generalized marginal probability 

transformation (GMPT) approach to represent the non-

Gaussian joint probability density of those variables by 

their Gaussian images (also called translational fields) 

applied in conjunction with statistical clustering for 

computing mixture-based joint PDFs. Figure 3 shows the 

effect on nonlinear correlation between the 4 parameters 

of the strain-life curve for two case studies. More details 

are in reference [1]. Figure 3 compares the simulated 

strain-life curve obtained for the statistical Database A 

(higher correlation) and Database B (lower correlation).  It 

should be noted that the resulting scatter of the two 

simulated strain-life curve is very different. As an 

example, if we consider the lowest strain-life curve sample 

for a given strain range of 2.0E-3, then, the computed 

fatigue cycle life is only 100 cycles for Database B, but 

50,000 cycles for Database A.  This drastic change in the 

computed fatigue life is a solely result of changing the 

correlation patterns between the strain-life curve 

parameters. It should be noted that the marginal statistical 

moments and PDFs were preserved. The correlation 

pattern change was this only change that was made 

between Database A and Database B (the marginal PDFs 

are not modified at all). It is obvious that the above 

example shows how important is for an accurate life 

prediction to capture correctly the complex statistical 

dependences, i.e. nonlinear statistical correlation patterns, 

between the strain-life curve parameters. Same remarks 

could be extended to crack propagation models such as 

Paris Law or Forman linear-fracture mechanics-based 

models. This is an extremely important probabilistic 

modeling aspect that is most often ignored in practical 

applications. 

 

9.1 Effect of Limited Simulation Data 

A study was done on the effect of modeling uncertainty on 

the FLSS predicted life due to the limited number of FEA 

simulations, only 250 samples, for different selected 

reliability levels, including mean, 99% and 95% 

exceedance probabilities. It should be noted that the 99% 

reliability life is about half of the 95% reliability life. Also 

the 99% reliability life is about 15-20 times shorter than 

the mean life. The effect of modeling uncertainty for the 

95% confidence versus the 50% confidence is to reduce 

the 95% and 99% reliability lives by about 20-30%.  

 

9.2 Pitfalls in Bayesian Updating 

Further, we investigated the application of the Bayesian 

updating for computing the updated bivariate fatigue stress 

probability distribution based on available experimental 

data. The bivariate fatigue stress distribution includes both 

the quasi-static stress component (in X direction in the 

plots) and the vibratory stress component (in Y direction 

in the plots). We considered 5 random test data. The 

original and updated PDF of the bivariate stress using 

Bayesian updating (BU) is shown in the Figure 2 left plot. 

It should be noted that the updated PDF departs from 

original PDF even though the prediction accuracy is 

perfect. Our new method, BPT, however provides an 

updated PDF that overlaps with original PDF since 

prediction accuracy is perfect. The above results show a 

very serious pitfall of the classical Bayesian updating that 

is currently extremely popular and widely applied by 

engineers as a black box. Please see the longer paper [1] 

for more details of this alarming result. 

 

9.3 Effects of Maintenance Operations 

Finally, we discuss the effects of maintenance 

uncertainties on the FLSS reliability. First, we investigated 
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the case of when the target reliability level or POF is given 

and the schedule of maintenance events needs to be 

determined.  Results are presented in Table 1. Three cases 

were considered for the POF equals to 1.0E-05, 1.0E-04 

and 1.0E-03. Using the developed integrated reliability 

framework, we determined the required maintenance 

schedule, the number of scheduled maintence events 

(SME), the maintenance intervals, the cumulative number 

of repairs, the instantaneous failure probabilities (POF) 

and the mean hazard failure rates (MHFR) per 

maintenance intervals.  

 

It should be noted that for the 1.0 E-05 target POF, the 

numbers of scheduled maintenance events and the number 

of repairs are both about twice than the number of 

maintenace events and the number of repairs needed for 

the 1.0 E-03 target POF. This indicates a scheduled 

maintenance cost of 4 times higher for the 1.0 E-05 POF 

than the 1.0 E-03 POF. However, the real risks are shown 

by the MHFR results not instantaneus POF.  The MHFR 

shows a risk ratio over time that is about 50 times larger 

for the 1.0 E-03 target POF case. It should be noted that 

the highest maintenance-related cost is the unscheduled 

maintenance event (UME) cost associated with the vehicle 

failure during field operations. This UME cost is about 20-

100 times larger than the SME costs. Thus, if we assumed 

that the UME cost is 20 times the SME costs, the use of 

the 1.0 E-03 target POF will produce a UME cost of 50 x 

20 = 1,000 times larger than the use of 1.0 E-05 target 

POF. Thus, overall the maintenance cost will be much 

larger for the 1.0 E-03 target POF. 

 

We also studied the effects of the maintenance interval, 

inspection technique, inspection operator skills and crack 

size rejection limit criterion on the FLSS reliability as 

shown in Table 2. The largest impact on reliability is 

produced by the maintenance scheduling and the 

inspection operator skills. An unskilled operator could 

increase the fatigue failure risks by tens of times 

comparing with a highly skilled operator. Training and 

environment control are key factors to ensure skilled 

operators. The effect of the selected inspection technique 

on the FLSS reliability is also important. We considered 

Eddy Current inspection versus Visual inspection for 

cracking detection. All maintenace intervals are 185 days, 

each day including 24 hour driving on moderate roughness 

roads. Results show that the Eddy Current inspection is 6-

7 times safer than Visual inspection at twice cost (based on 

the cumulative number of repairs).    

 

10. CONCLUSIONS 

 

An integrated HPC reliability framework has been 

developed to address the many challenges of the ground 

vehicle reliability prediction problem. We have 

accommodated many of them.  

 

Specific conclusions are: 

1) Our framework can accurately handle both 

aleatory and epistemetric uncertainty, allowing 

for more confidence in the prediction of the 

reliability of the ground vehicle.  

2) We have learned more about what factors have 

large impact on the reliability assessment and 

have developed strategies to deal with those 

factors. 

3) We have shown that incorporating “hard” and 

“soft” data by combining Bayesian updating with 

the test-predicted bias probability transformation 

is a significant advance over traditional Bayesian 

updating. 

4) We have extended the engineering design process 

to consider maintenance as a source of both 

engineering design parameters and also 

uncertainty in the process. The resulting 

reliability assessment can predict the result of 

changes in maintenance intervals, or the 

sensitivity to disruptions and variability in this 

area.   

5) The road surface variations are highly non-

Gaussian, being rightly-skewed toward larger 

amplitudes. The non-Gaussian variation aspects 

of the road profiles have a significant impact on 

the predicted vehicle fatigue reliability. This is a 

very important modeling aspect that was ignored 

in practice over a long period of time. 

6) The effect of the limited number of FEA 

simulations (herein 250 samples) impacts 

significantly on reliability prediction. 

 

The framework is reaching maturity, and should soon be 

ready to use on new ground vehicle systems, improving 

the reliability of the U.S Army’s fleet in many ways. The 

potential impacts of this work are significant, and the U.S. 

Army of 2020 should be better as a result of this research. 

While more work needs to be done, the case study on the 

HMMWV FLSS was comprehensive enough to show that 

real results can already be obtained, and the Army can see 

immediate benefits of using this framework. 
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Table 1. Required Maintenance for FLSS for Different Target Failure Probability (POF) Levels for Moderate 

Roughness Roads (No Additional Armour Weight Included) 
 

Target 

Probability 

of Failure 

(POF) 

Computed 

Probability 

of Failure 

(POF) 

Number of 

Scheduled 

Maintenance 

Events 

Mean 

Maintenance 

Interval  

(days) 

Cumulative 

Number of 

Repairs per 

Component 

Mean Hazard 

Failure Rate 

For Entire Period 

(per day) 

1.0 E-05 1.1 E-05 23 155 (372) 

(1.02 years) 

18 7.5 E-08 

1.0 E-04 1.1 E-04 17 205 (492) 

(1.35 years) 

15 5.3 E-07 

1.0 E-03 1.0 E-03 12 285 (684) 

(1.87 years) 

11 3.5 E-06 

 

Table 2. Maintenance Analysis Sensitivity Studies for FLSS Reliability for Moderate                                 

Roughness Roads (No Additional Armour Weight Included) 

 

 
                               NOTE: * Constant maintenance intervals of 185 days were considered. 
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Figure 1: Front-Left Suspension System (FLSS); Vehicle model (left), and FEA model (right) 

 
 

 
 

Figure 2 Prior & Posterior PDF Using BU (left) versus BPT (right) for 5 Tests With No Prediction Error 
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Database A       Database B 

 

Figure 3 Simulated Strain-Life Curve Including Nonlinear Correlation Between Parameters 
 


