Robustly Single-mode Polarization Maintaining Er/Yb co-doped LMA Fiber for High Power Applications

A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth and N. Jacobson
Nufern, 7 Airport Park Road, East Granby, CT 06026
Phone: (860)408-5000; fax: (860)408-5080; e-mail: acarter@nufern.com

W. Torruellas and Y. Chen
Fibertek Inc., 510 Herndon Parkway, Herndon, VA 20170

M-Y. Cheng and A. Galvanauskas
EECS Department, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109

A. Sanchez
AFRL/DELO, Kirtland AFB, Albuquerque, NM

Abstract: We demonstrate a large core diameter PM Er/Yb fiber incorporating a unique raised inner-cladding which facilitates the use of conventional LMA mode selection techniques to achieve robustly single-mode operation, making it ideally suited to high power applications.

© 2007 Optical Society of America

OCIS codes: (060.2280) Fiber design and fabrication; (060.2320) Fiber optics amplifiers and oscillators

1. Introduction.

The development of large-mode area (LMA) fibers has lead to demonstrations of kiloWatt level CW outputs and megaWatt level peak powers in sub-nanosecond pulsed amplifiers. Such output powers have been achieved with near diffraction-limited output beam quality, because the low NA core supports only a few modes and the higher order modes can be easily discriminated against by preferential seeding [1], and/or bending [2]. However, due to the inherent difficulties associated with manufacturing fibers containing the relatively high lanthanide ion dopant concentrations required for high optical-efficiency whilst maintaining a low core NA, the development of LMA fibers has largely been restricted to ytterbium fibers for use at around 1.0μm. In spite of the numerous advantages, a significant drawback of the ytterbium based system is the relatively high sensitivity of the human eye to wavelengths in the 1.0μm region. Consequently for certain applications, such as ranging, pollution monitoring, clear-air turbulence analysis and free-space communications, operating in the “eye-safe” 1.5-2.0μm range is preferred.

Notwithstanding the lack of LMA fibers, a number of significant steps toward the extraction of high output powers from multimode Er/Yb fibers have been reported. Koroshetz et. al. [3], demonstrated a 40W, 10Gb/s amplifier; Shen et. al. [4] reported 188W of CW output with an M² of 1.9 using fibre with a 30μm 0.22NA core; and Yusim et. al. [5] employed a 20μm core fiber, which supports 30 modes, to achieve 100W output with a near diffraction-limited beam by employing single-mode fiber based components in the cavity and making highly precise splices between the single-mode fibers and the multi-mode active fiber. Although a high-power near diffraction-limited output was achieved, such methods are cumbersome and further emphasize the need for LMA fibers. We recently reported the development of such an LMA fiber [6] and present here an advancement in this technology that allows the fabrication of highly efficient, polarization maintaining (PM) LMA fibers. A PM-LMA Er/Yb co-doped fiber suitable for nanosecond pulsed amplification applications as well as high power CW amplification has been designed and fabricated. This fiber possesses a relatively large 25μm core and 300μm cladding diameter but incorporates a unique raised inner cladding (pedestal) which reduces the V-value at 1550nm to less than 5, thereby facilitating the use of seeding and/or coiling technology to achieve single-mode operation with relative ease. Manufacturing challenges for these novel fibers are discussed and amplification performance data including up to 40% power efficiency is presented.

2. Experiment and results.

The challenges associated with fabricating LMA Er/Yb and Tm-doped fibers have previously been discussed in detail by Tankala et. al. [6]. In the case of a PM-LMA fiber the manufacturing is further complicated by the spatial requirements of the stress inducing elements [7] and this is further exacerbated here by the presence of the pedestal. Care is also required so as to avoid shattering the highly stressed core during the machining steps. Notwithstanding these
Robustly Single-mode Polarization Maintaining Er/Yb co-doped LMA Fiber for High Power Applications

We demonstrate a large core diameter PM Er/Yb fiber incorporating a unique raised inner-cladding which facilitates the use of conventional LMA mode selection techniques to achieve robustly single-mode operation, making it ideally suited to high power applications.
complications, by careful positioning and compositional optimization of the stress elements we found that it is possible to achieve a birefringence of around $2.0-2.5 \times 10^{-4}$. We chose a core to pedestal NA of around 0.09 and a pedestal diameter of around 40 microns, because at such a diameter the pedestal behaves as a “true” cladding to the core rather than an extended core feature [6]. The fiber was drawn in a double clad (DCF) geometry with a 0.46 NA provided by a fluoroacrylate polymer, the peak core absorption of the erbium (circa 1550 nm) was 25 dB/m and the 915 nm cladding absorption was measured to be around 0.8 dB/m. The fiber was tested in both CW and nanosecond high pulse energy amplifiers. Depending upon the amplifier configuration and length of fiber used, slope efficiencies of between 30-40% were typical; see Figure 1. Using an EM4 high-power DFB laser to produce 2 ns seed pulses with 550 pJ pulse energy (at a pulse repetition rate of 10Kpps), amplification of around 50 dB (to ~70 μJ) was achieved using the PM-LMA-EYDF in the third stage of a three stage amplifier; for an average power of 0.7 W. A 30% optical to optical efficiency was also achieved when amplifying 500 ns seed pulses (at 50 Kpps) to achieve 160 μJ/pulse (around 300 W peak power), before the onset of SBS.

![Slope efficiency 38%](image1)

![Slope efficiency of a 500ns seeded amplifier as a function of coupled pump power for 4m, 5m and 7.5m fiber](image2)

Figure 1: Slope efficiency of a 10m long PM-LMA-EYDF-25/300 CW fiber amplifier pumped at 975 nm and seeded with 100 mW at 1559 nm (left) and Slope efficiency of a 500ns seeded amplifier as a function of coupled pump power for 4m, 5m and 7.5m fiber (right).

We also used standard mode matching techniques, in a seeded amplifier configuration, to compare this LMA fiber with that of a more typical 0.17 NA 18 μm core fiber and found that despite the larger core single-mode output was more readily achieved from the LMA fiber. We measured the output signal beam after propagating through 10 m of Er/Yb amplifier and found that the achievable mode quality was close to diffraction-limited with a measured M^2 of 1.1.

In conclusion, we have found that by incorporating a pedestal feature between the core and cladding of a conventional PM Er/Yb DCF it is possible to create an LMA-like structure and thereby increase the non-linear threshold and achieve the pulse energies, peak powers, efficiency and beam quality suitable for many “eye-safe” coherent monitoring systems.

The authors acknowledge AFRL for funding development of the PLMA Er/Yb fibers (Contract #: FA9451-05-D-0218).
References