Ensemble Methods for Coastal Ocean Flows

Roger M. Samelson
College of Oceanic and Atmospheric Sciences
Oregon State University
104 COAS Admin Bldg
Corvallis, OR 97331-5503
Phone: (541) 737-4752 FAX: (541) 737-2064 E-mail: rsamelson@coas.oregonstate.edu

Award Number: N00014-08-1-0563
http://www.coas.oregonstate.edu/faculty/samelson.html

LONG-TERM GOALS

The long-termand goals of this research are to improve our ability to understand and predict environmental conditions in the coastal ocean.

OBJECTIVES

The central objective of the proposed research is to explore problems in ensemble forecasting, Lagrangian trajectory analysis, and the utility of Lyapunov vectors for dynamical analysis and ensemble prediction of coastal ocean flows. The research will be conducted by an incoming graduate student, in collaboration with the PI.

APPROACH

The proposed research will extend previous work on these topics by directly addressing issues in ensemble forecasting, Lagrangian motion, and the utility of Lyapunov vectors for ensemble-based analysis and prediction of coastal ocean flows. The research will be carried out primarily by a graduate student, with assistance from and guidance by the PI. The details of the graduate student research project will depend in part on the specific interests of the student, but will proceed along the following general lines.

The ensemble prediction problem for the coastal ocean, with the important element of strong forcing by atmospheric circulations that have their own intrinsic predictability limits, will be explored. Recent work by the PI and collaborators has focused on understanding the characteristics of instabilities and disturbance growth in the coastal ocean and in idealized models with relevance to the coastal ocean. The use of Lyapunov vectors, computed by the new method of Wolfe and Samelson (2007a), as a basis for ensemble generation in the presence of flow-dependent instabilities will be explored.

The effect of sea-floor topography on disturbance growth in the coastal ocean is an additional component of this problem that deserves further attention. Ensemble statistics analyzed in current work by Kim et al. (2008) shows that much of the variance in the dynamical variables is associated with topographic obstacles, in idealized periodic channel simulations with realistic representations of coastal Oregon bathymetry. The dynamics giving rise to these strong statistical inhomogeneities remain poorly understood.
The central objective of the proposed research is to explore problems in ensemble forecasting, Lagrangian trajectory analysis, and the utility of Lyapunov vectors for dynamical analysis and ensemble prediction of coastal ocean flows. The research will be conducted by an incoming graduate student, in collaboration with the PI.
In general, appropriate ensemble methods for the coastal ocean will need to include representations both of atmospheric uncertainty and of oceanic uncertainty. A natural approach to consider is a multi-ensemble system, in which a set of ocean simulation ensembles is constructed, each of which is forced by a member of an atmospheric ensemble. Because the size of such a system will grow rapidly, however, other approaches may prove more efficient. For example, the atmospheric forcing may be considered part of the ocean model, and model-error schemes may be used to represent the uncertainty in the forcing, through parameterized stochasticity or other modifications to the forcing fields.

The ensemble forecast approach leads naturally to consideration of ensemble Kalman filters in the related context of data assimilation (Evensen, 1994). Ensemble Kalman filters offer several potential advantages over competing assimilation methods (Hamill and Snyder, 2000; Snyder and Zhang, 2003; Hamill, 2006). They are related to the error subspace statistical estimation techniques advocated by Lermusiaux and Robinson (1999) and Lermusiaux (2007). Versions of the ensemble Kalman filter have been implemented in global ocean models (Keppenne, 2000). Techniques for implementation of ensemble Kalman filter schemes in limited-area models have been developed for regional atmospheric models (Torn et al., 2006; Dirren et al., 2007), and these should be readily adaptable for regional ocean modeling. These methods are ripe for exploration in the context of recent and ongoing studies of data assimilation in coastal ocean models at COAS (Oke et al., 2002; Kurapov et al., 2005a, 2005b), and the pilot Oregon coastal ocean forecasting system (http://agate.coas.oregonstate.edu/ocs_index.html) developed at COAS by Kurapov, Egbert, and the PI with support from the NOAA-OSU Cooperative Institute for Oceanographic Satellite Studies.

Related topics that may be explored, both directly and in the ensemble context, are the characteristics and statistics of Lagrangian trajectories in the coastal ocean. Extensions of the idealized studies of Kuebel Cervantes et al. (2004) and Kuebel et al. (2003) to simulations with full three-dimensional variability and realistic topography representative of the U.S. west coast would be of considerable interest, and could have important implications for understanding of regional biological and other related shelf processes. In general, little is currently known regarding the predictive information content for Lagrangian motion that can be derived from ensembles of Eulerian simulations for wind-driven coastal ocean flows, and investigations in this direction would be likely to yield interesting new insights as well.

WORK COMPLETED

The graduate student has been accepted into the COAS Physical Oceanography program and is beginning course work in Fall 2008.

RESULTS

The graduate student entered the graduate program in Fall 2008, and no results are available yet.

RELATED PROJECTS

The planned work is related to the ONR NOPP project ‘Boundary Conditions, Data Assimilation, and Predictability in Coastal Ocean Models’ (ONR Award Number N00014-05-1-0891).
REFERENCES

