VSE Corporation
Integrity - Agility - Value
1. REPORT DATE FEB 2010
2. REPORT TYPE
3. DATES COVERED 00-00-2010 to 00-00-2010
4. TITLE AND SUBTITLE Impact of Corrosion on Ground Vehicles, Field Site Operations
5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
6. AUTHOR(S)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) VSE Corporation, Corrosion Prevention and Control (CPAC) Program, 6790 Sims Unit A, Sterling Heights, MI 48313
8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
10. SPONSOR/MONITOR’S ACRONYM(S)
11. SPONSOR/MONITOR’S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified
17. LIMITATION OF ABSTRACT Same as Report (SAR)
18. NUMBER OF PAGES 29
19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
"Impact of Corrosion on Ground Vehicles, Field Site Operations"

Greg Bock

Program Manager
VSE Corporation, Corrosion Prevention and Control (CPAC) Program
Office: (586) 446-3205
gwbock@vsecorp.com
Corrosion Prevention and Control (CPAC) Programs

- Prime contractor for US Army and US Marine Corps programs for over five years
 - Management support of the programs, to include vendors
 - Life cycle support: corrosion prevention techniques, processes, compounds, and controls

TARGET: Tactical Wheeled Vehicles and Ground Support Equipment
CPAC Program Elements

- Corrosion prevention training for the design engineers
 - New corrosion resistant materials
 - New design considerations
 - New finishing techniques

- Controlled humidity protection
 - Fully humidity controlled project
 - Humidity controlled system for individual pieces of equipment
 - Environmentally sealed bags

- New paint and application technologies
 - Water-based CARC and primer
CPAC Program Elements

- Development of environmentally friendly corrosion prevention techniques
 - New compounds being developed
- Research and Development
 - Find and test new/emerging corrosion-oriented technologies
- Repair initial stages of corrosion
 - Category II repairs (surface preparation/prime/paint)
- Application of corrosion preventive compounds
 - Reduce the progression of corrosion
Corrosion Condition Assessments

- Assess all assets during every service period
- Use PDAs
- Download to database
 - Centralized
 - Web access
Program Accomplishments

- **CPC application**
 Ft. Polk; Ft. Hood; Schofield Barracks; Okinawa, Japan; Camp Carroll, South Korea; Ft. Bragg, Ft. Stewart, Charleston Seaport, and special deployment locations (Ft. Lewis, Kentucky Bluegrass Station)
 Treated 64,773 pieces of equipment since FY 2007

- **Surface Preparation and Repairs**
 6,442 pieces of equipment since FY 07
 Surface preparation, prime, and paint at Ft. Polk; Ft. Hood; Schofield Barracks; Okinawa, Japan; Camp Carroll, South Korea; Ft. Stewart, and Charleston Seaport
Schofield Barracks, HI

• The **FIRST** corrosion center

• Eight bays
 • Four inspection
 • Four CPC application

• Production ~ 60 pieces per day
• Developed as a result of 9/11 events
- Assets available: 10,000 pieces
- Fixed Facility
- One Mobile System

Ft. Hood, TX
Ft. Bragg, NC

- Assets available: 8,000 pieces
- Fixed Facility
- One Mobile Team
Ft. Polk, LA

- Assets available: 5,000
- Fixed Facility
- One Mobile Team
Assets available: 5,500 pieces
One Mobile System
Team covers:
- Active Army Units
- National Guard Units
- On the lot storage - Bags
Assets available: 1,055 pieces
- Added Patriot Missile system to requirements in Nov 09

One Mobile System
- Adding one additional Mobile Team when funding becomes available

Torii Station, Okinawa
Camp Carroll, South Korea

- Assets available: 4,200 pieces
 - Warehouse of BII added
 - Anticipate additional personnel when Patriot Program starts
- One Mobile System
- Also covers CHP system at Camp Casey
- Anticipated Two additional Mobile Systems for Patriot Program
This site is ideal for various types of corrosion prevention

Assets available: 500 LBE pieces + 3 APS ships per year = 9,000 pieces

Site will incorporate:

- Controlled Humidity Storage
 - Project design in process
- CPC application
- New paint technologies
- On the lot storage - bags
• Assets available: 7,000 pieces
• One Mobile System
Corrosion test started June 09/follow up assessment in July 10

- 1,500 pieces at each site (750 treated/750 untreated)
- Test to determine rate of progression for corrosion

Three Mobile Systems
- Provided assessment documentation to support Patriot missile systems in Japan and South Korea
- Training took place Nov 09/Production started Nov 09
- Okinawa is the first site. Once process is proven, then possibly move to all sites in South Korea.
Discussions/Plans/MOA’s – being developed (customer initiated):

- FORSCOM sites
- SOCOM sites
- Additional deployment locations
Deployment Support

- Tactical Vehicle PM and Stryker PM contact us for CPC application to equipment being deployed.
- Usually 2-14 day notification before ship date
- Quick reaction teams developed using Part Time personnel
 - Ship teams and equipment to required site

 Typical locations:
- Blue Grass Station, Lexington, KY
- Ft. Lewis, WA
- Beaumont, TX
- Gatesville, TX
National Guard & Reserves

- National Guard
 - Hawaii
 - Ft. Drum

- Reserves
 - Puerto Rico
 - Ft. Drum
 - Ft. McCoy
 - Ft. Polk
CPAC Locations

Fixed and Mobile System Sites
THE CORROSION SERVICE TEAM
4-STEP PROCESS
Step 1: Clean/Wash Equipment

Remove salt, dirt, deposits, oil, grease, etc. using fresh water, hoses, pressure washers, cleaning compounds/detergents as available. This critical first step of cleaning should be accomplished by the custodians of the equipment IAW TB 43-0213 prior to induction into the Corrosion Service Team procedures.
Step 2: Surface Preparation /Paint

When a CARC-painted surface is scraped, scratched or damaged, the resistance to chemical agents is lessened and it becomes susceptible to corrosion. Depending on the location and size of the area damaged, spot painting may be required. This spot painting is carried out by the Corrosion Service Teams IAW TB 43-0242, WD-CARC Spot Painting.
Step 3: Preservation

Preservation of the cleaned and inspected vehicle is the third step of the CPAC process. Preservation helps to protect equipment and parts by providing coatings, anti-seizes, sealants and water displacing CPC compounds. Preservatives are used after equipment cleaning, before and after deployment and when an extended period of equipment storage is anticipated. Soy or Canola-based Cortec Ecoline Long Term Rust Preventative is the primary CPC applied during preservation efforts. Dehumidified storage can also be utilized in conjunction with these preservation procedures.
Step 4: Inspection/Assessment

A thorough inspection of equipment is the fourth step in the CPAC process. The material condition of equipment must be checked for corrosion, coating damage, trapped water and contaminated surfaces. The frequency of corrosion inspection should increase with the operational tempo, severity of the environmental conditions and importance of the component/vehicle. A PDA is utilized in conjunction with a corrosion assessment checklist to capture the overall corrosion condition of the vehicle/equipment. This checklist categorizes/identifies the stages and levels of corrosion. This data is then downloaded to a website for referral as necessary. Refer to TB 43-0213, which identifies the stages and levels of corrosion.
Summary

• The Army CPAC program has grown and has the capability to continue to grow
• New requirements are continually being received for additional Teams
• TACOM/TARDEC is the government agency responsible for this Program